### **ECE 671 – Lecture 11**

Routers
Routing algorithms

# Routing

- Shortest path routing
- Centralized approach (last week)
  - Each node has full "view" of network
  - Each node calculates shortest path using routing algorithm
  - "Link state algorithm"
  - (Exchange of link information always decentralized)
- Distributed approach (today)
  - Each node computes best path without full view
  - Shortest path computed as link information is exchanged
  - "Distance vector algorithm"

ECE 671 © 2011 Tilman Wolf

# Distance vector algorithm

 $C(x,v_1)$ 

c(x,v<sub>2</sub>)

 $d_{v_1}(y)$ 

d<sub>√2</sub>(y)

У

- Features
  - Distributed
  - Iterative
  - Asynchronous
- Each node reports local view
  - Cost to neighbors
  - Routes to others via neighbors
- Each node picks the best option
  - Bellman-Ford equation:  $d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$
- Information is exchanged as "distance vector"
  - Shortest distance to all nodes as seen locally
- With enough exchanges, routing converges

ECE 671 © 2011 Tilman Wolf

# Distance vector example • Example: - Two updates: • First, node 2 • Then, node 3 node 2 sends update: | dight | dight

# Routing in the Internet

- How many nodes do we have in the Internet?
- How many links do we have in the Internet?
- Scalability becomes a problem
  - Number of nodes/links in algorithm
  - Adding/removing machine could cause global routing update

CE 671 © 2011 Tilman Wolf

## **Autonomous Systems**

- Internet is clustered into autonomous systems (AS)
  - Single administrative entity (e.g., company, university)
- Inside an AS ("local" routing):
  - Intra-AS routing protocol
- Between ASs ("global" routing):
   Gateway routers
  - connect ASs

     Inter-AS routing protocol
- Combination of routing algorithm determines forwarding table

ECE 671



### Intra-AS routing: RIP

- Routing Information Protocol
  - Originally distributed in 1982 BSD UNIX
  - RFC 2453
- Distance vector protocol
  - "Hop" count as metric
  - Maximum hop count is 15
- Routing updates
  - Every 30 seconds as UDP packets
  - "RIP advertisement"
  - Up to 25 destination subnets
- Link considered down if no update in 180 seconds

ECE 671 © 2011 Tilman Wolf

### Intra-AS routing: OSPF

- Open Shortest Path First
  - "Open" as in "not proprietary"
  - RFC 2328
  - Designed as successor to RIP
- Link-state protocol
  - Routers have full graph of network
  - Dijkstra's algorithm for shortest path
  - Link weights set by administrator
    - Difficult to achieve operational goals
- Routing updates
  - HELLO messages every 10 seconds (check if link is alive)
  - Flooding of link-state information
    - Routers send link-state info to all other routers
  - Route update at least once every 30 minutes

ECE 671 © 2011 Tilman Wolf 8

### Inter-AS routing: BGP

- Border Gateway Protocol
  - De-facto standard for inter-AS routing in Internet
  - RFC 1771
- Advertisement of reachability

From Kurose& Ross: "A subnet screams 'I exist and I am here,' and BGP makes sure that all the ASs in the Internet know about the subnet and how to get there. If it weren't for BGP, each subnet would be isolated – alone and unknown by the rest of the Internet."

- BGP provides
  - Information on subnet reachability from neighboring ASs
    - Propagated to each internal router of AS
  - Means to determine "good" routes to subnets
    - · Based on reachability and AS policy

ECE 671 © 2011 Tilman Wolf

### Inter-AS routing: BGP

- BGP sessions
  - Connection between routers to exchange BGP information
  - External BGP (eBGP) session
    - Session spanning two ASs
  - Internal BGP (iBGP) session
    - · Session within one AS
- Reachability information
  - Reachable subnet (CIDR prefix)
  - BGP attributes
    - AS-PATH: path to subnet (ASs traversed)
    - Next-HOP: IP address of advertising router
- Path vector protocol
  - Information to avoid loop or other ASs (import policy)

ECE 671 © 2011 Tilman Wolf 10

## Inter-AS routing: BGP

- Route selection:
  - Often multiple routes available
  - Elimination procedure:
    - 1. Local preference value set by administrator
    - 2. Shortest AS-PATH (=DV with AS hop metric)
    - 3. Closest NEXT-HOP router (determined by intra-AS routing)
      - "Hot potato routing"
    - 4. BGP identifiers
- Example
  - Y is "stub" network
  - X is "multihomed" network
    - X is customer network
    - X should not forward data between B and C
    - X advertise as if stub domain (e.g., not XCY to B)
  - B might not want to advertise path to A or W to C

ECE 671 © 2011 Tilman Wolf 11

# Inter-AS routing: BGP

- Peering agreements between ASs often confidential
  - Administrators are careful what to advertise
  - Avoid free riding of traffic from other ISPs
- BGP issues
  - BGP not always stable
  - Route flapping can cause further instability
    - Router might get overloaded by BGP messages
    - If router can't keep up, it might be considered down
  - Various heuristic fixes
    - · Route dampening

ECE 671 © 2011 Tilman Wolf 12

6