ECE 671 – Lecture 2

Review of Internet Protocols Link Layer

Structuring networks and protocols

- Goal of network:
 - Provide communication for distributed applications
- How to organize networks in such a way that they
 - Work correctly?
 - Are scalable to large number of nodes?
 - Can achieve high performance?
 - Are interoperable across different technologies and uses?

Internet architecture

- "Hourglass architecture"
- Achieves interoperability
 - Single, common network layer protocol: Internet Protocol (IP)
 - All network nodes need to support this protocol
- Supports diversity
 - Different link/physical layer protocols below
 - Different transport/application layer protocols above

ECE 671 © 2011 Tilman Wolf

Services provided by layers

- Each layer in protocol stack provides a "service"
 - Uses service from lower layers
- Benefits of layering
 - Isolates complexity
 - Clearly defined interfaces
- Protocols implement functionality within layer

Layered protocol Service provided stack Application-specific communication Application layer Process-to-process communication Transport layer Connectivity between network interfaces Network layer Point-to-point frame transmission Link layer Transmission of bits in medium Physical layer

Protocols

- Protocols define communication between entities
 - Format and order of messages
 - Actions taken on transmission and/or receipt of message or other event
- Protocols use headers (and trailers) for control information
 - Naming depends on layer

Application layer

Transport layer

Network layer

Link layer

Physical layer

H Data

Data

Message Segment

Datagram

Data T Frame

Bit

ECE 671 © 2011 Tilman Wolf

Network devices

- Network devices differ by highest layer processed
 - Devices can process/modify headers up to that layer
 - Switches and routers are most common

Review of specific protocols

We will briefly review three protocols

Link layer: Ethernet

 Network layer: Internet Protocol (IP)

Transport layer:
 Transmission Control
 Protocol (TCP)

• For full details

Networking textbooks

- RFCs

Layer	Example protocols
Application layer	Hypertext Transfer Protocol (HTTP)
Transport layer	Transmission Control Protocol (TCP)
Network layer	Internet Protocol (IP)
Link layer	Ethernet
Physical layer	1000BASE-T

© 2011 Tilman Wolf

Link layer

- Communication between "neighboring" interfaces
- What are the challenges?

ECE 671 © 2011 Tilman Wolf

10

Link layer

- Point-to-point guided medium is straightforward
 - One side sends, other side receives (coding, timing, etc. is handled by physical layer)
 - Duplex operation by duplicating medium
- Multiple access case is more interesting
 - Multiple nodes share guided or unguided medium
 - Need to consider:
 - Naming
 - Medium access protocol
 - "Strange" cases (e.g., hidden terminal problem)

ECE 671 © 2011 Tilman Wolf 11

Medium access principles

How should nodes share a medium?

Medium access principles

- How should nodes share a medium?
 - Do not interrupt ongoing transmissions
 - When transmitting, stop after a while
 - Allow for fair sharing among all nodes
 - Allow efficient use of medium
 - Do not require central control
 - Etc.

671 © 2011 Tilman Wolf

Side note: delays in networking

13

- What delays are encountered in networks?
- What is a typical range of each delay?

Side note: delays in networking

- What delays are encountered in networks?
 - Transmission delay
 - Propagation delay
 - Processing delay
 - Queuing delay
- What is a typical range of each delay?
 - Assumption: 1Gbps, 1250-byte packet, 1000km, 200000km/s
 - Transmission delay: 10 microseconds
 - Propagation delay: 5 milliseconds
 - Processing delay: low microseconds
 - Queuing delay: transmission delay of queued packets

ECE 671 © 2011 Tilman Wolf 1

Signal propagation

- At link layer, signal propagation delay matters
 - Space-time diagram illustrates events
 - Slope of lines determined by propagation speed
 - Typically: 2/3 speed of light of light (~200km/s)

ECE 671

16

ALOHA protocol

- Propagation delay may cause collisions on medium
 - Even if all stations check to see if medium is available
- Slotted ALOHA protocol
 - Discrete time slots
 - Each node makes random choice to transmit in slot or not
- Pure ALOHA
 - No time slots
 - Each note makes random choice to transmit at any time

ECE 671 © 2011 Tilman Wolf 17

Analysis of ALOHA

- Slotted ALOHA analysis
 - Probability that k frames are generated during interval
 - Poisson distribution: Pr[k]=G^ke^{-G}/k!
 - G is rate of frame generation (new and retransmission)
 - Probability of successful transmission
 - Success if no other frame generated (P₀): S=GP₀=Ge^{-G}
- ALOHA analysis
 - Frame overlaps two slots
 - Probability that no other frame is generated during two slots:
 - P₀=e^{-2G}
 - Success S=GP₀=Ge^{-2G}
- Max throughput:
 - 37%@G=1.0 (slotted ALOHA)
 - 18%@G=0.5 (ALOHA)

slotted ALOHA ALOHA

ECE 671

© 2011 Tilman Wolf

CSMA/CD protocol

- How can we improve ALOHA?
 - Don't send when somebody else has already started
 - Stop when interference is already happening
 - Why do we need to do that if we don't start sending when somebody else sends?
- Carrier Sensing (CS)
 - Listen on channel
 - Only send when nobody else is transmitting
- Collision Detection (CD)
 - Listen to own transmission on channel
 - If garbled then stop transmitting

Ethernet

- IEEE 802.3 protocol
- Medium access with CSMA/CD
- Truncated exponential backoff
 - Wait for random number of 512 bit-times
 - After c collisions: uniform distribution over [0...2^{min{c,10}}-1]
 - After 16 collisions: transmission aborted
- Limitations
 - Max 2.5km of cable, thus RTT limited to 51.2μs
 - Corresponds to 64 bytes @ 10Mbps

Related topics

- Next: network layer
 - Combining links to a network
- Later: switches and bridges
 - Organization of layer 2 links into local area networks (LAN)
 - Algorithms for reaching particular nodes in a LAN