ECE 671 – Lecture 18

Quality of Service Link Scheduling

Quality of Service (QoS)

- Queuing theory provides basis network traffic
 - Simple model that treats all traffic equally
- Applications may require certain quality of service
 - Voice, video, control, gaming, etc.
- Quality metrics depend on application
 - Bandwidth, delay, jitter, loss
- How can the network provide quality of service?

QoS techniques in network

- Routing
 - Choose path with matching characteristics
- Queuing
 - Decide on outgoing order of packets
- QoS in network architecture
 - Overprovisioning
 - Integrated Services (IntServ): QoS routers, reservations
 - Differentiated Services (DiffServ): traffic classes, enforcement at edge

CE 671 © 2011 Tilman Wolf

Link scheduling • Order of outgoing packets determines quality • Example: first-in-first-out queuing input ports protocol processing protocol processing ecce 671 © 2011 Tilman Wolf 4

FIFO queuing example

- Traffic from 3 inputs to 1 FIFO output
 - What is the outgoing order and timing?

Link scheduling for QoS

- How can link scheduling affect quality of service?
- · What are possible scheduling approaches?

Priority queuing

- Traffic classified by priority classes
 - Two or more classes
- Strict ordering of link access priority by class
 - High priority: always sent when link is available
 - Low priority: only sent when no high priority traffic
- What are pros and cons?

ECE 671 © 2011 Tilman Wolf

Priority queuing example t=120 t=60 t=300 input 1 60 (low priority) t=340 80 input 2 (low priority) t=140 input 3 high priority) priority queue priority link scheduler high priority aueue t=320 t=120 output link ECE 671 © 2011 Tilman Wolf 10

Fairness

- Priority queuing can starve low priority class
- What would be a fair way of sharing link bandwidth?

ECE 671 © 2011 Tilman Wolf

Resource allocation schemes

• What are the drawbacks of equal and proportional allocation?

Max-min fair allocation

- Iterative allocation from smallest to largest
 - Allocate request or fair share (whatever is less)
 - Update remaining bandwidth and fair share

ECE 671

Fair link scheduling

- Scheduler picks from different queues
 - Fair sharing between queues

ECE 671

© 2011 Tilman Wolf

15

Weights

- Different traffic class can have different weights
 - Different levels of service
 - Different bandwidth needs
 - Aggregate flows
 - Etc.
- Weights w_i indicate proportion of link bandwidth
 - Each flow receives $w_i/(\sum w_i)$ of the link capacity
- Most scheduling algorithms can be extended to consider weights

ECE 671

© 2011 Tilman Wolf

Round-robin

- Each queue gets equal opportunity to transmit
 - If queue has packet, send packet
 - Move to next queue
 - Etc.
- Benefits?
 - Traffic isolation
- What is the problem with this approach?
 - Packet size can cause unfairness

ECE 671 © 2011 Tilman Wolf

17

Bit-wise round robin

- Packet sizes cause unfairness in round robin
- Bit-wise round robin
 - Idealized scheduling
 - Smallest entity is bit
 - Unrealistic for real networks
- For link of capacity C, each of N flows receives C/N
 - Variation between flows at most one bit
- Fluid version is called "generalized processor sharing" (GPS)

Deficit Round Robin

- Round robin scheduler with O(1) complexity
- Each queue has a "deficit counter"
 - "Credit" for how much can be sent
- Steps:
 - Deficit counter incremented by "quantum size"
 - While next packet size in queue is less than deficit
 - Send packet
 - Decrement deficit by packet size
 - Move to next queue with packet
- Packets need to wait until credit has accumulated
 - Fairness
 - No delay guarantees

71 © 2011 Tilman Wolf

Fair Queuing

- Need to discretize bit-wise round robin
 - Whole packets
- Solution:
 - Emulate bitwise round-robin
 - Determine order of completed packet transmissions
 - Send packets in same order
- Notation
 - $-\alpha$ flow id
 - S_i^α start time of packet i
 - F_i^α finish time of packet i
 - $-P_i^{\alpha}$ size of packet i
 - t_i arrival time of

ECE 671 © 2011 Tilman Wolf 20

Fair Queuing

- Start time: $S_i^{\alpha} = max(F_{i-1}^{\alpha}, t_i^{\alpha})$
- Transmission time T_i^{α} : P rounds
 - One round takes N bit times, $T_i^{\alpha} = P_i^{\alpha} \cdot N$
- Finish time: $F_i^{\alpha} = S_i^{\alpha} + T_i^{\alpha}$
- · Packets are sent in order of finish time
- What is the complexity of fair queuing?
 - O(log N) for each packet
 - Expensive for large number of flows / classes

