
Tilman Wolf

ECE 354 ECE 354 –– Computer Computer 
Systems Lab IISystems Lab II
Microcontroller Architecture



Tilman Wolf

Introduction LabIntroduction Lab
• Difference between IDE and ICD?
• Steps to change code?
• Demo board
• MPLAB software



Tilman Wolf

Lab HoursLab Hours
• The Marston 228 Lab is open:

─ Mondays 2:30 - 7:00 
(TAs: Avi (2:30 - 4:00), Barron (4:00 - 7:00)) 

─ Tuesdays 4:00 - 7:00 
(TA: Avi) 

─ Wednesdays 2:30 - 7:00 
(TAs: Avi (2:30 - 4:00), Barron (4:00 - 7:00)) 

─ Thursdays 4:00 - 7:00 
(TA: Matt) 

─ Fridays 1:00 - 4:00 
(TA: Matt)



Tilman Wolf

OutlineOutline
• Microcontroller Architecture (PIC16F877)

─ Basic Architecture
─ Memories
─ Registers
─ Instructions

• Serial Communication
─ UART
─ Tx and Rx

• Lab 1
• Assembly Tutorial



Tilman Wolf

Computer ArchitectureComputer Architecture
• What is the minimum a computer needs?

─ Memory (instruction, data, or combined)
─ Processor/ALU
─ I/O

• What are the basic processing steps?
─ Instruction fetch
─ Instruction decode
─ Memory read
─ ALU operation
─ Write-back

• Details depend on particular architecture



Tilman Wolf

PIC16F877 ArchitecturePIC16F877 Architecture
• Main PIC components:

─ ALU
─ Program memory
─ Register file
─ Program counter
─ Status register
─ Clock
─ I/O ports
─ Timers
─ A/D converter
─ USART



Tilman Wolf

Processing on PICProcessing on PIC
• Basic Steps:

─ Determine current instruction 
based on program counter

─ Load instruction into 
instruction register

─ Decode instruction
─ Read register
─ Perform ALU operation
─ Write back result

• Additional data paths for
─ Change in program counter
─ Immediate values
─ I/O operation



Tilman Wolf

PipeliningPipelining
• Harvard architecture

─ Separate program and data memory

• Observation
─ Program memory is idle while data memory is in use
─ Accesses could be interleaved

• Pipelining:
─ 2 stages



Tilman Wolf

Pipeline StallsPipeline Stalls
• Causes for pipeline stalls

─ Control dependencies
─ Data dependencies



Tilman Wolf

Instruction MemoryInstruction Memory
• How many bits do we need to address memory?

─ E.g., how many bits do we need to address 4kbit of memory?

• Well, it depends…
─ What is the smallest unit that we need to address?
─ E.g., 8-bit addressable: 4kb/8b = 512 words, 

requires log2(512) bits

• Instruction memory on PIC16F877
─ 8K instructions
─ Instruction size: 14 bits
─ How many address bits do we need?



Tilman Wolf

Instruction MemoryInstruction Memory
• Memory map
• Special instructions

─ 0x000 start of program is 
single goto instruction

─ 0x004 goto to interrupt 
service routine

• Memory map is created 
by IDE software when 
project is built



Tilman Wolf

Call InstructionsCall Instructions
• PIC designers needed to save bits wherever possible

─ Lots of “hacks” necessary to exploit full functionality

• Example: call instruction
─ Basically changes program 

counter
─ There are also other effect 

that we’ll discuss later

• Program counter is 13 bits
─ Call function can only provide 11 bits 

(why?)
─ Two additional bits are stored in special register

• Calls within current 2K instruction block are “cheaper”
─ Why?



Tilman Wolf

ResetReset
• What happens on RESET?
• Two possible causes for RESET

─ Power applied to 16F877
─ MCLR (master clear) asserted active low

• PC automatically cleared to 0x000
─ Reset vector stored at 0x000
─ Program counter jumps to actual program start

• Program may start at 0x005 or higher address



Tilman Wolf

Register FileRegister File
• Registers are data memory

─ Most registers are general-
purpose

─ Some are special-purpose

• Each register holds 8-bit 
value

• Registers are separated into 
banks
─ 128 registers per bank
─ PIC16F877 has 4 banks

• Why use banks?



Tilman Wolf

Register File AddressingRegister File Addressing
• “Bank Select” bits choose bank (2 bits)



Tilman Wolf

CPU RegistersCPU Registers
• Special registers

─ Working register
─ STATUS register
─ FSR (File Select Register)
─ INDF register
─ Program counter (12 bits)

• PCLATH (Program Counter Latch) (4 bits)
• PCL (8 bits)

─ Eight-level stack

• We’ll discuss details in other lectures
─ For Lab 1: Working register and STATUS register



Tilman Wolf

STATUS RegisterSTATUS Register
• Status bits

─ Bit 0: Carry
─ Bit 1: Digit carry
─ Bit 2: Zero result
─ Bits 3 & 4: Use at 

power-up and sleep
─ Bit 5 & 6: bank 

select
─ Bit 7: bank select for 

indirect addressing



Tilman Wolf

InstructionsInstructions
• Instruction format:

─ OPCODE determines instrucion
─ Registers, bits, literals depend on 

OPCODE

• OPCODE fields:



Tilman Wolf

Instruction SetInstruction Set
• 35 instructions

─ OPCODE
─ Letters indicate 

format
• F, W

─ Z indicates 
conditional 
execution

• More details
─ Datasheet pp. 

139-144
─ Peatman pp. 25, 

27-28



Tilman Wolf

AssemblerAssembler
• Creating instructions “by hand” is difficult
• Binary code specifies op-code and values of operands

─ “11 1110 1000 0111” adds 135 to working register

• Assembler translates “readable” code into binary
─ “ADDLW 135” means “add literal 135 to working register”
─ Assembler converts this to “11 1110 1000 0111”

• Other convenient features
─ Labels for branches and jumps (e.g., “bug” and “start”)
─ Register addresses can be named (e.g., “c1 equ 0x0c”)



Tilman Wolf

Lab 1Lab 1
• Connect PIC to terminal

─ PIC in stand-alone mode using USART interface
─ Mostly software development

• Required functionality:
─ Three bits of port A connected to switches
─ Value of port A is shown on LEDs on port B
─ PIC sends “Number?” to terminal
─ User presses key, value is sent to PIC and echoed
─ If user presses ‘0’-’7’, PIC compares value to port A and sends 

response to terminal: “equal” or “not equal”
─ Send response every time switch values change
─ Repeat with user input



Tilman Wolf

UART/USARTUART/USART
• “Universal Synchronous/Asynchronous 

Receiver/Transmitter”
• Serial data communication between PIC and Terminal
• Two cables (receive and transmit)
• Each 1-byte character is transmitted separately

─ Start, 8 data bits, 1 parity bit, Stop

• We use asynchronous mode
─ Sender uses local clock

• Baud rate specifies speed of transmission



Tilman Wolf

SynchronizationSynchronization
• Clocks on sender and receiver are never exactly in sync

─ Requires synchronization of receiver
─ High-low transition signals frame boundary



Tilman Wolf

UART on PIC16F877UART on PIC16F877
• Several registers involved
• Control/status registers:

─ TXSTA (transmit status and control register)
─ RCSTA (receive status and control register)
─ Configurations: enable bit, 8/9 bit, buffer full, etc.

• Baud rate generator:
─ SPBGR
─ Data sheet table 10-3 shows value for 

different clock and baud rates

• Data registers:
─ TXREG and RCREG

• Tx and Rx completion:
─ PIR1<4> and PIR1<5> 

set when TXREG clears and RCREG is filled

• Optional: enable bit in PIE1 for interrupt



Tilman Wolf

UART TransmissionUART Transmission
• TXREG is accessed from program

─ Need to check if empty before writing next value (TXSTA)



Tilman Wolf

UART TransmissionUART Transmission
• Actually, it’s more complicating

─ Ensure all related registers are configured correctly



Tilman Wolf

UART UART TxTx SignalsSignals
• Example for two transmissions



Tilman Wolf

UART ReceivingUART Receiving
• 2-byte FIFO



Tilman Wolf

UART ReceivingUART Receiving
• Details:



Tilman Wolf

Hardware SetupHardware Setup
• Requires 

MAX232 driver
─ PIC: 0/+5V
─ RS-232 

interface: 
±10V

• See Peatman 
Ch. 11



Tilman Wolf

Lab 1Lab 1
• BEFORE YOU START: READ!

─ Lab Assignment
─ Data sheet pp. 29 – 33 (port I/O)
─ Data sheet pp. 95 – 104 (UART)
─ Peatman, chapter 11 (UART)
─ MAX232 data sheet

• Quiz will have a few simple questions regarding lab
• Think about how you want to split work
• Think about steps to take to get it working
• Start working early!

─ Lab schedule starts today


