ECE 671 – Lecture 13

Transport Layer Systems
Packet Classification

Transport layer processing

- Router (layer 3 device) does not touch layer 4
 - Packet forwarding, etc. happens only based on IP header
- Transport layer device also reads/writes layer 4
 - Can distinguish connections or flows
- Examples of transport layer operations
 - Block/reroute types of traffic (e.g., web traffic)
 - Change IP addresses and port numbers (e.g., NAT)
- Classification of packets is key functionality in system

ECE 671

Flow classification

© 2011 Tilman Wolf

• How to keep track of all (active) flows in system?

Flow classification

- Data structure for flow records
 - Hash function reduces 5-tuple space to size of flow table

Matching problem

• Example set of matching rules:

Source IP	Destination IP	Source port	Destination port	Protocol	Action
128.252.*	*	*	*	TCP	permit
*	128.252.*	*	80	TCP	permit
128.252.*	129.69.8.*	*	554	UDP	permit
150.140.129.*	128.252.*	[1024-65535]	*	*	permit
*	*	*	*	*	deny

- Need to determine what rule applies to a packet
- What are the challenges?

Matching problem

- Challenges
 - Very large space of potential rules
 - Wildcards cause rules to overlap
 - Potentially conflicting actions
- Assumption:
 - Priority order of rules (lower rule index gets priority)
- Maintenance of rule set very difficult in practice
 - Manual verification of "correctness"

ECE 671 © 2011 Tilman Wolf

Matching algorithms

- Example rules for algorithms:
 - Only 2 dimensions

Rule	1 st field	2 nd field
Α	0*	00*
В	10*	00*
С	0*	01*
D	1*	0*
E	*	1*

dimension 1

 What are suitable data structures / algorithms for matching?

ECE 671 © 2011 Tilman Wolf

4

Set-pruning trees

• Second dimension includes all rules for shorter prefixes in first dimension

Area-based quadtree

- Look up one bit from each dimension in one step
 - Recursive cutting of areas as necessary

Hierarchical Intelligent Cuttings

- Heuristically divide space by cuttings
 - Goal is to have small set of rules in remaining area
 - Linear search within remaining rule set

13

Transport layer systems

- We can now perform flow classification or matching
 - Identify connections or flows
- Next lecture
 - Firewalls
 - Network address translation