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Interrupts, Strings, and Busses
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Fun FactFun Fact
• Press release from Microchip:

“Microchip Technology Inc. announced it 
provides PICmicro® field-programmable 
microcontrollers and system supervisors 
for the Segway Human Transporter (HT) 
[…] 
The PIC16F87x Flash microcontrollers
process sensor data from the inertial 
monitoring unit and communicate 
information to the control 
module. Other PIC16F87x devices 
located in the battery packs provide 
monitoring functions. […]”
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Lab 1Lab 1
• All groups completed Lab 1 – good job!

─ Results posted on WebCT

• Understand how UART works, not just how to use it
• Questions?
• Additional lab hours – see web page
• Quiz: multiple answer possible
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OverviewOverview
• Lab 2
• Interrupts

─ Why we need them
─ How to use them

• Timer
• Efficient printing of strings
• Interfacing PICs and PLDs

─ External bus design
─ READ and WRITE transactions
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Lab 2Lab 2
• Interconnect PIC with PLD
• PLD acts as coprocessor
• PIC and PLD communicate

via bus
• You have to design bus

interface
• Timer on PIC is used to generate periodic interrupts

─ Will make sure your interface is robust

• PLD programmed in VHDL
─ Great example of hardware/software co-design!
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InterruptsInterrupts
• Lab 1 used “polling”

─ What is bad about polling?

• Interrupts
─ Triggered by internal or external events
─ Cause program to “interrupt” and treat interrupt
─ After interrupt processing, processing returns to previous 

code

• What is better about interrupts?
• Example for interrupt triggers

─ UART transmission or reception
─ Change of input voltage on pin
─ Timer
─ A/D conversion completed
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Interrupt ConceptInterrupt Concept
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Interrupt ExampleInterrupt Example
• More complex example:
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Steps During InterruptSteps During Interrupt
1. Interrupts have to be enabled

─ Bits set in INTCON (internal interrupts) or PIE1 (peripheral 
interrupts) registers

2. Interrupt stimulus
─ Timer/counter overflows, change on external pin

3. Interrupts automatically disabled
─ Bit 7 of INTCON, why?

4. Jump to interrupt vector
─ Address 0x4, typically calls interrupt subroutine

5. Jump to and execute interrupt service routine
─ PIR1 register identifies which interrupt has triggered

6. Return to previous code
─ RETFIE instruction, also enables interrupts
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INTCON RegisterINTCON Register
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PIE1 RegisterPIE1 Register
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PIR1 RegisterPIR1 Register
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RETFIE InstructionRETFIE Instruction
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Interrupt Code SampleInterrupt Code Sample

org H’000’  ; Reset vector
goto Mainline; Location of start of program

org H’004’  ; Interrupt vector
goto IntServ ; Start of int service routine

Mainline ....
....

org H’100’  ; put service routing at 0x100
IntServ .... ; first inst. of service routine

....
retfie ; return from interrupt instr.
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Saving StateSaving State
• Some “state” of PIC is not preserved during interrupt

─ What is “state”?
─ What is preserved?
─ What can get lost?

• How to avoid problems:
─ Preserve state (w, STATUS) before interrupt processing or
─ Do not change state during interrupt processing (difficult)

• Moving w and STATUS to temporary variables does 
not help! Why?
─ movf causes “evaluation” of value and impacts STATUS
─ Note: use of swapf instruction instead of movf

• See section 12.11 of data sheet and Peatman section 
4.5
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Interrupt LimitationsInterrupt Limitations
• What happens if interrupt is too long?

─ Other critical interrupts cannot be handled or
─ Livelock (not on PIC due to lack of recursion)

• Beware of function calls in interrupt service routine
─ Stack overflow could happen
─ max nesting of program + max nesting of ISR + 1 ≤ 8
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Timer InterruptsTimer Interrupts
• The PIC has several built-in timers
• timer0 is a simple 8-bit counter

─ External or internal clock
─ Prescaler possible

• See Peatman pp.100–103, data sheet pp.47–49
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PrescalarPrescalar
• Prescalar performs additional counting. Why bother?
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Timer DetailsTimer Details
• Possible to set value to timer

─ Causes the timer to miss the two following ticks

• Precision
─ More accurate to choose lower prescalar and count more

• Precise interrupt timing requires careful thought
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String PrintingString Printing
• Printing strings on terminal can be awkward

─ Example: print “Hello”
─ call wait ; subroutine which checks PIR bit 4.
─ movlw ’H’ ; send ASCII w char. to W
─ movwf TXREG ; send w char. to UART trans. buffer
─ call wait ; subroutine which checks PIR bit 4.
─ movlw ’e’ ; send ASCII o char. to W
─ movwf TXREG ; send o char. to UART trans. buffer
─ call wait ; subroutine which checks PIR bit 4.
─ movlw ’l’ ; send ASCII w char. to W
─ movwf TXREG ; send w char. to UART trans. Buffer
─ ...

• Any ideas?
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Advanced String Handling (1)Advanced String Handling (1)
• Store text into (program!) memory
• Process one character a time
• Consider:

ORG 0x0
goto Start ; jump to the start of the program
ORG 0x5

sub1 nop ; start of a subroutine
...
return ; return from subroutine
ORG 0x30

Start 
...
call sub1 ; call the routine
nop ; first instr. after return
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Advanced String Handling (2)Advanced String Handling (2)
• call instruction:

• return instruction:
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Advanced String Handling (3)Advanced String Handling (3)
• retlw instruction returns and puts value into w

• Use retlw for spring printing
─ Call subroutine for each character
─ Use retlw to return each character and place into w
─ Send w to UART
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String Handling Code (1)String Handling Code (1)
BANKORAM EQU H’20’ ; equate a constant to hex 20.

ORG BANKORAM ; reserve space in DATA MEMORY
cblock ; create a pointer in bank 0 at 0x20
POINTER ; name of value
endc

ORG 0x0
goto Start ; jump to the start of the program

ORG 0x5
sub1 movf POINTER, W ; move value in POINTER to W

addwf PCL, F ; add value to PC
retlw A’H’
retlw A’e’
retlw A’l’
retlw A’l’
retlw A’o’
retlw 0
RETURN ; shouldn’t get here
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String Handling Code (2)String Handling Code (2)
ORG 0x30

Start clrf POINTER
Loop call sub1

... ; check if return value is 0
btfsc status, z ; branch if not 0
goto Done ; else done
... ; check bit 4 in PIR
movwf TXREG
... ; increment POINTER
goto Loop ; print another character
ORG 0x60

Done nop
goto Done
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String HandlingString Handling
• A bit complex

─ Simplified by ‘dt’ assembler directive
dt “Hello” translates into
retlw A’H’
retlw A’e’
retlw A’l’
retlw A’l’
retlw A’o’

• Note: does not terminate string (with A’0’)!
• Saves memory space
• More easily modifiable
• You need to understand how it works, but you don’t 

need to use it.



Tilman Wolf 27

OK, Who’s Confused?OK, Who’s Confused?
• See Peatman Section 8.6, pp.154–157
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Data Exchange Via BusData Exchange Via Bus
• Multiple devices can be connected through a bus

─ We connect PIC to PLD

• PIC should be able to read from and write to PLD
─ PLD acts as coprocessor
─ For example: write value to 0x1 and read value+1 from 0x2
─ Functions: increment, bit count, maximum (since startup)
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Bus InterfaceBus Interface
• A bus needs:

─ Address, data, control signals

• For Lab 2:
─ Port A: four bit  address value
─ Port B: four bit data input
─ Port D: four bit data output
─ Port C: up to six control signals

• Build “read” and “write” transactions
─ Need to be robust and reliable (interrupts!)
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Bus IssuesBus Issues
• Control signals indicate valid address/data

• PIC and PLD use same clock (synchronous)
─ Interrupts on PIC can cause delays!

• Transactions needs to be acknowledged (why?)
─ PLD acks when WRITE result was received
─ PIC acks when READ result was received

• The logic analyzer is your best friend ☺
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Example WRITEExample WRITE
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Example READExample READ
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Bus ImplementationBus Implementation
• Need signal to distinguish READ and WRITE
• There are better, simpler ways

─ Consider using control bits for multiple purposes

• Use PLD state machines
─ One for address
─ One for read
─ One for write

• Implement on PLD using VHDL
─ Basically what you have done in ECE 353
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Lab 2Lab 2
• BEFORE YOU START: READ!

─ Lab Assignment
─ PIC data sheet section 12.10 – 12.11 (interrupts)
─ Peatman, chapter 4 (timer and interrupts)

• Think about how you want to split work
─ If you separate PIC and PLD design, make sure you have a 

good bus interface!

• Think about steps to take to get it working
• Start working early! 

─ You will need more time than for Lab 1
─ Quiz March 1st – 3rd

─ Lab demos March 25th and 26th
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