ECE 671 — Lecture 16

Queuing Theory
Basics

Queuing theory

* Last few lectures:
— Perspective of single node
— Focus on input port (i.e., protocol processing)
* Next lectures:
— Perspective of traffic crossing node
— Focus on output port (i.e., queuing)
* Queuing theory provides theoretical foundations of
Internet
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Statistical multiplexing

e Circuit switching
— Dedicated end-to-end
connection
— Resources are reserved along
path
— Guaranteed constant data rate
— Achieved trough multiplexing
(TDM, FDM)
e Packet switching
— Packets are unit of transmission
— “Best effort” and no guarantees
— Switches perform “store-and-
forward”

— Statistical multiplexing
can create contention
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Statistical multiplexing

* What happens here?
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Simple queuing example

* Queuing systems are everywhere
— Line in bookstore (or Blue Wall)

— Traffic light
— Your homework assignments ..

* Key features
— “Server” has finite capacity (needs time to process)
* In network terminology, the server is the link
— Demand for service (“job” arrival) is unpredictable
* The jobs are the packets
* Questions
— How long does a job need to wait before being serviced?
— How many jobs are in the queue?
— How high is the utilization of the server?
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Notation in queuing systems

* Notation introduced by Kleinrock
— C, is nt" customer entering system

* 1, isarrival time for C,

* t, isinterarrival time (t,=t1,-7, )

* X, is service time for C,

* w, is waiting time for C,

* s, is system time (waiting plus queuing) for Cy (s,=w,+x,)
N(t) is number of customers in system at time t
U(t) is amount of unfinished work in system at time t
A is average arrival rate

e Elt,]=1/A
LL is average service rate

* E[x,]=1/p
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Basic queuing behavior

e oft) is number of 1

arrivals in (0,t) N
e J(t) is number of
departures in (0,t)
* Number of customers
in system is
— N(t)=a(t)-0(t)

number of customers

aft)

5(t)

timet

* Average system time is
— Area between a(t) and 6(t), denoted by y(t)
- Tt=Y(t)/(X(t)
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Little’s law

* Average arrival rate
— A=alt)/t
* Average system time
- T=y(t)/odt)
* Average number of customers
— Ne=y(t)/t
* Substitute y(t) and a(t)
- Nt=7"tTt
* For t—oo:
— N=AT (Little’s law)
* Average number of customers in queuing system is
average arrival rate times average system time.
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Related results

Average number of customers in queue
— N=AW
Relation between waiting and service time
— T=x+W
Utilization p
— p=A/pu=AX
— System only stable if p<1 (why not p=17?)
— Let py be probability that server idle: p=1-p,
So far:
— Not specific to particular type of queue
— No quantitative results
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Modeling of queuing systems

* Any queuing system can be modeled as a “stochastic
process”

— Family of random variables X
e X(t) is indexed by time parameter teT
e X(t)€S, where S is “state space”

— If Sis discrete, then stochastic is a “chain”
e Each state reflects state of queuing system
— Probabilities indicate what states are more likely
* Markov chains

— Probability for any state only depends on previous state
— History of Markov chain is summarized in current state
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Discrete Time Markov Chains

e DTMC is defined by
— X, is random variable indicating state in step n
— p;; are transition probabilities between states
* Probability depends on current state only
e Example: v,
— State space S={0,1}

— Transition probabilities P Y
* SxS matrix ( )

* P=0.75, py;=0.25
* P,y=0.5, p;;=0.5 Va
10=Y-2, P1,=U.
— Probability to be in state 0 at step n
* P[X,=0] = 0.75-P[X, ,=0]+0.5-P[X, ,=1]
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Stationary probability vector

e What is the probability of being in a particular state?
— If Markov chain “runs long enough”, initial state irrelevant
* Define m; as stationary probability of being in state i
* mis independent of time
— In matrix form: © = P

* Stationary probability can be solved as set of linear
equations:
— Ty =0.75-my + 0.5-7;

Ya
- ez
— 1, =025, + 0.5-7, - )
— Additional constraint: Xm;=1
Y2

Solution: ny=2/3, m;=1/3
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Continuous Time Markov Chains

e Transition between state may happen at any time
* How should probabilities be represented?
— Probability for infinitesimally small time steps
— “Transition rate” is suitable description
* “Infinitesimal generator matrix” Q defines rates
— q(t)=lim,_olpy(t,t+At)/At] (for i))

— a(t)==%;.q;
e Example:
4 4 0 ~ =
P OO ND
A 0 -a
e Time in a state is memoryless X

— Exponential distribution is memoryless
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Exponential distribution

* Exponential distribution has one parameter

— A if arrival rate ey —
— wif service rate i
* Mean: X=1/\ B
e CDF: Fy(r) = 1-e*=1-eM
o pdf:fy(r) =Le?r
e Variance: var(X)=1/\?
* Convenient properties:

— Number of arrivals in interval t is Poisson distributed
* Poisson parameter a.=At and P[X=k]=aX-e"*/k!

— Rates are additive
* Combination of two exp. dist. with A; and A, has A=A+,
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Steady-state probability vector

* By definition rate of leaving state is rate of staying
— q;(t)=—%; ;.0
* Steady state probability vector ©t
— In steady state, 1Q=0 or X, _q;7=0
* Change in probability vector is dj(t)/dt=X,_¢q
* If steady state, then lim,_, [dmx(t)/dt]=0

i(t)

— Additional constraint: Zm;=1 A M
e Solution to example:
— -Amytum,-Am,=0 _ 4 /21 0 o ‘ 2
— Amy-2pum,=0 Q= Bl
— umy-Am,=0 A0 4

— Thus, m,=A/um, and m,=2m,. With constraint, we get
« 15=2/(3+\/p)
o 7= Mu/(3+A/p)=A/(3p+A)
* m=1/(3+A/p)
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