
ECE 354 ECE 354 –– Computer Computer
Systems Lab IISystems Lab II
Interrupts, Strings, and Busses

Tilman Wolf 2

Fun FactFun Fact
• Press release from Microchip:

“Microchip Technology Inc. announced it
provides PICmicro® field-programmable
microcontrollers and system supervisors
for the Segway Human Transporter (HT)
[…]
The PIC16F87x Flash microcontrollers
process sensor data from the inertial
monitoring unit and communicate
information to the control
module. Other PIC16F87x devices
located in the battery packs provide
monitoring functions. […]”

Tilman Wolf 3

Lab 1Lab 1
• All groups completed Lab 1 – good job!

─ Results posted on WebCT

• Understand how UART works, not just how to use it
• Questions?
• Additional lab hours – see web page
• Quiz: multiple answer possible

Tilman Wolf 4

OverviewOverview
• Lab 2
• Interrupts

─ Why we need them
─ How to use them

• Timer
• Efficient printing of strings
• Interfacing PICs and PLDs

─ External bus design
─ READ and WRITE transactions

Tilman Wolf 5

Lab 2Lab 2
• Interconnect PIC with PLD
• PLD acts as coprocessor
• PIC and PLD communicate

via bus
• You have to design bus

interface
• Timer on PIC is used to generate periodic interrupts

─ Will make sure your interface is robust

• PLD programmed in VHDL
─ Great example of hardware/software co-design!

Tilman Wolf 6

InterruptsInterrupts
• Lab 1 used “polling”

─ What is bad about polling?

• Interrupts
─ Triggered by internal or external events
─ Cause program to “interrupt” and treat interrupt
─ After interrupt processing, processing returns to previous

code

• What is better about interrupts?
• Example for interrupt triggers

─ UART transmission or reception
─ Change of input voltage on pin
─ Timer
─ A/D conversion completed

Tilman Wolf 7

Interrupt ConceptInterrupt Concept

Tilman Wolf 8

Interrupt ExampleInterrupt Example
• More complex example:

Tilman Wolf 9

Steps During InterruptSteps During Interrupt
1. Interrupts have to be enabled

─ Bits set in INTCON (internal interrupts) or PIE1 (peripheral
interrupts) registers

2. Interrupt stimulus
─ Timer/counter overflows, change on external pin

3. Interrupts automatically disabled
─ Bit 7 of INTCON, why?

4. Jump to interrupt vector
─ Address 0x4, typically calls interrupt subroutine

5. Jump to and execute interrupt service routine
─ PIR1 register identifies which interrupt has triggered

6. Return to previous code
─ RETFIE instruction, also enables interrupts

Tilman Wolf 10

INTCON RegisterINTCON Register

Tilman Wolf 11

PIE1 RegisterPIE1 Register

Tilman Wolf 12

PIR1 RegisterPIR1 Register

Tilman Wolf 13

RETFIE InstructionRETFIE Instruction

Tilman Wolf 14

Interrupt Code SampleInterrupt Code Sample

org H’000’ ; Reset vector
goto Mainline; Location of start of program

org H’004’ ; Interrupt vector
goto IntServ ; Start of int service routine

Mainline
....

org H’100’ ; put service routing at 0x100
IntServ ; first inst. of service routine

....
retfie ; return from interrupt instr.

Tilman Wolf 15

Saving StateSaving State
• Some “state” of PIC is not preserved during interrupt

─ What is “state”?
─ What is preserved?
─ What can get lost?

• How to avoid problems:
─ Preserve state (w, STATUS) before interrupt processing or
─ Do not change state during interrupt processing (difficult)

• Moving w and STATUS to temporary variables does
not help! Why?
─ movf causes “evaluation” of value and impacts STATUS
─ Note: use of swapf instruction instead of movf

• See section 12.11 of data sheet and Peatman section
4.5

Tilman Wolf 16

Interrupt LimitationsInterrupt Limitations
• What happens if interrupt is too long?

─ Other critical interrupts cannot be handled or
─ Livelock (not on PIC due to lack of recursion)

• Beware of function calls in interrupt service routine
─ Stack overflow could happen
─ max nesting of program + max nesting of ISR + 1 ≤ 8

Tilman Wolf 17

Timer InterruptsTimer Interrupts
• The PIC has several built-in timers
• timer0 is a simple 8-bit counter

─ External or internal clock
─ Prescaler possible

• See Peatman pp.100–103, data sheet pp.47–49

Tilman Wolf 18

PrescalarPrescalar
• Prescalar performs additional counting. Why bother?

Tilman Wolf 19

Timer DetailsTimer Details
• Possible to set value to timer

─ Causes the timer to miss the two following ticks

• Precision
─ More accurate to choose lower prescalar and count more

• Precise interrupt timing requires careful thought

Tilman Wolf 20

String PrintingString Printing
• Printing strings on terminal can be awkward

─ Example: print “Hello”
─ call wait ; subroutine which checks PIR bit 4.
─ movlw ’H’ ; send ASCII w char. to W
─ movwf TXREG ; send w char. to UART trans. buffer
─ call wait ; subroutine which checks PIR bit 4.
─ movlw ’e’ ; send ASCII o char. to W
─ movwf TXREG ; send o char. to UART trans. buffer
─ call wait ; subroutine which checks PIR bit 4.
─ movlw ’l’ ; send ASCII w char. to W
─ movwf TXREG ; send w char. to UART trans. Buffer
─ ...

• Any ideas?

Tilman Wolf 21

Advanced String Handling (1)Advanced String Handling (1)
• Store text into (program!) memory
• Process one character a time
• Consider:

ORG 0x0
goto Start ; jump to the start of the program
ORG 0x5

sub1 nop ; start of a subroutine
...
return ; return from subroutine
ORG 0x30

Start
...
call sub1 ; call the routine
nop ; first instr. after return

Tilman Wolf 22

Advanced String Handling (2)Advanced String Handling (2)
• call instruction:

• return instruction:

Tilman Wolf 23

Advanced String Handling (3)Advanced String Handling (3)
• retlw instruction returns and puts value into w

• Use retlw for spring printing
─ Call subroutine for each character
─ Use retlw to return each character and place into w
─ Send w to UART

Tilman Wolf 24

String Handling Code (1)String Handling Code (1)
BANKORAM EQU H’20’ ; equate a constant to hex 20.

ORG BANKORAM ; reserve space in DATA MEMORY
cblock ; create a pointer in bank 0 at 0x20
POINTER ; name of value
endc

ORG 0x0
goto Start ; jump to the start of the program

ORG 0x5
sub1 movf POINTER, W ; move value in POINTER to W

addwf PCL, F ; add value to PC
retlw A’H’
retlw A’e’
retlw A’l’
retlw A’l’
retlw A’o’
retlw 0
RETURN ; shouldn’t get here

Tilman Wolf 25

String Handling Code (2)String Handling Code (2)
ORG 0x30

Start clrf POINTER
Loop call sub1

... ; check if return value is 0
btfsc status, z ; branch if not 0
goto Done ; else done
... ; check bit 4 in PIR
movwf TXREG
... ; increment POINTER
goto Loop ; print another character
ORG 0x60

Done nop
goto Done

Tilman Wolf 26

String HandlingString Handling
• A bit complex

─ Simplified by ‘dt’ assembler directive
dt “Hello” translates into
retlw A’H’
retlw A’e’
retlw A’l’
retlw A’l’
retlw A’o’

• Note: does not terminate string (with A’0’)!
• Saves memory space
• More easily modifiable
• You need to understand how it works, but you don’t

need to use it.

Tilman Wolf 27

OK, Who’s Confused?OK, Who’s Confused?
• See Peatman Section 8.6, pp.154–157

Tilman Wolf 28

Data Exchange Via BusData Exchange Via Bus
• Multiple devices can be connected through a bus

─ We connect PIC to PLD

• PIC should be able to read from and write to PLD
─ PLD acts as coprocessor
─ For example: write value to 0x1 and read value+1 from 0x2
─ Functions: increment, bit count, maximum (since startup)

Tilman Wolf 29

Bus InterfaceBus Interface
• A bus needs:

─ Address, data, control signals

• For Lab 2:
─ Port A: four bit address value
─ Port B: four bit data input
─ Port D: four bit data output
─ Port C: up to six control signals

• Build “read” and “write” transactions
─ Need to be robust and reliable (interrupts!)

Tilman Wolf 30

Bus IssuesBus Issues
• Control signals indicate valid address/data

• PIC and PLD use same clock (synchronous)
─ Interrupts on PIC can cause delays!

• Transactions needs to be acknowledged (why?)
─ PLD acks when WRITE result was received
─ PIC acks when READ result was received

• The logic analyzer is your best friend ☺

Tilman Wolf 31

Example WRITEExample WRITE

Tilman Wolf 32

Example READExample READ

Tilman Wolf 33

Bus ImplementationBus Implementation
• Need signal to distinguish READ and WRITE
• There are better, simpler ways

─ Consider using control bits for multiple purposes

• Use PLD state machines
─ One for address
─ One for read
─ One for write

• Implement on PLD using VHDL
─ Basically what you have done in ECE 353

Tilman Wolf 34

Lab 2Lab 2
• BEFORE YOU START: READ!

─ Lab Assignment
─ PIC data sheet section 12.10 – 12.11 (interrupts)
─ Peatman, chapter 4 (timer and interrupts)

• Think about how you want to split work
─ If you separate PIC and PLD design, make sure you have a

good bus interface!

• Think about steps to take to get it working
• Start working early!

─ You will need more time than for Lab 1
─ Quiz March 1st – 3rd

─ Lab demos March 25th and 26th

	ECE 354 – Computer Systems Lab II
	Fun Fact
	Lab 1
	Overview
	Lab 2
	Interrupts
	Interrupt Concept
	Interrupt Example
	Steps During Interrupt
	INTCON Register
	PIE1 Register
	PIR1 Register
	RETFIE Instruction
	Interrupt Code Sample
	Saving State
	Interrupt Limitations
	Timer Interrupts
	Prescalar
	Timer Details
	String Printing
	Advanced String Handling (1)
	Advanced String Handling (2)
	Advanced String Handling (3)
	String Handling Code (1)
	String Handling Code (2)
	String Handling
	OK, Who’s Confused?
	Data Exchange Via Bus
	Bus Interface
	Bus Issues
	Example WRITE
	Example READ
	Bus Implementation
	Lab 2

