ECE 671 — Lecture 17

Queuing Theory
Steady-State Analysis

Queuing theory basics

e Express process as Markov chain
— Discrete time

— Continuous time

* Steady state probability
— Probability distribution of states in the limit

e Next: use Markov chain to model queuing in network
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Birth-Death Processes

* Solving general Markov chain can be difficult

e Simpler, constrained version: birth-death process
— Transitions are only allowed between neighboring states
— Transition rates: birth rate A, and death rate p,

* Birth-death process:
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Steady State of Birth-Death Processes

e Steady state equations:
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* Solving for m: 0 0 o —(Atp)
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— In general:ﬂk=7ro~H —,k>1
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— Sum of prpbabilities myst be 1
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— Convergence criterion: 3k, Vk>k,: A,/ <1
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Birth-Death Process Example

* Simplest example
— All birth rates are the same (=)
— All death rates are the same (=)

Solve T, L L L
* ve 7! 0= w k1 5 B K~ 2/
1+ = Al 1+ “
k k
e Then m: 7, :ﬂo,(ij :(1_£J(ij
H H) \H
* Represent utilization p=A/p
- m=(1-p)pk

* Geometric distribution (with parameter p=(1-p))
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Birth-Death Process Example

* Mean number of customers in system:

N P

e With Little’s law:
— T=N/A=1/p/(1-p) °r
— Q=p*/(1-p)

* So, finally:
— With increasing load,

queue length and
waiting time increase 2r

mean queue length
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Kendall’s Notation

There are many different queuing systems
Notation indicates type of arrival and service
M — Exponential distribution (memoryless)

— D — Deterministic distribution

— G — General distribution

Queuing discipline indicates
— Arrival process

— Service process

— Number of servers

E.g.: M/M/1

— Simplest case (previous example)
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M/M/1 queuing model

e M/M/1 results:
Birth-death process with A and
* m=(1-p)p
* p=1-p
Average number of jobs in system
* K=p/(1-p) 0
Average response time
* T=N/A=1/(-(1-p)) I
Mean queue length
* Q=p?/(1-p)
* What are the assumptions?

— Exponentially distributed o
interarrival and service times

rean queue length
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M/G/1 queuing model

* Service time is not exponentially distributed
— What does packet transmission time depend on?
¢ Packet size
¢ Link speed (constant)
* We need different model
— “Generalized” distribution for service time
* How can we model such a service time?

— From point of view of arriving job

— Waiting time depends on
* Remaining service time of current job (W)
¢ Sum of mean service times of jobs in queue (Q-E[X])

— Thus, W=W+Q-E[X]
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M/G/1 queuing model

e Expected service time is independently distributed
— Use Little’s law
o W=W+QE[X] = Wo+A-W-E[X]
— With E[X]=1/p
o W=Wgtp-W
— Solve for W
o W=Wy/(1-p)
* Whatis value of W,?
— Depends if server is busy or not
— W,=P[busy]-R+P[not busy]-0
¢ How can we determine “mean residual life” R?
— Result from Kleinrock
+ R=1/2-E[X2/E[X]=1/2-E[X](1+c,?)
— ¢, where cis coefficient of variation
— ¢,=0,/E[X] (normalized standard deviation)

ECE 671 © 2011 Tilman Wolf

10




M/G/1 queuing model

* Total waiting time:
— W=W,/(1-p)=p/(1-p)-1/2-E[X](1+c,?)
» With Little’s law (Q=A-W) and E[X]=1/p.:
o=~ (@+ce’)_ PP 1 E[XF]
1-p) 2 (1-p) 2 E[X]
— Pollaczek-Khintchine formula
* Sanity check:

— Exponential distribution for G
* 6,2=1/22, E[X]=1/A, =G, /E[X]=1
* Q=p?/(1-p)
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M/D/1 queuing model

e Deterministic service time

M Examples Ty —

M/D/I -
— Service of “requests”

* Web page
* DNS lookup
— Memory access
* Coefficient of
variation ¢,?=0
* Queue length

mean queue length

(=]

— Q=1/2-p?/(1-p) 0 55

utilization rho
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M/G/1 - M/M/1 comparison

* How much do M/G/1 and M/M/1 differ?
— Assume network traffic
- M/M/1
* Service time exponentially distributed
- M/G/1
* Service time proportional to packet size
* Queue length
— M/G/1 queue shorter if
— Need c,? for packets

e What is the distribution of packet lengths?

2

Pt @+e’) _ p
l-p) 2 A-p)
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Packet length distribution

e From NLANR: :
— E[X]=354
— E[X%]=357355 08
0,=598
— ¢=1.687
— ,2=2.844
* Thus
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® M/M/l is too packet length
optimistic
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Queuing theory summary

* Markov chain as model for stochastic process
— General solutions for discrete time and continuous time
— Steady-state probability distribution
e Birth-death process
— Special case of Markov chain
— Model for queue in network
— Closed form solution for delay based on load
* Kendall’s notation
— M/M/1 as simplest queuing model
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