ECE 671 – Lecture 16

Queuing Theory
Basics

Queuing theory

- Last few lectures:
 - Perspective of single node
 - Focus on input port (i.e., protocol processing)
- Next lectures:
 - Perspective of traffic crossing node
 - Focus on output port (i.e., queuing)
- Queuing theory provides theoretical foundations of Internet
Statistical multiplexing

• Circuit switching
 – Dedicated end-to-end connection
 – Resources are reserved along path
 – Guaranteed constant data rate
 – Achieved through multiplexing (TDM, FDM)
• Packet switching
 – Packets are unit of transmission
 – “Best effort” and no guarantees
 – Switches perform “store-and-forward”
 – Statistical multiplexing can create contention

Statistical multiplexing

• What happens here?
Simple queuing example

- Queuing systems are everywhere
 - Line in bookstore (or Blue Wall)
 - Traffic light
 - Your homework assignments
- Key features
 - “Server” has finite capacity (needs time to process)
 - In network terminology, the server is the link
 - Demand for service (“job” arrival) is unpredictable
 - The jobs are the packets
- Questions
 - How long does a job need to wait before being serviced?
 - How many jobs are in the queue?
 - How high is the utilization of the server?

Notation in queuing systems

- Notation introduced by Kleinrock
 - C_n is n^{th} customer entering system
 - τ_n is arrival time for C_n
 - τ_n is interarrival time (τ_n=τ_n−τ_{n−1})
 - x_n is service time for C_n
 - w_n is waiting time for C_n
 - s_n is system time (waiting plus queuing) for C_n (s_n=w_n+x_n)
 - N(t) is number of customers in system at time t
 - U(t) is amount of unfinished work in system at time t
 - \lambda is average arrival rate
 - E[τ_n]=1/\lambda
 - \mu is average service rate
 - E[x_n]=1/\mu
Basic queuing behavior

- $\alpha(t)$ is number of arrivals in $(0,t)$
- $\delta(t)$ is number of departures in $(0,t)$
- Number of customers in system is
 - $N(t) = \alpha(t) - \delta(t)$
- Average system time is
 - Area between $\alpha(t)$ and $\delta(t)$, denoted by $\gamma(t)$
 - $T_t = \gamma(t)/\alpha(t)$

Little’s law

- Average arrival rate
 - $\lambda_t = \alpha(t)/t$
- Average system time
 - $T_t = \gamma(t)/\alpha(t)$
- Average number of customers
 - $N_t = \gamma(t)/t$
- Substitute $\gamma(t)$ and $\alpha(t)$
 - $N_t = \lambda_t T_t$
- For $t \rightarrow \infty$:
 - $N = \lambda T$ (Little’s law)
- Average number of customers in queuing system is average arrival rate times average system time.
Related results

- Average number of customers in queue
 \[N_q = \lambda W \]
- Relation between waiting and service time
 \[T = \bar{x} + W \]
- Utilization \(\rho \)
 \[\rho = \frac{\lambda}{\mu} = \lambda \bar{x} \]
 - System only stable if \(\rho < 1 \) (why not \(\rho = 1 \)?)
 - Let \(p_0 \) be probability that server idle: \(\rho = 1 - p_0 \)
- So far:
 - Not specific to particular type of queue
 - No quantitative results

Modeling of queuing systems

- Any queuing system can be modeled as a “stochastic process”
 - Family of random variables \(X \)
 - \(X(t) \) is indexed by time parameter \(t \in T \)
 - \(X(t) \in S \), where \(S \) is “state space”
 - If \(S \) is discrete, then stochastic is a “chain”
- Each state reflects state of queuing system
 - Probabilities indicate what states are more likely
- Markov chains
 - Probability for any state only depends on previous state
 - History of Markov chain is summarized in current state
Discrete Time Markov Chains

- DTMC is defined by
 - X_n is a random variable indicating state in step n
 - p_{ij} are transition probabilities between states
 - Probability depends on current state only
- Example:
 - State space $S \{0, 1\}$
 - Transition probabilities P
 - $S \times S$ matrix
 - $p_{00} = 0.75$, $p_{01} = 0.25$
 - $p_{10} = 0.5$, $p_{11} = 0.5$
 - Probability to be in state 0 at step n
 - $P[X_n = 0] = 0.75 \cdot P[X_{n-1} = 0] + 0.5 \cdot P[X_{n-1} = 1]$

Stationary probability vector

- What is the probability of being in a particular state?
 - If Markov chain “runs long enough”, initial state irrelevant
- Define π_i as stationary probability of being in state i
- π_i is independent of time
 - In matrix form: $\pi = \pi P$
- Stationary probability can be solved as set of linear equations:
 - $\pi_0 = 0.75 \cdot \pi_0 + 0.5 \cdot \pi_1$
 - $\pi_1 = 0.25 \cdot \pi_0 + 0.5 \cdot \pi_1$
 - Additional constraint: $\sum \pi_i = 1$
- Solution: $\pi_0 = \frac{2}{3}, \pi_1 = \frac{1}{3}$
Continuous Time Markov Chains

- Transition between state may happen at any time
- How should probabilities be represented?
 - Probability for infinitesimally small time steps
 - “Transition rate” is suitable description
- “Infinitesimal generator matrix” Q defines rates
 - \(q_{ij}(t) = \lim_{\Delta t \to 0} [p_{ij}(t,t+\Delta t)/\Delta t] \) (for \(i \neq j \))
 - \(q_{ii}(t) = -\sum_{j \neq i} q_{ij} \)
- Example:
 \[
 Q = \begin{pmatrix}
 -\lambda & \lambda & 0 \\
 \mu & -2\mu & \mu \\
 \lambda & 0 & -\lambda
 \end{pmatrix}
 \]
- Time in a state is memoryless
 - Exponential distribution is memoryless

Exponential distribution

- Exponential distribution has one parameter
 - \(\lambda \) if arrival rate
 - \(\mu \) if service rate
- Mean: \(\overline{X} = 1/\lambda \)
- CDF: \(F_X(r) = 1 - e^{-r/\overline{X}} = 1 - e^{-\lambda r} \)
- pdf: \(f_X(r) = \lambda e^{-\lambda r} \)
- Variance: \(\text{var}(X) = 1/\lambda^2 \)
- Convenient properties:
 - Number of arrivals in interval \(t \) is Poisson distributed
 - Poisson parameter \(\alpha = \lambda t \) and \(P(X=k) = e^{-\alpha} \alpha^k / k! \)
 - Rates are additive
 - Combination of two exp. dist. with \(\lambda_1 \) and \(\lambda_2 \) has \(\lambda = \lambda_1 + \lambda_2 \)
Steady-state probability vector

- By definition rate of leaving state is rate of staying
 \[q_{ii}(t) = -\sum_{j \neq i} q_{ij} \]

- Steady state probability vector \(\pi \)
 - In steady state, \(\pi Q = 0 \) or \(\sum_{i \in S} q_{ji} \pi_j = 0 \)
 - Change in probability vector is \(d\pi_j(t)/dt = \sum_{i \in S} q_{ij} \pi_i(t) \)
 - If steady state, then \(\lim_{t \to \infty} [d\pi(t)/dt] = 0 \)
 - Additional constraint: \(\sum \pi_i = 1 \)

- Solution to example:
 - \(-\lambda \pi_0 + \mu \pi_1 - \lambda \pi_2 = 0 \)
 - \(\lambda \pi_0 - 2\mu \pi_1 = 0 \)
 - \(\mu \pi_1 - \lambda \pi_2 = 0 \)
 - Thus, \(\pi_1 = \frac{\lambda}{\mu} \pi_2 \) and \(\pi_0 = 2\pi_2 \). With constraint, we get
 - \(\pi_2 = 2/(3+\lambda/\mu) \)
 - \(\pi_1 = \frac{\lambda}{\mu}(3+\lambda/\mu) = \lambda/(3\mu+\lambda) \)
 - \(\pi_2 = 1/(3+\lambda/\mu) \)