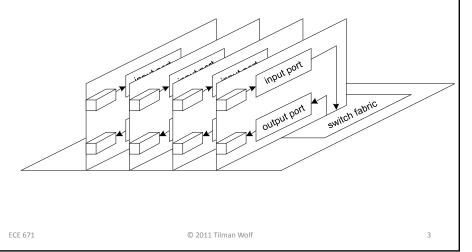
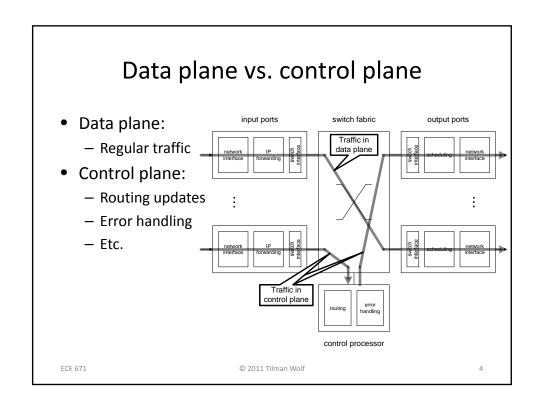

ECE 671 - Lecture 10


Routers

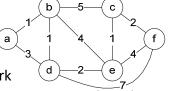

Data plane and control plane

Physical view

• Input and output "folded" onto same line card

Prefix matching

- Data plane needs to perform prefix matches
 - Determine longest matching prefix for destination address
- Prefixes stored in forwarding information base (FIB)
- Where do FIB entries come from?

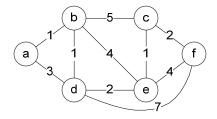

Internet 128.119.100/24

ECE 671

Routing

- Shortest path routing
- Centralized approach
 - Each node has full "view" of network
 - Each node calculates shortest path using routing algorithm
 - "Link state algorithm"
 - (Exchange of link information always decentralized)
- Distributed approach
 - Each node computes best path without full view
 - Shortest path computed as link information is exchanged
 - "Distance vector algorithm"

ECE 671 © 2011 Tilman Wolf


Link state algorithm

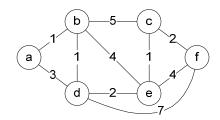
- Link cost of all links is broadcast to all nodes
- Dijkstra's algorithm to find shortest path to all nodes
 - Each node calculates its own tree
- Notation:
 - D(v) is least cost to v in current iteration
 - p(v) is previous node along least cost path
 - N' is subset of nodes with guaranteed least cost paths
- Algorithm
 - Initialization:
 - N'={u}
 - For all nodes v: if neighbor of u then D(v)=c(u,v), else D(v)=∞
 - Loop until N'=N:
 - Find w∉N' with minimum D(w) and add w to N'
 - For each neighbor v of w (v∉N'): D(v)=min(D(v),D(w)+c(w,v))

ECE 671 © 2011 Tilman Wolf

Link state algorithm

• Example

Iterations

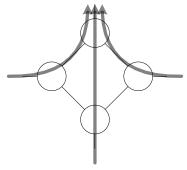

step	N'	D(b),p(b)	D(c),p(c)	D(d),p(d)	D(e),p(e)	D(f),p(f)
0						
1						
2						
3						
4						
5						

ECE 671

© 2011 Tilman Wolf

Link state algorithm

• Example

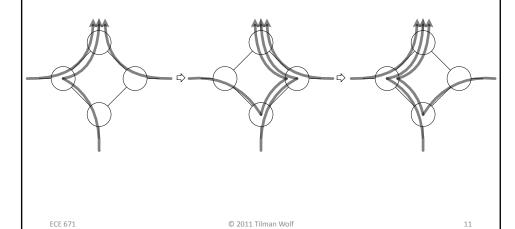

Iterations

160.46.01.5									
step	N'	D(b),p(b)	D(c),p(c)	D(d),p(d)	D(e),p(e)	D(f),p(f)			
0	{a}	1,a	∞	3,a	∞	∞			
1	{a,b}		6,b	2,b	5,b	∞			
2	{a,b,d}		6,b		4,d	9,d			
3	{a,b,d,e}		5,e			8,e			
4	{a,b,c,d,e}					7,c			
5	{a,b,c,d,e,f}								

ECE 671 © 2011 Tilman Wolf

Link state algorithm

- Can we adjust link weights based on traffic?
 - Could avoid congestion
- What is the problem?


ECE 671

© 2011 Tilman Wolf

10

Link state algorithm

• Traffic-based link weights may cause instability:

