ECE 671 – Lectures 22

Specialized hardware and Runtime support

Packet processing in network systems

• Protocol operations implemented on input port
Packet processor

• How to implement packet processing?

Packet processor

• Tradeoffs between hardware and software
 – Custom hardware: ASIC
 – Software: workstation processor or network processor

• How can processor be optimized for networking?
Network processor

• System architecture:

Network processor

• Operation:
Example network processors

<table>
<thead>
<tr>
<th></th>
<th>Intel IXP2855</th>
<th>Cisco QuantumFlow</th>
<th>Cavium CN5860</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum throughput</td>
<td>10Gbps</td>
<td>20Gbps</td>
<td>20Gbps</td>
</tr>
<tr>
<td>Data path processors</td>
<td>16 32-bit RISC processors, 8 threads per processor, up to 1.5GHz</td>
<td>40 32-bit RISC processors, 4 threads per processor, up to 1.2GHz</td>
<td>16 64-bit RISC processors, up to 800MHz</td>
</tr>
<tr>
<td>On-chip memory</td>
<td>32kB instruction and 32kB data memory per processor</td>
<td>16kB cache per processor, 256kB shared cache</td>
<td>32kB instruction cache and 8kB data cache per processor, 2MB shared cache</td>
</tr>
<tr>
<td>Control processor</td>
<td>32-bit XScale RISC core, 32kB instruction cache, 32kB data cache, up to 750MHz</td>
<td>Off-chip</td>
<td>Off-chip</td>
</tr>
<tr>
<td>External memory interfaces</td>
<td>3 DRAM interfaces, 4 SRAM interfaces</td>
<td>DRAM, SRAM, and TCAM interfaces</td>
<td>DRAM and TCAM interfaces</td>
</tr>
<tr>
<td>Hardware accelerators</td>
<td>Cryptographic co-processor</td>
<td>Classification, traffic policing, etc.</td>
<td>Cryptographic co-processor, TCP acceleration, regular expression matching, etc.</td>
</tr>
<tr>
<td>Maximum power dissipation</td>
<td>32W</td>
<td>80W</td>
<td>40W</td>
</tr>
</tbody>
</table>

Processing workload

- **What does packet processing look like?**
 - Many components
 - Processing differs based on packet

- **How to spread workload over processor cores?**
Processing models

• Splitting workload across cores:
 - Run-to-completion
 - Pipelining

Network processor topologies

• Different logical or physical arrangements of cores
 - Full inter-connect
 - Grid
 - Pipeline
 - Pool of pipelines
Hardware accelerators

- Custom logic components for network functions
 - Lookup and classification (e.g., TCAM)
 - Pattern matching
 - Cryptographic co-processor
 - Compression and decompression
 - XML processing
- Tradeoff between performance gain and space
 - Only highly utilized accelerator is worthwhile

A look back...