ECE 671 – Lecture 16

Queuing Theory Basics

Queuing theory

- Last few lectures:
 - Perspective of single node
 - Focus on input port (i.e., protocol processing)
- Next lectures:
 - Perspective of traffic crossing node
 - Focus on output port (i.e., queuing)
- Queuing theory provides theoretical foundations of Internet

ECE 671 © 2011 Tilman Wolf 2

• What happens here? ECE 671 Statistical multiplexing Output Outpu

Simple queuing example

- Queuing systems are everywhere
 - Line in bookstore (or Blue Wall)
 - Traffic light
 - Your homework assignments
- Key features
 - "Server" has finite capacity (needs time to process)
 - In network terminology, the server is the link
 - Demand for service ("job" arrival) is unpredictable
 - The jobs are the packets
- Questions
 - How long does a job need to wait before being serviced?
 - How many jobs are in the queue?
 - How high is the utilization of the server?

ECE 671

© 2011 Tilman Wolf

5

Notation in queuing systems

- Notation introduced by Kleinrock
 - C_n is nth customer entering system
 - τ_n is arrival time for C_n
 - t_n is interarrival time $(t_n = \tau_n \tau_{n-1})$
 - x_n is service time for C_n
 - w_n is waiting time for C_n
 - s_n is system time (waiting plus queuing) for C_N ($s_n = w_n + x_n$)
 - N(t) is number of customers in system at time t
 - U(t) is amount of unfinished work in system at time t
 - $-\lambda$ is average arrival rate
 - $E[t_n]=1/\lambda$
 - μ is average service rate
 - $E[x_n]=1/\mu$

ECE 671

© 2011 Tilman Wolf

O

- α(t) is number of arrivals in (0,t)
- $\delta(t)$ is number of departures in (0,t)
- Number of customers in system is
 - N(t)= α (t)- δ (t)
- Average system time is
 - Area between $\alpha(t)$ and $\delta(t)$, denoted by $\gamma(t)$
 - $-T_t=\gamma(t)/\alpha(t)$

CF 671

© 2011 Tilman Wolf

7

Little's law

- Average arrival rate
 - $-\lambda_t = \alpha(t)/t$
- Average system time
 - $T_t = \gamma(t)/\alpha(t)$
- Average number of customers
 - $N_t = \gamma(t)/t$
- Substitute $\gamma(t)$ and $\alpha(t)$
 - $-\overline{N}_t = \lambda_t T_t$
- For $t \rightarrow \infty$:
 - $-\overline{N}=\lambda T$ (Little's law)
- Average number of customers in queuing system is average arrival rate times average system time.

ECE 671

© 2011 Tilman Wolf

0

Related results

- Average number of customers in queue
 - $-\overline{N}_{\alpha}=\lambda W$
- Relation between waiting and service time
 - $T = \overline{x} + W$
- Utilization ρ
 - $-\rho = \lambda/\mu = \lambda \overline{x}$
 - System only stable if ρ <1 (why not ρ =1?)
 - Let p_0 be probability that server idle: $\rho=1-p_0$
- So far:
 - Not specific to particular type of queue
 - No quantitative results

© 2011 Tilman Wolf

Modeling of queuing systems

- Any queuing system can be modeled as a "stochastic process"
 - Family of random variables X
 - X(t) is indexed by time parameter t∈T
 - X(t)∈S, where S is "state space"
 - If S is discrete, then stochastic is a "chain"
- Each state reflects state of queuing system
 - Probabilities indicate what states are more likely
- Markov chains
 - Probability for any state only depends on previous state
 - History of Markov chain is summarized in current state

ECE 671 © 2011 Tilman Wolf 10

Discrete Time Markov Chains

1/4

1/2

- DTMC is defined by
 - X_n is random variable indicating state in step n
 - p_{ii} are transition probabilities between states
 - · Probability depends on current state only
- Example:

ECE 671

- State space S={0,1}
- Transition probabilities P
 - S x S matrix
 - p₀₀=0.75, p₀₁=0.25
 - P₁₀=0.5, p₁₁=0.5
- Probability to be in state 0 at step n
 - $P[X_n=0] = 0.75 \cdot P[X_{n-1}=0] + 0.5 \cdot P[X_{n-1}=1]$

Stationary probability vector

- What is the probability of being in a particular state?
 - If Markov chain "runs long enough", initial state irrelevant
- Define π_i as stationary probability of being in state i
- π_i is independent of time
 - In matrix form: $\pi = \pi P$
- Stationary probability can be solved as set of linear equations:
 - $-\pi_0 = 0.75 \cdot \pi_0 + 0.5 \cdot \pi_1$
 - $-\pi_1 = 0.25 \cdot \pi_0 + 0.5 \cdot \pi_1$
 - Additional constraint: $\Sigma \pi_i = 1$
- Solution: $\pi_0 = 2/3$, $\pi_1 = 1/3$

ECE 671 © 2011 Tilman Wolf

Continuous Time Markov Chains

- Transition between state may happen at any time
- How should probabilities be represented?
 - Probability for infinitesimally small time steps
 - "Transition rate" is suitable description
- "Infinitesimal generator matrix" Q defines rates
 - $q_{ij}(t)=\lim_{\Delta t \to 0} [p_{ij}(t,t+\Delta t)/\Delta t]$ (for $i \neq j$)
 - $q_{ii}(t) = -\sum_{j,j\neq i} q_{ij}$
- Example:

$$Q = \begin{pmatrix} -\lambda & \lambda & 0 \\ \mu & -2\mu & \mu \\ \lambda & 0 & -\lambda \end{pmatrix}$$

- Time in a state is memoryless
 - Exponential distribution is memoryless

ECE 671 © 2011 Tilman Wolf

Exponential distribution

- Exponential distribution has one parameter
 - $-\lambda$ if arrival rate
 - μ if service rate
- Mean: $\overline{X}=1/\lambda$
- CDF: $F_X(r) = 1 e^{-r/X} = 1 e^{-\lambda r}$
- pdf: $f_x(r) = \lambda e^{-\lambda r}$
- Variance: $var(X) = 1/\lambda^2$
- Convenient properties:
 - Number of arrivals in interval t is Poisson distributed
 - Poisson parameter $\alpha = \lambda t$ and $P[X=k] = \alpha^{k} \cdot e^{-\alpha}/k!$
 - Rates are additive
 - Combination of two exp. dist. with λ_1 and λ_2 has λ = λ_1 + λ_2

CDF (lambda=1) pdf (lambda=1)

ECE 671

© 2011 Tilman Wolf

14

Steady-state probability vector

- By definition rate of leaving state is rate of staying
 - $q_{ii}(t) = -\sum_{j,j\neq i} q_{ij}$
- Steady state probability vector π

 - In steady state, $\pi Q=0$ or $\Sigma_{i\in S}q_{ij}\pi_i=0$ Change in probability vector is $d\pi j(t)/dt=\Sigma_{i\in S}q_{ij}\pi_i(t)$
 - If steady state, then $\lim_{t\to\infty} [d\pi(t)/dt] = 0$
 - Additional constraint: $\Sigma \pi_i = 1$
- Solution to example:
 - $-\lambda \pi_0 + \mu \pi_1 \lambda \pi_2 = 0$
 - $-\lambda\pi_0-2\mu\pi_1=0$
 - $-\mu\pi_1-\lambda\pi_2=0$
- $Q = \left| \begin{array}{ccc} \mu & -2\mu & \mu \end{array} \right|$

- Thus, $\pi_1^2 = \lambda/\mu\pi_2$ and $\pi_0 = 2\pi_2$. With constraint, we get

 - $\pi_0 = 2/(3+\lambda/\mu)$ $\pi_1 = \lambda/\mu/(3+\lambda/\mu) = \lambda/(3\mu+\lambda)$ $\pi_2 = 1/(3+\lambda/\mu)$

© 2011 Tilman Wolf

15

2