ECE 671 – Lecture 17

Queuing Theory Steady-State Analysis

Queuing theory basics

- Express process as Markov chain
 - Discrete time
 - Continuous time
- Steady state probability
 - Probability distribution of states in the limit
- Next: use Markov chain to model queuing in network

ECE 671 © 2011 Tilman Wolf 2

Birth-Death Processes

- Solving general Markov chain can be difficult
- Simpler, constrained version: birth-death process
 - Transitions are only allowed between neighboring states
 - Transition rates: birth rate λ_k and death rate μ_k
- Birth-death process:

Matrix form:

ECE 671

Steady State of Birth-Death Processes

• Steady state equations:

$$-0 = -\pi_0 \lambda_0 + \pi_1 \mu_1$$

$$-0 = -\pi_0 \lambda_0 + \pi_1 \mu_1$$

$$-0 = -\pi_k (\lambda_k + \mu_k) + \pi_{k-1} \lambda_{k-1} + \pi_{k+1} \mu_{k+1}$$

Solving for π :

$$-$$
 π₁=λ₀/μ₁ π₀

$$- \pi_2 = \lambda_0 \lambda_1 / (\mu_1 \mu_2) \pi_0$$

- In general:
$$\pi_k = \pi_0 \cdot \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}$$
 , $k \ge 1$ What about π_0 ?

- - Sum of probabilities must be 1

$$\overline{\tau}_0 = \frac{1}{1 + \sum\limits_{k=1}^{\infty} \prod\limits_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}} = \frac{1}{\sum\limits_{k=0}^{\infty} \prod\limits_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}}$$

− Convergence criterion: $\exists k_0$, $\forall k > k_0$: $\lambda_k / \mu_k < 1$

ECE 671

© 2011 Tilman Wolf

Birth-Death Process Example

- Simplest example
 - All birth rates are the same $(=\lambda)$
 - All death rates are the same $(=\mu)$

• Solve
$$\pi_0$$
: $\pi_0 = \frac{1}{1 + \sum_{k=1}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda}{\mu}} = \frac{1}{1 + \sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu}\right)^k} = \frac{1}{1 + \frac{\lambda/\mu}{1 - \lambda/\mu}} = 1 - \frac{\lambda}{\mu}$

- Then π_k : $\pi_k = \pi_0 \cdot \left(\frac{\lambda}{\mu}\right)^k = \left(1 \frac{\lambda}{\mu}\right) \cdot \left(\frac{\lambda}{\mu}\right)^k$
- Represent utilization $\rho = \lambda/\mu$ - $\pi_k = (1-\rho)\rho^k$
- Geometric distribution (with parameter p=(1-ρ))

FCF 671

© 2011 Tilman Wolf

5

Birth-Death Process Example

• Mean number of customers in system:

$$-\overline{N} = \sum_{k=1}^{\infty} k \cdot \pi_k = \sum_{k=1}^{\infty} k \cdot (1-\rho) \rho^k = \frac{\rho}{1-\rho}$$

- With Little's law:
 - T=N/ λ =1/ μ /(1- ρ)
 - $Q = \rho^2/(1-\rho)$
- So, finally:
 - With increasing load, queue length and waiting time increase

ECE 671

Kendall's Notation

- There are many different queuing systems
- Notation indicates type of arrival and service
 - M Exponential distribution (memoryless)
 - D Deterministic distribution
 - G General distribution
 - **–** ...
- Queuing discipline indicates
 - Arrival process
 - Service process
 - Number of servers
- E.g.: M/M/1
 - Simplest case (previous example)

ECE 671

© 2011 Tilman Wolf

7

M/M/1 queuing model

- M/M/1 results:
 - Birth-death process with λ and μ
 - $\pi_k = (1-\rho)\rho^k$
 - $\pi_0 = 1 \rho$
 - Average number of jobs in system
 - $K = \rho/(1-\rho)$
 - Average response time
 - T=N/ λ = 1/(μ ·(1- ρ))
 - Mean queue length
 - $Q=\rho^2/(1-\rho)$
- What are the assumptions?
 - Exponentially distributed interarrival and service times

ECE 671

© 2011 Tilman Wolf

M/G/1 queuing model

- Service time is not exponentially distributed
 - What does packet transmission time depend on?
 - Packet size
 - Link speed (constant)
- We need different model
 - "Generalized" distribution for service time
- How can we model such a service time?
 - From point of view of arriving job
 - Waiting time depends on
 - Remaining service time of current job (W₀)
 - Sum of mean service times of jobs in queue (Q·E[X])
 - Thus, $W=W_0+Q\cdot E[X]$

ECE 671

2011 Tilman Wol

9

M/G/1 queuing model

- Expected service time is independently distributed
 - Use Little's law
 - $W=W_0+Q\cdot E[X] = W_0+\lambda\cdot W\cdot E[X]$
 - With E[X]=1/μ
 - W=W₀+ρ⋅W
 - Solve for W
 - W=W₀/(1-ρ)
 - What is value of W_0 ?
 - Depends if server is busy or not
 - W₀=P[busy]·R+P[not busy]·0
- How can we determine "mean residual life" R?
 - Result from Kleinrock
 - $R=1/2 \cdot E[X^2]/E[X]=1/2 \cdot E[X](1+c_X^2)$
 - $-c_{\chi}^{2}$, where c is coefficient of variation
 - $-c_X=\sigma_X/E[X]$ (normalized standard deviation)

ECE 671

© 2011 Tilman Wolf

M/G/1 queuing model

- Total waiting time:
 - W=W₀/(1- ρ)= ρ /(1- ρ)·1/2·E[X](1+ c_x^2)
- With Little's law (Q= λ ·W) and E[X]=1/ μ :

$$Q = \frac{\rho^2}{(1-\rho)} \cdot \frac{(1+c_X^2)}{2} = \frac{\rho^2}{(1-\rho)} \cdot \frac{1}{2} \cdot \frac{E[X^2]}{E[X]^2}$$

- Pollaczek-Khintchine formula
- Sanity check:
 - Exponential distribution for G
 - $\sigma_X^2=1/\lambda^2$, E[X]=1/ λ , $c_X=\sigma_X$ /E[X]=1
 - $Q=\rho^2/(1-\rho)$

ECE 671

© 2011 Tilman Wolf

11

M/D/1 queuing model

- Deterministic service time
- Examples
 - Service of "requests"
 - Web page
 - DNS lookup
 - Memory access
- Coefficient of variation c_x²=0
- Queue length
 - $Q=1/2 \cdot \rho^2/(1-\rho)$

ECE 671

© 2011 Tilman Wolf

M/G/1 - M/M/1 comparison

- How much do M/G/1 and M/M/1 differ?
 - Assume network traffic
 - M/M/1
 - Service time exponentially distributed
 - M/G/1
 - Service time proportional to packet size
- Queue length
 - M/G/1 queue shorter if $\frac{\rho^2}{(1-\rho)} \cdot \frac{(1+c_X^2)}{2} < \frac{\rho^2}{(1-\rho)}$
 - Need c_x² for packets
- What is the distribution of packet lengths?

CE 671 © 2011 Tilman Wolf

Packet length distribution

- From NLANR:
 - E[X]=354
 - $E[X^2] = 357355$
 - $-\sigma_{x}$ =598
 - $-c_x=1.687$
 - $-c_{X}^{2}=2.844$
- Thus

$$\frac{(1+c_X^2)}{2} = \frac{(1+2.844)}{2} > 1$$

M/M/1 is too optimistic

ECE 671

© 2011 Tilman Wolf

Queuing theory summary

- Markov chain as model for stochastic process
 - General solutions for discrete time and continuous time
 - Steady-state probability distribution
- Birth-death process
 - Special case of Markov chain
 - Model for queue in network
 - Closed form solution for delay based on load
- Kendall's notation
 - M/M/1 as simplest queuing model

CE 671 © 2011 Tilman Wolf