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About This Manual

Preface

Read This First

This manual is a reference for programming TMS320C6x digital signal proces-
sor (DSP) devices.

Before you use this book, you should install your code generation and debug-
ging tools.

This book is organized in four major parts:

[ Partl: Introduction includes a brief description of the 'C6x architecture
and code development flow. It also includes a tutorial that introduces you
to the tools you will use in each phase of development and an optimization
checklist to help you achieve optimal performance from your code.

[ Partll: C Code includes C code examples and discusses optimization
methods for the code. This information can help you choose the most
appropriate optimization techniques for your code.

(g Partlll: Assembly Code describes the structure of assembly code. It pro-
vides examples and discusses optimizations for assembly code. It also in-
cludes a chapter on interrupt subroutines.

[ PartlV: Appendix provides extensive code examples from the GSM EFR
vocoder.
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Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number.

TMS320C6x Assembly Language Tools User’s Guide  (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the 'C6x generation of devices.

TMS320C6x Optimizing C Compiler User’s Guide  (literature number
SPRU187) describes the 'C6x C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the 'C6x generation of devices. The as-
sembly optimizer helps you optimize your assembly code.

TMS320C6x C Source Debugger User’s Guide  (literature number
SPRU188) tells you how to invoke the 'C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320C62x/C67x CPU and Instruction Set Reference Guide  (literature
number SPRU189) describes the 'C62x/C67x CPU architecture, instruc-
tion set, pipeline, and interrupts for these digital signal processors.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using 'C2x,
'C3x, 'C4x, 'C5x, and other Tl DSPs.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/C6701 digital signal processors. This book includes in-
formation on the internal data and program memories, the external
memory interface (EMIF), the host port, serial ports, direct memory
access (DMA), clocking and phase-locked loop (PLL), and the power-
down modes.

TMS320C6201 Digital Signal Processor Data Sheet (literature number
SPRSO051) describes the features of the TMS320C6201 and provides
pinouts, electrical specifications, and timings for the device.



Trademarks

Trademarks
Solaris and SunOS are trademarks of Sun Microsystems, Inc.
VelociTl is a trademark of Texas Instruments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft
Corporation.

Read This First Y



If You Need Assistance

If You Need Assistance . . .

O World-Wide Web Sites

TI Online http://www.ti.com

Semiconductor Product Information Center (PIC)  http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps

320 Hotline On-line ™ http://www.ti.com/sc/docs/dsps/support.htm

1 North America, South America, Central America

Product Information Center (PIC) (972) 644-5580

Tl Literature Response Center U.S.A. (800) 477-8924

Software Registration/Upgrades (214) 638-0333  Fax: (214) 638-7742

U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285

U.S. Technical Training Organization (972) 644-5580

DSP Hotline (281) 274-2320  Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323

DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

O Europe, Middle East, Africa

European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33130701169 Fax: +33 130701032
Email: epic@ti.com
Deutsch +49 8161 80 3311 or +33 130 70 11 68
English +33130701165
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +33130701199
European Factory Repair +334 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
] Asia-Pacific
Literature Response Center +852 2956 7288  Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2956 7268  Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 25512828
Korea DSP Modem BBS +82 2551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/Tl/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972  Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735  Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

1 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note:  When calling a Literature Response Center to order documentation, please specify the literature number of the
book.
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This chapter introduces some features of the 'C6x microprocessor and
discusses the basic process for creating code. Any reference to 'C6x pertains
to both the 'C62x (fixed-point) and the 'C67x (floating-point) devices. All tech-

nigues are applicable to both devices, even though most of the examples
shown are fixed-point specific.
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TMS320C62xx Architecture / TMS320C62xx Pipeline

1.1 TMS320C6x Architecture

The 'C62x is a fixed-point digital signal processor (DSP) and is the first DSP
to use the VelociTI™ architecture. VelociTl is a high-performance, advanced
very-long-instruction-word (VLIW) architecture, making it an excellent choice
for multichannel, multifunction, and performance-driven applications.

The'C67x is afloating-point DSP with the same features. Itis the second DSP
to use the VelociTI™ architecture.

The 'C6x DSPs are based on the 'C6x CPU, which consists of:

Uooooooo

Program fetch unit

Instruction dispatch unit

Instruction decode unit

Two data paths, each with four functional units
Thirty-two 32-bit registers

Control registers

Control logic

Test, emulation, and interrupt logic

1.2 TMS320C6x Pipeline

1-2

The 'C6x pipeline has several features that provide optimum performance, low
cost, and simple programming.

a

L

Increased pipelining eliminates traditional architectural bottlenecks in pro-
gram fetch, data access, and multiply operations.

Pipeline control is simplified by eliminating pipeline locks.
The pipeline can dispatch eight parallel instructions every cycle.

Parallel instructions proceed simultaneously through the same pipeline
phases.
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1.3 Code Development Flow to Increase Performance

You can achieve the best performance from your 'C6x code if you follow this
flow when you are writing and debugging your code:

Phase 1 Write C code
Develop C Code -

Compile
v

Profile

Yes
Complete )

No

Refine C code
Phase 2: 3
Refine C Code

Compile
v
Profile

Complete )

Yes

optimization?

Write linear assembly

Phase 3: 3
Write Linear —
Assembly Assembly optimize

v

Profile
No
Yes

( Complete )

Introduction 1-3
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Code Development Flow to Increase Performance

The following lists the phases in the 3-step software development flow shown
on page 1-3, and the goal for each phase:

Phase Goal

1

You can develop your C code for phase 1 without any knowledge of
the 'C6x. Use the 'C6x profiling tools that are described in the
TMS320C6x C Source Debugger User’s Guide to identify any ineffi-
cient areas that you might have in your C code. To improve the per-
formance of your code, proceed to phase 2.

Use the intrinsics, shell options, and techniques that are described
in Chapter 4 of this book to improve your C code. Use the 'C6x profil-
ing tools to check its performance. If your code is still not as efficient
as you would like it to be, proceed to phase 3.

Extract the time-critical areas from your C code and rewrite the code
in linear assembly. You can use the assembly optimizer to optimize
this code.




Chapter 2

Code Development Flow Tutorial

Part |

This chapter walks you through the code development flow that was
introduced in Chapter 1. It uses step-by-step instructions and code examples
to show you how to use the software developmenttools in each phase of devel-
opment.

Before you start this tutorial, you should install the code generation tools and
the C source debugger. If you do not have a Texas Instruments C source de-
bugger, use your own debugger to check your results.

The sample code that is used in this tutorial is included on the code generation
tools CD-ROM. When you install your code generation tools, the example
code is installed in the c6xtools directory. Use the code in that directory to go
through the examples in this chapter.

The examples in this chapter were run on the most recent version of the soft-
ware development tools that were available as of the publication of this book.
Because the tools are being continuously improved, you may get different re-
sults if you are using a more recent version of the tools.
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Before You Begin

2.1 Before You Begin

2-2

This tutorial contains three basic types of information:

Primary tasks

Important information

Optional tasks

Primary tasks identify the main lessons in the
tutorial; they are boxed so that you can find
them easily. A primary task looks like this:

On a command line, enter:

load6x count.out

In addition to primary actions, important infor-
mation ensures that the tutorial works correctly.
Important information is marked like this:

If you are using SunOS, be sure

you reinitialize your shell before continuing with
this tutorial.

Optional tasks allow you to learn more about
the 'C6x tools; however, you do not need to per-
form the optional tasks to complete the tutorial
successfully. Optional tasks are marked like
this:

The stand-alone simulator (load6x)

is another tool that you can use to find out what
the cycle count for each function is.

This tutorial is divided into lessons. Each lesson builds on the previous lesson.
To get the most benefit from the tutorial, you should start at the beginning and
work your way through each lesson in order to the end.
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2.2 Introduction to the Example Code
The C code example that you will use to start this tutorial is demol.c, which

is shown in Example 2-1. This example calls three functions: macl(),
vec_mpy1(), and iirl().

Example 2—-1. The Code Example—demol.c

main(int argc, char *argv[])

{

const short coefs[150];
short optr[150];
short state[2];

const short a[150];
const short b[150];
intc=0;

int dotp[1] = {0};

int sum= 0;

short y[150];

short scalar = 3345;
const short x[150];

sum = macl(a, b, c, dotp);
vec_mpyl(y, x, scalar);
iirl(coefs, x, optr, state);

The macl( ) function, a multiply accumulate and squaring accumulate exam-
ple, is shown in Example 2—2. It is performing a dot product of vector a with
vector b and is also squaring and summing vector b.

Example 2-2. The Multiply Accumulate Function—macl.c

int macl(const short *a, const short *b, int sqr, int *sum)

t
inti;
int dotp = *sum;
for (i=0; i< 150; i++)
dotp += bf[i] * a[i];
sqr += b[i] * b[i];

*sum = dotp;
return sqr;

Code Development Flow Tutorial 2-3
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Introduction to the Example Code

The vec_mpy( ) function shown in Example 2—3 is a vector multiply, which is
a scalar multiply followed by a right shift. The result is stored to a second vec-

tor.

Example 2—-3. The Vector Multiply Function—vec_mpyl.c

void vec_mpyl(short y[], const short x[], short scalar)
inti;

for (i = 0; i < 150; i++)
yli] += ((scalar * x[i]) >> 15);

The third function, iirl( ), is a typical infinite impulse response (lIR) biquad filter.
The code for this function is shown in Example 2—4.

Example 2—4. The Biquad Filter—iirl.c

void iirl(const short *coefs, const short *input,
short *optr, short *state)
{

short x;
short t;
int n;

X = input[0];
for (n = 0; n < 50; n++)

t = x + ((coefs[2] * state[0] +
coefs[3] * state[1]) >> 15);

X =t + ((coefs[0] * state[0] +
coefs[1] * state[1]) >> 15);

state[1] = state[0];

state[0] = t;

coefs +=4; [* point to next filter coefs */
state +=2; /* point to next filter states */

}

*optr++ = X;

}
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2.3 Lesson 1: Compiling, Assembling, and Linking the Example Code

The first step is to compile, assemble, and link the code.

Compiling for the 'C62x:
On a command line, enter the following on a single line:

cléx —g —0 —k —mg demol.c macl.c vec_mpyl.c iirl.c
—z Ink.cmd —| rts6201.lib —o demo1.out

Compiling for the 'C67x:
On a command line, enter the following on a single line:

cléx —g —o -k -mg —mv6700 demol.c macl.c vec_mpyl.c
iirl.c —z Ink.cmd —I rts6701.lib —o demol.out

You should not receive any errors, and the file, demoZl.out, should be created.
If you receive an error message, look up that error message in the appropriate
user’s guide.

Here is a description of what you told the shell program (cl6x) to do:

cléx Run the compiler and the assembler.

—g Generate symbolic debugging directives that are used by
the debugger.

-0 Invoke the optimizer at the default level (—o is the same as
-02).

Not all optimizations work well with debugging because the
optimizer’s rearrangement of code can make it difficult for
you to correlate source code with object code. Using the —g
option with the —o option allows for the maximum amount
of optimization that is compatible with debugging.

-k Keep the assembly output files. Notice that you now have
the following .asm files in your current directory:
demol.asm, macl.asm, vec_mpyl.asm, and iirl.asm.

When the —k option is not used, the shell program deletes
the assembly output files after assembly is complete.

—mg Turn on the maximum amount of optimization that is com-
patible with profiling. The —mg option allows you to profile
optimized code.

—mv6700 Compiler is invoked to target 'C67x devices.

If this switch is not used, the compiler defaults to the 'C62x
device. This code will run on a 'C67x device, but it will run
slower if using floating-point instructions since the code will
have been compiled for the 'C62x device.

Code Development Flow Tutorial 2-5

Part |



Part |

Lesson 1: Compiling, Assembling, and Linking the Example Code

2-6

Ink.cmd

—| rts6201.lib

—| rts6701.lib

—0 demol.out

Invoke the linker. The addition of this option to the cl6x com-
mand line means that the code is compiled, assembled,
and linked in one step.

Use Ink.cmd as the linker command file. Linker command
files allow you to put linking information into a file, which is
useful when you invoke the linker often with the same in-
formation.

Linker command files are also useful because they allow
you to use the MEMORY directive, which defines the target
memory configuration, and the SECTIONS directive, which
controls how sections are built and allocated.

Include the runtime-support library for the 'C62x device,
rts6201.lib, which is included on your CD-ROM.

The runtime-support functions in rts6201.lib were compiled
for little-endian mode. For big-endian mode, use the run-
time support functions in rts6201e.lib.

Include the runtime-support library for the 'C67x device,
rts6701.lib, which is included on your CD-ROM.

The runtime-support functions in rts6701.lib were compiled
for little-endian mode. For big-endian mode, use the run-
time support functions in rts6701e.lib.

Name the output file demol.out. (The default is a.out.)

Because this option comes after the —z option, it is consid-
ered alinker option and is interpreted differently than the —o
option that you entered before —z.

The options above are used throughout the rest of this tutorial.

They are fairly common and might be ones that you want to use repeatedly.
To avoid having to retype them each time you run the code development tools,
you can use the C_OPTIONS environment variable. The shell program uses
the default options and/or input filenames that you name with the C_OPTIONS
environment variable every time you run the shell.

Use the commands in Table 2—1 to set up the C_OPTIONS environment vari-
able with the options used on page 2-5.
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Table 2-1. Using the C_OPTIONS Environment Variable

Your Setup What to Change  Command

Windows NTO System applet SET C_OPTION=—g —0 —k —mg -z Ink.cmd —I rts6201.lib
Windows[ 95 autoexec.bat SET C_OPTION=-g —0 —k —mg -z Ink.cmd —I rts6201.lib

C shell .cshrc setenv C_OPTION "—-g —0 —k -mg -z Ink.cmd —| rts6201.lib”
Bourne or Korn shell .profile setenv C_OPTION "—g —0 —k —mg —z Ink.cmd —I rts6201.lib”

Notice that the —o demo1l.out linker option was not included. If it were included,
running the second tutorial example, demo2.c, would result in an output file
named demol.out instead of a more logical name such as demo2.out.

Files must be explicitly called on command and not as an environment vari-
able. To compile all of the C files in a directory, use the cl6x command with the
appropriate options and use *.c where the files are normally indicated. For ex-
ample:

cléx —g —mg *.c —z Ink.cmd —I rts6201.lib —o demol.out

If you are using SunOS, be sure you reinitialize your shell before
continuing with this tutorial:

(1 For C shells, enter the following on a command line:

source ~/.cshrc

(1 For Bourne or Korn shells, enter the following on a command line:

source ~/.profile

Code Development Flow Tutorial 2-7
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2.4 Lesson 2: Profiling the Example Code

Now, use the profiler to look at the output of demo1. In this lesson, you will use
the profiler to see the total execution time in number of cycles of each C func-
tion in demo1l.out.

To start the profiler and load demol.out, follow these steps:
1) Double-click the icon for the debugger.

2) From the Profile menu, select Profile Mode.

The debugger switches to profiling mode and displays only the Com-
mand, Disassembly, File, and Profile windows.

3) From the File menu, select Load Program.

This displays the Load Program File dialog box.

4) Double-clickthe demol.outfile. To do so, you might need to change the
working directory.

This loads demo2l.out into the profiler. Because the File window is re-
served for C programs, it disappears.
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To select the areas of demol that you want profiled, follow these steps:

1) From the Profile menu, select Select Areas.

This displays the Profile Marking dialog box.

2) Inthe Level box, select C.

3) Inthe Area box, select Functions.

This indicates that the C functions in demol.out will be your profile

areas.

4) Click Mark.

T N ||

—Area Marking
Lewvel
= C
O Assembly
" Both

Area
7 Lines, Shart:

 Ranges. St
% Functions
4l areas

Ernd: I

poci: [TEHEMENGEG - |

Function: IN#.-‘.‘-.

-l

b ark I Enable |

rirnark, | Dizable |

Cloze | Help |

5) Click Close.

The Profile window is updated to include a line for each C function in

demol.

Code Development Flow Tutorial 2-9

Part |



Part |

Lesson 2: Profiling the Example Code

2-10

To start the profiling session, follow these steps:

1) Click the run icon on the toolbar:

This displays the Profile Run dialog box.

2) Inthe Run Method box, select Quick, no exclusive fields. This will show
you the total execution time (cycle count) of a profile area, including the
execution time of any subroutines called within the functions.

3) If main() is not already selected as your starting point, choose it from
the list of starting points.

S |

Run Method
= Full, all fields
f* Ouick, no exclusive fields
{0 Besume, [ Clear data

Often M enver
DiSpIEI_'r' R ate: ! ',.' [ N
=
Start Paint: Imain LI

] I Cancel | Help |

4) Click OK.

The Run Method dialog box closes and the status bar reads Target:
Profiling to indicate that the profiling session has started.
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The program restarts and runs to main( ) without profiling. Profiling begins
when main( ) is reached and continues until the exit point of main( ) is reached.
When profiling is complete, the status bar reads Target: Halted and your Profile
window looks like this:

e Profile M= E
Type | Area Name Count Inclu=sive Incl-Hax |
C Function 1irl()} 1 270 270
C Function macl() 1 167 167
C Function main() 1 831 831
C Function wvec_mpwl() 1 316 316

The Inclusive column indicates the cycle counts for each function, including
any function that it calls. Because these functions do not call any other func-
tions, the inclusive cycle counts are the same as the exclusive cycle counts.
Notice that the cycle count for the mac1( ) function is 167, and that the cycle
counts for the vec_mpy1() and iirl() functions are much higher—316 and
270, respectively.

To interpret the cycle counts in the Profile window, you need to understand how
they are calculated. Here is the formula for calculating cycle counts:

Execute packets x loop iterations in C code + constant

An execute packet is a group of parallel instructions. You can have up to eight
instructions executing in parallel; therefore, each execute packet can contain
up to eight instructions. An example of execute packets is shown in
Example 2—7 on page 2-15.

Table 2—2 shows how the cycle counts were calculated for each function.

Table 2-2. Cycle Counts

Function Execute Packets Loop lterations Constant Cycle Count
mac1() 1 150 17 1 x 150 + 17 = 167
vec_mpyl() 2 150 16 2 x 150 + 16 = 316
irl() 5 50 20 5 x 50 + 20 =270
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The stand-alone simulator (load6x) is another tool that you can use
to find out what the cycle count for each function is. To get cycle count informa-
tion for each function with the stand-alone simulator, embed the clock( ) func-
tion in your C code. Example 2-5 shows how to rewrite demo1l.c to include the

clock( ) function.

Example 2-5. Including the clock( ) Function in demol.c (count.c)

2-12

#include <stdio.h>
#include <time.h>

main(int argc, char *argv[])

{

const short coefs[150];
short optr[150];
short state[2];
const short a[150];
const short b[150];
intc=0;
int dotp[1] = {0};
int sum= 0;
short y[150];
short scalar = 3345;
const short x[150];
clock_t start, stop, overhead;

start = clock();
stop = clock();
overhead = stop — start;

start = clock();

sum = macl(a, b, c, dotp);

stop = clock();

printf("mac1l cycles: %d\n”, stop — start — overhead);

start = clock();

vec_mpyl(y, X, scalar);

stop = clock();

printf("vec_mpy1 cycles: %d\n”, stop — start — overhead);

start = clock();

iirl(coefs, x, optr, state);

stop = clock();

printf("iirl cycles: %d\n”, stop — start — overhead);

Note:

When using this method, remember to calculate the overhead and include

the appropriate header files.
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Now, compile, assemble, and link count.c.

If you did not set up your C_OPTIONS environment variable as described
on page 2-6, enter the following on a command line:

cléx —g —o —k —mg count.c macl.c vec_mpyl.c iirl.c
—z Ink.cmd —| rts6201.lib —o count.out

OR

If you set up your C_OPTIONS environment variable as described on
page 2-6, enter the following on a command line:

cléx —z —o count.out

Although the —z option is already specified inthe C_OPTIONS environment
variable, you need to specify it on the command line to indicate that this oc-
currence of —o is a linker option.

Use load6x to see the output of the printf statements that were embedded in
the C code.

On a command line, enter:

load6x count.out

You should see the following output:

TMS320C6x C I/O COFF Loader  Version 1.01
Copyright (c) 1989-1997 Texas Instruments Incorporated
Interrupt to abort . . .

macl cycles: 175

vec_mpyl cycles: 324

iirl cycles: 278

NORMAL COMPLETION: 20949 cycles

Notice that these cycle counts are higher than the cycle counts that you saw
with the profiler. For example, maclislisted here as having 175 cycles; howev-
er, itwas listed in the Profiler window as having 167 cycles. You will see some
extra cycles when you use load6x because you still have overhead for each
function call. When you use the profiler, the cycles needed for calling the func-
tions are not included in the profile display.

The Using the Stand—Alone Simulator chapter in the TMS320C6x Optimizing
C Compiler User’s Guide discusses load6x in more detail.
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2.5 Lesson 3: Phase 1 of the Code Development Flow

Looking at the functions in demol one at a time, you can determine whether
or not they need to be improved and, if they do need to be improved, how they
can be improved. Start by looking at the first function, macl( ).

Example 2—6 shows the assembly output of the function’s inner loop kernel.
The loop kernelis the area of the loop with the most parallelism. Only the inner
loop is shown, because this is the area that can be improved with software pi-
pelining. Notice that there are eight instructions executing in parallel (as indi-
cated by the seven sets of parallel bars). This is the maximum number of
instructions that the 'C6x can execute in parallel, so this code does not need

to be improved.

Example 2—6. Inner Loop Kernel of macl.asm

L3: ; PIPED LOOP KERNEL

ADD L2 B4,B7,B7 ;
[ ADD L1 A5A3A3 ;
| MPY .M2X A4,B5B4 ;@@
I MPY M1 A4A4A5 @@
[[BO] B .S1 L3 @QQQO@@
[|[BO] SUB .S2 B0,1B0 ;@@@@QQ@
I LDH D1 *A0++A4 ;,0@@Q@QQ@@
I LDH .D2 *B6++B5 ;,0@@Q@QQ@@

The @ characters specify the iteration of the loop that an instruction is on in
the software pipeline; these symbols are automatically created by the code
generation tools. The firstiteration does not have an @ character; one @ char-
acter represents the second iteration; two @ characters represents the third

iteration, and so on.

Because the macl( ) function does not need to be improved, it does not need

to go beyond phase 1 of the code development flow.
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Look at Example 2—7, which shows the assembly output of the innermost loop
forthe vec_mpy1() function. Recall from page 2-11 that the vec_mpy1( ) func-
tiontook 316 cycles to execute. This code is not as parallel as the mac1( ) func-
tion. The assembly output for the vec_mpy1() function shows two execute

packets. Each execute packet has four parallel instructions. This loop can be
improved.

Example 2—7. Inner Loop Kernel of vec_mpyl.asm

Execute packets

hN

L3: ; PIPED LOOP KERNEL

ADD .L2X A3,B6,B5 ;
I[A1]] B .S1 L3 @@
I LDH .D2 *+B4(6),B6 ;@@@
Il LDH .D1 *AO++A4 @@@@

STH .D2 B5*B4++
[ SHR .S1 A315A3 @
I MPY M1 A5A4A3 ;@@

II[A1] SUB L1 AlL1Al Q@@
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Example 2—-8 shows the assembly output of the innermost loop for the iir()
function. Recall from page 2-11 that the iirl() function took 270 cycles to
execute. As you can see, some execute packets have five parallel instructions,
while others have as few as four parallel instructions, which indicates that the
code can probably be improved.

Example 2-8. Inner Loop Kernel of iirl.asm

L3: ; PIPED LOOP KERNEL

SHR .S2 B4,15B4 ;
I SHR .S1 A3,15A5 ;
I MPY .M2X B6A5B6 @
I LDH .D1 *+A6(16),A4 ;@@
I LDH .D2 *+B7(10),B6 ;@@

ADD L1 AOA5A0 ;
I MPY .M1X B6,A3A3 ;@
I MPY .M2X B5A4B5 ;@
LDH .D1 *+A6(22),A3 ;@@
LDH .D2 *+B7(8),B5 :@@

EXT .S1 A0,16,16,A0 ;
[ STH .D2 B5*B7(6) ;@
I MPY .M1X B5A3A4 ;@
I LDH .D1 *+A6(20),A3 ;@@

ADD .S1 B8A6A6 ;
I STH .D2 AO0*B7++(4) ;
I ADD .L1IX AO0B4,A0 ;
II[BO] SUB .L2 BO,1,B0 ;@
I ADD .S2 B6B5B4 @

EXT .S1 A0,16,16,A0 ;
I[BO] B .S2 L3 @
I ADD L1 A3A4A3 @
I LDH .D1 *+A6(18),A5 ;@@@

To improve the vec_mpy( ) and iir( ) functions, start by seeing how you can re-
fine and improve your C code. This is what is referred to as phase 2 of the code
development flow, and this is what the next lesson is about.
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2.6 Lesson 4: Phase 2 of the Code Development Flow

For your convenience, the vec_mpyl() function is duplicated here as
Example 2-9 (the C version) and Example 2—10 (the assembly output of the
inner loop). This is the same code that you saw in Example 2-3 and
Example 2-7.

Example 2-9. The Vector Multiply Function—vec_mpyl.c

void vec_mpyl(short y[], const short x[], short scalar)
int i;

for (i = 0; i < 150; i++)
y[i] += ((scalar * x[i]) >> 15);

Example 2—-9 uses short data types. Because short data types are 16 bits, they
translate into halfword instructions, such as LDH and STH (see
Example 2-10).

The loop in Example 2—10 uses two LDH instructions and an STH instruction
toload x[i] and y[i] and store back to y[i]. Because only two memory operations
can occur per cycle, the fastest that this loop can execute is one y][i] result ev-
ery two cycles. The performance of this loop is limited by the number of D units.

Example 2-10. Inner Loop Kernel of vec_mpyl.asm

L3: ; PIPED LOOP KERNEL

ADD .L2X A3,B6B5 ;
I[A1] B .S1 L3 @@
I LDH .D2 *+B4(6),B6 ;@@@
I LDH D1 *A0++Ad4 @@Q@@

STH .D2 B5*Ba++

[ SHR .S1 A3,15A3 @

I MPY M1 A5A4A3 ;@@
II[A1] SUB L1 AlL1Al Q@@

Because X is an array, X[i] and x[i + 1] are next to each other in memory. This
means that instead of using halfword instructions (LDH and STH) to load and
store each elementin the array, you can use word instructions (LDW and STW)
to load and store two elements at a time, as long as the data is aligned on a
word boundary. In other words, all word accesses should have the 2 LSBs of
the address set to 0. Two elements at a time, x[i] and x[i + 1], fit into one 32-bit
register.
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To achieve this in C, declare x[ ] as an integer instead of as a short data type.
Also, you need to use some intrinsics.

Now that you have determined that you can load x[i] and x[i + 1] into the same
register, you need to figure out how to do it. You can do this by using the _mpy
and _mpylh intrinsics. Intrinsics are like built-in C functions that correspond to
'C6x assembly language instructions. The _mpy intrinsic multiplies the
16 LSBs of one operand by the 16 LSBs of another and returns the result. The
_mpylh intrinsic multiplies the 16 LSBs of the first operand by the 16 MSBs of
the second and returns the result.

You can then use the _add? intrinsic to add the 16 MSBs of the first operand
to the 16 MSBs of the second operand. At the same time, the _add2 intrinsic
also adds the 16 LSBs of the first operand to the 16 LSBs of the second oper-
and. The result of both additions is stored in a 32-bit operand.

MSBs LSBs

MSBs LSBs

MSBs LSBs

Example 2—-11 shows how to rewrite the vec_mpy( ) function to include the
_mpy and _mpylh intrinsics:

Example 2—11. The Revised Vector Multiply Function—vec_mpyZ2.c

2-18

void vec_mpy2(int y[], const int X[], short scalar)

int i, val;
unsigned int temph, templ;

for (i=0;i<75; i++)

val = X[i];

templ = (_mpy (scalar, val) >> 15) & 0x0000ffff;
temph = (_mpylh(scalar, val) << 1) & 0xffff0000;
yli] = _add2(y[i], temph | templ);

}
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Now, look at the iirl() function. Example 2—12 shows the same code that you

saw in Example 2—4.

Example 2—12. The Biquad Filter—iirl.c

Code Development Flow Tutorial

void iirl(const short *coefs, const short *input,
short *optr, short *state)
{
short X;
short t;
int n;
X = input[0];
for (n = 0; n < 50; n++)
t = x + ((coefs[2] * state[0] +
coefs[3] * state[1]) >> 15);
X =t + ((coefs[0] * state[0] +
coefs[1] * state[1]) >> 15);
state[1] = state[0];
state[0] = t;
coefs +=4; [* point to next filter coefs */
state +=2; /* point to next filter states */
}
*optr++ = X;
}
2-19
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You can improve the iir( ) function by using the same methods that you used
to improve the vec_mpy( ) function. Example 2—-13 shows how to rewrite the
iir() function:

Example 2—13. The Revised Biquad Filter—iir2.c

2-20

void iir2(const int *coefs, const short *input,
short *optr, short *state)

{
short X;
short t;
int n;
X = input[0];

for (n = 0; n < 50; n++)

t= x+((_mpy(coefs[1],state[0]) +
_mpyhl(coefs[1],state[1])) >> 15);

x= t+((_mpy(coefs[0],state[0]) +
_mpyhl(coefs[0],state[1])) >> 15);

state[1] = state[0];
state[0] = t;

coefs += 2;
state += 2;

}

*optr++ = X;

}
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Using demo2.c, shown in Example 2—14, run the revised functions through the
compiler, assembler, and linker.

Example 2—14. The Revised Example—demoZ2.c

main(int argc, char *argv[])

{

const short coefs[100];
short optr[100];
short state[2];

const short a[100];
const short b[100];
intc=0;

int dotp[1] = {0};

int sum= 0;

short y[100];

short scalar = 3345;
const short x[100];

sum = macl(a, b, c, dotp);
vec_mpy2(y, X, scalar);
iir2(coefs, x, optr, state);

If you did not set up your C_OPTIONS environment variable as described
on page 2-6, enter the following on a command line:

cléx —g —0 —k —mg demo2.c macl.c vec_mpy2.c iir2.c
—z Ink.cmd —I rts6201.lib —o demo2.out

OR

If you set up your C_OPTIONS environment variable as described on
page 2-6, enter the following on a command line:

cléx —z —o demo?2.out

Although the —z option is already specified in the C_OPTIONS environment
variable, you need to specify it on the command line to indicate that this oc-
currence of —o is a linker option.
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The inner loop of the vec_mpy2( ) function translates into the assembly output
shown in Example 2—15.

Example 2—-15. Inner Loop Kernel of vec_mpyZ2.asm

L3: ; PIPED LOOP KERNEL

OR .L2X B5A8B7 ;@
[ SHL .S1 A61A4 ;@@
I[[A1]] B .S2 L3 @@
| AND L1 A5A4A6 ;@@
I LDW .D2 *+B4(12)B5 ;@@@
I MPYLH M1 A0A9,A6 ;@Q@@
I LDW D1 *A3++A9 ;,Q@@Q@Q@@

STW .D2 B6,*B4++
ADD2 .S2 B5,B7,B6 @
AND L1 A7A4A8 ;@@
MV  .L2X A6,B5 @@

[Al]] SUB D1 ALl1Al ;@@@
SHR .S1 A815A4 @@@
MPY M1 A0A9A8 :@@Q@@

As you can see, the code for the vec_mpy2() function is improved over the
original vec_mpy() code. Two LDW instructions are loading four elements
(X[i], x[i+1], y[i], and y[i+1]), and one STW instruction is storing two elements:
x[i] and y[i+1]. With the revised code, two Yy[i] results are stored every two
cycles. Recall that only one yJi] result was stored every two cycles in
Example 2-10.

Table 2—3 shows how the vec_mpy( ) function has improved as it moves from
phase 1 to phase 2.

Table 2-3. Revised Cycle Counts for vec_mpy( )

Function Execute Packets Loop lterations Constant Cycle Count
vec_mpyl() 2 150 16 2 x 150 + 16 = 316
vec_mpy2() 2 75 22 2 X T75+22=172
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Now, look at the inner loop of the third function, iir( ). Example 2—16 shows the
assembly output of the innermost loop for the revised iir( ) function:

Example 2—-16. Inner Loop Kernel of iir2.asm

L3: ; PIPED LOOP KERNEL

ADD L2 B7,B8B7 ;
I ADD L1 AOA3A0 ;
I MV .S2 B6B9 @
I STH .D1 A5 *A4(6) ;@
I LDW .D2 *B5++(8),B8 ;@@

SHR .S2 B7,15B7 ;
I EXT .S1 A0,16,16,A0 ;
I[BO] SUB .L2 BO0,1,B0 ;@
I MPY .M2X B8A5B8 ;@
I ADD L1X B6A3A3 ;@
Il LDH .D2 *+B4(14),B6 :@@@

ADD .L1X AOB7,A6 ;
I MPYHL .M2 B8,B9,B7 ;@
I SHR .S1 A315A3 @
I[BO] B .S2 L3 @
I LDW .D2 *+B5(4)B7 ;@@@
I LDH D1 *+A4(12),A5 :@@@

ADD L2 4,B4B4
I STH D1 AO*Ad++(4) :
EXT .S1 A6,16,16,A0 ;
MPYHL .M2 B7,86,B6 ;@@
I MPY .M1X B7,A5A3 ;@@

Table 2—4 shows how the iir(') function has improved. Now, the code has only
four execute packets; however, each packet has only five or six parallel
instructions, which could be probably improved.

Table 2-4. Revised Cycle Counts for iir()

Function Execute Packets Loop lterations Constant Cycle Count
iirl() 5 50 20 5 x 50 + 20 =270
ir2() 4 50 20 4 x50+ 20=220
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Use the profiler to view the cycle counts of the revised functions.

Your profile window should look like this:

[l Profile [ (O] x]
Tvpe | Area Hame Count  Inclusiwve Incl-Hax |
C Function wec_npvZ{) 1 172 172
C Function 1ir2 () 1 220 220
C Function macl() 1 167 167
C Function main() 1 637 637

Notice that the cycle count for the second function, the vector multiply, is down
from 316 to 172. The IIR filter has improved also: it is down from 270 to 220.
However, the cycle count for the IIR filter is still too high. Naturally, the cycle
count for main( ) has decreased also. It is down from 831 to 637.

Table 2-5. Revised Cycle Counts

Function Execute Packets Loop lterations Constant Cycle Count
mac1()t 1 150 17 1 x 150 + 17 = 167
vec_mpy2() 2 75 22 2 X 75+22=172
iir2() 4 50 20 4 x 50 + 20 = 220

T The cycle count for the macl( ) function has not changed.

2-24

You have done everything you can to refine the C code in the iir( ) function. To
improve your code at this point, you need to use the assembly optimizer. This
leads you to phase 3 of the code development flow.
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2.7 Lesson 5: Phase 3 of the Code Development Flow

To further improve the iir() function, you will need to rewrite it in linear assem-
bly. Linear assembly is the input for the assembly optimizer.

Linear assembily is similar to regular 'C6x assembly code in that you use 'C6x
instructions to write your code. With linear assembly, however, you do not need
to specify all of the information that you need to specify in regular 'C6x assem-
bly code. With linear assembly code, you have the option of specifying the in-
formation or letting the assembly optimizer specify it for you. Here is the in-
formation that you do not need to specify in linear assembly code:

] Parallel instructions

[ Pipeline latency

1 Register usage

J Which functional unit is being used

If you choose not to specify these things, the assembly optimizer determines
the information that you do not include, based on the information that it has
aboutyour code. As with other code generation tools, you might need to modify
your linear assembly code until you are satisfied with its performance. When
you do this, you will probably want to add more detail to your linear assembly.
For example, you might want to specify which functional unit should be used.

Before you use the assembly optimizer, you need to know the following things
about how it works:

[ A linear assembly file must be specified with a .sa extension.

[ Linearassembly code should include the .cproc and .endproc directives.
The .cproc and .endproc directives delimit a section of your code that you
want the assembly optimizer to optimize. Use .cproc at the beginning of
the section and .endproc at the end of the section. In this way, you can set
off sections of your assembly code that you want to be optimized, like pro-
cedures or functions.

[ Linear assembly code may include a .reg directive. The .reg directive al-
lows you to use descriptive names for values that will be stored in regis-
ters. Whenyou use .reg, the assembly optimizer chooses aregister whose
use agrees with the functional units chosen for the instructions that oper-
ate on the value.

[ Linear assembly code may include a .trip directive. The .trip directive
specifies the value of the trip count. The trip count indicates how many
times a loop will iterate.

Now that you have some information about the fundamentals of linear assem-
bly code, look at the revised C code for the biquad filter again. Example 2—-17
shows the same code that you saw in Example 2—13 on page 2-20.
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Example 2—-17. The Revised Biquad Filter—iir2.c

2-26

void iir2(const int *coefs, const short *input,
short *optr, short *state)
{

short X;
short t;
int n;
X = input[0];

for (n = 0; n < 50; n++)

t= x+((_mpy(coefs[1],state[0]) +
_mpyhl(coefs[1],state[1])) >> 15);

x= t+((_mpy(coefs[0],state[0]) +
_mpyhl(coefs[0],state[1])) >> 15);

state[1] = state[0];
state[0] = t;

coefs += 2;
state += 2;

}

*optr++ = X;

}

Example 2—-18 shows how to rewrite the iir( ) function in linear assembly.
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Example 2-18. The Biquad Filter, Revised and Assembly-Optimized—iir3.sa

def _iir3
_iir3 .cproc cptr0,sptr0

.reg cptrl, s01, s10, s23, c10, ¢32, s10_s, s10_t
.reg p0, pl, p2, p3, s23_s, s1, t, X, mask, sptrl, s10p, ctr

MV .2 cptrO,cptrl
MV .1  sptrO,sptrl

MVK  50,ctr ; setup loop counter

LOOP: .trip 50
LDW .D1T1 *cptrO++[2],c32 ; coefAddr[3] & CoefAddr[2]
LDW .D2T2 *cptrl++[2],c10 ; CoefAddr[1] & CoefAddr[0]
LDW .D1T2 *sptr0,s10 ; StateAddr[1] & StateAddr[0]
MV .2  s10,s10p ; save StateAddr[1] & StateAddr[0]

MPY M1 ¢32,510,p2 ; CoefAddr[2] * StateAddr[0]
MPYH M1 ¢32,510,p3 ; CoefAddr[3] * StateAddr[1]

ADD .1 p2,p3,s23 ;CA[2]* SA[0] + CA[3] * SA[1]

SHR .1 s23,15s23_s ;(CA[2]* SA[0] + CA[3] * SA[1]) >> 15
ADD .2 s23 sx;t ; t = x+((CA[2]*SA[0]+CA[3]*SA[1])>>15)
AND .2 tmaskt ; clear upper 16 bits

MPY .M2 ¢10,510,p0 ; CoefAddr[0] * StateAddr[0]

MPYH .M2 ¢10,s10,p1 ; CoefAddr[1] * StateAddr[1]

ADD .2 pO,p1,s10_t ; CA[O0]* SA[O] + CA[1] * SA[1]

SHR .2 s10_t,15,510_s ; (CA[0] * SA[0] + CA[1] * SA[1]) >> 15
ADD .2 sl10_s;tx ; X = t+((CA[O]*SA[O]+CA[1]*SA[1])>>15)

SHL .2 sl10p,16,s1 ; StateAddr[1] = StateAddr[0]
OR .2 ts1,s01 ; StateAddr[0] =t
STW .D1 s01,*sptrl++ ; store StateAddr[1] & StateAddr[0]

[ctrfADD .S1 -1lctr,ctr ;dec outer Ip cntr
[ctr] B .S1 LOOP ; Branch outer loop

.endproc
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Using demo3.c, shown in Example 2—-19, run the revised functions through the
code generation tools.

Example 2—-19. The Revised Example—demo3.c

2-28

main(int argc, char *argv[])

{

const short coefs[150];
short optr[150];
short state[2];

const short a[150];
const short b[150];
intc=0;

int dotp[1] = {0};

int sum = 0;

short y[150];

short scalar = 3345;
const short x[150];

sum = macl(a, b, c, dotp);
vec_mpy2(y, X, scalar);
iir3(coefs, x, optr, state);

Use the shell program (cl6x) to compile, assemble, and link. Be sure you use
the —mg option. The —mg option ensures that the optimizations that are used
are compatible with profiling.

On a command line, enter:

cléx —g —0 —k —_mg demo3.c macl.c vec_mpy2.c iir3.sa
—z Ink.cmd —I rts6201.lib —o demo3.out

Notice that you used the shell program to compile a linear assembly file and
a C file at the same time. Also notice that (except for the —mg option) you used
the same options that you used in the first part of this tutorial. The assembly
optimizer has a small set of some unique options, but many of the options that
you will use are shell options that apply to either linear assembly files or C files.
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Example 2-20. Inner Loop Kernel of iir3.asm

L3: ; PIPED LOOP KERNEL

AND L2 B3,B7,BO ;clear upper 16 bits
Il ADD .S2 BO0,B8,B8 ;@ CA[0]* SA[0] + CA[1] * SA[1]
||[[A1] B S1 L3 ;@ Branch outer loop
Il ADD L1 A4,A5A4 ;@ CA[2]* SA[0] + CA[3]* SA[1]
Il MPYH .M2 B2,B1,B8 ;@@ CoefAddr[1] * StateAddr[1]
Il MPY .M1X AO0B1lA4 ;@@ CoefAddr[2]* StateAddr[0]
Il LDW D2 *B6++(8),B2 ;@@@@ CoefAddr[1] & CoefAddr[0]
Il LDW D1 *A3++(8),A0 ;@@@@ coefAddr[3] & CoefAddr[2]

ADD .D2 B4,B0,B9 ;x = t+((CA[0]*SA[0]+CA[1]*SA[1])>>15)
Il OR L2 BO0,B9,BO ; StateAddr[0] =t
| SHR .S2 B8,0xf,B4 ;@ (CA[0] * SA[0] + CA[1] * SA[1]) >> 15
Il SHR .S1 A4,0xf,A5 ;@ (CA[2] * SA[O] + CA[3] * SA[1]) >> 15
| MPY .M2 B2B1B0 ;@@ CoefAddr[0]* StateAddr[0]
| MPYH .M1X A0,B1,A5 ;@@ CoefAddr[3]* StateAddr[1]
|l LDW D1 *A6++Bl ,@@@@ StateAddr[1] & StateAddr[0]

STW .D1 BO,*A7++ ; store StateAddr[1] & StateAddr[0]
Il SHL .S2 B5,0x10,B9 ;@ StateAddr[1] = StateAddr[0]
Il ADD .L2X B9,A5B3 ;@ t=x+((CA[2]*SA[0]+CA[3]*SA[1])>>15)
|[[A1]ADD .S1 Oxffffffff,A1,Al ;@@ dec outer Ip cntr
Il MV  .D2 B1,B5 ;@@ save StateAddr[1] & StateAddr[0]

Table 2—6 shows how the iir( ) function has improved as it has moved through

the three phases of code development.

Table 2-6. Revised Cycle Counts for iir()

Function Execute Packets Loop lterations Constant Cycle Count

irl() 6 50 20 6 x 50 + 20 =270
ir2() 4 50 20 4 x 50 + 20 =220
iir3() 3 50 27 3 x 50 +27 =177

Code Development Flow Tutorial

Part |



Part |

Lesson 5: Phase 3 of the Code Development Flow

Use the profiler to view the cycle counts of the revised functions.

Your profile window should look like this:

[fia) Profile !E m
|

Tvpe | Area Name Count Inclu=sive Incl-Hax
C Function wvec_mpyZ() 1 172 172
C Function 1ir3() 1 177 177
C Function macl() 1 167 167
C Function mainfg) 1 594 594

Notice that the cycle count for the IIR filter has improved: it is down from 220
to 177. Naturally, the cycle count for main() has decreased also. It is down

from 637 to 594.

Table 2—-7. Revised Cycle Counts

Function Execute Packets Loop lterations Constant Cycle Count
mac1()t 1 150 17 1 x 150 + 17 = 167
vec_mpy2()t 2 75 22 2 X 75+22=172
iir3() 3 50 27 3 x 50 +27 =177

T The cycle count for the macl( ) function and the vec_mpy( ) function have not changed.

2-30

The Using the Assembly Optimizer chapter in the TMS320C6x Optimizing C
Compiler User’s Guide discusses the assembly optimizer in more detail.



2.8 Summary

Summary

Congratulations! In this tutorial, you learned the following things:

[ Whatthe three phases of code development are, how to determine which
phases are appropriate forimproving different parts of your code, and how
to write your code for each phase.

[ What alinear assembly file is and some fundamental information on how
to write one.

[ How to use the code generation tools to compile, assemble, and link your
C and linear assembly files.

[ How to use the profiler to analyze your results and determine whether or
not you need to continue refining your code.

Code Development Flow Tutorial 2-31
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Because most of the millions of instructions per second (MIPS) in DSP applica-
tions occur in tight loops, it is important for the 'C6x code generation tools to
make maximal use of all the hardware resources in important loops. Fortu-
nately, loops inherently have more parallelism than non-looping code because
there are multiple iterations of the same code executing with limited depen-
dencies between each iteration. Through a technique called software pipelin-
ing, the 'C6x code generation tools use the multiple resources of the VelociTl
architecture efficiently and obtain very high performance.

This chapter shows the code development flow recommended to achieve the
highest performance on loops and provides a checklist that can be used to op-
timize loops with references to more detailed documentation.

3-1



Part |

TMS320C6x Optimization Checklist

Table 3—1 describes the steps recommended for developing code to achieve
the highest performance on loops.

Table 3-1. Code Development Steps

Step Description

1 Compile and profile native C code
1 \Validates original C code

1 Determines which loops are most important in terms of MIPS require-
ments

2 Add const declarations and loop count information
(1 Reduces potential pointer aliasing problems

1 Allows loops with indeterminate iteration counts to execute epilogs

3 Optimize C code using intrinsics and other methods
[ Facilitates use of certain 'C6x instructions not easily represented in C

(1 Optimizes data flow bandwidth

da Write linear assembly
(1 Allows control in determining exact 'C6x instructions to be used

1 Provides flexibility of hand-coded assembly without worry of pipelining,
parallelism, or register allocation

1 Can pass memory bank information to the tools

4b Add partitioning information to the linear assembly
1 Can improve partitioning of loops when necessary

1 Can avoid bottlenecks of certain hardware resources

When you achieve the desired performance in your code, there is no need to
move to the next step. Each of the steps in the development involve passing
more information to the 'C6x tools. Even at the final step, development time
is greatly reduced from that of hand-coding, and the performance approaches
the best that can be achieved by hand.

Internal benchmarking efforts at Texas Instruments have shown that most
loops achieve maximal throughput after steps 1 and 2. For loops that do not,
the C compiler offers a rich set of optimizations that can fine tune all from the
high level C language. For the few loops that need even further optimizations,
the assembly optimizer gives the programmer more flexibility than C can offer,
works within the framework of C, and is much like programming in higher level
C. For more information on the assembly optimizer, see the TMS320C6x Opti-
mizing C Compiler User’s Guide and Chapter 6, Optimizing Assembly Code
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via Linear Assembly, in this book. For example, linear assembly files point to
the demo directory included with the 'C6x tools.

In order to aid the development process, a feedback option (—-mw) is included
in the code generation tools. Example 3—-1 shows output from the compiler
and/or assembly optimizer of a particular loop. See the TMS320C6x Optimiz-
ing C Compiler User’s Guide for more information about the —mw option.

Example 3—1. Compiler and/or Assembly Optimizer Feedback

x

;* SOFTWARE PIPELINE INFORMATION
Loop label : LOOP

Loop Carried Dependency Bound : 3
Unpartitioned Resource Bound : 3
Partitioned Resource Bound(*) : 4
Resource Partition:

TR TR TETETETE TR TR TATETETEATA TR TA A TR TR TR TR TR VA TR TR T

A-side B—side
.L units 0 0
.S units 2 2
.D units 2 2

2 2

*

.M units

X cross paths 4
.T address paths 2
Long read paths 1
Long write paths 0
Logical ops (.LS) 4 1
Additional ops (.LSD) 2 1
Bound (.L .S .LS) 3 2
Bound (.L .S .D .LS .LSD) 4* 2

Searching for software pipeline schedule
at ii=4 Failed register allocation
ii=5 Schedule found with 4
iterations in parallel

Done

This feedback is important in determining which optimizations might be useful
for further improved performance. The following checklist is provided as a
quick reference to techniques that can be used to optimize loops and refers
to specific sections within this book for more detail.

TMS320C6x Optimization Checklist 3-3
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Table 3—2. TMS320C6x Optimization Checklist

For more information, Page

Feedback Solution referto ... #
Loop carried dependency | C Code
bound is much larger than | »  Use —pm program level optimization | Performing Program- @

unpartitioned resource
bound

to reduce memory pointer aliasing.

Level Optimization (—pm
Option)

»  Add const declarations to all pointers | The const Keyword kg
passed to a function that are read
only.
»  Use —mt option to assume no Memory Dependencies E
memory pointer aliasing.
Linear assembly
¥ Make sure instructions accessing Loop Carry Paths
memory at the beginning of the loop
do not use the same pointer variables
as instructions accessing memory at
the end of the loop.
Partitioned resource »~  Write code in linear assembly with Linear Assembly Re-
bound is higher than un- partitioning/functional unit informa- source Allocation
partitioned resource tion.
bound
Too many instructions, or ¥ Use intrinsics in C code to select Using Intrinsics @
inefficient instructions more efficient 'C6x instructions.
wer:]e ﬁjernerated by the »~  Write code in linear assembly to pick | TMS320C6x Optimizing
comprie exact 'C6x instruction to be executed. | C Compiler User’s Guide
Failed to software pipeline | »~  Write linear assembly and insert MV | Split-Join-Path Problems |6-101
due to register live-too- instructions to split register lifetimes
long that are live-too-long.
Failed to software pipeline | »~  Try splitting the loop into two sepa-
due to register allocation rate loops.
»  If multiple conditionals are used in the

loop, allocation of the condition regis-
ters could be the reason for the fail-
ure. Try writing linear assembly and
partition all instructions, writing to
condition registers evenly between
the A and B sides of the machine. If
there are an uneven number, put
more on the B side, since there are 3
condition registers on the B side and
only 2 on the A side.
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Table 3—2. TMS320C6x Optimization Checklist (Continued)

TMS320C6x Optimization Checklist

For more information, Page
Feedback Solution referto ... #
T address paths are re- C code
source bound »~  Use word access for short arrays; de- | Using Word Access for
clare int* and use mpy intrinsics to Short Data in Part Il
multiply upper and lower halves of
registers.
»~  Try to employ redundant load elimina- | Redundant Load Elimi-  |6-106
tion technique if possible. nation
Linear assembly
»~  Use LDW/STW instructions for ac- Using Word Access for  |6-1
cesses to memory. Short Data in Part Ill
There are memory bank »*  Write linear assembly and use the Loop Unrolling
conflicts (specified in the .mptr directive.
memory analysis window
of simulator)
Larger outer loop over- v Unroll the inner loop. Loop Unrolling in Part Il [4-23,
head in nested loop and Part Il 6-90
»  Make one loop with the outer loop in- | Outer Loop Conditionally [6-132
structions conditional on an inner Executed With Inner
loop counter. Loop
Uneven resources (for ex- | »  Unroll the loop to make an even num- | Loop Unrolling in Part Il
ample, 3 multiplies per ber of resources.
loop iteration)
Two loops are generated, »~  Use the _nassert statement to specify | Communicating Trip- 4-2
one not software pipelined loop count information. Count Information to the
Compiler
Two loops are generated, »~  Use the .trip directive to specify loop | Lesson 5: Phase 3 of the
one not software pipelined count information. Code Development Flow
Loop will not software »~  Make sure there are no function calls, | What Disqualifies a Loop
pipeline for other reasons branches to other code, or conditional | from Being Software-Pi-
break statements in the loop. pelined
»  Try making the loop counter down- Tips on Data Types and '
counting and declare it an intin C. Trip Count Issues
v Remove any modifications to the loop | What Disqualifies a Loop
counter inside the loop. from Being Software-Pi-  |4-26
pelined
TMS320C6x Optimization Checklist 3-5
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Chapter 4

Optimizing C Code

You can maximize C performance by using compiler options, intrinsics, and
code transformations. This chapter discusses the following topics:

[ The compiler and its options
[ Intrinsics
[ Software pipelining
(1 Loop unrolling -
E
Q
Topic Page
41 WIting C COOE .. vv ittt 4-2 |
42 Compiling C COdE ...ttt e 4-4 |

4.3 Refining C Code
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4.1 Writing C Code

This chapter shows you how to analyze and tailor your code to be sure you are
getting the best performance from the 'C6x architecture.

4.1.1 Tips on Data Types

Give careful consideration to the data type size when writing your code. The
'C6x compiler defines a size for each data type (signed and unsigned):

Uoouooo

char 8 bits

short 16 bits
int 32 bits
long 40 bits
float 32 hits
double 64 bits

Based on the size of each data type, follow these guidelines when writing C
code:

a

a

Avoid code that assumes that int and long types are the same size,
because the 'C6x compiler uses long values for 40-bit operations.

Use the short data type for fixed-point multiplication inputs whenever
possible because this data type provides the most efficient use of the
16-bit multiplier in the 'C6x.

Use int or unsigned int types for loop counters, rather than short or un-
signed short data types, to avoid unnecessary sign-extension instructions.

When using floating-point instructions on a floating-point device such as
the "C67x, use the —-mv6700 compiler switch so the code generated will
use the device’s floating-point hardware instead of performing the task
with fixed point hardware.

4.1.2 Analyzing C Code Performance

4-2

Use the following techniques to analyze the performance of specific code
regions:

a

One of the preliminary measures of code is the time it takes the code to
run. Use the clock( ) and printf( ) functions in C to time and display the
performance of specific code regions. You can use the stand-alone simu-
lator (load6x) to run the code for this purpose.

Use the profile mode in the debugger, as explained in the TMS320C6x
C Source Debugger User’s Guide, to collect execution statistics about
specific areas in your code.
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[0 Use breakpoints, the clk register, and the RUNB command in the
debugger, as described in the TMS320C6x C Source Debugger User’s
Guide, to track the number of CPU clock cycles consumed by a particular
section of code.

[ The critical performance areas in your code are most often loops. The
easiest way to optimize a loop is by extracting it into a separate file that
can be rewritten, recompiled, and run stand-alone.

As you use the techniques described in this chapter to optimize your C code,
you can then evaluate the performance results by running the code and
looking at the instructions generated by the compiler.

Optimizing C Code 4-3

Part Il



Part Il

Compiling C Code

4.2 Compiling C Code

The 'C6x compiler offers high-level language support by transforming your C
code into more efficient assembly language source code. The compiler tools
include a shell program (cl6x), which you use to compile, assembly optimize,
assemble, and link programs in a single step. To invoke the compiler shell, en-
ter:

cléx [options] [filenames] [~z [linker options] [object files]]
For a complete description of the C compiler and the options discussed in this
chapter, see the TMS320C6x Optimizing C Compiler User’s Guide.

4.2.1 Compiler Options

Options control the operation of the compiler. Table 4-1 defines the options
discussed in this chapter.

Table 4-1. Subset of Compiler Options

Option Description

—ot Enables software pipelining and other optimizations in the com-
piler
—pm* Enables program-level optimization
—mt Enables the compiler to use assumptions that allow it to be

more aggressive with certain optimizations

—-mg Allows you to profile optimized code

-ms Ensures that redundant loops are not generated, thereby reduc-
ing code size

-k Keeps the assembly file so that you can inspect it

—-mu Disables software pipelining

—-mh <n>  Allows speculative execution

TAIthough —03 is preferable, at a minimum use the —o option.
1 Use the —pm option for as much of your program as possible.
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4.2.2 Memory Dependencies

To maximize the efficiency of your code, the 'C6x compiler schedules as many
instructions as possible in parallel. To schedule instructions in parallel, the
compiler must determine the relationships, or dependencies, between instruc-
tions. Dependency means that one instruction must occur before another.
Because only independent instructions can execute in parallel, dependencies
inhibit parallelism.

1 Ifthe compiler cannot determine that two instructions are independent (for
example, b does not depend on a), it assumes a dependency and sched-
ules the two instructions sequentially.

[J Ifthe compiler can determine that two instructions are independent of one
another, it can schedule them in parallel.

Often it is difficult for the compiler to determine if instructions that access
memory are independent. The following techniques help the compiler deter-
mine which instructions are independent:

[ Use the const keyword to indicate which objects are not changed by a
function.

1 Usethe—pm (program-level optimization) option, which gives the compiler
global access to the whole program or module and allows it to be more
aggressive in ruling out dependencies.

[0 Use the —mtoption, which allows the compiler to use assumptions that al-
low it to eliminate dependencies.

To illustrate the concept of memory dependencies, it is helpful to look at the
algorithm code in a dependency graph. Example 4—1 shows the C code for a
basic vector sum. Figure 4—1 shows the dependency graph for this basic vec-
tor sum. (For more information, see section 6.2.4, Drawing a Dependency
Graph, on page 6-6.)

Example 4-1. Basic Vector Sum

void vecsum(short *sum, short *in1, short *in2, unsigned int N)

{

inti;

for (i=0;i<N;i++)
sumli] = inl[i] + in2]i];

Optimizing C Code 4-5
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Figure 4-1. Dependency Graph for Vector Sum #1

Load Load

s 5/

Number of cycles required Add elements 1
to complete an instruction ———»| 1 Y ¥
1
Store to
memory

The dependency graph in Figure 4—-1 shows that:

(1 The paths from sum([i] back to in1[i] and in2[i] indicate that writing to sum
may have an effect on the memory pointed to by either inl or in2.

(1 Aread from inl or in2 cannot begin until the write to sum finishes, which
creates an aliasing problem. Aliasing occurs when two pointers can point
to the same memory location. For example, if vecsum( ) is called in a pro-
gram with the following statements, in1 and sum alias each other because
they both point to the same memory location:

short a[10], b[10];
vecsum(a, a, b, 10);

4.2.2.1 The const Keyword

In Figure 4-1, the reads from in1 and in2 finish before the write to sum within
a single iteration. However, the 'C6x compiler uses software pipelining to exe-
cute multiple iterations in parallel and, therefore, must determine memory
dependencies that exist across loop iterations.

To help the compiler, you can qualify an object with the const keyword, which
indicates that a variable or the memory referenced by a variable will not be
changed, but will remain constant. It is good coding practice to use the const
keyword wherever you can, because it is a simple way to increase the perfor-
mance and robustness of your code.
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Example 4-2 shows the vecsum( ) example rewritten with the const keyword
to indicate that the write to sum never changes the memory referenced by inl
and in2. Figure 4-2 shows the revised dependency graph for the code in the
inner loop.

Example 4-2. Vector Sum With const Keywords

void vecsumz2(short *sum, const short *inl, const short *in2, unsigned int N)

{

inti;

for (i=0;i < N;i++)
sum[i] = in1[i] + in2[i];

Figure 4-2. Dependency Graph for Vector Sum #2
Load Load

5 5/

Add elements

« ¥

1

Store to
memory

Example 4-3 shows the output of the compiler for the vector sum in
Example 4-2. The compiler finds better schedules when dependency paths
are eliminated between instructions. For this loop, the compiler found a soft-
ware pipeline with a 2-cycle kernel, compared with seven cycles for the
previous loop. (The kernel is the body of a pipelined loop where all instructions
execute in parallel.)

Optimizing C Code 4-7
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Example 4-3. Compiler Output for Vector Sum Code

L14: ; PIPE LOOP KERNEL

ADD  .L1X B4,A0A5
I[BO] B S22 L14
I LDH  .D1  *A3++A0

STH D1 A5*Ad++
[BO] SUB  .L2  BO,1,B0
I LDH  .D2  *B5++B4

For basic information on assembly code, see Chapter 4, Structure of Assem-
bly Code.

4.2.2.2 Performing Program-Level Optimization (—pm Option)

You can specify program-level optimization by using the —pm option with the
—03 option. With program-level optimization, all your source files are compiled
into one intermediate file called a module. The module moves to the optimiza-
tion and code generation passes of the compiler. Because the compiler has
access to the entire program, it performs several optimizations that are rarely
applied during file-level optimization:

(O Ifaparticular argumentin a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead
of the argument.

[ Ifareturnvalue of a function is never used, the compiler deletes the return
code in the function.

(O If a function is not called, directly or indirectly, the compiler removes the
function.

4.2.2.3 The —mt Option

Another way to eliminate memory dependencies is to use the —mt option,
which allows the compiler to use assumptions that can eliminate memory de-
pendency paths. For example, if you use the —mt option when compiling the
code in Example 4-1, the compiler uses the assumption that that in1 and in2
do not alias memory pointed to by sum and, therefore, eliminates memory
dependencies among the instructions that access those variables.
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4.3 Refining C Code

You can realize substantial gains from the performance of your C code by refin-
ing your code in the following areas:

[ Using intrinsics to replace complicated C code

[ Using word access to operate on 16-bit data stored in the high and low
parts of a 32-bit register

[ Software pipelining the instructions manually

[ Using double access to operate on 32-bit data stored in a 64-bit register
pair (C67x only)

4.3.1 Using Intrinsics

The 'C6x compiler provides intrinsics, special functions that map directly to
inlined 'C62x/'C67x instructions, to optimize your C code quickly. All instruc-
tions that are not easily expressed in C code are supported as intrinsics. Intrin-
sics are specified with a leading underscore (_) and are accessed by calling
them as you call a function.

For example, saturated addition can be expressed in C code only by writing
a multicycle function, such as the one in Example 4-4.

Example 4—4. Saturated Add Without Intrinsics

int sadd(int a, int b)
int result;
result=a+b;
if (@™ b) & 0x80000000) == 0)
if ((result * a) & 0x80000000)

result = (a < 0) ? 0x80000000 : OxT7fffffff;

return (result);

This complicated code can be replaced by the _sadd( ) intrinsic, which results
in a single 'C6x instruction (see Example 4-5).

Optimizing C Code 4-9
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Example 4-5. Saturated Add With Intrinsics

result = _sadd(a,b);

Table 4-2 lists the 'C6x intrinsics. For more information on using intrinsics, see
the TMS320C6x Optimizing C Compiler User’s Guide.

Table 4-2. TMS320C6x C Compiler Intrinsics

Assembly
C Compiler Intrinsic Instruction ~ Description Device

int _abs(int src2); ABS Returns the saturated absolute value of
int_labs(long src2); src2.

int _add2(int src1, int src2); ADD2 Adds the upper and lower halves of srcl to
the upper and lower halves of src2 and re-
turns the result. Any overflow from the
lower half add will not affect the upper half
add.

uint _clr(uint src2, uint csta, uint cstb); CLR Clears the specified field in src2. The
beginning and ending bits of the field to be
cleared are specified by csta and cstb,
respectively.

unsigned _clrr( uint srcl, int src2); CLR Clears the specified field in src2. The
beginning and ending bits of the field to be
cleared are specified by the lower 10 bits
of the source register.

int_dpint( double); DPINT Converts 64-bit double to 32-bit signed in- 'C67x
teger, using the rounding mode set by the
CSR register.

int _ext(uint src2, uint csta, int cstb); EXT Extracts the specified field in src2, sign-ex-
tended to 32 bits. The extract is performed
by a shift left followed by a signed shift
right; csta and cstb are the shift left and
shift right amounts, respectively.

int _extr(int src2, int srcl); EXT Extracts the specified field in src2, sign-ex-
tended to 32 bits. The extract is performed
by a shift left followed by a signed shift
right; csta and cstb are the shift left and
shift right amounts, respectively.

Note: Instructions not specified with a device apply to all 'Céx devices.

4-10
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Table 4-2. TMS320C6x C Compiler Intrinsics (Continued)

Assembly

C Compiler Intrinsic Instruction  Description Device

uint _extu(uint src2, uint csta, uint cstb); EXTU Extracts the specified field in src2, zero-
extended to 32 bits. The extract is
performed by a shift left followed by a
unsigned shift right; csta and cstb are the
shift left and shift right amounts, respec-
tively.

uint _extur( uint src2, int srcl); EXTU Extracts the specified field in src2, zero-
extended to 32 bits. The extract is
performed by a shift left followed by a
unsigned shift right; csta and cstb are the
shift left and shift right amounts, respec-
tively.

uint _ftoi( float); Reinterprets the bits in the float as an un- 'C67x
signed integer.
(Ex: _ftoi(1.0) == 1065353216U)

uint _hi(double); Returns the high 32 bits of a double as an 'C67x
integer.

double _itod( uint, uint); Creates a new double register pair from 'C67x
two unsigned integers.

float _itof( uint); Reinterprets the bits in the unsigned inte- 'C67x
ger as a float.
(Ex: _itof(0x3f800000) == 1.0)

uint _Imbd( uint src1, uint src2); LMBD Searches for aleftmost 1 or O of src2deter-
mined by the LSB of srcl. Returns the
number of bits up to the bit change.

uint _lo(double); Returns the low (even) register of adouble 'C67x
register pair as an integer.

int _mpy(int src1, int src2); MPY Multiplies the 16 LSBs of srcl by the 16

int _mpyus( uint src1, int src2); MPYUS LSBs of src2 and returns the result. Values

int _mpysu( int srci, uint src2); MPYSU can be signed or unsigned.

uint _mpyu( uint src1, uint src2); MPYU

int _mpyh(int srcl, int src2); MPYH Multiplies the 16 MSBs of srcl by the 16

int _mpyhus( uint src1, int src2); MPYHUS MSBs of src2 and returns the result.

int _mpyhsu( int src1, uint src2); MPYHSU Values can be signed or unsigned.

uint _mpyhu( uint src1, uint src2); MPYHU

Note: Instructions not specified with a device apply to all 'C6x devices.

Optimizing C Code 4-11
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Table 4-2. TMS320C6x C Compiler Intrinsics (Continued)

Assembly
C Compiler Intrinsic Instruction ~ Description Device
int _mpyhl(int srci, int src2); MPYHL Multiplies the 16 MSBs of srcl by the 16
int _mpyhuls( uint srcl, int src2); MPYHULS  LSBs of src2 and returns the result. Values
int_mpyhslu( int src1, uint src2); MPYHSLU can be signed or unsigned.
uint _mpyhlu( uint src1, uint src2); MPYHLU
int _mpylh(int srci, int src2); MPYLH Multiplies the 16 LSBs of srcl by the 16
int _mpyluhs( uint srcl, int src2); MPYLUHS MSBs of src2 and returns the result.
int _mpylshu( int src1, uint src2); MPYLSHU  Values can be signed or unsigned.
uint _mpylhu( uint src1, uint src2); MPYLHU
void _nassert( int); Generates no code. Tells the optimizer
that the expression declared with the
assert function is true; this gives a hint to
the optimizer as to what optimizations
might be valid.
uint _norm(int src2); NORM Returns the number of bits up to the first
uint _Inorm‘(long src2); nonredundant sign bit of src2.
double _rcpdp( double); RCPDP Computes the approximate 64-bit double 'C67x
reciprocal.
float _rcpsp( float); RCPSP Computes the approximate 64-bit double 'C67x
reciprocal.
double _rsqrdp( double src); RSQRDP Computes the approximate 64-bit double 'C67x
reciprocal square root.
float _rsqrsp( float src); RSQRSP Computes the approximate 32-bit float re- 'C67x
ciprocal square root.
int _sadd(int src1, int src2); SADD Adds srcl to src2 and saturates the result.
long _Isadd(int src1, long src2): Returns the result.
int _sat(long src2); SAT Converts a 40-bit value to an 32-bit value
and saturates if necessary.
uint _set(uint src2, uint csta, uint cstb); SET Sets the specified field in src2 to all 1s and

returns the src2 value. The beginning and
ending bits of the field to be set are speci-
fied by csta and csth, respectively.

Note:

4-12
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Table 4-2. TMS320C6x C Compiler Intrinsics (Continued)

Assembly
C Compiler Intrinsic Instruction  Description Device
unsigned _setr(unsigned, int); SET Sets the specified field in src2 to all 1s and
returns the src2 value. The beginning and
ending bits of the field to be set are speci-
fied by the lower ten bits of the source reg-
ister.
int _smpy(int src1, int sr2); SMPY Multiplies srcl by src2, left shifts the result
int _smpyh(int src1, int sr2); SMPYH by one, and returns the result. If the result
int _smpyhl( int src1, int sr2); SMPYHL is 0x80000000, saturates the result to
int _smpylh( int src1, int sr2); SMPYLH Ox7FFFFFFF.
int _spint( float); SPINT Converts 32-bit float to 32-bit signed inte- 'C67x
ger, using the rounding mode set by the
CSR register.
uint _sshl( uint src2, uint srcl); SSHL Shifts src2 left by the contents of srcl, sat-
urates the result to 32 bits, and returns the
result.
int _ssub(int src1, int src2); SSUB Subtracts src2 from srcl, saturates the
long _Issu'n(int src1, long src2): result size, and returns the result.
uint _subc( uint src1, uint src2); SUBC Conditional subtract divide step.
int _sub2(int srcl, int src2); SuUB2 Subtracts the upper and lower halves of
src2 from the upper and lower halves of
srcl, and returns the result. Any borrowing
from the lower half subtract does not affect
the upper half subtract.
Note: Instructions not specified with a device apply to all 'C6x devices.
Optimizing C Code 4-13

Part Il



Part Il

Refining C Code

4.3.2 Using Word Access for Short Data

The 'C6x has instructions with corresponding intrinsics, such as _add2( ),
_mpyhl(), _mpylh( ), that operate on 16-bit data stored in the high and low
parts of a 32-bit register. When operating on a stream of short data, you can
use word (int) accesses to read two short values at a time, and then use 'C6x
intrinsics to operate on the data. For example, rewriting the vecsum( ) function
to use word accesses (as in Example 4-6) doubles the performance of the
loop. See section 6.3, Loading Two Data Values with LDW, on page 6-15 for
more information.

Example 4—-6. Vector Sum With const Keywords, _nassert, Word Reads

{

inti;

}

void vecsum4(short *sum, const short *in1, const short *in2, unsigned int N)

constint *i_inl = (const int *)inl;
const int *i_in2 = (const int *)in2;
int *i_sum = (int *)sum;

_nassert(N >= 20);

for (i =0; i < (N/2); i++)
i_sumli] = _add2(i_in1[i], i_in2[i]);

4-14

Note:

The _nassertintrinsic tells the optimizer that the code that follows meets the
condition specified.

This transformation assumes that the pointers sum, in1, and in2 can be cast
to int*, which means that they must point to word-aligned data. By default, the
compiler aligns all short arrays on word boundaries; however, a call like the
following creates an illegal memory access:

short a[51], b[50], c[50]; vecsum4(&a[1], b, c, 50);

Another consideration is that the loop must now run for an even number of
iterations. You can ensure that this happens by padding the short arrays so
that the loop always operates on an even number of elements.
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If a vecsum( ) function is needed to handle short-aligned data and odd-num-
bered loop counters, then you must add code within the function to check for
these cases. Knowing what type of data is passed to a function can improve
performance considerably. It may be useful to write different functions that can
handle different types of data. If your short-data operations always operate on
even-numbered word-aligned arrays, then the performance of your applica-
tion can be improved. However, Example 4—7 provides a generic vecsum( )
function that handles all types of data.

Example 4—-7. Vector Sum With const Keywords, _nassert, Word Reads (Generic Version)

void vecsumb5(short *sum, const short *inl, const short *in2, unsigned int N)

{

inti;
_hassert(N >= 20);
if (((int)sum | (int)in2 | (int)in1) & 0x2)

for (| =0;i<N; i++)
sumli] = in1[i] + in2[i];

else

{
const int *i_inl = (const int *)inl;
const int *i_in2 = (const int *)in2;
int *i_sum = (int *)sum;

for (i = 0; i < (N/2); i++)
i_sum[i] = _add2(i_in1[i], i_in2[i]);

if (N & Ox1) sum[i] = inl[i] + in2[i];

4.3.2.1 Using Word Access in Dot Product

Other intrinsics that are useful for reading short data as words are the multiply
intrinsics. Example 4-8 is a dot product example that reads word-aligned short
data and uses the _mpy() and _mpyh( ) intrinsics. The _mpyh( ) intrinsic uses
the 'C6x instruction MPYH, which multiplies the high 16 bits of two registers,
giving a 32-hit result.

This example also uses two sum variables (suml1 and sum2). Using only one
sum variable inhibits parallelism by creating a dependency between the write
from the first sum calculation and the read in the second sum calculation.
Within a small loop body, avoid writing to the same variable, because it inhibits
parallelism and creates dependencies.

Optimizing C Code 4-15
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Example 4-8. Dot Product Using Intrinsics

int dotprod(const short *a, const short *b, unsigned int N)
inti, suml =0, sum2 = 0;

const int *i_a = (const int *)a;
const int *i_b = (const int *)b;

for (i=0;i<(N>>1);i++)

suml =suml + _mpy (i_al[i], i_b[i]);
sum2 = sum2 + _mpyh(i_ali], i_b[i]);
}

return suml + sum2;

}

4.3.2.2 Using Word Access in FIR Filter

Example 4-9 shows an FIR filter that can be optimized with word reads of short
data and multiply intrinsics.

Example 4-9. FIR Filter— Original Form

void firl(const short x[], const short h[], short y[], int n, int m, int s)

L
inti, j;
long yO;
long round = 1L << (s — 1);
for (j =0; j<m;j++)
y0 = round;

for (i=0;i<n;i++)
yO +=X[i + j] * h{i];

ylil = (int) (yO >>s);

Example 4-10 shows an optimized version of Example 4-9. The optimized
version passes an int array instead of casting the short arrays to intarrays and,
therefore, helps ensure that data passed to the function is word-aligned. As-
suming that a prototype is used, each invocation of the function ensures that
the input arrays are word-aligned by forcing you to insert a cast or by using int
arrays that contain short data.

4-16
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Example 4-10. FIR Filter— Optimized Form

void fir2(const int x[], const int h[], short y[], int n, int m, int s)
{
inti, j;
long y0, y1;
long round = 1L << (s — 1);

_hassert(m >= 16);
_hassert(n >= 16);

for (j=0; ) < (m >> 1); j++)
y0 = y1 = round,
for i=0;i<(n>>1);i++)
0= oy o0+,

y1 +=_mpyhl(x[i +j], h[i]);
y1 +=_mpylh(x[i +j + 1], h[i]);
}

*y++ = (int)(y0 >> s);
*y++ = (int)(yl >> s);

4.3.2.3 Using Double Word Access for Word Data ("C67x Specific)

The ’C67x architecture has a load double word (LDDW) instruction, which can
read 64 bits of data into a register pair. Just like using word acesses to read
2 shortdata items, double word acesses can be used to read 2 word data items
(or 4 short data items). When operating on a stream of float data, you can use
double accesses to read 2 float values at a time, and then use intrinsics to op-
erate on the data.

The basic float dot product is shown in Example 4-11. Since the float addition
(ADDSP) instruction takes 4 cycles to complete, the minimum kernel size for
this loop is 4 cycles. For this version of the loop, a result is completed every
4 cycles.

Optimizing C Code 4-17
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Example 4-11. Basic Float Dot Product

float dotp1(const float af], const float b[])
inti;
float sum = 0;

for (i=0; i<512; i++)
sum += a[i] * b[i];

return sum;

}

In Example 4-12, the dot product example is rewritten to use double word
loads and instrincs are used to extract the high and low 32-bit values contained
in the 64-bit double. The _hi() and _lo() instrinsics return integer values, the
_itof() intrinsic subverts the C typing system by interpreting an integer value
as a float value. In this version of the loop, 2 float results are computed every
4 cycles.

Example 4-12. Float Dot Product Using Intrinsics

float dotp2(const double a[], const double b[])

inti;
float sumO = 0;
float suml1 = 0;

for (i=0; i<512; i+=2)
{
sumO += _itof(_hi(a[i])) * _itof(_hi(b[i]));
suml += _itof(_lo(a[i+1])) * _itof(_lo(b[i+2]));
}

return sumO + sum1;

In Example 4-13, the dot product example is unrolled to maximize perfor-
mance. The preprocessor is used to define convenient macros FHI() and
FLO() for accessing the high and low 32-bit values in a double word. In this
version of the loop, 8 float values are computed every 4 cycles.
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#define FHI(a) _itof(_hi(a))
#define FLO(a) _itof(_lo(a))

float dotp3(const double a[], const double b[])

inti;

float sumO = 0;
float sum1 = 0;
float sum2 = 0;
float sum3 = 0;
float sum4 = 0;
float sum5 = 0;
float sum6 = 0;
float sum7 = 0;

for (i=0; i<512; i+=4)

{
sumO += FHI(@a[i]) * FHI(bIi]);
suml += FLO(a[i]) * FLO(bIi]);
sum?2 += FHI(a[i+1]) * FHI(b[i+1]);
sum3 += FLO(a[i+1]) * FLO(b[i+1]);
sum4 += FHI(a[i+2]) * FHI(b[i+2]);
sum5 += FLO(a[i+2]) * FLO(b[i+2]);
sumé6 += FHI(a[i+3]) * FHI(b[i+3]);
sum? += FLO(a[i+3]) * FLO(b[i+3]);

}

sumO += suml,
sum2 += sums3;
sum4 += sumb5;
sum6 += sum7;
sumO += sumz2;
sum4 += sumeé;

return sumoO + sum4;

Optimizing C Code
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4.3.3 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop
so that multiple iterations of the loop execute in parallel. When you use the —02
and —03 compiler options, the compiler attempts to software pipeline your
code with information that it gathers from your program.

Figure 4-3 illustrates a software-pipelined loop. The stages of the loop are
represented by A, B, C, D, and E. In this figure, a maximum of five iterations
of the loop can execute at one time. The shaded area represents the loop ker-
nel. In the loop kernel, all five stages execute in parallel. The areaimmediately
before the kernel is known as the pipelined-loop prolog, and the area immedi-
ately following the kernel is known as the pipelined-loop epilog.

Figure 4-3. Software-Pipelined Loop

4-20
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C1 B2 A3 Pipelined-loop prolog

D1 Cc2 B3 A4

E1l D2 C3 B4 A5 Kernel
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E3 D4 C5 Pipelined-loop epilog

E4 D5

ES

Because loops present critical performance areas in your code, consider the
following areas to improve the performance of your C code:

Trip count

Redundant loops
Loop unrolling
Speculative execution

Uooo
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4.3.3.1 Trip Count Issues

A trip count is the number of times that a loop executes; the trip counter is the
variable used to count each iteration. When the trip counter reaches a limit
equal to the trip count, the loop terminates. The structure of a software pipeline
requires the execution of a minimum number of loop iterations (a minimum trip
count) in order to fill, or prime, the pipeline.

Loops that are eligible for software pipelining have loop trip counters that count
down. In most cases, the compiler can transform the loop to use a trip counter
that counts down even if the original code was not written that way.

For example, the optimizer transforms the loop in Example 4-14(a) to some-
thing like the code in Example 4-14(b).

Example 4—-14. Trip Counters
(a) Original code

for i = 0; i <N; i++)/ * i = trip counter , N = trip count */

(b) Optimized code

for (i= N;i!=0; i—) /* Downcounting trip counter */

The minimum trip count for a software pipelined loop is determined by the mini-
mum number of times the loop will execute.

If the compiler knows the trip count, it can generate faster and more compact
code. If the compiler cannot determine that a loop always executes for the
minimum trip count, it generates a redundant unpipelined loop. The redundant
unpipelined loop is executed only when the runtime trip count is less than the
minimum trip count; otherwise, the software-pipelined version of the loop is
executed.

Optimizing C Code 4-21
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4.3.3.2 Eliminating Redundant Loops

In Example 4-2 on page 4-7, the compiler cannot determine if the loop
always executes more than the minimum trip count. Therefore, it generates
two versions of the loop:

(1 An unpipelined version that executes if N is less than the minimum trip
count

(1 A software-pipelined version that executes if N is equal to or greater than
the minimum trip count

To indicate to the compiler that you do not want two versions of the loop, you
can use the —ms option so that the compiler generates only the software-pipe-
lined code and never generates a redundant loop; however, loops with an
unknown trip count are not software pipelined.

4.3.3.3 Communicating Trip-Count Information to the Compiler

When invoking the compiler, use the following options to communicate trip-
count information to the compiler:

[0 Usethe—-03and —pm compiler options to allow the optimizer to access the
whole program or large parts of it and to characterize the behavior of loop
trip counts.

[0 Use the nassert intrinsic to help reduce code size by preventing the
generation of a redundant loop or by allowing the compiler (with or without
the —ms option) to software pipeline innermost loops.

Example 4-15 shows the vector sum code with an _nassert intrinsic that
asserts that N is always at least 10.

Example 4-15. Vector Sum With const Keywords and _nassert

void vecsum3(short *sum, const short *in1, const short *in2, unsigned int N)

sumli] = inl1[i] + in2[i];

t
inti;
_nassert(N >= 10);
for (i=0; i <N;i++)
}

4-22

See the TMS320C6x Optimizing C Compiler User’s Guide for a complete
discussion of the —ms, —03, and —pm options and the _nassert intrinsic.
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4.3.3.4 Loop Unrolling

Another technique that improves performance is unrolling the loop; that is, ex-
panding small loops so that each iteration of the loop appears in your code.
This optimization increases the number of instructions available to execute in
parallel. You can use loop unrolling when the operations in a single iteration
do not use all of the resources of the 'C6x architecture.

In Example 4-16, the loop produces a new sum[i] every two cycles. Three
memory operations are performed: a load for both inl1[i] and in2[i] and a store
for sum[i]. Because only two memory operations can execute per cycle, two
cycles are necessary to perform three memory operations.

Example 4-16. Vector Sum With Three Memory Operations

{

void vecsum2(short *sum, const short *in1, const short *in2, unsigned int N)

inti;

for (i=0;i<N;i++)
sumli] = inl1[i] + in2]i];

The performance of a software pipeline is limited by the number of resources
that can execute in parallel. In its word-aligned form (Example 4—-17), the vec-
tor sum loop delivers two results every two cycles because the two loads and
the store are all operating on two 16-bit values at a time.

Example 4-17. Word-Aligned Vector Sum

void vecsum4(short *sum, const short *in1, const short *in2, unsigned int N)

{

}

inti;

const int *i_inl = (const int *)in1;
const int *i_in2 = (const int *)in2;
int *i_sum = (int *)sum;

nassert(N >= 20);

for (i=0; i < (N/2); i++)
i_sum[i] = _add2(i_in1[i], i_in2[i]);

Optimizing C Code 4-23
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If you unroll the loop once, the loop then performs six memory operations per
iteration, which means the unrolled vector sum loop can deliver four results
every three cycles (that is, 1.33 results per cycle). Example 4-18 shows four
results for each iteration of the loop: sum|[i] and sum[i+sz] each store an int
value that represents two 16-bit values.

Example 4-18 is not simple loop unrolling where the loop body is simply repli-
cated. The additional instructions use memory pointers that are offset to point
midway into the input arrays and the assumptions that the additional arrays are
a multiple of four shorts in size.

Example 4-18. Vector Sum Using const Keywords, _nassert, Word Reads, and

Loop Unrolling

void vecsum6(int *sum, const int *inl, const int *in2, unsigned int N)
t

inti;

intsz=N>>2;

_nassert(N >= 20);

for (i=0;i<sz;i++)
{
sumli] = _add2(in1[i], in2[i]);
suml[i+sz] = _add2(in1[i+sz], in2[i+sz]);
}
}

Software pipelining is performed by the compiler only on inner loops; there-
fore, you can increase performance by creating larger inner loops. One
method for creating large inner loops is to completely unroll inner loops that
execute for a small number of cycles.

In Example 4-19, the compiler pipelines the inner loop with a kernel size of one
cycle; therefore, the inner loop completes a result every cycle. However, the
overhead of filling and draining the software pipeline can be significant, and
other outer-loop code is not software pipelined.
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Example 4-19. FIR_Type2—Original Form

void fir2(const short input[], const short coefs[], short out[])

i
inti, j;
int sum =0;
for (i=0; i< 40; i++)

for (j = 0;j < 16; j++)
sum += coefs[j] * input[i + 15 —];

out[i] = (sum >> 15);

For loops with a simple loop structure, the compiler uses a heuristic to deter-
mine if it should unroll the loop. Because unrolling can increase code size, in
some cases the compiler does not unroll the loop. If you have identified this
loop as being critical to your application, then unroll the inner loop in C code,
as in Example 4-20.

Part Il
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Example 4-20. FIR_Type2—Inner Loop Completely Unrolled

void fir2_u(const short input[], const short coefs][], short out[])
{

inti, j;

int sum;

for (i = 0; i < 40; i++)

{
sum = coefs[0] * input[i + 15];
sum += coefs[1] * input[i + 14];
sum += coefs[2] * input[i + 13];
sum += coefs[3] * input[i + 12];
sum += coefs[4] * input[i + 11];
sum += coefs[5] * input[i + 10];
sum += coefs[6] * input[i + 9];
sum += coefs[7] * input[i + 8];
sum += coefs[8] * input[i + 7];
sum += coefs[9] * inputi + 6];
sum += coefs[10] * input[i + 5];
sum += coefs[11] * input[i + 4];
sum += coefs[12] * input[i + 3];
sum += coefs[13] * input[i + 2];
sum += coefs[14] * input[i + 1];
sum += coefs[15] * input[i + 0];

out[i] = (sum >> 15);

Now the outer loop is software-pipelined, and the overhead of draining and
filling the software pipeline occurs only once per invocation of the function
rather than for each iteration of the outer loop.

4.3.3.5 Speculative Execution (—mh option)

The —mh option eliminates the epilog for a software pipelined loop, which can
result in significant code size savings. Software pipelined loop epilogs can
often be eliminated if load instructions can be speculatively executed. An in-
struction is speculatively executed if it is executed before it is known whether
the result of the instruction is needed. Allowing speculative execution of load
instructions may result in a read past the beginning or end of a buffer. For a
complete discussion on the —mh option see the TMS320C6x Optimizing C
Compiler User’s Guide.

4.3.3.6 What Disqualifies a Loop from Being Software-Pipelined

In a sequence of nested loops, the innermost loop is the only one that can be
software-pipelined. The following restrictions apply to the software pipelining
of loops:
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Although a software-pipelined loop can contain intrinsics, it cannot contain
function calls.

You must not have a conditional break (early exit) in the loop.

The loop cannot have an incrementing loop counter. One reason that you
run the optimizer with the —02 or —03 option is to convert as many loops
as possible into downcounting loops.

If the trip counter is modified within the body of the loop, it typically cannot
be converted into a downcounting loop. For example, the following code
is not software-pipelined:

for (i =0;i<n;i++)

{

i

}

A conditionally incremented loop control variable is not software-pipe-
lined. For example, the following code is not software-pipelined:

for (i=0;i<x; i++)

{

if (b > a)
i+=2

If the code size is too large and requires more than the 32 registers in the
'C6x, it is not software-pipelined.

If a register value is live too long, the code is not software-pipelined. See
section 6.5.6.2, Live Too Long, on page 6-63 and section 6.9, Live-Too-
Long Issues, on page 6-97 for examples of code that is live too long.

If the loop has complex condition code within the body that requires more
than the five 'C6x condition registers, the loop is not software pipelined.

Optimizing C Code 4-27
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Chapter 5

Structure of Assembly Code

An assembly language program must be an ASCII text file. Any line of
assembly code can include up to seven items:

] Label
[ Parallel bars
] Conditions
J Instruction
J Functional unit
1 Operands
1 Comment
Topic Page
5.1 Labels . b-2
5.2 Parallel BArS .. ....vue e 5-2 | =
» £
5.3 CONAItIONS ..ttt ettt e e e e e 4-3 | g
5.4 INSHUCHONS ..\ttt et e e e e e e e e e 54 |
5.5 Functional Units .. ... .o 5@
56 Operands ........... ..
&/ CRMMEMS c0000000005555000000000355556000000000350000005000
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Labels / Parallel Bars

5.1 Labels

A label identifies a line of code or a variable and represents a memory address
that contains either an instruction or data.

Figure 5-1 shows the position of the label in aline of assembly code. The colon
following the label is optional.

Figure 5-1. Labels in Assembly Code

5.2 Parallel Bars

label: parallel bars [condition] instruction unit operands ;comments

Labels must meet the following conditions:

(1 Thefirst character of alabel must be a letter or an underscore (_) followed
by a letter.

[ The first character of the label must be in the first column of the text file.

[ Labels can include up to 32 alphanumeric characters.

An instruction that executes in parallel with the previous instruction signifies
this with parallel bars (||). This field is left blank for an instruction that does not
execute in parallel with the previous instruction.

Figure 5-2. Parallel Bars in Assembly Code

label: parallel bars [condition] instruction unit operands ; comments




5.3 Conditions

Conditions

Five registers in the 'C6x are available for conditions: A1, A2, BO, B1, and B2.
Figure 5-3 shows the position of a condition in a line of assembly code.

Figure 5-3. Conditions in Assembly Code

label: parallel bars [condition] instruction unit operands ; comments

All 'C6x instructions are conditional:

U
d

If no condition is specified, the instruction is always performed.

If a condition is specified and that condition is true, the instruction
executes. For example:

With this condition ... The instruction executes if ...
[A1] All=0
[IA1] Al=0

If a condition is specified and that condition is false, the instruction does
not execute.

With this condition ... The instruction does not execute if ...
[A1] Al=0
[1A1] All=0

Structure of Assembly Code 5-3

Part 1l



Part Il

Instructions

5.4

Instructions

Assembly code instructions are either directives or mnemonics:

[0 Assembler directives are commands for the assembler (asm6x) that
control the assembly process or define the data structures (constants and
variables) in the assembly language program. All assembler directives
begin with a period, as shown in the partial list in Table 5-1.

[ Processor mnemonics are the actual microprocessor instructions that
execute at runtime and perform the operations in the program. Table 5-2
summarizes the 'C6x mnemonics. Processor mnemonics must begin in
column 2 or greater.

Figure 5-4 shows the position of the instruction in a line of assembly code.

Figure 5-4. Instructions in Assembly Code

label: parallel bars [condition] instruction  unit operands ; comments

Table 5—-1. Selected TMS320C6x Directives

Directives Description
.sect “name” Creates section of information (data or code)
.double value Reserve two consecutive 32 bits (64 bits) in memory and

fill with double-precision (64-bit) IEEE floating-point rep-
resentation of specified value

float value Reserve 32 bits in memory and fill with single-precision
(32-bit) IEEE floating-point representation of specified
value

.int value Reserve 32 bits in memory and fill with specified value

long value

.word value

.short value Reserve 16 bits in memory and fill with specified value

.half  value

.byte value Reserve 8 bits in memory and fill with specified value

See the TMS320C6x Assembly Language Tools User’s Guide for a complete
list of directives.
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Table 5-2. Selected TMS320C6x Instruction Mnemonics

Program Bit
Arithmetic Multiply Load/Store  Control Management Logical Pseudo/Other
ABS MPY LD B CLR AND IDLE
ADD MPYDPT LDDWT B IRP EXT CMPEQ MV
ADDA MPYH MVK B NRP LMBD CMPEQDPT  MVC
ADDK MPYHL MVKH NORM CMPEQSPt  NOP
ADDPT MPYIT ST SET CMPGT ZERO
ADDSPT MPYIDT CMPGTDPt  NEG
ADD2 MPYLH CMPGTSPT NOT
DPINT? MPYSPT CMPLT
DPspt SMPY CMPLTDP?
DPTRUNCT CMPLTSPT
INTDPT OR
INTSPT SHL
RCPDPT SHR
RCPSPt SSHL
RSQRDPT XOR
RSQRSPT
SADD
SAT
spppT
SPINTT
SPTRUNCT
SSUB
SUB
SUBA
SUBC
SuBDPT
suBspt
SUB2

t'Cc67x instruction mnemonics only

See the TMS320C62x/C67x CPU and Instruction Set Reference Guide for a
complete list of instructions.
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5.5 Functional Units

Figure 5-5. TMS320C6x Functional Units

The 'C6x CPU contains eight functional units, which are shown in Figure 5-5

and described in Table 5-3.
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Functional Units

Table 5-3. Functional Units and Descriptions

Functional Unit

Description

.L unit (.L1, .L2)

.S unit (.S1, .S2)

.M unit (M1, .M2)

.D unit (.D1, .D2)

32/40-bit arithmetic and compare operations
Left most 1, 0, bit counting for 32 bits
Normalization count for 32 and 40 bits

32 bit logical operations

32/64-hit IEEE floating-point arithmetict
Floating-point/fixed-point conversionst

32-bit arithmetic operations

32/40 bit shifts and 32-hit bit-field operations

32 bit logical operations

Branching

Constant generation

Register transfers to/from the control register file

32/64-bit IEEE floating-point compare operations’
32/64-hit IEEE floating-point reciprocal and square root
reciprocal approximation’

16 x 16 bit multiplies

32 x 32-bit multipliest
Single-precision (32-bit) floating-point IEEE multiplies’
Double-precision (64-bit) floating-point IEEE multipliesT

32-bit add, subtract, linear and circular address calcula-
tion

T:C67x floating-point devices only

Figure 5—-6 shows the position of the unit in a line of assembly code.

Figure 5—6. Units in the Assembly Code

label: parallel bars [condition] instruction unit operands ; comments

Specifying the functional unit in the assembly code is optional. The functional
unit can be used to document which resource(s) each instruction uses.

Structure of Assembly Code 5-7

Part 1l



Part Il

Operands

5.6 Operands

The 'C6x architecture requires that memory reads and writes move data
between memory and a register. Figure 5—7 shows the position of the oper-
ands in a line of assembly code.

Figure 5—-7. Operands in the Assembly Code

label: parallel bars [condition] instruction unit  operands ; comments

Instructions have the following requirements for operands in the assembly
code:

[ Allinstructions require a destination operand.
(1 Most instructions require one or two source operands.

[0 The destination operand must be in the same register file as one source
operand.

[0 One source operand from each register file per execute packet can come
from the register file opposite that of the other source operand.

When an operand comes from the other register file, the unitincludes an X,
as shown in Figure 5-8, indicating that the instruction is using one of the
cross paths. (See the TMS320C6x CPU and Instruction Set Reference
Guide for more information on cross paths.)

Figure 5-8. Operands in Instructions

ADD L1 AO0,A1,A3

ADD .L1x A0,B1,A3

!

All registers except B1 are on the same side of the CPU.

The 'C6x instructions use three types of operands to access data:
(1 Register operands indicate a register that contains the data.
[ Constant operands specify the data within the assembly code.

[ Pointer operands contain addresses of data values.

Only the load and store instructions require and use pointer operands to
move data values between memory and a register.
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5.7 Comments

As with all programming languages, comments provide code documentation.
Figure 5-9 shows the position of the comment in a line of assembly code.

Figure 5-9. Comments in Assembly Code

label: parallel bars [condition] instruction unit operands ; comments

The following are guidelines for using comments in assembly code:

[J A comment may begin in any column when preceded by a semicolon (;).
J A comment must begin in first column when preceded by an asterisk (*).
[ Comments are not required but are recommended.

Structure of Assembly Code 5-9

Part 1l



Chapter 6

Optimizing Assembly Code
via Linear Assembly

This chapter describes methods that help you develop more efficient
assembly language programs, understand the code produced by the
assembly optimizer, and perform manual optimization.

This chapter encompasses phase 3 of the code development flow. After you
have developed and optimized your C code using the 'C6x compiler, extract
the inefficient areas from your C code and rewrite them in linear assembly (as-
sembly code that has not been register-allocated and is unscheduled).

The assembly code shown in this chapter has been hand-optimized in order
to direct your attention to particular coding issues. The actual output from the
assembly optimizer may look different, depending on the version you are us-
ing.
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6.1 Assembly Code

The source that you write for the assembly optimizer is similar to assembly
source code; however, linear assembly does not include information about
parallel instructions, instruction latencies, or register usage. The assembly op-
timizer takes care of the difficulties of streamlining your code by:

[ Finding instructions that can be executed in parallel
[0 Handling pipeline latencies during software pipelining
[J Assigning register usage

(4 Defining which unit to use

Although you have the option with the 'C6x to specify the functional unit or reg-
ister used, this may restrict the compiler’s ability to fully optimize your code.
See the TMS320C6x Optimizing C Compiler User’s Guide for more informa-
tion.

This chapter takes you through the optimization process manually to show you
how the assembly optimizer works and to help you understand when you might
want to perform some of the optimizations manually. Each section introduces
optimization techniques in increasing complexity:

[ Section 6.2 and section 6.3 begin with a dot product algorithm to show you
how to translate the C code to assembly code and then how to optimize
the linear assembly code with several simple techniques.

[d Section 6.4 and section 6.5 introduce techniques for the more complex al-
gorithms associated with software pipelining, such as modulo iteration in-
terval scheduling for both single-cycle loops and multicycle loops.

(1 Section 6.6 uses an IIR filter algorithm to discuss the problems with loop
carry paths.

[0 Section 6.7 and section 6.8 discuss the problems encountered with if-
then-else statements in a loop and how loop unrolling can be used to re-
solve them.

(1 Section 6.9 introduces live-too-long issues in your code.

[ Section 6.10 uses a simple FIR filter algorithm to discuss redundant load
elimination.

[ Section 6.11 discusses the same FIR filter in terms of the interleaved
memory bank scheme used by 'C6x devices.

[ Section 6.12 and section 6.13 show you how to execute the outer loop of
the FIR filter conditionally and in parallel with the inner loop.
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Each example discusses the:

[ Algorithm in C code

[ Translation of the C code to linear assembly

(J Dependency graph to describe the flow of data in the algorithm

1 Allocation of resources (functional units, registers, and cross paths) in lin-
ear assembly

Note:

There are three types of code for the 'C6x: C code (which is input for the C
compiler), linear assembly code (which is input for the assembly optimizer),
and assembly code (which is input for the assembler).

In the next three sections, we use the dot product to demonstrate how to use
various programming techniques to optimize both performance and code size.
Most of the examples provided in this book use fixed-point arithmetic; howev-
er, the next three sections give both fixed-point and floating-point examples of
the dot product to show that the same optimization techniques apply to both
fixed- and floating-point programs.

Optimizing Assembly Code via Linear Assembly 6-3
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6.2 Writing Parallel Code

One way to optimize linear assembly code is to reduce the number of execu-
tion cycles in a loop. You can do this by rewriting linear assembly instructions
so that the final assembly instructions execute in parallel.

6.2.1 Dot Product C Code

The dot product is a sum in which each element in array a is multiplied by the
corresponding elementin array b. Each of these products is then accumulated
into sum. The C code in Example 6-1 is a fixed-point dot product algorithm.
The C code in Example 6-2 is a floating-point dot product algorithm.

Example 6-1. Fixed-Point Dot Product C Code

int dotp(short a[], short b[])
L .
int sum, i;
sum = 0;
for(i=0; i<100; i++)
sum += a[i] * bi];
return(sum);
}

Example 6-2. Floating-Point Dot Product C Code

float dotp(float a[], float b[])
t
int i;
float sum;
sum = 0;
for(i=0; i<100; i++)
sum += a[i] * b[i];
return(sum);
}

6-4
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6.2.2 Translating C Code to Linear Assembly

The first step in optimizing your code is to translate the C code to linear assem-
bly.

6.2.2.1 Fixed-Point Dot Product

Example 6—3 shows the linear assembly instructions used for the inner loop
of the fixed-point dot product C code.

Example 6-3. List of Assembly Instructions for Fixed-Point Dot Product

LDH .D1 *Ad++ A2 ; load ai from memory

LDH .D1 *A3++,A5 ; load bi from memaory

MPY M1 A2,A5,A6 ;ai * bi

ADD L1 A6,A7,A7 ; sum += (ai * bi)

SUB .S1 Al,1,A1 ; decrement loop counter
[Al] B .S2 LOOP ; branch to loop

The load halfword (LDH) instructions increment through the a and b arrays.
Each LDH does a postincrement on the pointer. Each iteration of these instruc-
tions sets the pointer to the next halfword (16 bits) in the array. The ADD in-
struction accumulates the total of the results from the multiply (MPY) instruc-
tion. The subtract (SUB) instruction decrements the loop counter.

An additional instruction is included to execute the branch back to the top of
the loop. The branch (B) instruction is conditional on the loop counter, A1, and
executes only until Al is 0.

6.2.2.2 Floating-Point Dot Product

Example 6—4 shows the linear assembly instructions used for the inner loop
of the floating-point dot product C code.

Example 6—4. List of Assembly Instructions for Floating-Point Dot Product

Part 1l

LDW .D1 *Ad++ A2 ; load ai from memory

LDW .D2 *A3++,A5 ; load bi from memory

MPYSP M1 A2,A5,A6 ; ai* bi

ADDSH L1 A6,A7,A7 ; sum += (ai * bi)

SUB .S1 Al,1,A1 ; decrement loop counter
[Al] B .S2 LOOP ; branch to loop

T ADDSP and MPYSP are 'C67x (floating-point) instructions only.

The load word (LDW) instructions increment through the aand b arrays. Each
LDW does a postincrement on the pointer. Each iteration of these instructions
sets the pointer to the next word (32 bits) in the array. The ADDSP instruction

Optimizing Assembly Code via Linear Assembly 6-5
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accumulates the total of the results from the multiply (MPYSP) instruction. The
subtract (SUB) instruction decrements the loop counter.

An additional instruction is included to execute the branch back to the top of
the loop. The branch (B) instruction is conditional on the loop counter, A1, and
executes only until Al is 0.

6.2.3 Linear Assembly Resource Allocation

The following rules affect the assignment of functional units for Example 6—3
and Example 6—4 (shown in the third column of each example):

[ Load (LDH and LDW) instructions must use a .D unit.

(0 Multiply (MPY and MPYSP) instructions must use a .M unit.
[ Add (ADD and ADDSP) instructions use a .L unit.

[ Subtract (SUB) instructions use a .S unit.

[ Branch (B) instructions must use a .S unit.

Note:

The ADD and SUB canbeonthe .S, .L, or .D units; however, for Example 6—3
and Example 6-4, they are assigned as listed above.

The ADDSP instruction in Example 6—4 must use a .L unit.

6.2.4 Drawing a Dependency Graph

Dependency graphs can help analyze loops by showing the flow of instruc-
tions and data in an algorithm. These graphs also show how instructions
depend on one another. The following terms are used in defining a depen-
dency graph.

[ A node is a point on a dependency graph with one or more data paths
flowing in and/or out.

[ The path shows the flow of data between nodes. The numbers beside
each path representthe number of cycles required to complete the instruc-
tion.

[ Aninstruction that writes to a variable is referred to as a parent instruction
and defines a parent node.

[ An instruction that reads a variable written by a parent instruction is re-
ferred to as its child and defines a child node.
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Use the following steps to draw a dependency graph:

1) Define the nodes based on the variables accessed by the instructions.
2) Define the data paths that show the flow of data between nodes.

3) Add the instructions and the latencies.

4) Add the functional units.

6.2.4.1 Fixed-Point Dot Product

Figure 6-1 shows the dependency graph for the fixed-point dot product
assembly instructions shown in Example 6—3 and their corresponding register
allocations.

Figure 6—-1. Dependency Graph of Fixed-Point Dot Product

Instruction
.. ——» LDH LDH
mnemonic Functional
unit
Variable
being
written
> > Register SuB
/ allocation
Numb
um er of cycles 1 S1
required to complete M1
an instruction :
1
B
1 S1

[ Thetwo LDH instructions, which write the values of ai and bi, are parents
of the MPY instruction. It takes five cycles for the parent (LDH) instruction
to complete. Therefore, if LDH is scheduled on cycle i, then its child (MPY)
cannot be scheduled until cycle i + 5.

[J The MPY instruction, which writes the product pi, is the parent of the ADD
instruction. The MPY instruction takes two cycles to complete.

[J The ADD instruction adds pi (the result of the MPY) to sum. The output of
the ADD instruction feeds back to become an input on the next iteration
and, thus, creates a loop carry path. (See section 6.6 on page 6-74 for
more information on loop carry paths.)
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The dependency graph for this dot product algorithm has two separate parts
because the decrement of the loop counter and the branch do not read or write
any variables from the other part.

[ The SUB instruction writes to the loop counter, cntr. The output of the SUB
instruction feeds back and creates a loop carry path.

(1 The branch (B) instruction is a child of the loop counter.

6.2.4.2 Floating-Point Dot Product

Similarly, Figure 6—2 shows the dependency graph for the floating-point dot
product assembly instructions shown in Example 6—4 and their corresponding
register allocations.

Figure 6-2. Dependency Graph of Floating-Point Dot Product
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(1 Thetwo LDW instructions, which write the values of ai and bi, are parents
of the MPYSP instruction. It takes five cycles for the parent (LDW) instruc-
tion to complete. Therefore, if LDW is scheduled on cycle i, then its child
(MPYSP) cannot be scheduled until cycle i + 5.

[0 The MPYSP instruction, which writes the product pi, is the parent of the
ADDSP instruction. The MPYSP instruction takes four cycles to complete.

[ The ADDSP instruction adds pi (the result of the MPYSP) to sum. The
output of the ADDSP instruction feeds back to become an input on the next
iteration and, thus, creates a loop carry path. (See section 6.6 on page
6-74 for more information on loop carry paths.)
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The dependency graph for this dot product algorithm has two separate parts
because the decrement of the loop counter and the branch do not read or write
any variables from the other part.

(1 The SUB instruction writes to the loop counter, cntr. The output of the SUB
instruction feeds back and creates a loop carry path.

[ The branch (B) instruction is a child of the loop counter.

Optimizing Assembly Code via Linear Assembly 6-9
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6.2.5 Nonparallel Versus Parallel Assembly Code

Nonparallel assembly code is performed serially, that is, one instruction follow-
ing another in sequence. This section explains how to rewrite the instructions
so that they execute in parallel.

6.2.5.1 Fixed-Point Dot Product

Example 6-5 shows the nonparallel assembly code for the fixed-point dot
product loop. The MVK instruction initializes the loop counter to 100. The
ZERO instruction clears the accumulator. The NOP instructions allow for the
delay slots of the LDH, MPY, and B instructions.

Executing this dot product code serially requires 16 cycles for each iteration
plus two cycles to set up the loop counter and initialize the accumulator; 100 it-
erations require 1602 cycles.

Example 6-5. Nonparallel Assembly Code for Fixed-Point Dot Product

MVK .S1 100, A1 ; set up loop counter

ZERO L1 A7 ; zero out accumulator
LOOP:

LDH .D1 *Ad++ A2 ; load ai from memory

LDH .D1 *A3++ A5 ; load bi from memory

NOP 4 ; delay slots for LDH

MPY M1 A2,A5,A6 ;ai * bi

NOP ; delay slot for MPY

ADD L1 A6,A7,A7 ; sum += (ai * bi)

SUB S1 Al,1,A1 ; decrement loop counter

[A1] B .S2 LOOP ; branch to loop

NOP 5 ; delay slots for branch

: Branch occurs here

Assigning the same functional unit to both LDH instructions slows perfor-
mance of this loop. Therefore, reassign the functional units to execute the
code in parallel, as shown in the dependency graph in Figure 6—3. The parallel
assembly code is shown in Example 6-6.

6-10
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Dependency Graph of Fixed-Point Dot Product with Parallel Assembly

LDH LDH
. .Dl . .D2
5

SUB

.S1

Example 6—6. Parallel Assembly Code for Fixed-Point Dot Product

MVK
I ZERO
LOOP:

LDH
I LDH

SUB

[A1] B

NOP

MPY

NOP

ADD

S1
L1

.D1
.D2
.S1
.S2
2

.M1X  A2,B2,A6

L1

: Branch occurs here

100, A1 ; set up loop counter
A7 ; zero out accumulator
*Ad++ A2 ; load ai from memory
*B4++,B2 ; load bi from memory
Al,1,A1 ; decrement loop counter
LOOP ; branch to loop
; delay slots for LDH

;ai * bi
; delay slots for MPY

A6,A7,A7 ; sum += (ai * bi)

Because the loads of ai and bi do not depend on one another, both LDH
instructions can execute in parallel as long as they do not share the same
resources. To schedule the load instructions in parallel, allocate the functional
units as follows:

[ aiand the pointer to ai to a functional unit on the A side, .D1
[ bi and the pointer to bi to a functional unit on the B side, .D2

Because the MPY instruction now has one source operand from A and one
from B, MPY uses the 1X cross path.

Optimizing Assembly Code via Linear Assembly 6-11
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Rearranging the order of the instructions also improves the performance of the
code. The SUB instruction can take the place of one of the NOP delay slots
for the LDH instructions. Moving the B instruction after the SUB removes the
need for the NOP 5 used at the end of the code in Example 6-5.

The branch now occurs immediately after the ADD instruction so that the MPY
and ADD execute in parallel with the five delay slots required by the branch
instruction.

6.2.5.2 Floating-Point Dot Product

Similarly, Example 6—7 shows the nonparallel assembly code for the floating-
point dot product loop. The MVK instruction initializes the loop counter to 100.
The ZERO instruction clears the accumulator. The NOP instructions allow for
the delay slots of the LDW, ADDSP, MPYSP, and B instructions.

Executing this dot product code serially requires 21 cycles for each iteration
plus two cycles to set up the loop counter and initialize the accumulator; 100 it-
erations require 2102 cycles.

Example 6—7. Nonparallel Assembly Code for Floating-Point Dot Product

MVK S1
ZERO L1
LOOP:
LDW .D1
LDW .D1
NOP 4
MPYSP M1
NOP 3
ADDSP L1
NOP 3
SuUB .S1
[Al] B
NOP 5
; Branch occurs here

100, A1 ; set up loop counter
A7 ; zero out accumulator
*Ad++,A2 ; load ai from memory
*A3++,A5 ; load bi from memory

; delay slots for LDW
A2,A5,A6 ;ai * bi

; delay slots for MPYSP
A6,A7,A7 ; sum += (ai * bi)

; delay slots for ADDSP
Al,1,A1 ; decrement loop counter

LOOP ; branch to loop
; delay slots for branch

6-12

Assigning the same functional unit to both LDW instructions slows perfor-
mance of this loop. Therefore, reassign the functional units to execute the
code in parallel, as shown in the dependency graph in Figure 6—4. The parallel
assembly code is shown in Example 6-8.
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Dependency Graph of Floating-Point Dot Product with Parallel Assembly
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Example 6-8. Parallel Assembly Code for Floating-Point Dot Product

MVK S1 100, A1 ; set up loop counter
[l ZERO L1 A7 ; zero out accumulator
LOOP:
LDW .D1 *Ad++ A2 ; load ai from memory
Il LDW .D2 *B4++,B2 ; load bi from memory
SUB S1 Al,1,A1 ; decrement loop counter
NOP 2 ; delay slots for LDW
[Al] B .S2 LOOP ; branch to loop
MPYSP .M1X  A2,B2,A6 ; ai * bi
NOP 3 ; delay slots for MPYSP
ADDSP .L1 AB6,A7,A7 ; sum += (ai * bi)
: Branch occurs here

Because the loads of ai and bi do not depend on one another, both LDW
instructions can execute in parallel as long as they do not share the same
resources. To schedule the load instructions in parallel, allocate the functional
units as follows:

[ aiand the pointer to ai to a functional unit on the A side, .D1
[J bi and the pointer to bi to a functional unit on the B side, .D2

Because the MPY SP instruction now has one source operand from A and one
from B, MPYSP uses the 1X cross path.
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Rearranging the order of the instructions also improves the performance of the
code. The SUB instruction replaces one of the NOP delay slots for the LDW
instructions. Moving the B instruction after the SUB removes the need for the
NOP 5 used at the end of the code in Example 6—7 on page 6-12.

The branch now occurs immediately after the ADDSP instruction so that the
MPYSP and ADDSP execute in parallel with the five delay slots required by
the branch instruction.

Since the ADDSP finishes execution before the result is needed, the NOP 3
for delay slots is removed, further reducing cycle count.

6.2.6 Comparing Performance

Executing the fixed-point dot product code in Example 6—6 requires eight
cycles for each iteration plus one cycle to set up the loop counter and initialize
the accumulator; 100 iterations require 801 cycles.

Table 6—1 compares the performance of the nonparallel code with the parallel
code for the fixed-point example.

Table 6-1. Comparison of Nonparallel and Parallel Assembly Code for Fixed-Point
Dot Product

Code Example

100 lterations Cycle Count

Example 6-5 Fixed-point dot product nonparallel assembly 2+100 x 16 1602

Example 6—6 Fixed-point dot product parallel assembly 1+100 x 8 801

Executing the floating-point dot product code in Example 6-8 requires ten
cycles for each iteration plus one cycle to set up the loop counter and initialize
the accumulator; 100 iterations require 1001 cycles.

Table 6—2 compares the performance of the nonparallel code with the parallel
code for the floating-point example.

Table 6-2. Comparison of Nonparallel and Parallel Assembly Code for Floating-Point
Dot Product

Code Example

100 lterations Cycle Count

Example 6-7 Floating-point dot product nonparallel assembly 2+100 x 21 2102

Example 6-8 Floating-point dot product parallel assembly 1+100 x 10 1001
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6.3 Using Word Access for Short Data and Doubleword Access for
Floating-Point Data

The parallel code for the fixed-point example in section 6.2 uses an LDH
instruction to read a[i]. Because a[i] and afi+1] are next to each other in
memory, you can optimize the code further by using the load word (LDW)
instruction to read a[i] and a[i+ 1] at the same time and load both into a single
32-bit register. (The data must be word-aligned in memory.)

Inthe floating-point example, the parallel code uses an LDW instruction to read
a[i]. Because a[i] and a[i+1] are next to each other in memory, you can opti-
mize the code further by using the load doubleword (LDDW) instruction to read
a[i] and a[i+1] at the same time and load both into a register pair. (The data
must be doubleword-aligned in memory.) See the TMS320C62x/C67x CPU
and Instruction Set User’s Guide for more specific information on the LDDW
instruction.

Note:

The load doubleword (LDDW) instruction is only available on the 'C67x
(floating-point) device.

6.3.1 Unrolled Dot Product C Code

The fixed-point C code in Example 6-9 has the effect of unrolling the loop by
accumulating the even elements, a[i] and b[i], into sum0 and the odd elements,
afi+ 1] and b[i+1], into sum1. After the loop, sum0 and sum1 are added to pro-
duce the final sum. The same is true for the floating-point C code in
Example 6-10. (For another example of loop unrolling, see section 6.8 on
page 6-91.)

Example 6-9. Fixed-Point Dot Product C Code (Unrolled)

int dotp(short a[], short b[] )
int sum0, sum1, sum, i;

sumO = 0O;
suml = 0;
for(i=0; i<100; i+=2){
sumO += a[i] * bl[i];
suml +=afi + 1] * b[i + 1];
}
sum = sumoO + sum1,;
return(sum);

Optimizing Assembly Code via Linear Assembly 6-15
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Example 6-10. Floating-Point Dot Product C Code (Unrolled)

float dotp(float a[], float bl[])
{

inti;
float sumO, sum1, sum;
sum0 = 0;
suml = 0;
for(i=0; i<100; i+=2){
sumO += a[i] * bl[i];
suml +=a[i + 1] * b[i + 1];
}
sum = sumO + sum1;
return(sum);

6.3.2 Translating C Code to Linear Assembly

The first step in optimizing your code is to translate the C code to linear assem-
bly.

6.3.2.1 Fixed-Point Dot Product

Example 6-11 shows the list of 'C6x instructions that execute the unrolled
fixed-point dot product loop. Symbolic variable names are used instead of ac-
tual registers. Using symbolic names for data and pointers makes code easier
to write and allows the optimizer to allocate registers. However, you must use
the .reg assembly optimizer directive. See the TMS320C6x Optimizing C
Compiler User’s Guide for more information on writing linear assembly code.

Example 6-11. Linear Assembly for Fixed-Point Dot Product Inner Loop with LDW

[entr] SUB
[entr] B

LDW
LDW
MPY
MPYH
ADD
ADD

*at++,ai il ; load ai & al from memory
*b++,bi_il ; load bi & b1 from memory
ai_il,bi_il,pi ;ai*hbi
ai_il,bi_il,pil ; ai+1 * bi+1
pi,sumO0,sumO0 ; sumO += (ai * bi)
pil,suml,suml ;suml += (ai+1 * bi+1)
cntr,1,cntr ; decrement loop counter
LOOP ; branch to loop

6-16

The two load word (LDW) instructions load a[i], a[i+1], b[i], and b[i+1] on each
iteration.
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Two MPY instructions are now necessary to multiply the second set of array
elements:

1 The first MPY instruction multiplies the 16 least significant bits (LSBS) in
each source register: afi] x Dbli].

(J The MPYH instruction multiplies the 16 most significant bits (MSBs) of
each source register: afi+1] x b [i+1].

The two ADD instructions accumulate the sums of the even and odd elements:
sumO and sum1.

Note:

This is true only when the 'C6x is in little-endian mode. In big-endian mode,
MPY operates on a[i+1] and b[i+1] and MPYH operates on a[i] and b[i]. See
the TMS320C62x/C67x Peripherals Reference Guide for more information.

6.3.2.2 Floating-Point Dot Product

Example 6-12 shows the list of 'C6x instructions that execute the unrolled
floating-point dot product loop. Symbolic variable names are used instead of
actual registers. Using symbolic names for data and pointers makes code eas-
ier to write and allows the optimizer to allocate registers. However, you must
use the .reg assembly optimizer directive. See the TMS320C6x Optimizing C
Compiler User’s Guide for more information on writing linear assembly code.

Example 6-12. Linear Assembly for Floating-Point Dot Product Inner Loop with LDDW

[cntr] SUB
[cntr] B

LDDW
LDDW
MPYSP
MPYSP
ADDSP
ADDSP

*a++,ail:ai0 ; load a[i+0] & a[i+1] from memory
*b++,bil:bi0 ; load b[i+0] & b[i+1] from memory
ai0,bi0,pi0 ; afi+0] * b[i+0]
ail,bil,pil ; afi+1] * bli+1]
pi0,sumO,sum0  ; sumO += (a[i+0] * b[i+0])
pil,suml,suml ;suml += (a[i+1] * b[i+1])
cntr,1,cntr ; decrement loop counter
LOOP ; branch to loop

The two load doubleword (LDDW) instructions load a[i], a[i+1], b[i], and b[i+1]
on each iteration.

Two MPYSP instructions are now necessary to multiply the second set of array
elements.

The two ADDSP instructions accumulate the sums of the even and odd
elements: sumO and sum1.

Optimizing Assembly Code via Linear Assembly 6-17
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6.3.3 Drawing a Dependency Graph

The dependency graphin Figure 6-5 for the fixed-point dot product shows that
the LDW instructions are parents of the MPY instructions and the MPY instruc-
tions are parents of the ADD instructions. To split the graph between the A and
B register files, place an equal number of LDWs, MPYs, and ADDs on each
side. To keep both sides even, place the remaining two instructions, B and
SUB, on opposite sides.

Figure 6-5. Dependency Graph of Fixed-Point Dot Product With LDW
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Similarly, the dependency graph in Figure 6—6 for the floating-point dot prod-
uct shows that the LDDW instructions are parents of the MPYSP instructions
and the MPYSP instructions are parents of the ADDSP instructions. To split
the graph between the A and B register files, place an equal number of
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LDDWs, MPYSPs, and ADDSPs on each side. To keep both sides even, place
the remaining two instructions, B and SUB, on opposite sides.

Figure 6—6. Dependency Graph of Floating-Point Dot Product With LDDW

A side
LDDW

B side
LDDW

bi & bi+1

Part 1l

6.3.4 Linear Assembly Resource Allocation

After splitting the dependency graph for both the fixed-point and floating-point
dot products, you can assign functional units and registers, as shown in the
dependency graphs in Figure 6—7 and Figure 6—8 and in the instructions in
Example 6—-13 and Example 6—14. The .M1X and .M2X represent a pathinthe
dependency graph crossing from one side to the other.

Optimizing Assembly Code via Linear Assembly 6-19
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Figure 6—7. Dependency Graph of Fixed-Point Dot Product With LDW (Showing
Functional Units)

A side B side
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Example 6-13. Linear Assembly for Fixed-Point Dot Product Inner Loop With LDW
(With Allocated Resources)

LDW .D1 *Ad++ A2 ; load ai and ai+1 from memory
LDW .D2 *B4++,B2 ; load bi and bi+1 from memory
MPY .M1X A2,B2,A6 ;ai*bi
MPYH .M2X  A2,B2,B6 ;ai+l * bi+l
ADD L1 A6,A7,A7 ; sumoO += (ai * bi)
ADD L2 B6,B7,B7 ; suml += (ai+l * bi+1)
SuUB S1 Al,1,A1 ; decrement loop counter
[Al] B .S2 LOOP ; branch to loop
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Figure 6-8. Dependency Graph of Floating-Point Dot Product With LDDW (Showing
Functional Units)

A side B side
LDDW LDDW
D1 bi & bi+1 ) -D2
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Example 6—-14. Linear Assembly for Floating-Point Dot Product Inner Loop With LDDW

(With Allocated Resources)

LDDW .D1 *Ad++ A3:A2 ;load ai and ai+1 from memory
LDDW  .D2 *B4++,B3:B2 ;load bi and bi+1 from memory

MPYSP .M1X A2,B2,A6 ; ai * bi

MPYSP .M2X  A3,B3,B6 ;ai+l * bi+l

ADDSP L1 A6,A7,A7 : sumO += (ai * bi)

ADDSP L2 B6,B7,B7 ; suml += (ai+1 * bi+1)

SuUB .S1 Al1,1,A1 ; decrement loop counter
[A1] B .S2 LOOP ; branch to loop

Optimizing Assembly Code via Linear Assembly

6-21

Part 1l



Part Il

Using Word Access for Short Data and Doubleword Access for Floating-Point Data

6.3.5 Final Assembly

Example 6—15 shows the final assembly code for the unrolled loop of the fixed-
point dot product and Example 6—16 shows the final assembly code for the
unrolled loop of the floating-point dot product.

6.3.5.1 Fixed-Point Dot Product

Example 6-15 uses LDW instructions instead of LDH instructions.

Example 6—15. Assembly Code for Fixed-Point Dot Product With LDW

(Before Software Pipelining)

MVK .S1 50,A1 ; set up loop counter
Il ZERO L1 A7 ; zero out sum0 accumulator
|l ZERO L2 B7 ; zero out sum1 accumulator
LOOP:

LDW .D1 *Ad++ A2 ; load ai & ai+1 from memory
Il LDW .D2 *B4++,B2 ; load bi & bi+1 from memory

SUB .S1 Al1,1,A1 ; decrement loop counter
[Al]] B S1 LOOP ; branch to loop

NOP 2

MPY .M1X A2,B2,A6 ; al * bi
Il MPYH .M2X A2,B2,B6 ; ai+l * bi+l

NOP

ADD L1 AB,AT,AT ; sum0+= (ai * bi)
Il ADD L2 B6,B7,B7 ; suml+= (ai+l * bi+1)

: Branch occurs here

ADD L1X A7,B7,A4 ; sum = sumO + suml

6-22

The code in Example 6—15 includes the following optimizations:

(1 The setup code for the loop is included to initialize the array pointers and
the loop counter and to clear the accumulators. The setup code assumes
that A4 and B4 have been initialized to point to arrays aand b, respectively.

(1 The MVK instruction initializes the loop counter.

(1 The two ZERO instructions, which execute in parallel, initialize the even
and odd accumulators (sum0 and sum1) to 0.

[J The third ADD instruction adds the even and odd accumulators.
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6.3.5.2 Floating-Point Dot Product

Example 6—-16 uses LDDW instructions instead of LDW instructions.

Example 6-16. Assembly Code for Floating-Point Dot Product With LDDW
(Before Software Pipelining)

MVK .S1 50,A1 ; set up loop counter
I ZERO L1 A7 ; zero out sum0 accumulator
Il ZERO L2 B7 ; zero out sum1 accumulator
LOOP:
LDDW .D1 *Ad++ A2 ; load ai & ai+1 from memory
I LDDW  .D2 *B4++,B2 ; load bi & bi+1 from memory
SUB S1 Al,1,A1 ; decrement loop counter
NOP 2
[Al] B .S1 LOOP ; branch to loop
MPYSP .M1X A2,B2,A6 ; ai * bi
I MPYSP .M2X  A3,B3,B6 ;ai+l * bi+l
NOP 3
ADDSP .L1 AB6,A7,A7 ; sumO += (ai * bi)
I ADDSP .12 B6,B7,B7 ; suml += (ai+1 * bi+1)
: Branch occurs here
NOP 3
ADDSP .L1X A7,B7,A4 ; sum =sumO + suml
NOP 3

The code in Example 6-16 includes the following optimizations:

[ The setup code for the loop is included to initialize the array pointers and
the loop counter and to clear the accumulators. The setup code assumes
that A4 and B4 have beeninitialized to pointto arrays aand b, respectively.

[ The MVK instruction initializes the loop counter.

[ The two ZERO instructions, which execute in parallel, initialize the even
and odd accumulators (sumO and sum1) to 0.

] The third ADDSP instruction adds the even and odd accumulators.

Optimizing Assembly Code via Linear Assembly 6-23
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6.3.6 Comparing Performance

Executing the fixed-point dot product with the optimizations in Example 6-15
requires only 50 iterations, because you operate in parallel on both the even
and odd array elements. With the setup code and the final ADD instruction, 100
iterations of this loop require a total of 402 cycles (1 + 8 x 50 + 1).

Table 6-3 compares the performance of the different versions of the fixed-
point dot product code discussed so far.

Table 6-3. Comparison of Fixed-Point Dot Product Code With Use of LDW

Code Example 100 Iterations Cycle Count
Example 6-5  Fixed-point dot product nonparallel assembly 2+100 x 16 1602
Example 66  Fixed-point dot product parallel assembly 1+100 x 8 801
Example 6-15 Fixed-point dot product parallel assembly with LDW 1+(50x 8)+1 402

Executing the floating-point dot product with the optimizations in
Example 6-16 requires only 50 iterations, because you operate in parallel on
both the even and odd array elements. With the setup code and the final
ADDSP instruction, 100 iterations of this loop require a total of 508 cycles (1
+10 X 50 + 7).

Table 6—4 compares the performance of the different versions of the floating-
point dot product code discussed so far.

Table 6—-4. Comparison of Floating-Point Dot Product Code With Use of LDDW

Code Example 100 Iterations Cycle Count
Example 6—7  Floating-point dot product nonparallel assembly 2+100 x 21 2102
Example 6-8  Floating-point dot product parallel assembly 1+100 x 10 1001
Example 6-16 Floating-point dot product parallel assembly with LDDW 1+ (50x 10)+7 508
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6.4 Software Pipelining

This section describes the process for improving the performance of the as-
sembly code in the previous section through software pipelining.

Software pipelining is a technique used to schedule instructions from a loop
so that multiple iterations execute in parallel. The parallel resources on the
'C6x make it possible to initiate a new loop iteration before previous iterations
finish. The goal of software pipelining is to start a new loop iteration as soon
as possible.

The modulo iteration interval scheduling table is introduced in this section as
an aid to creating software-pipelined loops.

The fixed-point dot product code in Example 6—15 needs eight cycles for each
iteration of the loop: five cycles for the LDWSs, two cycles forthe MPYs, and one
cycle for the ADDs.

Figure 6-9 shows the dependency graph for the fixed-point dot product
instructions. Example 6-17 shows the same dot product assembly code in
Example 6—13 on page 6-20, except that the SUB instruction is now condition-
al on the loop counter (Al).

Note:

Making the SUB instruction conditional on Al ensures that Al stops decre-
menting when it reaches 0. Otherwise, as the loop executes five more times,
the loop counter becomes a negative number. When Al is negative, it is non-
zero and, therefore, causes the condition on the branch to be true again. If the
SUB instruction were not conditional on A1, you would have an infinite loop.

The floating-point dot product code in Example 6—16 needs ten cycles for each
iteration of the loop: five cycles for the LDDWSs, four cycles for the MPYSPs,
and one cycle for the ADDSPs.

Figure 6—-10 shows the dependency graph for the floating-point dot product
instructions. Example 6-18 shows the same dot product assembly code in
Example 6—14 on page 6-21, except that the SUB instruction is now condition-
al on the loop counter (Al).

Note:

The ADDSP has 3 delay slots associated with it. The extra delay slots are
taken up by the LDDW, SUB, and NOP when executing the next cycle of the
loop. Thus an NOP 3 is not required inside the loop but is required outside
the loop prior to adding sum0 and sum1 together.

Optimizing Assembly Code via Linear Assembly 6-25
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Figure 6-9. Dependency Graph of Fixed-Point Dot Product With LDW
(Showing Functional Units)

A side X B side
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5 Z
.M1X .M2X

Example 6-17. Linear Assembly for Fixed-Point Dot Product Inner Loop
(With Conditional SUB Instruction)

LDW .D1 *Ad++ A2 ; load ai and ai+1 from memory
LDW .D2 *B4++,B2 ; load bi and bi+1 from memory
MPY .M1X A2,B2,A6 ;ai*bi
MPYH .M2X  A2,B2,B6 ;ai+l * bi+l
ADD L1 AG6,A7,A7 ; sumO += (ai * bi)
ADD L2 B6,B7,B7 ; suml += (ai+l * bi+1)

[A1] SUB .S1 Al1,1,A1 ; decrement loop counter

[Al] B .S2 LOOP ; branch to top of loop
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Figure 6—-10. Dependency Graph of Floating-Point Dot Product With LDDW
(Showing Functional Units)
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Example 6-18. Linear Assembly for Floating-Point Dot Product Inner Loop
(With Conditional SUB Instruction)

LDDW D1 *Ad++ A2 ; load ai and ai+1 from memory
LDDW  .D2 *B4++,B2 ; load bi and bi+1 from memory
MPYSP .M1X A2,B2,A6 ;ai * bi
MPYSP .M2X A2,B2,B6 ;ai+l * bi+l
ADDSP .L1 A6,A7 A7 ; sumO += (ai * bi)
ADDSP L2 B6,B7,B7 : sumi += (ai+1 * bi+1)

[Al] SuB S1 Al,1,A1 ; decrement loop counter

[Al] B .S2 LOOP ; branch to top of loop

Optimizing Assembly Code via Linear Assembly
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6.4.1 Modulo Iteration Interval Scheduling

Another way to represent the performance of the code is by looking at it in a
modulo iteration interval scheduling table. This table shows how a
software-pipelined loop executes and tracks the available resources on a
cycle-by-cycle basis to ensure that no resource is used twice on any given
cycle. The iteration interval of aloop is the number of cycles between the initia-
tions of successive iterations of that loop.

6.4.1.1 Fixed-Point Example

The fixed-point code in Example 6—15 needs eight cycles for each iteration of
the loop, so the iteration interval is eight.

Table 6-5 shows a modulo iteration interval scheduling table for the fixed-point
dot product loop before software pipelining (Example 6—15). Each row repre-
sents a functional unit. There is a column for each cycle in the loop showing
the instruction that is executing on a particular cycle:

LDWs on the .D units are issued on cycles 0, 8, 16, 24, etc.

MPY and MPYH on the .M units are issued on cycles 5, 13, 21, 29, etc.
ADDs on the .L units are issued on cycles 7, 15, 23, 31, etc.

SUB on the .S1 unit is issued on cycles 1, 9, 17, 25, etc.

B on the .S2 unit is issued on cycles 2, 10, 18, 24, etc.

Uoooo

Table 6—5. Modulo Iteration Interval Scheduling Table for Fixed-Point Dot Product
(Before Software Pipelining)

Unit / Cycle

0,8, ..

1,09 .. 2,10,... | 3,11,... | 4,12,... | 5,18,... | 6,14,... | 7,15, ..

.D1

LDW

.D2

LDW

M1

MPY

M2

MPYH

L1

ADD

.L2

ADD

S1

SUB

.S2

B

6-28

In this example, each unit is used only once every eight cycles.



6.4.1.2 Floating-Point Example

Table 6-6. Modulo Iteration Interval Scheduling Table for Floating-Point Dot Product
(Before Software Pipelining)

Software Pipelining

The floating-point code in Example 6—16 needs ten cycles for each iteration

of the loop, so the iteration interval is ten.

Table 6—6 shows a modulo iteration interval scheduling table for the floating-
point dot product loop before software pipelining (Example 6-16). Each row
represents a functional unit. There is a column for each cycle in the loop show-

ing the instruction that is executing on a particular cycle:

U
u
U
U

LDDWs on the .D units are issued on cycles 0, 10, 20, 30, etc.

MPYSPs and on the .M units are issued on cycles 5, 15, 25, 35, etc.

ADDSPs on the .L units are issued on cycles 9, 19, 29, 39, etc.

SUB on the .S1 unit is issued on cycles 3, 13, 23, 33, etc.

B on the .S2 unit is issued on cycles 4, 14, 24, 34, etc.

g)r/‘::tlé 0,10,..(1,11,..(2,12,..|3,13,... |4,14,... | 5,15, ... | 6,16, ... | 7,17, ... [ 8,18, ... | 9,19, ...
.D1 LDDW
.D2 LDDW
M1 MPYSP
.M2 MPYSP
L1 ADDSP
L2 ADDSP
S1 SUB
.S2 B
In this example, each unit is used only once every ten cycles.
Optimizing Assembly Code via Linear Assembly 6-29
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6.4.1.3 Determining the Minimum lIteration Interval

Software pipelining increases performance by using the resources more effi-
ciently. However, to create a fully pipelined schedule, it is helpful to first deter-
mine the minimum iteration interval.

The minimum iteration interval of a loop is the minimum number of cycles you
must wait between each initiation of successive iterations of that loop. The
smaller the iteration interval, the fewer cycles it takes to execute a loop.

Resources and data dependency constraints determine the minimum iteration
interval. The most-used resource constrains the minimum iteration interval.
For example, if four instructions in a loop all use the .S1 unit, the minimum it-
eration interval is at least 4. Four instructions using the same resource cannot
execute in parallel and, therefore, require at least four separate cycles to
execute each instruction.

With the SUB and branch instructions on opposite sides of the dependency
graph in Figure 6-9 and Figure 6-10, all eight instructions use a different func-
tional unit and no two instructions use the same cross paths (1X and 2X).
Because no two instructions use the same resource, the minimum iteration in-
terval based on resources is 1.

Note:

In this particular example, there are no data dependencies to affect the
minimum iteration interval. However, future examples may demonstrate this
constraint.

6.4.1.4 Creating a Fully Pipelined Schedule

Fixed-Point Example
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Having determined that the minimum iteration interval is 1, you can initiate a
new iteration every cycle. You can schedule LDW (or LDDW) and MPY (or
MPYSP) instructions on every cycle.

Table 6—7 shows a fully pipelined schedule for the fixed-point dot product ex-
ample.
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Table 6—7. Modulo Iteration Interval Table for Fixed-Point Dot Product
(After Software Pipelining)

| Loop Prolog |
Unit/ Cycle 0 1 2 3 4 5 6 7,8,9..
* *% *%% *kk*k *kkkk *kkkkk *kkkkkk
D1 LDW LDW LDW LDW LDW LDW LDW LDW
* *% *%% *kk*k *kkkk *kkkkk *kkkkkk
.D2 LDW LDW LDW LDW LDW LDW LDW LDW
* *k
M1 MPY MPY MPY
* *%
M2 MPYH | MPYH | MPYH
L1 DD
L2 DD
* *% )%k *kkk *kkkk K*kkkkk
S1 SUB SUB SUB SUB SUB SUB SUB
* *% *%k% *kk*k *kkkk
52 B B B B B B

Note:  The asterisks indicate the iteration of the loop; shading indicates the single-cycle loop.

The rightmost column in Table 6-7 is a single-cycle loop that contains the
entire loop. Cycles 0—6 are loop setup code, or loop prolog.

Asterisks define which iteration of the loop the instruction is executing each
cycle. For example, the rightmost column shows that on any given cycle inside
the loop:

(O The ADD instructions are adding data for iteration n.

[J The MPY instructions are multiplying data for iteration n + 2 (**).
[J The LDW instructions are loading data for iteration n + 7 (***xx**),
[J The SUB instruction is executing for iteration n + 6 (******),

[J The B instruction is executing for iteration n + 5 (*****),

Inthis case, multiple iterations of the loop execute in parallel in a software pipe-
line thatis eightiterations deep, with iterations n through n + 7 executing in par-
allel. Fixed-point software pipelines are rarely deeper than the one created by
this single-cycle loop. As loop sizes grow, the number of iterations that can
execute in parallel tends to become fewer.
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Floating-Point Example

Table 6—8 shows a fully pipelined schedule for the floating-point dot product
example.

Table 6-8. Modulo Iteration Interval Table for Floating-Point Dot Product
(After Software Pipelining)

| Loop Prolog |
Unit /
Cycle 0 1 2 3 4 5 6 7 8 9, 10, 11...
* *% *%k%k *kkk *kkkk * *kkkkkkkk
D1 LDDW | LDDW | LDDW | LDDW | LDDW | LDDW | LDDW | LDDW | LDDW LDDW
* *% *k%k *kkk *kkkk * * *k%k * *%
D2 LDDW | LDDW | LDDW | LDDW | LDDW | LDDW | LDDW | LDDW | LDDW LDDW
* *%* *k% *kkk
M1 MPYSP | MPYSP | MPYSP | MPYSP | MPYSP
* *% *k% *kkk
M2 MPYSP | MPYSP | MPYSP | MPYSP | MPYSP
L ADDSP
L2 ADDSP
* *%* *kk *kkk *kkkk Fhkkkk
S1 SUB | suB | suB | suB | suB | sus SUB
* *% *k%k *kkk *kkkk
S2 B B B B B B
Note:  The asterisks indicate the iteration of the loop; shading indicates the single-cycle loop.
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The rightmost column in Table 6-8 is a single-cycle loop that contains the
entire loop. Cycles 0-8 are loop setup code, or loop prolog.

Asterisks define which iteration of the loop the instruction is executing each
cycle. For example, the rightmost column shows that on any given cycle inside
the loop:

Uoooo

The ADDSP instructions are adding data for iteration n.
The MPYSP instructions are multiplying data for iteration n + 4 (****),
The LDDW instructions are loading data for iteration n + 9 (***xxxkk*),
The SUB instruction is executing for iteration n + 6 (******),
The B instruction is executing for iteration n + 5 (*****),
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Note:

Since the ADDSP instruction has three delay slots associated with it, the re-
sults of adding are staggered by four. That is, the first result from the ADDSP
is added to the fifth result, which is then added to the ninth, and so on. The
second result is added to the sixth, which is then added to the 10th. This is
shown in Table 6-9.

Inthis case, multiple iterations of the loop execute in parallel in a software pipe-
line thatis ten iterations deep, with iterations n through n + 9 executing in paral-
lel. Floating-point software pipelines are rarely deeper than the one created
by this single-cycle loop. As loop sizes grow, the number of iterations that can
execute in parallel tends to become fewer.

6.4.1.5 Staggered Accumulation With a Multicycle Instruction

When accumulating results with an instruction that is multicycle (that is, has
delay slots other than 0), you must either unroll the loop or stagger the results.
When unrolling the loop, multiple accumulators collect the results so that one
result has finished executing and has been written into the accumulator before
adding the next result of the accumulator. If you do not unroll the loop, then the
accumulator will contain staggered results.

Staggered results occur when you attempt to accumulate successive results
while in the delay slots of previous execution. This can be achieved without
error if you are aware of what is in the accumulator, what will be added to that
accumulator, and when the results will be written on a given cycle (such as the
pseudo-code shown in Example 6-19).

Example 6—19. Pseudo-Code for Single-Cycle Accumulator With ADDSP

LOOP: ADDSP X,Sum,sum
Il LDW *Xptr++,X
|[[cond] B cond
|[[cond] SUB cond,1,cond

Table 6—9 shows the results of the loop kernel for a single-cycle accumulator
using a multicycle add instruction; in this case, the ADDSP, which has three
delay slots (a 4-cycle instruction).
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Table 6-9. Software Pipeline Accumulation Staggered Results Due to Three-Cycle

Delay
Current value of
Cycle # Pseudoinstruction pseudoregister sum Written expected result

0 ADDSP x(0), sum, sum 0 ; cycle 4 sum = x(0)

1 ADDSP x(1), sum, sum 0 ; cycle 5 sum = x(1)

2 ADDSP x(2), sum, sum 0 ; cycle 6 sum = x(2)

3 ADDSP x(3), sum, sum 0 ; cycle 7 sum = x(3)

4 ADDSP x(4), sum, sum x(0) ; cycle 8 sum = x(0) + x(4)
5 ADDSP x(5), sum, sum x(1) ; cycle 9 sum = x(1) + x(5)
6 ADDSP x(6), sum, sum X(6) ; cycle 10 sum = x(2) + x(6)
7 ADDSP x(7), sum, sum x(7) ; cycle 11 sum = X(3) + x(7)
8 ADDSP x(8), sum, sum X(0) + x(4) ; cycle 12 sum = x(0) + x(8)

i+jt  ADDSP x(i+j), sum, sum X(j) + x(j+4) + x(j+8) ... x(i-4+j) ;cyclei+j+ 4 sum = x(j) + x(j+4) +

X(j+8) ... x(i—4+j) + x(i+))

Twhereiis a multiple of 4
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The first value of the array X, x(0) is added to the accumulator (sum) on cycle
0, but the result is not ready until cycle 4. This means that on cycle 1 when x(1)
is added to the accumulator (sum), sum has no value in it from x(0). Thus,
when this result is ready on cycle 5, sum will have the value x(1) in it, instead
of the value x(0) + x(1). When you reach cycle 4, sum will have the value x(0)
in it and the value x(4) will be added to that, causing sum = x(0) + x(4) on
cycle 8. This is continuously repeated, resulting in four separate accumula-
tions (using the register “sum”).

The current value in the accumulator “sum” depends on which iteration is be-
ing done. After the completion of the loop, the last four sums should be written
into separate registers and then added together to give the final result. This
is shown in Example 6—-23 on page 6-39.



Software Pipelining

6.4.2 Using the Assembly Optimizer to Create Optimized Loops

Example 6—20 shows the linear assembly code for the full fixed-point dot prod-
uct loop. Example 6—21 shows the linear assembly code for the full floating-
point dot product loop. You can use this code as input to the assembly optimiz-
er tool to create software-pipelined loops automatically. See the TMS320C6x
Optimizing C Compiler User’s Guide for more information on the assembly op-
timizer.

Example 6-20. Linear Assembly for Full Fixed-Point Dot Product

.global _dotp
_dotp: .cproc a, b

.reg sum, sumO, sum1, cntr
.reg ai_il, bi_i1, pi, pil
MVK 50,cntr ; cntr = 100/2
ZERO sumO ; multiply result =0
ZERO suml ; multiply result =0

LOOP: .trip 50
LDW *a++,ai il ; load ai & ai+1 from memory
LDW *b++,bi_il ; load bi & bi+1 from memory
MPY ai_il,bi_il,pi ;ai*bi
MPYH ai_il,bi_i1,pil ; ai+1 * bi+1
ADD pi,sumO0,sum0 ; sumO += (ai * bi)
ADD pil,suml,suml ;suml += (ai+1 * bi+1)

[entr] SUB cntr,1,cntr ; decrement loop counter =

[entr] B LOOP ; branch to loop T

Q

ADD sumO,suml,sum ; compute final result
.return sum
.endproc

Resources such as functional units and 1X and 2X cross paths do not have
to be specified because these can be allocated automatically by the assembly
optimizer.
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Example 6-21. Linear Assembly for Full Floating-Point Dot Product

.global _dotp
_dotp: .cproc a,b
.reg sum, sumO, suml, a, b
.reg ai:ail, bi:bil, pi, pi1
MVK 50,cntr ;cntr = 100/2
ZERO sumO ; multiply result =0
ZERO suml ; multiply result = 0
LOOP: .trip 50
LDDW *a++,aiail ; load ai & ai+1 from memory
LDDW *b++,bi:bil ; load bi & bi+1 from memory
MPYSP a0,b0,pi ;ai*bi
MPYSP al,bl,pil ;ai+l * bi+l
ADDSP pi,sumO0,sumO0 ; sumO += (ai * bi)
ADDSP pil,suml,suml ;suml += (ai+1 * bi+1)
[entr] SUB cntr,1,cntr ; decrement loop counter
[entr] B LOOP ; branch to loop
ADDSP sum,suml,sum0 ; compute final result
.return sum
.endproc

6.4.3 Final Assembly

Example 6—22 shows the assembly code for the fixed-point software-pipe-
lined dot productin Table 6—7 on page 6-31. Example 6—23 shows the assem-
bly code for the floating-point software-pipelined dot product in Table 6-8 on
page 6-32. The accumulators are initialized to 0 and the loop counter is set up
in the first execute packet in parallel with the first load instructions. The aster-
isks in the comments correspond with those in Table 6-7 and Table 6-8, re-
spectively.

Note:

All instructions executing in parallel constitute an execute packet. An exe-
cute packet can contain up to eight instructions.

See the TMS320C62x/C67x CPU and Instruction Set Reference Guide for
more information about pipeline operation.
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6.4.3.1 Fixed-Point Example

Multiple branch instructions are in the pipe. The first branch in the fixed-point
dot product is issued on cycle 2 but does not actually branch until the end of
cycle 7 (after five delay slots). The branch target is the execute packet defined
by the label LOOP. On cycle 7, the first branch returns to the same execute
packet, resulting in a single-cycle loop. On every cycle after cycle 7, a branch
executes back to LOOP until the loop counter finally decrements to 0. Once
the loop counter is 0, five more branches execute because they are already
in the pipe.

Executing the dot product code with the software pipelining as shown in
Example 6—-22 requires a total of 58 cycles (7 + 50 + 1), which is a significant
improvement over the 402 cycles required by the code in Example 6-15.

Note:

The code created by the assembly optimizer will not completely match the
final assembly code shown in this and future sections because different ver-
sions of the tool will produce slightly different code. However, the inner loop
performance (number of cycles per iteration) should be similar.
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Example 6-22. Assembly Code for Fixed-Point Dot Product (Software Pipelined)

LDW
I LDW
I MVK
I ZERO
I ZERO

[A1] SUB
I LDW
I LDW

[A1] SUB
[|[A1] B
I LDW
I LDW

[A1] SUB
II[A1] B

| LDW
| LDW

[A1] SUB
I[A1] B
I LDW
I LDW

MPY
I MPYH
I[A1] SUB
[I[A1] B

I LDW
I LDW

MPY
I MPYH
[A1] SUB
IA1] B

I LDW
I LDW

LOOP:
ADD
I ADD
I MPY
MPYH
[|[[A1] SUB
[I[A1] B
Il LDW
Il LDW

.D1 *Ad++, A2
.D2 *B4++,B2
S1 50,A1
L1 A7
L2 B7
S1 Al,1,A1
.D1 *Ad++,A2
.D2 *B4++,B2
S1 Al,1,A1

.S2 LOOP
.D1 *Ad++, A2
.D2 *B4++,B2
S1 Al,1,A1
.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2
S1 Al,1,A1
.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2
.M1X  A2,B2,A6
.M2X  A2,B2,B6
S1 Al,1,Al1
.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2
.M1X  A2,B2,A6
.M2X  A2,B2,B6
.S1 Al,1,Al1
.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2
L1 A6,A7,A7
L2 B6,B7,B7
.M1X  A2,B2,A6
.M2X  A2,B2,B6
S1 Al,1,A1
.S2 LOOP
.D1 *Ad++, A2
.D2 *B4++,B2

; Branch occurs here

ADD

.L1IX  A7,B7,A4

; load ai & ai+1 from memory
; load bi & bi+1 from memory
; set up loop counter
; zero out sumO accumulator
; zero out suml accumulator

; decrement loop counter
;* load ai & ai+1 from memory
;* load bi & bi+1 from memory

;* decrement loop counter

; branch to loop

** load ai & ai+1 from memory
** load bi & bi+1 from memory

;** decrement loop counter
;* branch to loop
7¥** load ai & ai+1 from memory
;¥** Joad bi & bi+1 from memory

;¥** decrement loop counter
;** branch to loop
;¥*** |Joad ai & ai+1 from memory
;¥*** Joad bi & bi+1 from memory

;ai*bi
;ai+l * bi+l
;¥ decrement loop counter
;¥** branch to loop
ek |d ai & ai+1 from memory
%% |d bi & bi+1 from memory

Fai*bi
*ai+l * bi+l
;¥ decrement loop counter
;¥*** pranch to loop
jeeek |d ai & ai+1 from memory
jeexkk |d bi & bi+1 from memory

; sumO += (ai * bi)
; suml += (ai+1 * bi+1)
% ai * bi
*ai+l * bi+l
ek decrement loop counter
¥k hranch to loop
jeeekr |d ai & ai+l fm memory
ek |d bi & bi+1 fm memory

; sum =sumO + suml
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The first branch in the floating-point dot product is issued on cycle 4 but does
not actually branch until the end of cycle 9 (after five delay slots). The branch
target is the execute packet defined by the label LOOP. On cycle 9, the first
branch returns to the same execute packet, resulting in a single-cycle loop. On
every cycle after cycle 9, a branch executes back to LOOP until the loop count-
er finally decrements to 0. Once the loop counter is 0, five more branches

execute because they are already in the pipe.

Executing the floating-point dot product code with the software pipelining as
shown in Example 6—23 requires a total of 74 cycles (9 + 50 + 15), which is a
significant improvement over the 508 cycles required by the code in

Example 6-16.

Example 6-23. Assembly Code for Floating-Point Dot Product (Software Pipelined)

MVK
I ZERO
I ZERO
I LDDW
I LDDW

LDDW
I LDDW

LDDW
I LDDW

LDDW
I LDDW
I[A1] SUB

LDDW
I LDDW
I[A1] B

I[A1] SUB

LDDW
I LDDW
I MPYSP
I MPYSP
[[[A1] B

I[A1] SUB

LDDW
I LDDW
I MPYSP
I MPYSP
[[[A1] B

I[A1] SUB

S1 50,A1
L1 A8
L2 B8

.D1 Ad++,AT:A6
.D2 B4++,B7:B6

.D1 Ad++ AT:A6
.D2 B4++,B7:B6

.D1 Ad++ AT:A6
.D2 B4++,B7:B6

.D1 Ad++ A7:A6
.D2 B4++,B7:B6

.S1 Al,1,A1

.D1 Ad++ AT:A6
.D2 B4++,B7:B6

.S2 LOOP
S1 Al,1,A1

.D1 Ad++ AT:A6
.D2 B4++,B7:B6
M1X A6,B6,A5
.M2X  A7,B7,B5

.S2 LOOP
.S1 Al,1,A1

.D1 Ad++ AT:A6
.D2 B4++,B7:B6
.M1X  A6,B6,A5
.M2X  A7,B7,B5

.S2 LOOP
.S1 Al,1,A1

; set up loop counter
;sum0=0
:suml=0
; load ai & ai + 1 from memory
; load bi & bi + 1 from memory

;*load ai & ai + 1 from memory
;* load bi & bi + 1 from memory

** load ai & ai + 1 from memory
;** load bi & bi + 1 from memory

;7*** Joad ai & ai + 1 from memory
;*** Joad bi & bi + 1 from memory
; decrement loop counter

;¥*** Joad ai & ai + 1 from memory
;¥¥** Joad bi & bi + 1 from memory
; branch to loop
;* decrement loop counter

;¥xxx Joad ai & ai + 1 from memory
;%% Joad bi & bi + 1 from memory
;pi=a0 bo
;pil=al bl
;* branch to loop

;** decrement loop counter

;erxxxx Joad ai & ai + 1 from memory
;¥exxx% |oad bi & bi + 1 from memory
*pi=al bo
*pil=al bl
;** branch to loop

;¥** decrement loop counter

Optimizing Assembly Code via Linear Assembly
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Example 6-23. Assembly Code for Floating-Point Dot Product (Software Pipelined)

(Continued)
LDDW .D1 Ad++ A7:A6 jprrkiik oad ai & ai + 1 from memory
Il LDDW .D2 B4++,B7:B6 eexii |oad bi & bi + 1 from memory
Il MPYSP .M1X  A6,B6,A5 ¥ pi=a0 bo
Il MPYSP .M2X  A7,B7,B5 7 pil=al bl
|[[A1] B .S2 LOOP ;¥** pranch to loop
|[[A1] SUB S1 Al1,1,A1 ;% decrement loop counter
LDDW .D1 Ad++ A7:A6 ek Joad ai & ai + 1 from memory
|l LDDW .D2 B4++,B7:B6 jprxxkrkk Joad bi & bi + 1 from memory
Il MPYSP .M1X  A6,B6,A5 7 pi=a0 b0
Il MPYSP .M2X  A7,B7,B5 7 pil=al bl
|[[A1] B .S2 LOOP ;¥*** pranch to loop
|[[A1] SUB S1 Al1,1,A1 ;e decrement loop counter
LOOP:
LDDW .D1 Ad++ AT7:A6 jeeeeekk Joad ai & ai + 1 from memory
Il LDDW .D2 B4++,B7:B6 jrrxkkkkik Joad bi & bi + 1 from memory
Il MPYSP .M1X  A6,B6,A5 7% pi=a0 b0
Il MPYSP .M2X  A7,B7,B5 % pil =al bl
Il ADDSP L1 A5,A8,A8 ; sumoO += (ai bi)
Il ADDSP L2 B5,B8,B8 suml += (ai+1l bi+1)
[I[Al] B .S2 LOOP ¥Rk hranch to loop
[I[Al] SUB .S1 A1,1,A1 ;Feekkk decrement loop counter
; Branch occurs here
ADDSP .L1X  A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)
ADDSP .L2X  A8,B8,B0 ; sum(1) = sumO(1) + sum1(1)
ADDSP .L1X  A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)
ADDSP .L2X  A8,B8,B0 ; sum(3) = sumO0(3) + sum1(3)
NOP ; wait for BO
ADDSP .L1X  AO0,BO,A5 ; sum(01) = sum(0) + sum(1)
NOP ; wait for next BO
ADDSP .L2X  A0,B0,B5 ; sum(23) = sum(2) + sum(3)
NOP 3
ADDSP .L1X  A5,B5A4 ; sum = sum(01) + sum(23)
NOP 3 ;
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6.4.3.3 Removing Extraneous Instructions

Fixed-Point Example

The code in Example 6-22 and Example 6-23 executes extra iterations of
some of the instructions in the loop. The following operations occur in parallel
on the last cycle of the loop in Example 6-22:

[J Iteration 50 of the ADD instructions
[ Iteration 52 of the MPY and MPYH instructions
[ Iteration 57 of the LDW instructions

The following operations occur in parallel on the last cycle of the loop in
Example 6-23:

] Ilteration 50 of the ADDSP instructions
] Ilteration 54 of the MPYSP instructions
] Ilteration 59 of the LDDW instructions

In most cases, extra iterations are not a problem; however, when extraneous
LDWs and LDDWs access unmapped memory, you can get unpredictable re-
sults. If the extraneous instructions present a potential problem, remove the
extraneous load and multiply instructions by adding an epilog like thatincluded
in the second part of Example 6-24 on page 6-43 and Example 6-25 on
page 6-44.

To eliminate LDWs in the fixed-point dot product from iterations 51 through 57,
run the loop seven fewer times. This brings the loop counter to 43 (50 — 7),
which means you still must execute seven more cycles of ADD instructions
and five more cycles of MPY instructions. Five pairs of MPYs and seven pairs
of ADDs are now outside the loop. The LDWs, MPYs, and ADDs all execute
exactly 50 times. (The shaded areas of Example 6—24 indicate the changes
in this code.)

Executing the dot product code in Example 6—24 with no extraneous LDWs
still requires a total of 58 cycles (7 + 43 + 7 + 1), but the code size is now larg-
er.

Floating-Point Example

To eliminate LDDWs in the floating-point dot product from iterations 51 through
59, run the loop nine fewer times. This brings the loop counter to 41 (50 — 9),
which means you still must execute nine more cycles of ADDSP instructions
and five more cycles of MPYSP instructions. Five pairs of MPYSPs and nine
pairs of ADDSPs are now outside the loop. The LDDWSs, MPYSPs, and
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ADDSPs all execute exactly 50 times. (The shaded areas of Example 625 in-
dicate the changes in this code.)

Executing the dot product code in Example 6—25 with no extraneous LDDWs
still requires a total of 74 cycles (9 + 41 + 9 + 15), but the code size is now larg-

er.

Example 6—24. Assembly Code for Fixed-Point Dot Product (Software Pipelined
With No Extraneous Loads)

LDW
I LDW
I MVK
I ZERO
I ZERO

[Al] SUB
I LDW
I LDW

[Al] SUB
[I[A1] B

I LDW
I LDW

[A1] SUB
[I[Al] B

I LDW
I LDW

[A1] SuB
[I[A1] B

I LDW
I LDW

MPY
I MPYH
I[A1] SUB
[I[A1] B
I LDW
I LDW

MPY
I MPYH
[A1] SUB
[I[A1] B
I LDW
I LDW

.D1 *Ad++,A2
.D2 *B4++,B2
S1 43,A1
L1 A7
L2 B7

S1 Al,1,Al1
.D1 *Ad++,A2
.D2 *B4++,B2

.S1 Al,1,Al1

.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2

.S1 Al,1,Al1

.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2

S1 Al,1,A1

.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2

.M1X  A2,B2,A6
.M2X  A2,B2,B6

S1 Al,1,A1

.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2

.M1X  A2,B2,A6
.M2X  A2,B2,B6

.S1 Al,1,Al1

.S2 LOOP
.D1 *Ad++,A2
.D2 *B4++,B2

; load ai & ai+1 from memory
; load bi & bi+1 from memory
; set up loop counter
: zero out sumO accumulator
; zero out suml accumulator

; decrement loop counter
;*load ai & ai+1 from memory
;* load bi & bi+1 from memory

;* decrement loop counter
; branch to loop
;** load ai & ai+1 from memory
** load bi & bi+1 from memory

;** decrement loop counter
;* branch to loop
7¥** load ai & ai+1 from memory
;*** load bi & bi+1 from memory

;¥** decrement loop counter
;¥* branch to loop
;¥*** Joad ai & ai+1 from memory
;¥*** |oad bi & bi+1 from memory

;ai*bi
;ai+l * bi+l
;% decrement loop counter
;¥** branch to loop
ek |d ai & ai+1 from memory
;e |d bi & bi+1 from memory

*ai*bi
*ai+l * bi+l
;¥ decrement loop counter
;% pranch to loop
jeee |d ai & ai+1 from memory
jeeek | d bi & bi+1 from memory
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Example 6-24. Assembly Code for Fixed-Point Dot Product (Software Pipelined
With No Extraneous Loads) (Continued)

LOOP:

ADD L1 A6,A7,A7
I ADD L2  B6,B7,B7
| MPY M1X  A2,B2,A6
[l MPYH .M2X  A2,B2,B6
I[A1] SUB S1 AL1A1
Il[A1] B S2 LOOP
I LDW  .D1  *Ad++A2
I LDW  .D2  *B4++B2

: Branch occurs here

ADD L1 A6,A7,AT
ADD L2 B6,B7,B7
MPY .M1X  A2,B2,A6
MPYH  .M2X  A2,B2,B6

ADD L1 AG6,A7,A7
ADD L2 B6,B7,B7
MPY .M1X  A2,B2,A6
MPYH  .M2X  A2,B2,B6

ADD L1 A6,A7,A7
ADD .L2 B6,B7,B7
MPY .M1X  A2,B2,A6
MPYH .M2X  A2,B2,B6

ADD L1 AG6,A7,A7
ADD .L2 B6,B7,B7
MPY .M1X  A2,B2,A6
MPYH  .M2X  A2,B2,B6

ADD L1 AG6,A7,A7
ADD .L2 B6,B7,B7
MPY .M1X  A2,B2,A6
MPYH  .M2X  A2,B2,B6

ADD L1 A6,A7,A7
ADD .L2 B6,B7,B7

ADD L1 A6,A7,A7
ADD .L2 B6,B7,B7

ADD L1X  A7,B7,Ad4

; sumO += (ai * bi)
; suml += (ai+1 * bi+1)

¥*ai * bi

**ai+l * bi+l

jeeeek decrement loop counter

;¥**** hranch to loop

jeeeeek |d ai & ai+l fm memory
jeeerssk |d bi & bi+1 fm memory

; sumO += (ai * bi)

; suml += (ai+l * bi+1)
**ai * bi
% ai+l * bi+1

; sumO += (ai * bi)

; suml += (ai+1 * bi+1)
**ai * bi
&% ai+l * bi+1

; sumO += (ai * bi)

; suml += (ai+l * bi+1)
**ai * bi
¥ ai+l * bi+l

; sumO += (ai * bi)

; suml += (ai+1 * bi+1)
¥ ai * bi
**ai+l * bi+l

; sumO += (ai * bi)

; suml += (ai+1 * bi+1)
¥*ai * bi
**ai+l * bi+l

; sumO += (ai * bi)
; suml += (ai+1 * bi+1)

; sumO += (ai * bi)
; suml += (ai+1 * bi+1)

; sum = sumO + suml

ADDs MPYs
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Example 6-25. Assembly Code for Floating-Point Dot Product (Software Pipelined

With No Extraneous Loads)

LDDW
[ LDDW
I MPYSP
I MPYSP
[I[A1] B

I[A1] SUB

LDDW
[ LDDW

I MPYSP
I MPYSP
[I[A1] B

I[A1] SUB

LDDW
I LDDW
I MPYSP
I MPYSP
[I[A1] B

I[A1] SUB

S1
L1
.L2
.D1
.D2

.D1
.D2

.D1
.D2

.D1
.D2
.S1

.D1
.D2
.M1X
.M2X

.S1

41,A1

A8

B8
Ad4++ AT:A6
B4++,B7:B6

Ad++ AT:A6
B4++,B7:B6

Ad++ AT:A6
B4++,B7:B6

Ad++ AT:A6
B4++,B7:B6
Al,1,Al1

Ad++ A7:A6
B4++,B7:B6
LOOP
Al,1,A1

Ad++ A7:A6
B4++,B7:B6
A6,B6,A5
A7,B7,B5

LOOP
Al,1,A1

Ad++ A7:A6
B4++,B7:B6
A6,B6,A5
A7,B7,B5

LOOP
Al,1,A1

Ad++ A7:A6
B4++,B7:B6
A6,B6,A5
A7,B7,B5

LOOP
Al,1,A1

Ad++ AT:A6
B4++,B7:B6
A6,B6,A5
A7,B7,B5

LOOP
Al,1,A1

; set up loop counter
;sum0=0
;suml1=0
; load ai & ai + 1 from memory
; load bi & bi + 1 from memory

;*load ai & ai + 1 from memory
;* load bi & bi + 1 from memory

;** load ai & ai + 1 from memory
;** load bi & bi + 1 from memory

7*** |Joad ai & ai + 1 from memory
;*** Joad bi & bi + 1 from memory
; decrement loop counter

;¥*** Joad ai & ai + 1 from memory
;¥*** Joad bi & bi + 1 from memory
; branch to loop
;* decrement loop counter

;% Joad ai & ai + 1 from memory
;%% Joad bi & bi + 1 from memory
;pi=a0 bo
;pil=al bl
;* branch to loop

;** decrement loop counter

jeee Joad ai & ai + 1 from memory
¥k Joad bi & bi + 1 from memory
*pi=al bo
*pil=al bl
;** branch to loop
;¥** decrement loop counter

ek Joad ai & ai + 1 from memory
yeeeeek load bi & bi + 1 from memory
¥*pi=a0 bo
*pil=al bl
;*** pranch to loop
;% decrement loop counter

sk |oad ai & ai + 1 from memory
peexsx load bi & bi + 1 from memory
¥**pi=a0 b0
¥**pil=al bl
;¥ pranch to loop

;¥exx decrement loop counter
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Example 6-25. Assembly Code for Floating-Point Dot Product (Software Pipelined
With No Extraneous Loads) (Continued

LOOP:
LDDW .D1 Ad++ AT:A6
I LDDW .D2 B4++,B7:B6
Il MPYSP .M1X  A6,B6,A5
[l MPYSP .M2X  A7,B7,B5
Il ADDSP L1 A5,A8,A8
I ADDSP L2 B5,B8,B8
[I[Al] B .S2 LOOP
[I[A1] SuB S1 Al,1,A1
: Branch occurs here
MPYSP .M1X  A6,B6,A5
I MPYSP .M2X  A7,B7,B5
| ADDSP L1  A5A8,A8
Il ADDSP L2 B5,B8,B8
MPYSP .M1X A6,B6,A5
[l MPYSP .M2X  A7,B7,B5
Il ADDSP L1 A5,A8,A8
Il ADDSP L2 B5,B8,B8
MPYSP .M1X A6,B6,A5
Il MPYSP .M2X  A7,B7,B5
I ADDSP L1 A5,A8,A8
[l ADDSP L2 B5,B8,B8
MPYSP .M1X A6,B6,A5
I MPYSP .M2X  A7,B7,B5
Il ADDSP L1 A5,A8,A8
Il ADDSP L2 B5,B8,B8
MPYSP .M1X  A6,B6,A5
I MPYSP .M2X  A7,B7,B5
| ADDSP L1  A5A8A8
Il ADDSP L2 B5,B8,B8
ADDSP L1 A5,A8,A8
[ ADDSP L2 B5,B8,B8
ADDSP L1 A5,A8,A8
Il ADDSP L2 B5,B8,B8
ADDSP L1 A5,A8,A8
I ADDSP L2 B5,B8,B8
ADDSP L1 A5,A8,A8
[l ADDSP L2 B5,B8,B8

jeexskx |oad ai & ai + 1 from memory
soeeex load bi & bi + 1 from memory

e ni=al bO

% il =al bl
; sumoO += (ai bi)
; suml += (ai+1 bi+1)
;e branch to loop

;exkx decrement loop counter

;pi=a0 bo
;pil=al bl
; sumoO += (ai bi)
;suml += (ai+1 bi+1)

;pi=al bo
;pil=al bl
; sumO += (ai bi)
; suml += (ai+1 bi+l)

;pi=a0 bo
;pil=al bl
; sumO += (ai bi)
; suml += (ai+1 bi+l)

; pi=a0 bo
;pil=al bl
; sumO += (ai bi)
; suml += (ai+1 bi+1)

;pi=a0 bo
;pil=al bl
; sumO += (ai bi)
;suml += (ai+1 bi+1)

; sumO += (ai bi)
; suml += (ai+l bi+l)

; sumO += (ai bi)
;suml += (ai+l bi+l)

; sumO += (ai bi)
; suml += (ai+l bi+l)

; sumO += (ai bi)
; suml += (ai+l bi+l)

ADDSPs

MPYSPs

©)
©)

®
®

©

€ [C) BC (€] [Chn €
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Example 6-25. Assembly Code for Floating-Point Dot Product (Software Pipelined
With No Extraneous Loads) (Continued)

ADDSP .L1X  A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)
ADDSP .L2X  A8,B8,B0 ; sum(1) = sumO(1) + sum1(1)
ADDSP .L1X  A8,B8,A0 ; sum(2) = sumO0(2) + sum1(2)
ADDSP .L2X  A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)
NOP ; wait for BO

ADDSP .L1X  A0,BO,A5 ; sum(01) = sum(0) + sum(1)
NOP ; wait for next BO

ADDSP .L2X  A0,B0,B5 ; sum(23) = sum(2) + sum(3)
NOP 3

ADDSP L1X A5,B5A4 : sum = sum(01) + sum(23)
NOP 3 ;
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6.4.3.4 Priming the Loop

Fixed-Point Example

Although Example 6—-24 and Example 6—25 execute as fast as possible, the
code size can be smaller without significantly sacrificing performance. To help
reduce code size, you can use a technique called priming the loop. Assuming
that you can handle extraneous loads, start with Example 6-22 or
Example 6-23, which do not have epilogs and, therefore, contain fewer
instructions. (This technique can be used equally well with Example 6—24 or
Example 6-25.)

To eliminate the prolog of the fixed-point dot product and, therefore, the extra
LDW and MPY instructions, begin execution at the loop body (at the LOOP
label). Eliminating the prolog means that:

J Two LDWs, two MPYs, and two ADDs occur in the first execution cycle of
the loop.

[J Because the first LDWSs require five cycles to write results into a register,
the MPY's do not multiply valid data until after the loop executes five times.
The ADDs have no valid data until after seven cycles (five cycles for the
first LDWs and two more cycles for the first valid MPYs).

Example 6—26 shows the loop without the prolog but with four new instructions
that zero the inputs to the MPY and ADD instructions. Making the MPYs and
ADDs use 0s before valid data is available ensures that the final accumulator
values are unaffected. (The loop counter is initialized to 57 to accommodate
the seven extra cycles needed to prime the loop.)

Because the first LDWSs are not issued until after seven cycles, the code in
Example 6—26 requires a total of 65 cycles (7 + 57+ 1). Therefore, you are re-
ducing the code size with a slight loss in performance.
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Example 6-26. Assembly Code for Fixed-Point Dot Product (Software Pipelined With

Removal of Prolog and Epilog)

MVK

[A1] SUB
I ZERO
I ZERO

[A1] SUB
[I[A1] B

I ZERO
I ZERO

[A1] SUB
IAL] B

I ZERO
I ZERO

[Al] SUB
[I[A1] B

[A1] SUB
[I[A1] B

[Al] SUB
[I[A1] B

LOOP:
ADD
I ADD
I MPY
I MPYH
I[A1] SUB
[I[A1] B
I LDW
I LDW

.S1 57,A1

.S1 Al,1,Al1

L1 A7

.L2 B7
S1 Al,1,Al1
.S2 LOOP

L1 A6

.L2 B6
S1 Al,1,Al1
.S2 LOOP

L1 A2

L2 B2
.S1 Al,1,Al1
.S2 LOOP
.S1 Al,1,Al1
.S2 LOOP
S1 Al,1,Al1
.S2 LOOP

L1 A6,A7,A7

L2 B6,B7,B7

.M1X  A2,B2,A6

.M2X  A2,B2,B6
.S1 Al,1,Al1
.S2 LOOP

.D1 *Ad++,A2

.D2 *B4++,B2

; set up loop counter

; decrement loop counter
; zero out sumO accumulator
; zero out sum1 accumulator

;* decrement loop counter
; branch to loop
; zero out add input
; zero out add input

;** decrement loop counter
;* branch to loop
; Zero out mpy input
; Zero out mpy input

;¥** decrement loop counter
;¥* branch to loop

;**** decrement loop counter
;¥** pranch to loop

;e decrement loop counter
;% pranch to loop

; sumO += (ai * bi)
; suml += (ai+1 * bi+1)

F*ai * bi

% ai+l * bi+1

;reekk decrement loop counter

;e pranch to loop

ekl |d ai & ai+l fm memory
jprexkkik |d bi & bi+1 fm memory

; Branch occurs here

ADD L1X A7,B7,A4 ;sum =sumO + suml
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Floating-Point Example

To eliminate the prolog of the floating-point dot product and, therefore, the
extra LDDW and MPYSP instructions, begin execution at the loop body (at the
LOORP label). Eliminating the prolog means that:

J Two LDDWs, two MPYSPs, and two ADDSPs occur in the first execution
cycle of the loop.

[0 Because the first LDDWs require five cycles to write results into a register,
the MPYSPs do not multiply valid data until after the loop executes five
times. The ADDSPs have no valid data until after nine cycles (five cycles
for the first LDDWs and four more cycles for the first valid MPYSPs).

Example 6—27 shows the loop without the prolog but with four new instructions
that zero the inputs to the MPYSP and ADDSP instructions. Making the
MPYSPs and ADDSPs use 0s before valid data is available ensures that the
final accumulator values are unaffected. (The loop counter is initialized to 59
to accommodate the nine extra cycles needed to prime the loop.)

Because the first LDDWs are not issued until after nine cycles, the code in
Example 6-27 requires a total of 81 cycles (7 + 59+ 15). Therefore, you are
reducing the code size with a slight loss in performance.

Example 6-27. Assembly Code for Floating-Point Dot Product (Software Pipelined With

Removal of Prolog and Epilog)

I
II[A1]

[A1]
[I[A1]

[Al]
[I[A1]

[Al]
lI[A1]

MVK

ZERO
ZERO
SUB

B

SuUB
ZERO
ZERO

B

SuUB
ZERO
ZERO

B

SUB
ZERO
ZERO

S1 59,A1 ; set up loop counter
L1 A7 ; Zero out mpysp input
L2 B7 ; zero out mpysp input
S1 Al,1,A1 ; decrement loop counter
.S2 LOOP ; branch to loop
S1 Al,1,A1 ;* decrement loop counter
L1 A8 ; zero out sum0 accumulator
.L2 B8 ; zero out sum0 accumulator
.S2 LOOP ;* branch to loop
.S1 Al,1,A1 ;** decrement loop counter
L1 A5 ; zero out addsp input
L2 B5 ; zero out addsp input
.S2 LOOP ;** branch to loop
.S1 Al,1,A1 ;¥** decrement loop counter
L1 A6 ; zero out mpysp input
.L2 B6 ; Zero out mpysp input
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Example 6-27. Assembly Code for Floating-Point Dot Product (Software Pipelined With
Removal of Prolog and Epilog) (Continued)

[A1] B .S2 LOOP ;¥** pranch to loop
|[[[A1] SuB S1 Al,1,A1 ;¥*** decrement loop counter
[A1]] B .S2 LOOP ;¥¥** phranch to loop
|[[A1] SuB .S1 Al,1,A1 ;e decrement loop counter
LOOP:

LDDW .D1 Ad++ A7:A6 jRrRkkkkkk |oad ai & ai + 1 from memory
|l LDDW .D2 B4++,B7:B6 jreeee Joad bi & bi + 1 from memory
Il MPYSP .M1X A6,B6,A5 e pi= a0 b0
Il MPYSP .M2X A7,B7,B5 % pil =al bl
Il ADDSP L1 A5,A8,A8 ; sumoO += (ai bi)

ADDSP L2 B5,B8,B8 ;suml += (ai+1l bi+1)
[[Al] B .S2 LOOP ;¥**x% hranch to loop
|[[A1]] SuB S1 Al1,1,A1 jeeeekk decrement loop counter
; Branch occurs here

ADDSP .L1X A8,B8,A0 ; sum(0) = sumO(0) + sum1(0)

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sumi1(1)

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)

ADDSP .L2X A8,B8,B0 ; sum(3) = sumO(3) + sum1(3)

NOP ; wait for BO

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)

NOP ; wait for next BO

ADDSP .L2X A0,B0,B5 ; sum(23) = sum(2) + sum(3)

NOP 3

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)

NOP 3
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6.4.3.5 Removing Extra SUB Instructions

To reduce code size further, you can remove extra SUB instructions. If you
know that the loop count is at least 6, you can eliminate the extra SUB instruc-
tions as shown in Example 6-28 and Example 6—29. The first five branch
instructions are made unconditional, because they always execute. (If you do
not know that the loop count is at least 6, you must keep the SUB instructions
that decrement before each conditional branch as in Example 6-26 and
Example 6-27.) Based on the elimination of six SUB instructions, the loop
counter is now 51 (57 — 6) for the fixed-point dot product and 53 (59 — 6) for
the floating-point dot product. This code shows some improvement over
Example 6-26 and Example 6—-27. The loop in Example 6—28 requires 63
cycles (5 + 57 + 1) and the loop in Example 6-27 requires 79 cycles
(5 +59 + 15).

Example 6-28. Assembly Code for Fixed-Point Dot Product (Software Pipelined
With Smallest Code Size)

B .S2 LOOP ; branch to loop
[l MVK S1 51,A1 ; set up loop counter
B .S2 LOOP ;* branch to loop
B .S2 LOOP ;** branch to loop
[l ZERO L1 A7 ; zero out sumO accumulator
[l ZERO L2 B7 ; zero out sum1 accumulator
B .S2 LOOP ;*** pranch to loop
Il ZERO L1 A6 ; zero out add input
I ZERO L2 B6 ; zero out add input
B .S2 LOOP ;¥*** hranch to loop
I ZERO L1 A2 ; zero out mpy input
[l ZERO L2 B2 ; zero out mpy input
LOOP:
ADD L1 AB6,A7,A7 ; sSumoO += (ai * bi)
[ ADD L2 B6,B7,B7 ; suml += (ai+l * bi+1)
I MPY .M1X A2,B2,A6 % ai * bi
MPYH .M2X A2,B2,B6 ¥ ai+l * bi+l
[I[A1] SuB S1 Al,1,A1l ;Fexxxx decrement loop counter
[I[Al] B .S2 LOOP ;e hranch to loop
Il LDW .D1 *Ad++,A2 jrekkkik |d ai & ai+1 fm memory
[l LDW .D2 *B4++,B2 jeeeeesk |d bi & bi+1 fm memory
: Branch occurs here
ADD L1X  A7,B7,A4 ; sum = sumO + suml

Optimizing Assembly Code via Linear Assembly

6-51

Part 1l



Part Il

Software Pipelining

Example 6-29. Assembly Code for Floating-Point Dot Product (Software Pipelined
With Smallest Code Size)

B .S2 LOOP ; branch to loop
[l MVK S1 53,A1 ; set up loop counter
B .S2 LOOP ;* branch to loop
[l ZERO L1 A7 ; Zzero out mpysp input
I ZERO L2 B7 ; zero out mpysp input
B .S2 LOOP ;** branch to loop
[l ZERO L1 A8 ; zero out sumO accumulator
Il ZERO L2 B8 ; zero out sumO accumulator
B .S2 LOOP ;*** pranch to loop
[l ZERO L1 A5 ; zero out addsp input
I ZERO L2 B5 ; zero out addsp input
B .82 LOOP ;¥*** hranch to loop
[l ZERO L1 A6 ; zero out mpysp input
[l ZERO L2 B6 ; zero out mpysp input
LOOP:
LDDW .D1 Ad++ A7:A6 ek Joad ai & ai + 1 from memory
[l LDDW  .D2 B4++,B7:B6 ek Joad bi & bi + 1 from memory
I MPYSP .M1X  A6,B6,A5 ¥ pi=a0 bo
Il MPYSP .M2X  A7,B7,B5 F*x pil =al bl
I ADDSP L1 A5,A8,A8 ;sum0 += (ai bi)
ADDSP .12 B5,B8,B8 ;suml += (ai+1l bi+1)
[I[A1] B .S2 LOOP ;¥¥**x* hranch to loop
[I[A1] SuB S1 Al1,1,A1 Rkl decrement loop counter
: Branch occurs here
ADDSP .L1X A8,B8,A0 ; sum(0) = sumO(0) + sum1(0)
ADDSP .L2X  A8,B8,B0 ; sum(1) = sumO(1) + sumi1(1)
ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sumi1(2)
ADDSP .L2X  A8,B8,B0 ; sum(3) = sum0(3) + suml1(3)
NOP ; wait for BO
ADDSP .L1X  AO0,BO,A5 ; sum(01) = sum(0) + sum(1)
NOP ; wait for next BO
ADDSP .L2X  AO0,B0,B5 ; sum(23) = sum(2) + sum(3)
NOP 3
ADDSP .L1X A5,B5A4 ; sum = sum(01) + sum(23)
NOP 3 ;
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6.4.4 Comparing Performance

Table 3-2 compares the performance of all versions of the fixed-point dot
product code. Table 6-11 compares the performance of all versions of the

floating-point dot product code.

Table 6-10. Comparison of Fixed-Point Dot Product Code Examples

Code Example 100 Iterations Cycle Count

Example 6-5  Fixed-point dot product linear assembly 2+100 x 16 1602

Example 66  Fixed-point dot product parallel assembly 1+100 x 8 801

Example 6—15 Fixed-point dot product parallel assembly with LDW 1+(50x8)+1 402

Example 6—22 Fixed-point software-pipelined dot product 7+50+1 58

Example 6—24 Fixed-point software-pipelined dot product with no extrane- 7+43+7+1 58
ous loads

Example 6—26 Fixed-point software-pipelined dot product with no prolog or 7+57+1 65
epilog

Example 6—28 Fixed-point software-pipelined dot product with smallest 5+57+1 63
code size

Table 6-11. Comparison of Floating-Point Dot Product Code Examples

Code Example 100 Iterations Cycle Count

Example 6—7  Floating-point dot product nonparallel assembly 2+100 x 21 2102

Example 6-8  Floating-point dot product parallel assembly 1+100 x 10 1001

Example 6-16 Floating-point dot product parallel assembly with LDDW 1+ (50 x 10) +7 508

Example 6—23 Floating-point software-pipelined dot product 9+50+ 15 74

Example 6—25 Floating-point software-pipelined dot product with no extra- 9+41+9+15 74
neous loads

Example 6-27 Floating-point software-pipelined dot product with no prolog 7+59+15 81
or epilog

Example 6—29 Floating-point software-pipelined dot product with small- 5+59 + 15 79

est code size

Optimizing Assembly Code via Linear Assembly
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6.5 Modulo Scheduling of Multicycle Loops

Section 6.4 demonstrated the modulo-scheduling technique for the dot
product code. In that example of a single-cycle loop, none of the instructions
used the same resources. Multicycle loops can present resource conflicts
which affect modulo scheduling. This section describes techniques to deal

with this issue.

6.5.1 Weighted Vector Sum C Code

Example 6—-30 shows the C code for a weighted vector sum.

Example 6-30. Weighted Vector Sum C Code

void w_vec(short a[],short b[],short c[],short m)

{

inti;

for (i=0; i<100; i++) {
c[i] = ((m * a[i]) >> 15) + b][i];

6.5.2 Translating C Code to Linear Assembly

Example 6—-31 shows the linear assembly that executes the weighted vector
sum in Example 6-30. This linear assembly does not have functional units as-
signed. The dependency graph will help in those decisions. However, before
looking at the dependency graph, the code can be optimized further.

Example 6-31. Linear Assembly for Weighted Vector Sum Inner Loop

LDH *aptr++,ai ;ai

LDH *bptr++,bi ; bi

MPY m,ai,pi rm*ai

SHR pi,15,pi_scaled ; (m*ai)>>15

ADD pi_scaled,hi,ci ; Ci = (m *ai) >> 15 + bi

STH ci,*cptr++ : store ci
[entr]SUB cntr,1,cntr ; decrement loop counter
[cntr]B LOOP ; branch to loop
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6.5.3 Determining the Minimum Iteration Interval

Example 6-31 includes three memory operations in the inner loop (two LDHs
and the STH) that must each use a .D unit. Only two .D units are available on
any single cycle; therefore, this loop requires at least two cycles. Because no
other resource is used more than twice, the minimum iteration interval for this
loop is 2.

Memory operations determine the minimum iteration interval in this example.
Therefore, before scheduling this assembly code, unroll the loop and perform
LDWs to help improve the performance.

6.5.3.1 Unrolling the Weighted Vector Sum C Code

Example 6—-32 shows the C code for an unrolled version of the weighted vector
sum.

Example 6—-32. Weighted Vector Sum C Code (Unrolled)

void w_vec(short a[],short b[],short c[],short m)
{
int i;
for (i=0; i<100; i+=2) {
c[i] = ((m * a[i]) >> 15) + bi];
c[i+1] = ((m * ai+1]) >> 15) + b[i+1];
}
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6.5.3.2 Translating Unrolled Inner Loop to Linear Assembly

Example 6-33.

Example 6—-33 shows the linear assembly that calculates c[i] and c[i+1] for the
weighted vector sum in Example 6-32.

a

a
a

The two store pointers (*ciptr and *ci+1ptr) are separated so that one
(*ciptr) increments by 2 through the odd elements of the array and the
other (*ci+1ptr) increments through the even elements.

AND and SHR separate bi and bi+1 into two separate registers.

This code assumes that mask is preloaded with 0XO000FFFF to clear the
upper 16 bits. The shift right of 16 places bi+1 into the 16 LSBs.

Linear Assembly for Weighted Vector Sum Using LDW

[cntr]B

LDW
LDW
MPY
MPYHL
SHR
SHR
AND
SHR
ADD
ADD
STH
STH

[entr]SUB

*aptr++,ai_i+1 ;al & ait+l
*bptr++,bi_i+1 »bi & bi+l

m,ai_i+1,pi ;m*ai

m,ai_i+1,pi+1 m*ai+l
pi,15,pi_scaled ; (m*ai)>> 15
pi+1,15,pi+1_scaled ; (m*ai+l) >> 15
bi_i+1,mask,bi ; bi

bi_i+1,16,bi+1 : bi+1

pi_scaled,hi,ci ; ci = (m*ai)>> 15 + bi
pi+1_scaled,bi+1,ci+1 ; Ci+l = (m * ai+1) >> 15 + bi+1
ci,*ciptr++[2] ; store ci
ci+1,*ci+1ptr++[2] ; store ci+1

cntr,1,cntr ; decrement loop counter
LOOP ; branch to loop

6.5.3.3 Determining a New Minimum lteration Interval
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Use the following considerations to determine the minimum iteration interval
for the assembly instructions in Example 6-33:

o

4

Four memory operations (two LDWs and two STHs) must each use a .D
unit. With two .D units available, this loop still requires only two cycles.

Four instructions must use the .S units (three SHRs and one branch). With
two .S units available, the minimum iteration interval is still 2.

The two MPYs do not increase the minimum iteration interval.

Because the remaining four instructions (two ADDs, AND, and SUB) can
all use a .L unit, the minimum iteration interval for this loop is the same as
in Example 6-31.

By using LDWs instead of LDHSs, the program can do twice as much work in
the same number of cycles.



Modulo Scheduling of Multicycle Loops

6.5.4 Drawing a Dependency Graph

To achieve a minimum iteration interval of 2, you must put an equal number
of operations per unit on each side of the dependency graph. Three operations
in one unit on a side would result in an minimum iteration interval of 3.

Figure 6-11 shows the dependency graph divided evenly with a minimum it-
eration interval of 2.

Figure 6-11. Dependency Graph of Weighted Vector Sum

A side
LDW

B side

\
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2
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6.5.5 Linear Assembly Resource Allocation

Using the dependency graph, you can allocate functional units and registers
as shown in Example 6—34. This code is based on the following assumptions:

(1 The pointers are initialized outside the loop.
[ mresides in B6, which causes both .M units to use a cross path.
[ The mask in the AND instruction resides in B10.

Example 6-34. Linear Assembly for Weighted Vector Sum With Resources Allocated

LDW .D1 *Ad++ A2 pal & ai+l
LDW .D2 *B4++,B2 ; bi & bi+1
MPY .M1X A2,B6,A5 ;pi=m*ai
MPYHL .M2X A2,B6,B5 ;pitl =m*ai+l
SHR S1 A5,15 A7 ; pi_scaled = (m * ai) >> 15
SHR .S2 B5,15,B7 ; pitl_scaled = (m * ai+1) >> 15
AND L2 B2,810,B8 ; bi
SHR .S2 B2,16,B1 : bi+1
ADD .L1X A7,B8,A9 ; ci=(m*ai)>> 15+ bi
ADD L2 B7,B1,B9 ; i+l =(m*ai+l) >> 15 + hi+1
STH .D1 A9, *A6++[2] ; store Ci
STH .D2 B9,*BO++[2] ; store ci+1
[A1] sSuB L1 Al,1,A1 ; decrement loop counter
[A1] B .S1 LOOP ; branch to loop

6.5.6 Modulo Iteration Interval Scheduling
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Table 6-12 provides a method to keep track of resources that are a modulo

iteration interval away from each other. In the single-cycle dot product exam-
ple, every instruction executed every cycle and, therefore, required only one
set of resources. Table 6-12 includes two groups of resources, which are
necessary because you are scheduling a two-cycle loop.

(1 Instructions that execute on cycle k also execute on cycle k + 2, k + 4, etc.
Instructions scheduled on these even cycles cannot use the same
resources.

[ Instructions that execute on cycle k + 1 also execute on cycle k + 3, k + 5,
etc. Instructions scheduled on these odd cycles cannot use the same
resources.

[ Because two instructions (MPY and ADD) use the 1X path but do not use
the same functional unit, Table 612 includes two rows (1X and 2X) that
help you keep track of the cross path resources.



Modulo Scheduling of Multicycle Loops

Only seven instructions have been scheduled in this table.
(1 The two LDWs use the .D units on the even cycles.

1 The MPY and MPYH are scheduled on cycle 5 because the LDW has four
delay slots. The MPY instructions appear in two rows because they use
the .M and cross path resources on cycles 5, 7, 9, etc.

[ Thetwo SHRinstructions are scheduled two cycles after the MPY to allow
for the MPY’s single delay slot.

[ The AND is scheduled on cycle 5, four delay slots after the LDW.
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Table 6-12. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10
* *% *k%k *kkk *kkkk
D1 LDW ai_ji+1 | LDWai_i+1 | LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1
* *% *k%k *kkk *kkkk
D2 LDW bi i+1 | LDWbi_i+1 | LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1
.M1
.M2
L1
L2
.S1
.S2
1X
2X
Unit/Cycle 1 3 5 7 9 11
.D1
.D2
* *% *k%
M1 . . . .
MPY pi MPY pi MPY pi MPY pi
* *% *k%k
M2 MPYHL pi+1 | MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1
* *% **k%
L1 AND bi AND bi AND bi AND bi
.L2
* *%
S1 : . .
SHR pi_s SHR pi_s SHR pi_s
* *%
.S2 . . .
SHR pi+1_s SHR pi+1_s SHR pi+l_s
* *%* *k%
1X . . . .
MPY pi MPY pi MPY pi MPY pi
* *% *%k%
2X MPYHL pi+1 | MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1
Note:  The asterisks indicate the iteration of the loop; shaded cells indicate cycle 0.
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6.5.6.1 Resource Conflicts

Resources from one instruction cannot conflict with resources from any other
instruction scheduled modulo iteration intervals away. In other words, for a
2-cycle loop, instructions scheduled on cycle n cannot use the same resources
as instructions scheduled on cycles n + 2, n + 4, n + 6, etc. Table 6-13 shows
the addition of the SHR bi+1 instruction. This must avoid a conflict of resources
in cycles 5 and 7, which are one iteration interval away from each other.

Eventhough LDW bi_i+1 (.D2, cycle 0) finishes on cycle 5, its child, SHR bi+1,
cannot be scheduled on .S2 until cycle 6 because of a resource conflict with
SHR pi+1_scaled, which is on .S2 in cycle 7.

Figure 6—-12. Dependency Graph of Weighted Vector Sum (Showing Resource Conflict)

A side B side
LDW

MPY MPYHL

Scheduled
SHR on cycle 5
AND SHR

pi_scaled

ADD
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Table 6-13. Modulo Iteration Interval Table for Weighted Vector Sum With SHR

Instructions
Unit / Cycle 0 2 4 6 8 10, 12, 14, ...
* *% *%k% *kkk *kkkk
D1 LDW ai i+1 | LDWai i+1 | LDWai i+1 | LDWai i+1 | LDWai i+l | LDWai i+l
* *% *%k% *kkk *kkkk
D2 LDW bi_i+1 | LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1
.M1
.M2
L1
L2
.S1
* *%
.S2 . . .
SHR bi+1 SHR bi+1 SHR bi+1
1X
2X
Unit / Cycle 1 3 5 7 9 11, 13, 15, ...
.D1
.D2
* *%* *%k%k
.M1 . . . .
MPY pi MPY pi MPY pi MPY pi
* *%* *%k%k
M2 MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
* *% *%k%
L1 AND bi AND bi AND bi AND bi
.L2
* *%
.S1 . . .
SHR pi_s SHR pi_s SHR pi_s
* *%
.S2 . . .
SHR pi+1_s SHR pi+1_s SHR pi+l_s
* *% *%%
1X . . . .
MPY pi MPY pi MPY pi MPY pi
Note:  The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 6-12.
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Unit/ Cycle

7

9

11, 13, 15, ...

2X

MPYHL pi+1

*

MPYHL pi+1

*%

MPYHL pi+1

*k%k

MPYHL pi+1

Note:  The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 6-12.
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6.5.6.2 Live Too Long

Scheduling SHR bi+1 on cycle 6 now creates a problem with scheduling the
ADD ci instruction. The parents of ADD ci (AND bi and SHR pi_scaled) are
scheduled on cycles 5 and 7, respectively. Because the SHR pi_scaled is
scheduled on cycle 7, the earliest you can schedule ADD ci is cycle 8.

However, in cycle 7, AND bi * writes bi for the next iteration of the loop, which
creates a scheduling problem with the ADD ci instruction. If you schedule
ADD cion cycle 8, the ADD instruction reads the parent value of bi for the next
iteration, whichis incorrect. The ADD ci demonstrates a live-too-long problem.

No value can be live in aregister for more than the number of cycles in the loop.
Otherwise, iteration n + 1 writes into the register before iteration n has read that
register. Therefore, in a 2-cycle loop, a value is written to a register at the end
of cycle n, then all children of that value must read the register before the end
of cycle n + 2.

6.5.6.3 Solving the Live-Too-Long Problem

6-64

The live-too-long problem in Table 6—-13 means that the bi value would have
to be live from cycles 6-8, or 3 cycles. No loop variable can live longer than
the iteration interval, because a child would then read the parent value for the
next iteration.

To solve this problem move AND bi to cycle 6 so that you can schedule ADD ci
to read the correct value on cycle 8, as shown in Figure 6—13 and Table 6-14.
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Figure 6—-13. Dependency Graph of Weighted Vector Sum (With Resource Confilict
Resolved)

A side
LDW

B side

Part 1l

Note:  Shaded numbers indicate the cycle in which the instruction is first scheduled.
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Table 6-14. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10
* *% *%k%k *kkk *kkkk
D1 LDW ai_i+1 | LDW ai_i+1 | LDW ai_i+1 LDW ai_i+1 LDW ai_i+1 LDW ai_i+1
* *% *kk *kkk *kkkk
D2 LDW bi_i+1 | LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1 LDW bi_i+1
M1
.M2
*
L1 ADD ci ADD ci
* *%
L2 . . .
AND bi AND bi AND bi
S1
* *%
.S2 . . .
SHR bi+1 SHR bi+1 SHR bi+1
1X
2X
Unit/Cycle 1 3 5 7 9 11
.D1
.D2
* *%* *k%k
M1 . . . .
MPY pi MPY pi MPY pi MPY pi
* *% *%%
M2 MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
L1
L2
* **
.S1 . . .
SHR pi_s SHR pi_s SHR pi_s
* *%
.S2 . . .
SHR pi+1_s SHR pi+1_s SHR pi+l_s
* *%* *%k%k
1X . . . .
MPY pi MPY pi MPY pi MPY pi
* *%* *k%k
2X MPYHL pi+1 | MPYHL pi+1 MPYHL pi+1 MPYHL pi+1
Note:  The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 6-13.
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6.5.6.4 Scheduling the Remaining Instructions
Figure 6-14 shows the dependency graph with additional scheduling

changes. The final version of the loop, with all instructions scheduled correctly,
is shown in Table 6-15.

Figure 6—14. Dependency Graph of Weighted Vector Sum (Scheduling ci +1)

B side

Note:  Shaded numbers indicate the cycle in which the instruction is first scheduled.

Optimizing Assembly Code via Linear Assembly 6-67

Part 1l



Part Il

Modulo Scheduling of Multicycle Loops
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Table 6-15 shows the following additions:

B LOOP (.S1, cycle 6)
SUB cntr (.L1, cycle 5)
ADD ci+1 (.L2, cycle 10)
STH ci (cycle 9)

STH ci+1 (cycle 11)

Uoooo

To avoid resource conflicts and live-too-long problems, Table 6-15 also
includes the following additional changes:

LDW bi_i+1 (.D2) moved from cycle 0 to cycle 2.

AND bi (.L2) moved from cycle 6 to cycle 7.

SHR pi+1_scaled (.S2) moved from cycle 7 to cycle 9.
MPYHL pi+1 moved from cycle 5 to cycle 6.

SHR bi+1 moved from cycle 6 to 8.

Uoooo

From the table, you can see that this loop is pipelined six iterations deep, be-
cause iterations n and n + 5 execute in parallel.
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Table 6-15. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10, 12, 14, ...
* *% *k*k *kkk *kkkk
D1 LDWai_i+1 | LDWai_i+1 | LDWai_i+1 | LDWai_i+1 | LDWai i+1 | LDWai_i+1
* *% *k% *kkk
D2 LDWbi_i+1 | LDWbi i+1 | LDWbi i+1 | LDWbi i+1 | LDWbi i+1
M1
* *%
M2 MPYHL pi+1 | MPYHL pi+1 | MPYHL pi+1
*
L1 ADD ci ADD ci
L2 ADD ci+1
* *%
S1 B LOOP B LOOP B LOOP
*
S2 SHR bi+1 SHR bi+1
*
1X ADD ci ADD ci
* *%
2X MPYHL pi+1 | MPYHL pi+1 | MPYHL pi+1
Unit/Cycle 1 3 5 7 9 11, 13, 15, ...
*
D1 STH ci STH ci
D2 STH ci+1
* *% *k%k
M1 MPY pi MPY pi MPY pi MPY pi
M2
* *% *k*k
L1 SUB cntr SUB cntr SUB cntr SUB cntr
* *%
L2 AND bi AND bi AND bi
. * *%
Sl SHR pi_s SHR pi_s SHR pi_s
*
-S2 SHRpi+1l s | SHRpi+ls
* *% *k*k
X MPY pi MPY pi MPY pi MPY pi
2X
Note:  The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 6-14.
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6.5.7 Using the Assembly Optimizer for the Weighted Vector Sum

Example 6—35 shows the linear assembly code to perform the weighted vector
sum. You can use this code as input to the assembly optimizer to create a soft-

ware-pipelined loop instead of scheduling this by hand.

Example 6-35. Linear Assembly for Weighted Vector Sum

.global _w_vec
_W_vec: .cproc a,b,c,m
.reg ai_il, bi_i1, pi, pil, pi_il, pi_s, pil_s
.reg mask, bi, bil, ci, cil, c1, cntr
MVK —1,mask : set to all 1s to create OXxFFFFFFFF
MVKH 0,mask ; clear upper 16 bits to create OxFFFF
MVK 50,cntr ; cntr = 100/2
ADD 2,c.cl ; point to c[1]
LOOP: .trip 50
LDW .D1 *a++,ai_il ;ai & ai+l
LDW .D2 *b++,bi_il ; bi & bi+1
MPY .M1X ai_il,m,pi rm*ai
MPYHL .M2X ai_il,m,pil ;m*ai+l
SHR S1 pi,15,pi_s ; (m*ai)>>15
SHR .S2 pil,15,pi1_s ;(m*ai+l) >> 15
AND L2 bi_i1,mask,bi; bi
SHR .S2 bi_i1,16,bi1 ;bi+l
ADD .L1X pi_s,bi,ci ; ci = (m*ai)>> 15 + bi
ADD L2 pil_s,bil,cil; ci+l = (m * ai+1) >> 15 + bi+1
STH .D1 ci,*c++[2] ; store ci
STH .D2 cil,*c1++[2] ; store ci+l
[entr] SUB L1 cntr,1,cntr  ; decrement loop counter
[entr] B S1 LOOP ; branch to loop
.endproc
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6.5.8 Final Assembly

Example 6—-36 shows the final assembly code for the weighted vector sum.
The following optimizations are included:

[J While iteration n of instruction STH ci+1 is executing, iteration n + 1 of
STH ciis executing. To preventthe STH ciinstruction from executing itera-
tion 51 while STH ci + 1 executes iteration 50, execute the loop only 49
times and schedule the final executions of ADD ci+1 and STH ci+1 after
exiting the loop.

[ The mask for the AND instruction is created with MVK and MVKH in paral-
lel with the loop prolog.

(1 The pointer to the odd elements in array c is also set up in parallel with the
loop prolog.
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Example 6-36. Assembly Code for Weighted Vector Sum

LDW  .D1  *Ad++A2
ADD 12X A6,2,B0
LDW  .D2  *B4++B2
I LDW  .D1  *Ad++A2
MVK .82  -1,B10
LDW  .D2  *B4++B2
I LDW  .D1  *Ad++A2
I MVK  .S1  49Al
I MVKH .S2  0,B10
MPY  .M1X A2,B6,A5

[I[A1] SuB L1 Al1,1,A1

MPYHL .M2X  A2,B6,B5

IA1] B S1  LOOP
I LDW  .D2  *B4++B2
I LDW  .D1  *Ad++A2
SHR .S1  A515A7
I AND L2  B2B10,B8
I MPY  .M1X A2,B6,A5
[A1] SUB L1  A1,1Al
SHR .S2  B2,16,B1
I ADD  .L1X A7,B8,A9
I MPYHL .M2X A2,B6,B5
A1] B S1  LOOP
I LDW  .D2  *B4++B2
I LDW  .D1  *Ad++A2
SHR .S2  B5,15B7
I STH D1 A9*A6++2]
I SHR .S1  A515A7
I AND L2  B2,B10,B8
[A1] SUB L1  A1,1Al
I MPY  .M1X A2,B6A5
LOOP:
ADD L2  B7,B1,B9
I SHR .82  B2,16,B1
I ADD  L1IX A7,B8,A9
I MPYHL .M2X A2,B6,B5
A1] B S1  LOOP
I LDW  .D2  *B4++B2
I LDW  .D1  *Ad++A2

val & ait+l
; set pointer to ci+1

; bi & bi+1
Fai&ai+l

; set to all 1s (OXFFFFFFFF)

* bi & bi+1

7 ai & aitl

; set up loop counter

; clr upper 16 bits (OXO000FFFF)

;m*ai
; decrement loop counter

m*ai+l
; branch to loop
7** bi & bi+1
*** Al & ait+l

;(m*ai) >>15
; bi
Fm*ai
;* decrement loop counter

s bi+1
; Ci = (m * ai) >> 15 + bi
*m*ai+l
;* branch to loop
%% bi & bi+1
R Al & aitl

; (m*ai+l) >> 15
; store ci
¥ (m*ai) >> 15
* bi
;** decrement loop counter
m*ai

; Ci+l = (m * ai+1) >> 15 + bi+1

% bi+1

;¥ ci=(m*ai) >> 15 + bi
*m*ai+l

;** branch to loop

7FR% pi & bi+l

JFRRER Al & ait+l
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Example 6—36. Assembly Code for Weighted Vector Sum (Continued)

STH .D2 B9,*BO++[2]
I SHR .82 B5,15,B7
| STH D1 A9*A6++[2]
| SHR S1  A515A7
AND L2 B2,B10,B8
Il[A1] SUB L1 A11A1
I MPY M1X  A2,B6,A5
; Branch occurs here
ADD L2 B7,B1,B9
STH .D2 B9,*BO

: store ci+1
¥ (m*ai+l) >> 15
;* store ci
¥ (m *ai) >> 15
k% bl
;¥** decrement loop counter
kkk m * al

; Ci+l = (m * ai+l) >> 15 + bi+1

; store ci+1

Optimizing Assembly Code via Linear Assembly
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6.6 Loop Carry Paths

Loop carry paths occur when one iteration of a loop writes a value that must
be read by a future iteration. A loop carry path can affect the performance of
a software-pipelined loop that executes multiple iterations in parallel. Some-
times loop carry paths (instead of resources) determine the minimum iteration
interval.

IIR filter code contains a loop carry path; output samples are used as input to
the computation of the next output sample.

6.6.1 IIR Filter C Code

Example 6-37 shows C code for a simple IIR filter. In this example, y[i] is an
input to the calculation of y[i+1]. Before y[i] can be read for the next iteration,
y[i+1] must be computed from the previous iteration.

Example 6-37. IIR Filter C Code

void iir(short x[],short y[],short c1, short c2, short c3)
inti;
for (i=0; i<100; i++) {

y[i+1] = (c1*x[i] + c2*x[i+1] + c3*y[i]) >> 15;
}
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Example 6—38 shows the 'C6x instructions that execute the inner loop of the
[IR filter C code. In this example:

a

a

Example 6—38. Linear Assembly for IIR Inner Loop

Xptr is not postincremented after loading xi+1, because xi of the next
iteration is actually xi+1 of the current iteration. Thus, the pointer points to
the same address when loading both xi+1 for one iteration and xi for the
next iteration.

yptr is also not postincremented after storing yi+1, because yi of the next
iteration is yi+1 for the current iteration.

LDH
MPY
LDH
MPY
ADD
LDH
MPY
ADD
SHR
STH

[entr]SUB

[cntr]B

*xptr++,Xi
c1,xi,p0
*xptr,Xi+1
c2xi+1,pl
p0,pl,sO
*yptr++,yi
c3,yi,p2
s0,p2,s1
s1,15,yi+1
yi+1,*yptr
cntr,1,cntr
LOOP

; Xi+1
cl*xi
D Xi+1
; €2 * i+l
;Cl*xi+c2*xi+l
Y
; C3*yi
;Cl*xi+c2*xi+l+c3*yi
;yit+l
; store yi+1
; decrement loop counter
; branch to loop
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6.6.3 Drawing a Dependency Graph

Figure 6—15 shows the dependency graph for the IIR filter. A loop carry path
exists from the store of yi+1 to the load of yi. The path between the STH and
the LDH is one cycle because the load and store instructions use the same
memory pipeline. Therefore, if a store is issued to a particular address on cycle
n and a load from that same address is issued on the next cycle, the load reads
the value that was written by the store instruction.

Figure 6-15. Dependency Graph of IIR Filter
A side

Part Il

Note:  The shaded numbers show the loop carry path: 5+2+ 1+ 1+ 1=10.
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6.6.4 Determining the Minimum Iteration Interval

To determine the minimum iteration interval, you must consider both resources
and data dependency constraints. Based on resources in Table 6-16, the
minimum iteration interval is 2.

Note:

There are six non-.M units available: three on the A side (.S1, .D1, .L1) and
three on the B side (.S2, .D2, .L2). Therefore, to determine resource
constraints, divide the total number of non-.M units used on each side by 3
(3 is the total number of non-.M units available on each side).

Based on non-.M unit resources in Table 6-16, the minimum iteration inter-
val for the lIR filter is 2 because the total non-.M units on the Asideis5 (5 + 3
is greater than 1 so you round up to the next whole number). The B side uses
only three non-.M units, so this does not affect the minimum iteration interval,
and no other unit is used more than twice.

Table 6-16. Resource Table for IIR Filter

(a) A side (b) B side
Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit
M1 2 MPYs 2 M2 MPY 1
S1 B 1 .S2 SHR 1
.D1 2 LDHs 2 .D2 STH 1
.L1,.S1,0r.D1 ADD & SUB 2 .L2 or.S2,.D2 ADD 1
Total non-.M units 5 Total non-.M units 3

However, the IIR has a data dependency constraint defined by its loop carry
path. Figure 6—15 shows that if you schedule LDH yi on cycle 0O:

[ The earliest you can schedule MPY p2 is on cycle 5.
[J The earliest you can schedule ADD sl is on cycle 7.
(1 SHRyi+1 must be on cycle 8 and STH on cycle 9.

] Because the LDH must wait for the STH to be issued, the earliest the the
second iteration can begin is cycle 10.

To determine the minimum loop carry path, add all of the numbers along the
loop paths in the dependency graph. This means that this loop carry path is
105+2+1+1+1).
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Although the minimum iteration interval is the greater of the resource limits and
data dependency constraints, an interval of 10 seems slow. Figure 6-16
shows how to improve the performance.

6.6.4.1 Drawing a New Dependency Graph

Figure 6—16 shows a new graph with a loop carry path of 4 (2 +1 + 1). because
the MPY p2instruction can read yi+1 while itis still in a register, you can reduce
the loop carry path by six cycles. LDH yiis no longer in the graph. Instead, you
can issue LDH y[0] once outside the loop. In every iteration after that, the y+1
values written by the SHR instruction are valid y inputs to the MPY instruction.

Figure 6-16. Dependency Graph of IR Filter (With Smaller Loop Carry)
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6.6.4.2 New 'Cé6x Instructions (Inner Loop)

Example 6—39 shows the new linear assembly from the graph in Figure 6-16,
where LDH yi was removed. The one variable y that is read and written is yi
for the MPY p2 instruction and yi+1 for the SHR and STH instructions.

Example 6—39. Linear Assembly for IIR Inner Loop With Reduced Loop Carry Path

[cntr]B

LDH
MPY
LDH

MPY
ADD
MPY
ADD
SHR
STH

[entr]SUB

*Xptr++,Xi s Xi+1

¢1,xi,p0 ccl*xi

*xptr,xi+1 s Xi+1

c2xi+1,pl ;Cc2 *Xi+l

p0,p1,s0 ;Cl*xi+c2*xi+l
c3,y,p2 ; €3 *yi

s0,p2,s1 ;Cl*xi+c2*xi+l+c3*yi
s1,15)y ;yitl

Y, *yptr++ ; store yi+1
cntr,1,cntr  ; decrement loop counter
LOOP ; branch to loop

6.6.5 Linear Assembly Resource Allocation

Example 6-40 shows the same linear assembly instructions as those in
Example 6-39 with the functional units and registers assigned.

Example 6—40. Linear Assembly for IIR Inner Loop (With Allocated Resources)

LDH
MPY
LDH
MPY
ADD
MPY
ADD
SHR
STH

[A1] SUB

[A1] B

.D1 *Ad++ A2 ; Xi+l
M1 A6,A2,A5 ;cl*xi
.D1 *A4,A3 s Xi+l
.M1X  B6,A3,A7 ;G2 * i+l
L1 A5,A7,A9 ; €1 * i+ c2 * xi+l
.M2X  A8,B2,B3 ; €3 *yi
.L2X  B3,A9,B5 ;Cl*xi+c2*xi+l+c3*yi
.S2 B5,15,B2 ;yi+l
.D2 B2,*B4++ ; store yi+1
L1 Al,1,A1 ; decrement loop counter
S1 LOOP ; branch to loop
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6.6.6 Modulo Iteration Interval Scheduling
Table 6—17 shows the modulo iteration interval table for the IR filter. The SHR

instruction on cycle 10 finishes in time for the MPY p2 instruction from the next
iteration to read its result on cycle 11.

Table 6-17. Modulo Iteration Interval Table for IR (4-Cycle Loop)

Part Il

Unit/Cycle 0 4 8,12, 16, ... || Unit/Cycle 1 5 9, 13,17, ...
. * ** . * *k
D1 LDH xi LDH xi LDH xi D1 LDHXI*+1 | pHxi+1 | LDH ci+1
.D2 ADD sO .D2
*
M1 M1 MPY pO MPY pO
M2 M2
*
L1 L1 SUB cntr SUB cntr
L2 L2 ADD s1
S S
.S2 .S2
1X 1X
2X 2X ADD sl
Unit/Cycle 2 6 10, 14, 18, ... || Unit/Cycle 3 7 11, 15, 19, ...
.D1 .D1
.D2 D2 STH yi+1
*
M1 MPY p1 MPY pl1 M1
*
M2 M2 MPY p2 MPY p2
L1 L1
L2 L2
*
.S1 B LOOP B LOOP .S1
.S2 SHR yi+1 .S2
*
X MPY p1 MPY pl1 X
*
2X 2X MPY p2 MPY p2
Note:  The asterisks indicate the iteration of the loop.
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6.6.7 Using the Assembly Optimizer for the IIR Filter

Example 6—41 shows the linear assembly code to perform the IIR filter. Once
again, you can use this code as input to the assembly optimizer to create a soft-
ware-pipelined loop instead of scheduling this by hand.

Example 6—41. Linear Assembly for IIR Filter

.global _iir
_iir:.cproc x,y, cl,c2,c3
.reg xi, xil, yil
.reg po, p1, p2, sO, s1, cntr
MVK 100,cntr ; entr = 100
LDH .D2 *y++yil ;yitl
LOOP: .trip 100
LDH D1 *x++xi DX
MPY .M1 c1,xi,p0 ; €1 * Xi
LDH .D1 *xxil s Xi+l
MPY .M1X c2,xil,pl i C2 * Xi+1l
ADD .L1 pO,p1,s0 ;cl*xi+c2*xi+l
MPY .M2X c3,yil,p2 ; C3*yi
ADD .L2X s0,p2,s1 ; CL*Xi+c2 * xi+1l + c3 *yi
SHR .S2 s1,15yil ;yi+l
STH .D2 yil*y++ ; store yi+1
[cntr] SUB .L1 cntr,1,cntr ; decrement loop counter
[cntr] B .S1 LOOP ; branch to loop
.endproc

Optimizing Assembly Code via Linear Assembly
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6.6.8 Final Assembly

Example 6—42 shows the final assembly for the IIR filter. With one load of y[0]
outside the loop, no other loads from the y array are needed. Example 6—-42
requires 408 cycles: (4 x100) + 8.

Part Il

Example 6—42. Assembly Code for IIR Filter

LDH .D1 *Ad++ A2 X
LDH .D1 *A4,A3 s Xi+1
LDH .D2 *B4++,B2 ; load y[0] outside of loop
MVK S1 100,A1 ; set up loop counter
LDH .D1 *Ad++,A2 X
[Al] SuB L1 Al,1,A1 ; decrement loop counter
Il MPY M1 A6,A2,A5 ; c1 * Xi
Il LDH .D1 *A4,A3 7 xi+l
MPY .M1X  B6,A3,A7 ; €2 * i+l
[I[Al] B .S1 LOOP ; branch to loop
MPY .M2X  A8,B2,B3 ; C3*yi
LOOP:
ADD L1 A5,A7,A9 ; €1 *Xi+c2*xi+l
Il LDH .D1 *Ad++ A2 ¥ Xi
ADD .L2X B3,A9,B5 ;CL*Xi+c2*xi+l +c3*yi
|[[A1] SUB L1 Al1,1,A1 ;* decrement loop counter
Il MPY M1 A6,A2,A5 ¥ cl*xi
Il LDH .D1 *A4,A3 X+l
SHR .S2 B5,15,B2 ;yi+l
Il MPY .M1X  B6,A3,A7 ¥ c2 * xi+l
|[[A1] B S1 LOOP ;* branch to loop
STH .D2 B2,*B4++ ; store yi+1
Il MPY .M2X  A8,B2,B3 *C3*yi
; Branch occurs here
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6.7 If-Then-Else Statements in a Loop

If-then-else statements in C cause certain instructions to execute when the if
condition is true and other instructions to execute when it is false. One way to
accomplish this in linear assembly code is with conditional instructions. be-
cause all 'C6x instructions can be conditional on one of five general-purpose
registers, conditional instructions can handle both the true and false cases of
the if-then-else C statement.

6.7.1 If-Then-Else C Code

Example 6—43 contains a loop with an if-then-else statement. You either add
a[i] to sum or subtract a[i] from sum.

Example 6—43. If-Then-Else C Code

int if_then(short a[], int codeword, int mask, short theta)
{
int i,sum, cond;
sum = 0;
for (i=0; i< 32; i++){
cond = codeword & mask;
if (theta == !(!(cond)))
sum += a[i];
else
sum —= a[i];
mask = mask << 1;
}
return(sum);
}

Branching is one way to execute the if-then-else statement: branch to the ADD
when the if statement is true and branch to the SUB when the if statement is
false. However, because each branch has five delay slots, this method
requires additional cycles. Furthermore, branching within the loop makes soft-
ware pipelining almost impossible.

Using conditional instructions, on the other hand, eliminates the need to
branch to the appropriate piece of code after checking whether the condition
is true or false. Simply program both the ADD and SUB as usual, but make
them conditional on the zero and nonzero values of a condition register. This
method also allows you to software pipeline the loop and achieve much better
performance than you would with branching.
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6.7.2 Translating C Code to Linear Assembly

Example 6—44 shows the linear assembly instructions needed to execute in-
ner loop of the C code in Example 6—43.

Example 6—44. Linear Assembly for If-Then-Else Inner Loop

AND codeword,mask,cond ; cond = codeword & mask
[cond]MVK 1,cond ; 1(!(cond))

CMPEQ theta,cond,if ; (theta == !(!(cond)))

LDH *aptr++,ai ; ali]
[ifl ADD sum,ai,sum ; sum += a[i]
[lif] SUB sum,ai,sum ; sum —= a[i

SHL mask,1,mask ; mask = mask << 1;
[entr]ADD —1,cntr,cntr ; decrement counter
[cntr]B LOOP ; for LOOP

CMPEQ s used to create IF. The ADD is conditional when IF is nonzero (corre-
sponds to then); the SUB is conditional when IF is O (corresponds to else).

A conditional MVK performs the !(!(cond)) C statement. If the result of the
bitwise AND is nonzero, a 1 is written into cond; if the result of the AND is 0,
cond remains at 0.

6-84



If-Then-Else Statements in a Loop

6.7.3 Drawing a Dependency Graph

Figure 6-17.

Figure 6—-17 shows the dependency graph for the if-then-else C code. This
graph illustrates the following arrangement:

[ Two nodes on the graph contain sum: one for the ADD and one for the
SUB. Because some iterations are performing an ADD and others are
performing a SUB, each of these nodes is a possible inputto the next itera-
tion of either node.

(1 The LDH ai instruction is a parent of both ADD sum and SUB sum, be-
cause both instructions read ai.

1 CMPEQfis also a parent to ADD sum and SUB sum, because both read
IF for the conditional execution.

[ The result of SHL mask is read on the next iteration by the AND cond

instruction.
Dependency Graph of If-Then-Else Code
A side B side
SHL AND
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6.7.4 Determining the Minimum lteration Interval

With nine instructions, the minimum iteration interval is at least 2, because a
maximum of eight instructions can be in parallel. Based on the way the depen-
dency graph in Figure 6-17 is split, five instructions are on the A side and four
are on the B side. Because none of the instructions are MPYs, all instructions
must go on the .S, .D, or .L units, which means you have a total of six
resources.

(1 LDH must be on a .D unit.

[0 SHL, B, and MVK must be on a .S unit.

(1 The ADDs and SUB can be on the .S, .L, or .D units.
(1 The AND can be on a .S or .L unit.

From Table 6-18, you can see that no one resource is used more than two
times, so the minimum iteration interval is still 2.

Table 6-18. Resource Table for If-Then-Else Code

(a) A side (b) B side
Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit
.M1 0 .M2 0
S1 SHL & B 2 .S2 MVK 1
.D1 LDH 1 L2 CMPEQ 1
.L1,.S1,0or.D1 ADD & SUB 2 .L2 or.S2 AND 1
.L2,.S2,0or.D2 ADD 1
Total non-.M units 5 Total non-.M units 4
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The minimum iteration interval is also affected by the total number of instruc-
tions. Because three units can perform nonmultiply operations on a given side,
a total of five instructions can be performed with a minimum iteration interval
of 2. Because only four instructions are on the B side, the minimum iteration
interval is still 2.
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6.7.5 Linear Assembly Resource Allocation

Now that the graph is split and you know the minimum iteration interval, you
can allocate functional units and registers to the instructions. You must ensure
that no resource is used more than twice.

Example 6-45 shows the linear assembly with the functional units and regis-
ters that are used in the inner loop.

Example 6—45. Linear Assembly for Full If-Then-Else Code

.global _if_then
_if_then: .cproc a, cword, mask, theta
.reg cond, if, ai, sum, cntr
MVK 32,cntr ; cntr = 32
ZERO sum ;sum=0
LOOP: .trip 32
AND .S2X cword,mask,cond ; cond = codeword & mask
[cond] MVK .S2 1,cond ; 1(!(cond))
CMPEQ L2 theta,cond,if ; (theta == !(!(cond)))
LDH .D1 *a++,ai ;afi]
[ifl ADD L1 sum,ai,sum ; sum += a[i]
[lif] sSuB .D1 sum,ai,sum ; sum —= a[i]
SHL S1 mask,1,mask ; mask = mask << 1;
[entr] ADD L2 —1,cntr,cntr ; decrement counter
[entr] B S1 LOOP ; for LOOP
return - sum
.endproc
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6.7.6 Final Assembly

Example 6—-46 shows the final assembly code after software pipelining. The
performance of this loop is 70 cycles (2 X 32 + 6).

Part Il

Example 6—46. Assembly Code for If-Then-Else

MVK .S2 32,B0 ; set up loop counter

[BO] ADD L2 -1,B0,B0 : decrement counter

[BO] ADD L2 -1,B0,B0 ; decrement counter
|I[BO] B .S1 LOOP ; for LOOP
|l LDH .D1 *Ad++ A5 ; alil

SHL S1 A6,1,A6 ; mask = mask << 1;

Il AND .S2X  B4,A6,B2 ; cond = codeword & mask

[B2] MVK .S2 1,B2 ; 1(!(cond))
|[[BO] ADD L2 -1,B0,B0 ; decrement counter
|I[BO] B .S1 LOOP ;* for LOOP
|l LDH .D1 *Ad++ A5 * ali]

CMPEQ .L2 B6,B2,B1 ; (theta == 1(!(cond)))

|l SHL .S1 A6,1,A6 *mask = mask << 1;
|l AND .S2X  B4,A6,B2 ;* cond = codeword & mask
Il ZERO L1 A7 ; zero out accumulator
LOOP:

[BO] ADD L2 -1,B0,B0 ; decrement counter
[I[B2] MVK .S2 1,B2 ;*1(!(cond))
|I[BO] B .S1 LOOP ;** for LOOP
Il LDH .D1 *Ad++, A5 7 ali]

[B1] ADD L1 A7,A5,A7 ; sum += a[i]
[['B1]SuUB .D1 A7,A5,A7 ; sum —= a[i]
Il CMPEQ .L2 B6,B2,B1 ;¥ (theta == I(!{(cond)))
Il SHL .S1 A6,1,A6 ;** mask = mask << 1;
|l AND .S2X  B4,A6,B2 ;** cond = codeword & mask

; Branch occurs here
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If-Then-Else Statements in a Loop

You can improve the performance of the code in Example 6—46 if you know
that the loop countis at least 3. If the loop count is at least 3, remove the decre-
ment counter instructions outside the loop and put the MVK (for setting up the
loop counter) in parallel with the first branch. These two changes save two

cycles at the beginning of the loop prolog.

The first two branches are now unconditional, because the loop count is at
least 3 and you know that the first two branches must execute. To account for
the removal of the three decrement-loop-counter instructions, set the loop
counter to 3 fewer than the actual number of times you want the loop to
execute: in this case, 29 (32 - 3).

Example 6—47. Assembly Code for If-Then-Else With Loop Count Greater Than 3

B .S1
I LDH .D1
I MVK .82
SHL S
I AND 82X
[B2] MVK  .S2
I B S1
| LDH .D1
CMPEQ .L2
| SHL S1
I AND .S2X
I ZERO L1
LOOP:

[BO] ADD L2
B2 MVK  .S2
[BO] B S1
I LDH  .D1

[B1] ADD L1

lB1]SUB  .D1

I CMPEQ .L2
I SHL  .S1

I AND  .S2X

LOOP
*Ad++,A5
29,80

A6,1,A6
B4,A6,B2

1,B2
LOOP
“Ad++,A5

B6,B2,B1
A6,1,A6
B4,A6,B2
A7

-1,B0,B0

1,B2

LOOP
*Ad++,A5

A7,A5A7

A7,A5A7
B6,B2,B1

A6,1,A6
B4,A6,B2

; Branch occurs here

; for LOOP
; ali]

; set up loop counter

: mask = mask << 1;
: cond = codeword & mask

; I(!(cond))
;* for LOOP
> alll

; (theta == !(!(cond)))
*mask = mask << 1;
* cond = codeword & mask
; zero out accumulator

; decrement counter
;¥ 1(!(cond))
** for LOOP
;** a[|]

; sum += ali]

; sum —= a|i]
;¥ (theta == !(!(cond)))
;** mask = mask << 1;

** cond = codeword & mask

Example 6—-47 shows the improved loop with a cycle count of 68 (2 x 32 + 4).
Table 6—19 compares the performance of Example 6—46 and Example 6—47.

Optimizing Assembly Code via Linear Assembly
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Table 6-19. Comparison of If-Then-Else Code Examples

Code Example Cycles Cycle Count
Example 6-46 If-then-else assembly code (2 x32)+6 70
Example 6-47 If-then-else assembly code with loop count greaterthan3 (2 x 32) +4 68
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6.8 Loop Unrolling

Even though the performance of the previous example is good, it can be im-
proved. When resources are not fully used, you can improve performance by
unrolling the loop. In Example 6—48, only nine instructions execute every two
cycles. If you unroll the loop and analyze the new minimum iteration interval,
you have room to add instructions. A minimum iteration interval of 3 provides
a 25% improvement in throughput: three cycles to do two iterations, rather
than the four cycles required in Example 6-47.

6.8.1 Unrolled If-Then-Else C Code

Example 6-48 shows the unrolled version of the if-then-else C code in
Example 6—-43 on page 6-83.

Example 6—48. If-Then-Else C Code (Unrolled)

int unrolled_if_then(short af], int codeword, int mask, short theta)

{

inti,sum, cond;

sum = 0;

for (i=0; i< 32; i+=2){
cond = codeword & mask;
if (theta == !(!(cond)))

sum += a[i];
else
sum —= a[il;

mask = mask << 1;

cond = codeword & mask;
if (theta == !(!(cond)))
sum += afi+1];
else
sum —= a[i+1];
mask = mask << 1;

return(sum);

}
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6.8.2 Translating C Code to Linear Assembly

Example 6—49 shows the unrolled inner loop with 16 instructions and the
possibility of achieving a loop with a minimum iteration interval of 3.

Example 6—49. Linear Assembly for Unrolled If-Then-Else Inner Loop

AND codeword,maski,condi ; condi = codeword & maski
[condi] MVK 1,condi ; 1(!(condi))
CMPEQ theta,condi,ifi ; (theta == !(!(condi)))
LDH *aptr++,ai ; alil
[ifi]i ADD sumi,ai,sumi ; sum += ali]
[lifi] SuUB sumi,ai,sumi ; sum —= a[i]
SHL maski,1,maski+1 ; maski+1 = maski << 1;
AND codeword,maski+1,condi+1 ; condi+1 = codeword & maski+1
[condi+1]MVK 1,condi+1 ; 1(!(condi+1))
CMPEQ theta,condi+1,ifi+1 ; (theta == !(!(condi+1)))
LDH *aptr++,ai+1 ; afi+]
[ifi+1] ADD sumi+1,ai+1,sumi+1 ; sum += a[i+1]
[lifi+1] SUB sumi+1,ai+1,sumi+1 ; sum —= a[i+1]
SHL maski+1,1,maski ; maski = maski+1 << 1;
[entr] ADD —1,cntr,cntr ; decrement counter
[entr] B LOOP ; for LOOP
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6.8.3 Drawing a Dependency Graph

Although there are numerous ways to split the dependency graph, the main
goal is to achieve a minimum iteration interval of 3 and meet these conditions:

J You cannot have more than nine non-.M instructions on either side.
1 Only three non-.M instructions can execute per cycle.

Figure 6—18 shows the dependency graph for the unrolled if-then-else code.
Nine instructions are on the A side, and seven instructions are on the B side.

Figure 6-18. Dependency Graph of If-Then-Else Code (Unrolled)
A side

B side
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6.8.4 Determining the Minimum lteration Interval

With 16 instructions, the minimum iteration interval is at least 3 because a
maximum of six instructions can be in parallel with the following allocation
possibilities:

[ LDH must be on a .D unit.

(4 SHL, B, and MVK must be on a .S unit.

(0 The ADDs and SUB can be ona .S, .L, or .D unit.
[ The AND can be on a .S or .L unit.

From Table 6-20, you can see that no one resource is used more than three
times so that the minimum iteration interval is still 3.

Checking the total number of non-.M instructions on each side shows that a
total of nine instructions can be performed with the minimum iteration interval
of 3. because only seven non-.M instructions are on the B side, the minimum
iteration interval is still 3.

Table 6-20. Resource Table for Unrolled If-Then-Else Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit
M1 0 .M2 0
S1 MVK and 2 SHLs 3 .S2 MVK and B 2
.D1 2 LDHs 2 L2 CMPEQ 1

L1 CMPEQ 1 .L2 pr.S2 AND 1
.L1or.S1 AND 1 .L2,.S2,0or.D2 SUB and 2 ADDs 3
.L1,.S1,0or.D1 ADD and SUB 2

Total non-.M units 9 Total non-.M units 7

6.8.5 Linear Assembly Resource Allocation
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Now that the graph is split and you know the minimum iteration interval, you
can allocate functional units and registers to the instructions. You must ensure
no resource is used more than three times.

Example 6-50 shows the linear assembly code with the functional units and
registers.
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Example 6-50. Linear Assembly for Full Unrolled If-Then-Else Code

.global _unrolled_if_then
_unrolled_if_then: .cproc a, cword, mask, theta

.reg  cword, mask, theta, ifi, ifi1, a, ai, ail, cntr
.reg  cdi, cdil, sumi, sumil, sum

MV Ad a ; C callable register for 1st operand
MV B4,cword ; C callable register for 2nd operand
MV A6,mask ; C callable register for 3rd operand
MV B6,theta ; C callable register for 4th operand
MVK 16,cntr ; cntr = 32/2
ZERO  sumi ;sumi=0
ZERO  sumil ;sumi+1 =0
LOOP: .trip 32
AND .L1X cword,mask,cdi ; cdi = codeword & maski
[cdi] MVK .S1 1,cdi ; 1(1(cdi))
CMPEQ .L1X theta,cdi,ifi ; (theta ==!(I(cdi)))
LDH .D1 *a++,ai ;afi]
[if] ADD .L1  sumi,ai,sumi ; sum += ali]
[lifif SuB .D1 sumi,ai,sumi ; sum —= a[i]
SHL .S1 mask,1,mask ; maski+1 = maski << 1;

AND .L2X cword,mask,cdil ; cdi+1 = codeword & maski+1

[cdil] MVK .52 1,cdil ; 1(Y(cdi+1))
CMPEQ .L2 theta,cdil,ifil ; (theta == !(!(cdi+1)))
LDH .D1 *a++,ail ; afi+l]

[ifil] ADD .L2 sumil,ail,sumil ; sum += a[i+1]
[lifil] SuUB .D2 sumil,ail,sumil ; sum —= afi+1]

SHL .S1 mask,1,mask ; maski = maski+1 << 1;
[entr] ADD .D2 —1,cntr,cntr ; decrement counter
[entr] B .S2 LOOP ; for LOOP
ADD sumi,sumil,sum ; Add sumi and sumi+1 for ret value
.return sum
.endproc

Optimizing Assembly Code via Linear Assembly
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6.8.6 Final Assembly

Example 6-51 shows the final assembly code after software pipelining. The

Part Il

cycle count of this loop is now 53: (3x16) + 5.

Example 6-51. Assembly Code for Unrolled If-Then-Else

MVK .S2 16,B0 ; set up loop counter
LDH .D1 *Ad++ A5 ; ali]
|[[BO] ADD .D2 -1,B0,B0 ; decrement counter
LDH .D1 *Ad++,B5 ; afi+1]
|[[BO] B .S2 LOOP ; for LOOP
|[[BO] ADD .D2 -1,B0,B0 ; decrement counter
|l SHL .S1 A6,1,A6 ; maski+1 = maski << 1;
Il AND .L1X B4,A6,A2 ; condi = codeword & maski
[A2] MVK .S1 1,A2 ; 1(!(condi))
|l AND .L2X B4,A6,B2 ; condi+1 = codeword & maski+1
|l ZERO L1 A7 ; zero accumulator
[B2] MVK .S2 1,B2 ; 1(!(condi+1))
Il CMPEQ .L1X B6,A2,Al ; (theta == I(!(condi)))
|l SHL .S1 A6,1,A6 ; maski = maski+1 << 1;
Il LDH .D1 *Ad++ A5 *ali]
|l ZERO L2 B7 ; Zzero accumulator
LOOP:
CMPEQ .L2 B6,B2,B1 ; (theta == I(!(condi+1)))
|[[BO] ADD .D2 -1,B0,B0 ; decrement counter
Il LDH .D1 *Ad4++ B5 *afi+l]
|[[BO] B .S2 LOOP ;* for LOOP
|l SHL .S1 A6,1,A6 * maski+1 = maski << 1;
|l AND .L1X B4,A6,A2 * condi = codeword & maski
[A1l] ADD L1 A7,A5,A7 ; sum += ali]
[I[['A1]SUB .D1 A7,A5,A7 ; sum —= a[i]
[I[A2] MVK S1 1,A2 ;* 1(I(condi))
Il AND .L2X B4,A6,B2 * condi+1 = codeword & maski+1
[B1] ADD L2 B7,B5,B7 ; sum += afi+1]
[I['B1]SuB .D2 B7,B5,B7 ; sum —= afi+1]
[I[B2] MVK .82 1,B2 ;*1(!(condi+1))
Il CMPEQ .L1X B6,A2,Al ;¥ (theta == !(!(condi)))
|l SHL .S1 A6,1,A6 * maski = maski+l << 1;
Il LDH .D1 *Ad++ A5 i)
; Branch occurs here
ADD L1X A7,B7,A4 ; move to return register
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6.8.7 Comparing Performance

Table 6-21 compares the performance of all versions of the if-then-else code

examples.
Table 6-21. Comparison of If-Then-Else Code Examples
Code Example Cycles Cycle Count
Example 6—46 If-then-else assembly code (2x32)+6 70
Example 6—47 If-then-else assembly code with loop count greaterthan3 (2 x 32) +4 68
Example 6-51 Unrolled if-then-else assembly code (3x 16)+5 53
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6.9 Live-Too-Long Issues

When the result of a parent instruction is live longer than the minimum iteration
interval of a loop, you have a live-too-long problem. Because each instruction
executes every iteration interval cycle, the next iteration of that parent over-
writes the register with a new value before the child canread it. Section 6.5.6.1,
Resource Confilicts, on page 6-61 showed how to solve this problem simply
by moving the parent to a later cycle. This is not always a valid solution.

6.9.1 C Code With Live-Too-Long Problem

Example 6-52 shows C code with a live-too-long problem that cannot be
solved by rescheduling the parent instruction. Although it is not obvious from
the C code, the dependency graphin Figure 6—19 on page 6-100 shows a split-
Join path that causes this live-too-long problem.

Example 6-52. Live-Too-Long C Code

int live_long(short a[],short b[],short c, short d, short e)
{
inti,sumO,sum1,sum,a0,a2,a3,b0,b2,b3;
short al,bl;
sumO = 0;
suml = 0;
for(i=0; i<100; i++){
a0 =afi] *c;
= al=a0>>15;
T a2=al*d;
6‘3 a3 = a2+ ao0;
sumO += a3;
b0 =bl[i] * c;
bl =b0 >>15;
b2 =bl*e;
b3 = b2 + bO;
suml +=b3;
}
sum = sumO + sum1;
return(sum);
}
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6.9.2 Translating C Code to Linear Assembly

Example 6-53 shows the assembly instructions that execute the inner loop in
Example 6-52.

Example 6-53. Linear Assembly for Live-Too-Long Inner Loop

LDH *aptr++,ai ; load ai from memory

LDH *bptr++,bi ; load bi from memory

MPY ai,c,a0 ;a0=ai*c

SHR a0,15,al ;al=a0>>15

MPY al,d,a2 ;a2=al*d

ADD a2,a0,a3 ;a3 =a2+al

ADD sum0,a3,sum0 ; sumO += a3

MPY bi,c,b0 ;b0 =bhi*c

SHR b0,15,b1 1 bl =b0>>15

MPY bl,e,b2 b2=bl*e

ADD b2,b0,b3 ;b3 =b2 + b0

ADD suml,b3,suml ; suml += b3
[cntr]SUB  cntr,1,cntr ; decrement loop counter
[entr]B LOOP ; branch to loop

6.9.3 Drawing a Dependency Graph

Figure 6-19 shows the dependency graph for the live-too-long code. This
algorithm includes three separate and independent graphs. Two of the inde-
pendent graphs have split-join paths: from a0 to a3 and from b0 to b3.
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Figure 6-19. Dependency Graph of Live-Too-Long Code

A side
LDH

Split-join path
Split-join path

MPY
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6.9.4 Determining the Minimum Iteration Interval

Table 6—22 shows the functional unit resources for the loop. Based on the re-
source usage, the minimum iteration interval is 2 for the following reasons:

[ No specific resource is used more than twice, implying a minimum itera-
tion interval of 2.

[J Atotal of five non-.M units on each side also implies a minimum iteration
interval of 2, because three non-.M units can be used on a side during each
cycle.

Table 6-22. Resource Table for Live-Too-Long Code

(a) A side (b) B side
Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit
M1 1 .M2 MPY 1
S1 B and SHR 2 .S2 SHR 1
.D1 1 .D2 LDH 1
.L1,.S1,or.D1 2 ADDs 2 .L2,.S2,0or.D2 2 ADDs and SUB 3
Total non-.M units 5 Total non-.M units 5

However, the minimum iteration interval is determined by both resources and
data dependency. A loop carry path determined the minimum iteration interval
of the lIR filter in section 6.6, Loop Carry Paths, on page 6-74. In this example,
a live-too-long problem determines the minimum iteration interval.

6.9.4.1 Split-Join-Path Problems

In Figure 6-19, the two split-join paths from a0 to a3 and from b0 to b3 create
the live-too-long problem. Because the ADD a3 instruction cannot be sched-
uled untilthe SHR al and MPY a2 instructions finish, a0 must be live for atleast
four cycles. For example:

1 IfMPY a0is scheduled on cycle 5, then the earliest SHR al can be sched-
uled is cycle 7.

[J The earliest MPY a2 can be scheduled is cycle 8.

[J The earliest ADD a3 can be scheduled is cycle 10.

Optimizing Assembly Code via Linear Assembly 6-101

Part 1l



Part Il

Live-Too-Long Issues

Because a0 is written at the end of cycle 6, it must be live from cycle 7 to
cycle 10, or four cycles. No value can be live longer than the minimum iteration
interval, because the next iteration of the loop will overwrite that value before
the current iteration can read the value. Therefore, if the value has to be live
for four cycles, the minimum iteration interval must be at least 4. A minimum
iteration interval of 4 means that the loop executes at half the performance that
it could based on available resources.

6.9.4.2 Unrolling the Loop

One way to solve this problem is to unroll the loop, so that you are doing twice
as much work in each iteration. After unrolling, the minimum iteration interval
is 4, based on both the resources and the data dependencies of the split-join
path. Although unrolling the loop allows you to achieve the highest possible
loop throughput, unrolling the loop does increase the code size.

6.9.4.3 Inserting Moves

Another solution to the live-too-long problem is to break up the lifetime of a0
and b0 by inserting move (MV) instructions. The MV instruction breaks up the
left path of the split-join path into two smaller pieces.

6.9.4.4 Drawing a New Dependency Graph
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Figure 6—-20 shows the new dependency graph with the MV instructions. Now
the left paths of the split-join paths are broken into two pieces. Each value, a0
and a0’, can be live for minimum iteration interval cycles. If MPY a0 is sched-
uled on cycle 5 and ADD a3 is scheduled on cycle 10, you can achieve a mini-
mum iteration interval of 2 by scheduling MV a0’ on cycle 8. Then a0 is live on
cycles 7 and 8, and a0’ is live on cycles 9 and 10. Because no values are live
more than two cycles, the minimum iteration interval for this graph is 2.



Live-Too-Long Issues

Figure 6-20. Dependency Graph of Live-Too-Long Code (Split-Join Path Resolved)

A side B side
LDH LDH
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MPY MPY
2 2
2 SHR 2 SHR
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6.9.5 Linear Assembly Resource Allocation

Example 6-54 shows the linear assembly code with the functional units as-
signed. The choice of units for the ADDs and SUB is flexible and represents
one of a number of possibilities. One goal is to ensure that no functional unit
is used more than the minimum iteration interval, or two times.

The two 2X paths and one 1X path are required because the values c, d, and
e reside on the side opposite from the instruction that is reading them. If these
values had created a bottleneck of resources and caused the minimum itera-
tion interval to increase, ¢, d, and e could have been loaded into the opposite
register file outside the loop to eliminate the cross path.
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Example 6-54. Linear Assembly for Full Live-Too-Long Code

LOOP:

[entr] B

.global _live_long

_live_long: .cproc a, b,c,d, e

.reg  ai, bi, sum0, sumi, sum

reg alOp,a_0,a l,a 2,a 3,b 0,bOp,b_1,b 2,b 3, cntr

MVK 100,cntr

ZERO  sumO
ZERO suml
.trip 100

LDH .D1 *a++,ai
LDH .D2 *b++,bi
MPY M1 ai,c,a_ 0

SHR S1 al0,5a1

MPY M1X a_lda?
MV .D1 a_0,a0p

ADD L1 a_2,a0p,a_3
ADD L1 sumO,a_3,sum0

MPY  .M2X bicb 0

SHR .S2 Db 015b 1

MPY  .M2X b _leb 2
MV D2 b_0,bOp

ADD L2 b_2,bOp,b_3
ADD L2 suml,b_3,suml

[entr] SUB .S2 cntr,1,cntr

.S1 LOOP
ADD sumO,sumi,sum
.return sum

.endproc

;cntr =100
;sum0=0
;suml1=0

; load ai from memory
; load bi from memory
;a0d=ai*c
;al=a0>>15
;a2=al*d
; save a0 across iterations
;a3=a2+al
; sum0 += a3
; b0 = bi * ci
: bl =b0>>15
b2=bl*e
; save b0 across iterations
;b3 =b2 + b0
;suml += b3

; decrement loop counter
; branch to loop

: Add sumi and sumi+1 for ret value

6-104




Live-Too-Long Issues

6.9.6 Final Assembly With Move Instructions

Example 6-55 shows the final assembly code after software pipelining. The
performance of this loop is 212 cycles (2 X100 + 11 + 1).

Example 6-55. Assembly Code for Live-Too-Long With Move Instructions

LDH  .D1  *Ad++A0
I LDH  .D2  *B4++BO

MVK ~ .S2  100,B2

LDH  .D1  *Ad++A0
I LDH  .D2  *B4++BO

ZERO .S1 Al
I ZERO .S2 Bl

LDH  .D1  *Ad++A0
I LDH  .D2  *B4++BO
[B2) SUB  .S2  B2,1,B2

MPY M1  AO,A6A3
I MPY  .M2X B0,A6,B10
I LDH  .D1  *Ad++A0
I LDH  .D2  *B4++BO
[B2] SUB  .S2  B2,1,B2
I[B2] B S1  LOOP

SHR .S1  A3,15A5
I SHR  .S2  B10,15,B5
I MPY M1  AO,A6,A3
I MPY  .M2X B0,A6,B10
I LDH  .D1  *Ad4++A0
I LDH  .D2  *B4++BO

MPY  .M1X A5,B6,A7
I MV Dl A3A2
I MPY  .M2X B5,A8,B7
I MV D2  B10,B8
[B2] SUB  .S2  B2,1,B2
I[B2] B S1  LOOP

SHR .S1  A3,15A5
I SHR  .S2  B10,15,B5
I MPY M1  AO,A6,A3
I MPY  .M2X B0,A6,B10
I LDH  .D1  *A4++A0
I LDH  .D2  *B4++BO

; load ai from memaory
; load bi from memory

; set up loop counter

;* load ai from memory
;* load bi from memory

; zero out accumulator
; zero out accumulator

;** load ai from memory
;** load bi from memory

; decrement loop counter

;a0=ai*c
:b0=hi*c
;*¥** load ai from memory
;*¥** load bi from memory

; decrement loop counter
; branch to loop

;al=a0>>15
; bl =b0>>15
*a0=ai*c
*b0=hi*c
;¥*** |oad ai from memory
;¥¥** Joad bi from memory

;a2=al*d
; save a0 across iterations
;b2=Dbl*e
: save b0 across iterations
;* decrement loop counter
;* branch to loop

*al=a0>>15
* bl =b0>>15
*a0=ai*c
**pb0=hi*c
;¥eexx load ai from memory
;¥eex load bi from memory

Optimizing Assembly Code via Linear Assembly
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Example 6-55. Assembly Code for Live-Too-Long With Move Instructions (Continued)

A7,A2,A9
B7,B8,B9
A5,B6,A7
A3,A2
B5,A8,B7
B10,B8

B2,1,B2
LOOP

Al1,A9,A1l
B1,B9,B1
A3,15,A5
B10,15,B5
A0,A6,A3

B0,A6,B10
*Ad++ A0
*B4++,B0

LOOP:
ADD L1
Il ADD L2
Il MPY .M1X
Il MV .D1
Il MPY .M2X
Il MV .D2
|I[B2] SUB .S2
[I[B2] B S1
ADD L1
Il ADD L2
Il SHR S1
Il SHR .52
Il MPY M1
Il MPY .M2X
Il LDH .D1
Il LDH .D2
: Branch occurs here
ADD .L1X

Al,B1,A4

*a3=a2+al
* b3 =b2+ b0
*a2=al*d
* save a0 across iterations
*pb2=bl*e
;* save b0 across iterations
;** decrement loop counter
;** branch to loop

;sumO += a3
;suml += b3
**al=a0>>15
** bl =b0>>15
M a0=ai*c
F*p0=hi*c
jeeerxk load ai from memory
jeeexkk load bi from memory

; sum =sumO + suml
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6.10 Redundant Load Elimination

Filter algorithms typically read the same value from memory multiple times and
are, therefore, prime candidates for optimization by eliminating redundant load
instructions. Rather than perform a load operation each time a particular value
is read, you can keep the value in a register and read the register multiple
times.

6.10.1 FIR Filter C Code

Example 6-56 shows C code for a simple FIR filter. There are two memory
reads (x[i+j] and h[i]) for each multiply. Because the 'C6x can perform only two
LDHs per cycle, it seems, at first glance, that only one multiply-accumulate per
cycle is possible.

Example 6-56. FIR Filter C Code

{

void fir(short x[], short h[], short y[J)

inti, j, sum;

for (j =0; j < 100; j++) {

sum = 0;
for (i=0;i<32;i++)

sum += Xx[i+j] * h[i];
y[i] = sum >> 15;

One way to optimize this situation is to perform LDWs instead of LDHSs to read
two data values at atime. Although using LDW works for the h array, the x array
presents a different problem because the 'C6x does not allow you to load
values across a word boundary.

For example, on the first outer loop (j = 0), you can read the x-array elements
(0and 1, 2 and 3, etc.) as long as elements 0 and 1 are aligned on a 4-byte
word boundary. However, the second outer loop (j = 1) requires reading x-array
elements 1 through 32. The LDW operation must load elements that are not
word-aligned (1 and 2, 3 and 4, etc.).

6.10.1.1 Redundant Loads

In order to achieve two multiply-accumulates per cycle, you must reduce the
number of LDHs. Because successive outer loops read all the same h-array
values and almost all of the same x-array values, you can eliminate the redun-
dant loads by unrolling the inner and outer loops.

For example, x[1] is needed for the first outer loop (x[j+1] with j = 0) and for the
second outer loop (x[j] with j = 1). You can use a single LDH instruction to load
this value.
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6.10.1.2 New FIR Filter C Code

Example 6-57 shows that after eliminating redundant loads, there are four
memory-read operations for every four multiply-accumulate operations. Now
the memory accesses no longer limit the performance.

Example 6-57. FIR Filter C Code With Redundant Load Elimination

void fir(short x[], short h[], short y[])
{

inti, j, sumO, sum1;
short x0,x1,h0,h1;

for (j = 0; j < 100; j+=2) {

sumoO = 0;

suml = 0;

x0 = X[i;

for (i=0; i< 32; i+=2){
X1 = x[j+i+1];
hO = h[i];

sumoO += x0 * hO;
suml +=x1 * hO;
X0 = x[j+i+2];

hl = h[i+1];
sumO +=x1 * h1;
suml +=x0 * h1;

yli] = sum0 >> 15;
y[ji+1] = suml >> 15;
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6.10.2 Translating C Code to Linear Assembly

Example 6-58 shows the linear assembly that perform the inner loop of the
FIR filter C code.

Element x0 is read by the MPY p00 before it is loaded by the LDH x0 instruc-
tion; x[j] (the first x0) is loaded outside the loop, but successive even elements
are loaded inside the loop.

Example 6-58. Linear Assembly for FIR Inner Loop

LDH .D2 *x_1++[2],x1 ; X1 = x[j+i+1]

LDH .D1 *h++[2],h0 ; h0 = hi]

MPY M1 x0,h0,p00 ; X0 * h0

MPY .M1X x1,h0,p10 ; X1 *ho

ADD L1 p00,sum0,sum0 ; sumO +=x0 * hO

ADD .L2X p10,suml,suml ;suml +=x1*hO

LDH .D1 *X++[2],x0 ; X0 = X[j+i+2]

LDH .D2 *h_1++[2],h1 ; hl =h[i+1]

MPY M2 x1,h1,p01 ;x1*hl

MPY .M2X x0,h1,pl1 ; X0 * hl

ADD .L1X p01,sum0,sum0 ;sumO0 +=x1*hl

ADD L2 pll,suml,suml :suml +=x0 * hl
[ctr] SuUB .S2 ctr,1,ctr ; decrement loop counter
[ctr] B .S2 LOOP ; branch to loop
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6.10.3 Drawing a Dependency Graph

Figure 6—21 shows the dependency graph of the FIR filter with redundant load
elimination.

Figure 6-21. Dependency Graph of FIR Filter (With Redundant Load Elimination)
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6.10.4 Determining the Minimum Iteration Interval

Table 6-23 shows that the minimum iteration interval is 2. An iteration interval
of 2 means that two multiply-accumulates are executing per cycle.

Table 6-23. Resource Table for FIR Filter Code

(a) A side (b) B side

unit(s) Instructions Total/Unit unit(s) Instructions Total/Unit
.M1 2 MPYs 2 M2 2 MPYs 2
.S1 0 .S2 B 1
.D1 2 LDHs 2 .D2 2 LDHs 2
.L1,.S1,or.D1 2 ADDs 2 .L2,.S2, .D2 2 ADDs and SUB 3
Total non-.M units 4 Total non-.M units 6

1X paths 2 2X paths 2

6.10.5 Linear Assembly Resource Allocation

Example 6-59 shows the linear assembly with functional units and registers
assigned.

Example 6-59. Linear Assembly for Full FIR Code

.global _fir
_fir: .cproc X, h,y
.reg x_1,h_1, sumO, sum1, ctr, octr
.reg p00, p01, p10, p11, x0, x1, h0, h1, rstx, rsth
ADD h,2,h_1 ; set up pointer to h[1]
MVK 50,octr ; outer loop ctr = 100/2
MVK 64,rstx ; used to rst x pointer each outer loop
MVK 64,rsth ; used to rst h pointer each outer loop
OUTLOOP:
ADD X,2,x_1 ; set up pointer to x[j+1]
SUB h_1,2,h ; set up pointer to h[0]
MVK 16,ctr ; inner loop ctr = 32/2
ZERO sumO ;sum0=0
ZERO suml ;suml=0
[octr] SUB octr,1,octr ; decrement outer loop counter
LDH .D1 *x++[2],x0 ; X0 = x[j]
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Example 6-59. Linear Assembly for Full FIR Code (Continued)

; X1 = x[j+i+1]
; h0 = hi]
;X0 * hO
:x1*h0
:sumO +=x0 * hO
;suml +=x1*ho

; X0 = X[j+i+2]

; hl = h[i+1]
:x1*hl
;X0 *hl
; sumO +=x1 * hl
:suml +=x0 * hl

; decrement loop counter

; branch to loop
; sum0 >> 15
;suml >> 15

LOOP: .trip 16
LDH .D2 *x_1++[2],x1
LDH .D1 *h++[2],h0
MPY M1 x0,h0,p00
MPY .M1X x1,h0,p10
ADD L1 p00,sum0,sum0
ADD .L2X p10,suml,suml
LDH .D1 *X++[2],x0
LDH .D2 *h_1++[2],h1
MPY .M2 x1,h1,p01
MPY .M2X x0,h1,pl1
ADD .L1X p01,sum0,sum0
ADD L2 pll,suml,suml

[ctr] SuUB .82 ctr,1,ctr

[ctr] B .S2 LOOP
SHR sum0,15,sum0
SHR suml,15,suml
STH sumo,*y++
STH suml,*y++
SUB X,IStx,x
SUB h_1,rsth,h_1

[octr] B OUTLOOP
.endproc

;Y] = sum0 >> 15
;y[i+1] = suml >> 15
; reset x pointer to x[j]
; reset h pointer to h[0]
; branch to outer loop

6.10.6 Final Assembly
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Example 6—60 shows the final assembly for the FIR filter without redundant
load instructions. At the end of the inner loop is a branch to OUTLOOP that
executes the next outer loop. The outer loop counter is 50 because iterations
jand j + 1 execute each time the inner loop is run. The inner loop counter is
16 because iterations i and i + 1 execute each inner loop iteration.

The cycle count for this nested loop is 2352 cycles: 50 (16 X 2+ 9 + 6) + 2.

Fifteen cycles are overhead for each outer loop:

[d Nine cycles execute the inner loop prolog.
[0 Six cycles execute the branch to the outer loop.

See section 6.12, Software Pipelining the Outer Loop, on page 6-128 for in-

formation on how to reduce this overhead.




Example 6—60. Final Assembly Code for FIR Filter With Redundant Load Elimination

Redundant Load Elimination

MVK

MVK
MVK

OUTLOOP:

I[A2]

1I[B2]

I
1I[B2]

I
I
1I[B2]

LDH
ADD
ADD
ADD
MVK

SUB

LDH
LDH
ZERO
ZERO

LDH
LDH

LDH
LDH

SUB
LDH
LDH

B
LDH
LDH

MPY
SUB

LDH

LDH

MPY

MPY
B

LDH

LDH

MPY
MPY
SUB
LDH
LDH

S1

S1
.S2

.D1
.L2X
.D2
.L1Xx
.S2

S1

.D1
.D2
L1
L2

.D2
.D1

.D1
.D2

.S2

.D2

.D1

.S2

.D1
.D2

M1
.S2

.D2

.D1

.M2
.M1X

.S2

.D1
.D2

.M2X
M1
.S2
.D2
.D1

50,A2

80,A3
82,B6

*Ad++[2],A0
A4,2,B5
B4,2,B4
B4,0,A5
16,82

A2,1,A2

*AB++[2] Al
*B5++[2],B1
A9
B9

*B4++[2],BO
*Ad++[2],A0

*A5++[2],Al
*B5++[2],B1

B2,1,B2
*B4++[2],BO
*Ad++[2],A0

LOOP
*A5++[2], A1
*B5++[2],B1

AO0,A1,A7
B2,1,B2

*B4++[2],B0O

*Ad++[2],A0

B1,B0,B7
B1,A1,A8
LOOP
*A5++[2] Al
*B5++[2],B1

A0,B0,B8
AO,ALA7
B2,1,B2
*B4++[2],B0
*Ad++[2], A0

; set up outer loop counter

; used to rst x ptr outer loop
; used to rst h ptr outer loop

; X0 = X[j]
; set up pointer to x[j+1]
; set up pointer to h[1]
; set up pointer to h[0]
; set up inner loop counter
; decrement outer loop counter

; h0 = h[i]

; X1 = x[j+i+1]
; zero out sumO
;zero out suml

:hl=h[i+1]
; X0 = X[j+i+2]

;* h0 = hi]
i x1 = x[j+i+1]

; decrement inner loop counter
*hl = h[i+1]
* X0 = x[j+i+2]

; branch to inner loop
;¥* h0 = hi]
7% X1 = x[j+i+1]

;X0 * hO
;* decrement inner loop counter
7 hl = h[i+1]
** X0 = x[j+i+2]

:x1*hl

;X1 *h0

;* branch to inner loop
% 0 = hi]
eyl = X[j+i+1]

;X0 * hl

(R (0]
;** decrement inner loop counter
% hl = hi+1]
P %0 = X[j+i+2]

Q @ 0o 0
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Example 6—60 Final Assembly Code for FIR Filter With Redundant Load Elimination

(Continued)
LOOP:
ADD .L2X  A8,B9,B9 ;suml +=x1*ho
I ADD L1 A7,A9,A9 : sum0 += x0 * hO
Il MPY M2 B1,B0,B7 ¥ x1*hl
|l MPY .M1X B1,A1,A8 ¥ x1*h0
[I[B2] B .S2 LOOP ;** branch to inner loop

I LDH D1 *A5++2] ALl ;** h0 = h(j]
I LDH  .D2  *B5++[2],B1 ;* x1 = x[j+i+1]

ADD  L1X B7,A9,A9 - sum0 += x1 * hl
I ADD L2  B8,B9,B9 - suml += x0 * hl
I MPY  .M2X A0,B0,B8 %0 * h1

MPY M1  AOALA7 % X0 * hO

|I[B2] SUB .S2 B2,1,B2 ;¥** decrement inner loop cntr
|l LDH .D2 *B4++[2],BO  ;**** h1l = h[i+1]
Il LDH .D1 *A4++[2[, A0 Frrr X0 = X[j+i+2]

; inner loop branch occurs here

[A2] B .S1 OUTLOOP ; branch to outer loop
Il SUB L1 A4,A3,A4 ; reset x pointer to x([j]
|l SUB L2 B4,B6,B4 ; reset h pointer to h[0]
SHR .S1 A9,15,A9 ; sum0 >> 15
Il SHR .82 B9,15,B9 :suml >> 15
STH .D1 A9,*A6++ ; Y[] = sum0 >> 15
STH .D1 B9,*A6++ ; y[j+1] = suml >> 15
NOP 2 ; branch delay slots

; outer loop branch occurs here

OO © O
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6.11 Memory Banks

The internal memory of the 'C6x family varies from device to device. See the
TMS320C62x/C67x Peripherals Reference Guide to determine the memory
blocks in your particular device. This section discusses how to write code to
avoid memory bank conflicts.

Most 'C6x devices use an interleaved memory bank scheme, as shown in
Figure 6—22. Each number in the boxes represents a byte address. A load byte
(LDB) instruction from address 0 loads byte 0 in bank 0. A load halfword (LDH)
from address 0 loads the halfword value in bytes 0 and 1, which are also in
bank 0. An LDW from address 0 loads bytes 0 through 3 in banks 0 and 1.

Because each bank is single-ported memory, only one access to each bank
is allowed per cycle. Two accesses to a single bank in a given cycle result in
a memory stall that halts all pipeline operation for one cycle, while the second
value is read from memory. Two memory operations per cycle are allowed
without any stall, as long as they do not access the same bank.

Figure 6-22. 4-Bank Interleaved Memory

8N 8N+1| |8N+2|[8N+3 8N+4|8N+5| [8N+6[8N+7

Bank O Bank 1 Bank 2 Bank 3
For devices that have more than one memory block (see Figure 6-23), an

access to bank 0 in one block does not interfere with an access to bank 0 in
another memory block, and no pipeline stall occurs.
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Figure 6-23. 4-Bank Interleaved Memory With Two Memory Blocks

Memory
block 0 0 1 2 3 4 5 6 7
8

9 10 11 12 13 14 15

8N [8N+1 8N +2[{8N+3 8N +4({8N+5 8N +6|8N+7

Bank O Bank 1 Bank 2 Bank 3

Memory 8M |8M+1 8M + 2|8M + 3 8M + 4|8M + 5 8M + 6|8M + 7
block 1

Bank 0 Bank 1 Bank 2 Bank 3

If each array in a loop resides in a separate memory block, the 2-cycle loop
in Example 6-57 on page 6-108 is sufficient. This section describes a solution
when two arrays must reside in the same memory block.

6-116




Memory Banks

6.11.1 FIR Filter Inner Loop

Example 6—61 shows the inner loop from the final assembly in Example 6—60.
The LDHs from the h array are in parallel with LDHs from the x array. If x[1] is
on an even halfword (bank 0) and h[0] is on an odd halfword (bank 1),
Example 6-61 has no memory conflicts. However, if both x[1] and h[0] are on
an even halfword in memory (bank 0) and they are in the same memaory block,
every cycle incurs a memory pipeline stall and the loop runs at half the speed.

Example 6—61. Final Assembly Code for Inner Loop of FIR Filter

LOOP:
ADD .L2X A8,B9,B9 ;suml +=x1*h0
Il ADD L1 A7,A9,A9 ; sumO +=x0 * hO
[ MPY .M2 B1,B0,B7 ¥ x1*hl
[l MPY .M1X B1,A1,A8 *x1*h0o
[I[B2] B .S2 LOOP ;** branch to inner loop
I LDH .D1 *A5++[2],Al %% N0 = hi]
I LDH .D2 *B5++[2],B1 sk ] = x[j+i+1]
ADD .L1X B7,A9,A9 ; sum0 +=x1 * hl
Il ADD .L2 B8,B9,B9 ;suml +=x0* hl
[l MPY .M2X A0,B0,B8 *¥x0*hl
[l MPY M1 AO0,A1,A7 ;¥* x0 * hO
[I[B2] SuUB .S2 B2,1,B2 ;*** decrement inner loop cntr
I LDH .D2 *B4++[2],B0 e ] = hi+1)
I LDH D1 *Ad++[2],A0 soexk 0 = x[j+i+2]

Itis not always possible to fully control how arrays are aligned, especially if one
ofthe arraysis passed into a function as a pointer and that pointer has different
alignments each time the function is called. One solution to this problem is to
write an FIR filter that avoids memory hits, regardless of the x and h array align-
ments.

If accesses to the even and odd elements of an array (h or x) are scheduled
onthe same cycle, the accesses are always on adjacent memory banks. Thus,
to write an FIR filter that never has memory hits, even and odd elements of the
same array must be scheduled on the same loop cycle.
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Inthe case of the FIR filter, scheduling the even and odd elements of the same
array on the same loop cycle cannot be done in a 2-cycle loop, as shown in
Figure 6-24. In this example, a valid 2-cycle software-pipelined loop without
memory constraints is ruled by the following constraints:

a
a
a

EI
d

LDH h0O and LDH h1 are on the same loop cycle.
LDH x0 and LDH x1 are on the same loop cycle.

MPY p00 must be scheduled three or four cycles after LDH x0, because
it must read x0 from the previous iteration of LDH x0.

All MPYs must be five or six cycles after their LDH parents.

No MPYs on the same side (A or B) can be on the same loop cycle.

Figure 6-24. Dependency Graph of FIR Filter (With Even and Odd Elements of
Each Array on Same Loop Cycle)
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B side

A side

Note:  Numbers in bold represent the cycle the instruction is scheduled on.

The scenario in Figure 6-24 almost works. All nodes satisfy the above
constraints except MPY p10. Because one parent is on cycle 1 (LDH h0) and
another on cycle 0 (LDH x1), the only cycle for MPY p10 is cycle 6. However,
another MPY on the A side is also scheduled on cycle 6 (MPY p00). Other
combinations of cycles for this graph produce similar results.



Memory Banks

6.11.2 Unrolled FIR Filter C Code

The main limitation in solving the problem in Figure 6—24 is in scheduling a 2-
cycle loop, which means that no value can be live more than two cycles. In-
creasing the iteration interval to 3 decreases performance. A better solution
is to unroll the inner loop one more time and produce a 4-cycle loop.

Example 6—62 shows the FIR filter C code after unrolling the inner loop one
more time. This solution adds to the flexibility of scheduling and allows you to
write FIR filter code that never has memory hits, regardless of array alignment
and memory block.

Example 6—62. FIR Filter C Code (Unrolled)

void fir(short x[], short h[], short y[])
{
inti, j, sumO, sum1;
short x0,x1,x2,x3,h0,h1,h2,h3;
for (j = 0; j < 100; j+=2) {
sumO = 0;
suml = 0;
X0 = x{i[;
for (i=0; i< 32; i+=4){
x1 = x[j+i+1];
hO = h[i];
sumO += x0 * hO;
suml +=x1 * hO;
X2 = X[j+i+2];
hl = h[i+1];
sumO +=x1 * h1;
suml +=x2 * h1;
x3 = X[j+i+3];
h2 = h[i+2];
sumO += x2 * h2;
suml +=x3 * h2;
X0 = X[j+i+4];
h3 = h[i+3];
sumO +=x3 * h3;
suml +=x0 * h3;
yli] = sum0 >> 15;
y[j+1] = suml >> 15;
}
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6.11.3 Translating C Code to Linear Assembly

Example 6—63. Linear Assembly for Unrolled FIR Inner Loop

Example 6—63 shows the linear assembly for the unrolled inner loop of the FIR

filter C code.

LDH *X++,X1 ; X1 = X[j+i+1]

LDH *h++,h0 ; h0 = h[i]

MPY x0,h0,p00 ; X0 * hO

MPY x1,h0,p10 ; X1 *h0

ADD p00,sum0,sumO :sumO0 +=x0 * h0

ADD p10,suml,suml ;suml +=x1*h0

LDH *X++,X2 ; X2 = X[j+i+2]

LDH *h++,h1l ; h1l = h[i+1]

MPY x1,h1,p01 :x1*hl

MPY x2,h1,pll ;X2 *hl

ADD p01,sum0,sumO :sumO0 +=x1*hl

ADD pll,suml,suml ;suml +=x2*hl

LDH *X++,X3 ; X3 = X[j+i+3]

LDH *h++,h2 ; h2 = h[i+2]

MPY x2,h2,p02 i X2 *h2

MPY x3,h2,p12 i X3 *h2

ADD p02,sum0,sumO :sumO0 +=x2 * h2

ADD pl2,suml,suml ;suml +=x3 * h2

LDH *x++,x0 ; X0 = X[j+i+4]

LDH *h++,h3 ; h3 = h[i+3]

MPY x3,h3,p03 ;X3 *h3

MPY x0,h3,p13 ; X0 * h3

ADD p03,sum0,sum0 :sumO0 +=x3 * h3

ADD pl3,suml,suml ;suml +=x0 * h3
[entr] SUB cntr,1,cntr ; decrement loop counter
[entr] B LOOP ; branch to loop
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6.11.4 Drawing a Dependency Graph

Figure 625 shows the dependency graph of the FIR filter with no memory
hits.

Figure 6-25. Dependency Graph of FIR Filter (With No Memory Hits)

A side B side

|
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6.11.5 Linear Assembly for Unrolled FIR Inner Loop With .mptr Directive

Example 6—64 shows the unrolled FIR inner loop with the .mptr directive. The
.mptr directive allows the assembly optimizer to automatically determine if two
memory operations have a bank conflict by associating memory access infor-
mation with a specific pointer register.

If the assembly optimizer determines that two memory operations have a bank
conflict, then it will not schedule them in parallel. The .mptr directive tells the
assembly optimizer that when the specified register is used as a memory point-
erin aload or store instruction, it is initialized to point at a base location + <off-
set>, and is incremented a number of times each time through the loop.

Without the .mptr directives, the loads of x1 and h0 are scheduled in parallel,
and the loads of x2 and h1l are scheduled in parallel. This results in a 50%
chance of a memory conflict on every cycle.

Example 6—64. Linear Assembly for Full Unrolled FIR Filter

.global _fir
_fir: .cproc X, h,y
.reg x_1, h_1, sumO0, sum1, ctr, octr
.reg p00, p01, p02, p03, p10, p11, p12, p13
.reg X0, x1, x2, x3, h0, h1, h2, h3, rstx, rsth
ADD h,2,h_1 ; set up pointer to h[1]
MVK 50,octr ; outer loop ctr = 100/2
MVK 64,rstx ; used to rst x pointer each outer loop
MVK 64,rsth ; used to rst h pointer each outer loop
OUTLOOP:
ADD X,2,x_1 ; set up pointer to x[j+1]
SUB h_1,2h ; set up pointer to h[0]
MVK 8,ctr ; inner loop ctr = 32/2
ZERO sumO :sum0 =0
ZERO suml ;ysuml=0
[octr] SUB octr,1,octr ; decrement outer loop counter
.mptr X, X+0
.mptr x_1, x+2
.mptr h, h+0
.mptr h_1, h+2
LDH .D2 *x++[2],x0 ; X0 = x[j]
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LOOP: .trip 8

LDH .D1 *x_1++[2],x1 ; X1 = x[j+i+1]

LDH .D1 *h++[2],h0 ; h0 = hi]

MPY .M1X x0,h0,p00 ; X0 * hO

MPY M1 x1,h0,p10 ; X1 *ho

ADD L1 p00,sum0,sum0 ; sumO +=x0 * hO

ADD .L2X p10,suml,suml ;suml +=x1*ho

LDH .D2 *X++[2],x2 ; X2 = X[j+i+2]

LDH .D2 *h_1++[2],h1 ; hl = h[i+1]

MPY .M2X x1,h1,p01 ;X1 *hl

MPY M2 x2,h1,pll ;X2 *hl

ADD L1X p01,sumO0,sumO ;sumO0 +=x1*hl

ADD L2 pll,suml,suml ;suml +=x2*hl

LDH .D1 *X_1++[2],x3 ; X3 = X[j+i+3]

LDH .D1 *h++[2],h2 ; h2 = h[i+2]

MPY .M1X x2,h2,p02 ; X2 *h2

MPY M1 x3,h2,p12 ; X3 *h2

ADD L1 p02,sum0,sum0 ; sumO += x2 * h2

ADD L2X pl2,suml,suml ;suml +=x3 *h2

LDH .D2 *x++[2],x0 ; X0 = X[j+i+4]

LDH .D2 *h_1++[2],h3 ; h3 = h[i+3]

MPY .M2X x3,h3,p03 ; X3*h3

MPY .M2 x0,h3,p13 1 X0 * h3

ADD .L1X p03,sum0,sum0 ; sumO += x3 * h3

ADD L2 p13,suml,suml ; suml += X0 * h3
[ctr] SUB .S2 ctr,1,ctr ; decrement loop counter
[ctr] B .S2 LOOP ; branch to loop

SHR sum0,15,sumO :sum0 >> 15

SHR suml,15,suml ;suml >> 15

STH sumo,*y++ ; YIil = sum0 >> 15

STH suml,*y++ s y[i+1] = suml >> 15

SUB X,Istx,X ; reset x pointer to x[j]

SUB h_1,rsth,h_1 ; reset h pointer to h[0]
[octr] B OUTLOOP ; branch to outer loop

.endproc
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6.11.6 Linear Assembly Resource Allocation

6-124

As the number of instructions in a loop increases, assigning a specific register
to every value in the loop becomes increasingly difficult. If 33 instructions in
aloop each write a value, they cannot each write to a unique register because
the 'C6x has only 32 registers. As aresult, values that are not live on the same
cycles in the loop must share registers.

For example, in a 4-cycle loop:

[ If avalue is written at the end of cycle 0 and read on cycle 2 of the loop,
it is live for two cycles (cycles 1 and 2 of the loop).

(1 Ifanothervalue is written at the end of cycle 2 and read on cycle 0 (the next
iteration) of the loop, itis also live for two cycles (cycles 3 and 0 of the loop).

Because both of these values are not live on the same cycles, they can occupy
the same register. Only after scheduling these instructions and their children
do you know that they can occupy the same register.

Register allocation is not complicated but can be tedious when done by hand.
Each value has to be analyzed for its lifetime and then appropriately combined
with other values not live on the same cycles in the loop. The assembly opti-
mizer handles this automatically after it software pipelines the loop. See the
TMS320C6x Optimizing C Compiler User’s Guide for more information.
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6.11.7 Determining the Minimum Iteration Interval

Based on Table 6—24, the minimum iteration interval for the FIR filter with no
memory hits should be 4. An iteration interval of 4 means that two multiply/ac-
cumulates still execute per cycle.

Table 6-24. Resource Table for FIR Filter Code

(a) A side (b) B side
unit(s) Instructions Total/Unit unit(s) Instructions Total/Unit
M1 4 MPYs 4 .M2 4 MPYs 4
S1 0 .S2 B 1
.D1 4 LDHs 4 .D2 4 LDHs 4
.L1,.S1,or.D1 4 ADDs 4 .L2,.S2,0or.D2 4 ADDs and SUB 5
Total non-.M units 8 Total non-.M units 10
1X paths 4 2X paths 4

6.11.8 Final Assembly

Example 6-65 shows the final assembly to the FIR filter with redundant load
elimination and no memory hits. At the end of the inner loop, there is a branch
to OUTLOORP to execute the next outer loop. The outer loop counter is set to
50 because iterations j and j+1 are executing each time the inner loop is run.
The inner loop counter is set to 8 because iterationsi,i+1,i+2,andi+ 3 are
executing each inner loop iteration.

6.11.9 Comparing Performance

The cycle count for this nested loop is 2402 cycles. There is a rather large
outer-loop overhead for executing the branch to the outer loop (6 cycles) and
the inner loop prolog (10 cycles). Section 6.12 addresses how to reduce this
overhead by software pipelining the outer loop.

Table 6-25. Compatrison of FIR Filter Code

Code Example Cycles Cycle Count

Example 6—60 FIR with redundant load elimination 50(16 X 2+9+6)+2 2352

Example 6—65 FIR with redundant load elimination and no 508 x 4+10+6)+2 2402
memory hits
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Example 6—-65. Final Assembly Code for FIR Filter With Redundant Load Elimination

and No Memory Hits

MVK

MVK
I MVK

OUTLOOP:
LDH
I ADD
I ADD
I MVK
[A2] SUB

LDH
I LDH

I ZERO
I ZERO

LDH
Il LDH

LDH
Il LDH

LDH
I LDH
B2] SuB
LDH
I LDH

LDH
Il LDH

MPY
Il MPY
Il LDH
Il LDH

[B2] B
Il MPY
Il MPY
Il LDH
Il LDH
[I[B2] SUB

ADD
Il MPY
Il MPY
Il LDH
Il LDH

.S1

S1
.S2

.D1
.L2X
.L1X
.S2

.S1

.D2
.D1
L1
L2

.D1
.D2

.D1
.D2

.D2
.D1
.S2

.D2
.D1

.D1
.D2

.M1X
.M2X
.D1
.D2

.S1
M2
M1
.D2
.D1

.S2

L1
.M2X
.M1X
.D2
.D1

50,A2

62,A3
64,810

*Ad++,B5 ; x0 = X[j]

A4,4B1

B4,2,A8

8,B2
A2,1,A2

*B1++[2],BO
*Ad++[2],A0
A9
B9

*A8++[2],B6
*B4++[2],Al

*A4++[2],A5
*B1++[2],B5

*B4++[2],A7
*A8++[2],B8
B2,1,B2

*B1++[2],BO
*Ad++[2],A0

*AB++[2],B6
*B4++[2], Al

B5,A1,A0
A0,B6,B6
*Ad++[2], A5
*B1++[2],B5

LOOP
B0,B6,B7
A0,A1,Al

*B4++[2],A7
*A8++[2],B8
B2,1,B2

AO0,A9,A9
A5,B8,B8
B0O,A7,A5

*B1++[2],BO

*Ad++[2],A0

; set up outer loop counter

; used to rst x pointer outloop
; used to rst h pointer outloop

; set up pointer to x[j+2]
; set up pointer to h[1]
; set up inner loop counter
; decrement outer loop counter

; X2 = X[j+i+2]

s X1 = x[j+i+1]
: zero out sumO
; zero out suml

;hl = h[i+1]
- hO = hi]

; X3 = X[j+i+3]
; X0 = X[j+i+4]

; h2 = h[i+2]
; h3 = h[i+3]
; decrement loop counter

* X2 = X[j+i+2]
¥ x1 = x[j+it+l]

* hl = h[i+1]
* hO = h[i]

;X0 * hO
;x1*hl
¥ X3 = x[j+i+3]
¥ X0 = x[j+i+4]

; branch to loop
X2 *hl
;X1 *h0
¥ h2 = h[i+2]
;¥ h3 = h[i+3]
;* decrement loop counter

; sumO +=x0 * hO
;X3 *h3
1 X2 *h2
X2 = X[j+i+2]
7 x1 = x[j+i+1]
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Example 6—65. Final Assembly Code for FIR Filter With Redundant Load Elimination

and No Memory Hits (Continued)

LOOP:

1I[B2]
1[B2]

ADD .L2X Al1,B9,B9 ;suml +=x1 * hO
ADD .L1X B6,A9,A9 ;sum0 +=x1 * hl
MPY M2 B5,B8,B7 ; X0 *h3
MPY M1 A5,A7,A7 i X3 *h2
LDH .D1 *A8++[2],B6 #* hl = h[i+1]
LDH D2 *B4++[2],Al #* h0 = h[i]
ADD L2 B7,B9,B9 ;suml +=x2 * hl
ADD L1 A5,A9,A9 ; sumO += x2 * h2
MPY .M1X B5,A1,A0 7*Xx0*h0
MPY .M2X A0,B6,B6 *x1*hl

LDH D1 *Ad++[2],A5 % X3 = x[j+i+3]

LDH .D2 *B1++[2],B5 % %0 = X[j+i+4]

ADD .L2X A7,B9,B9 ; suml +=x3 * h2
ADD .L1X B8,A9,A9 :sumO +=x3 * h3

B S1 LOOP ;* branch to loop
MPY .M2 B0,B6,B7 *x2*hl
MPY M1 AO0,A1,A1 *x1*h0

LDH .D2 *B4++[2],A7 2% h2 = h[i+2]

LDH .D1 *A8++[2],B8 ;¥* h3 = h[i+3]

SUB .S2 B2,1,B2 ;** decrement loop counter
ADD L2 B7,89,B9 ; suml +=x0 * h3
ADD L1 A0,A9,A9 ;¥ sumO +=x0 * hO
MPY .M2X A5,B8,B8 *x3*h3
MPY .M1X BO,A7,A5 *Xx2*h2

LDH D2 *B1++[2],BO ek y D = X[j+i+2]

LDH D1 *Ad++[2],A0 ok y ] = X[j+i+1)

; inner loop branch occurs here
B .S2 OUTLOOP ; branch to outer loop
SUB L1 A4, A3 A4 ; reset x pointer to x[j]
SUB L2 B4,810,B4 ; reset h pointer to h[0]
SUB .S1 A9,A0,A9 ; sum0 —= x0*h0 (eliminate add)
SHR .S1 A9,15,A9 ;sum0 >> 15

SHR .S2 B9,15,B9 ;suml >> 15
STH .D1 A9,*A6++ ; Y[I] = sum0 >> 15
STH .D1 B9,*A6++ ;y[i+1] = sum1 >> 15
NOP 2 ; branch delay slots

; outer loop branch occurs here
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6.12 Software Pipelining the Outer Loop

In previous examples, software pipelining has always affected the inner loop.
However, software pipelining works equally well with the outer loop in a nested
loop.

6.12.1 Unrolled FIR Filter C Code

Example 6-66 shows the FIR filter C code after unrolling the inner loop (identi-
cal to Example 6-62 on page 6-119).

Example 6—66. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])

inti, j, sumo0, sum1;
short x0,x1,x2,x3,h0,h1,h2,h3;

for (j = 0; j < 100; j+=2) {

sum0 =0;

suml =0;

X0 = x[iJ;

for (i=0; i< 32; i+=4){
x1 = x[j+i+1];
ho = h[i];
sumO += x0 * hO;
suml += x1 * hO;
X2 = X[j+i+2];
hl = h[i+1];
sumO +=x1 * h1;
suml +=x2 * h1;
x3 = X[j+i+3];
h2 = h[i+2];
sumoO +=x2 * h2;
suml +=x3 * h2;
X0 = x[j+i+4];
h3 = h[i+3];
sumO +=x3 * h3;
suml +=x0 * h3;
}

y[i] = sum0Q >> 15;

y[j+1] = suml1 >> 15;
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6.12.2 Making the Outer Loop Parallel With the Inner Loop Epilog and Prolog

The final assembly code for the FIR filter with redundant load elimination and
no memory hits (shown in Example 6—65 on page 6-126) contained 16 cycles
of overhead to call the inner loop every time: ten cycles for the loop prolog and
six cycles for the outer loop instructions and branching to the outer loop.

Most of this overhead can be reduced as follows:

[J Putthe outer loop and branch instructions in parallel with the prolog.
[J Create an epilog to the inner loop.
[J Put some outer loop instructions in parallel with the inner-loop epilog.

6.12.3 Final Assembly

Example 6—67 shows the final assembly for the FIR filter with a software-pipe-
lined outer loop. Below the inner loop (starting on page 6-131), each instruc-
tion is marked in the comments with an e, p, or o for instructions relating to epi-
log, prolog, or outer loop, respectively.

The inner loop is now only run seven times, because the eighth iteration is
done in the epilog in parallel with the prolog of the nextinner loop and the outer
loop instructions.
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Example 6—67. Final Assembly Code for FIR Filter With Redundant Load Elimination and

No Memory Hits With Outer Loop Software-Pipelined

|
lIfA2]

|
lI(B2]

MVK

STW
MVK
MVK
ADD

LDH
ADD
ADD
MVK

SUB

LDH
LDH
ZERO
ZERO

LDH
LDH

LDH
LDH

OUTLOOP:

LDH
LDH
SUB

LDH
LDH

LDH
LDH

MPY
MPY
LDH
LDH

B
MPY
MPY
LDH
LDH

SUB

.S1

.D2
S1
.S2
.L2X

.D1
.L2X
.L1X
.S2

.S1

.D2
.D1
L1
L2

.D1
.D2

.D1
.D2

.D2
.D1
.S2

.D2
.D1

.D1
.D2

.M1X
.M2X
.D1
.D2

.S1
M2
M1
.D2
.D1

.S2

50,A2

B11,*B15—
74,A3
72,B10
A6,2,B11

*Ad++,B8
A4,4B1
B4,2,A8
8,B2

A2,1,A2

*B1++[2],BO
*Ad++[2],A0
A9
B9

*A8++[2],B6
*B4++[2],Al

*Ad++[2] A5
*B1++[2],B5

*B4++[2],A7
*A8++[2],B8
B2,2,B2

*B1++[2],BO
*Ad++[2],A0

*AB++[2],B6
*B4++[2], AL

B8,A1,A0

A0,B6,B6
*A4++[2],A5
*B1++[2],B5

LOOP
B0,B6,B7
AO0,A1,A1

*B4++[2],A7
*A8++[2],B8
B2,1,B2

; set up outer loop counter

; push register
; used to rst x ptr outer loop
; used to rst h ptr outer loop
; set up pointer to y[1]

; X0 = X[j]
; set up pointer to x[j+2]
; set up pointer to h[1]
; set up inner loop counter
; decrement outer loop counter

; X2 = X[j+i+2]

; X1 = x[j+i+1]
; zero out sumO
; zero out sum1l

;hl=h[i+1]
; h0 = h[i]

; X3 = X[j+i+3]
; X0 = x[j+i+4]

; h2 = h[i+2]
; h3 = h[i+3]
; decrement loop counter

* X2 = X[j+i+2]
¥ x1 = x[j+i+1]

* hl = h[i+1]
*h0 = h[i]

;X0 * hO
;X1 *hl
¥ x3 = x[j+i+3]
¥ X0 = x[j+i+4]

; branch to loop
1 X2 *hl
;X1 *h0
;¥ h2 = h[i+2]
;*h3 = h[i+3]
;* decrement loop counter
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Example 6—67. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined (Continued)

ADD L1 A0,A9,A9
I MPY .M2X A5,B8,B8
Il MPY .M1X BO,A7,A5
Il LDH .D2 *B1++[2],BO
Il LDH .D1 *Ad4++[2],A0
LOOP:
ADD L2X A1,B9,B9
I ADD .L1X B6,A9,A9
Il MPY M2 B5,B8,B7
Il MPY M1 A5,A7,A7
I LDH .D1 *A8++[2],B6
Il LDH .D2 *B4++[2],Al
ADD L2 B7,89,B9
I ADD L1 A5,A9,A9
Il MPY .M1X B5,A1,A0
Il MPY .M2X A0,B6,B6
I LDH .D1 *Ad++[2],A5
Il LDH .D2 *B1++[2],B5
ADD .L2X A7,B9,B9
I ADD L1X B8,A9,A9
[I[B2] B S1 LOOP
Il MPY M2 B0,B6,B7
I MPY M1 AO0,A1,Al
I LDH .D2 *B4++[2],A7
Il LDH .D1 *A8++[2],B8
[I[B2] SUB .S2 B2,1,B2
ADD L2 B7,B9,B9
Il ADD L1 A0,A9,A9
Il MPY .M2X A5,B8,B8
I MPY .M1X B0,A7,A5
Il LDH .D2 *B1++[2],BO
I LDH .D1 *Ad++[2],A0
; inner loop branch occurs here
ADD .L2X A1,B9,B9
I ADD L1X B6,A9,A9
I MPY M2 B5,B8,B7
Il MPY M1 A5,A7,A7
I SUB .D1 A4,A3,A4
I SUB .D2 B4,B10,B4
[I[A2] B S1 OUTLOOP

; sumO +=x0 * hO
1 X3 *h3
1 X2 *h2
¥ x2 = X[j+i+2]
¥ x1 = x[j+i+1]

;suml +=x1*h0
;sumO0 +=x1 * hl
;X0 * h3
;X3 *h2

7 hl = h[i+1]

** h0 = hi]

;suml +=x2 * hl
; sumO +=x2 * h2
*x0 * hO
*x1*hl
% x3 = X[j+i+3]
¥ X0 = x[j+i+4]

;suml +=x3 * h2
; sumO +=x3 * h3
;* branch to loop
*x2*hl
*x1*ho
¥ h2 = h[i+2]
¥* h3 = h[i+3]
;** decrement loop counter

;suml +=x0 * h3
*sumO += x0 * hO
*x3*h3
*x2*h2
er 2 = X[j+i+2]
% x1 = x[j+i+1]

;e suml +=x1*h0

;e sum0 +=x1 * hl

;e X0 *h3

e X3 *h2

;0 reset x pointer to x([j]

;0 reset h pointer to h[0]
;0 branch to outer loop
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Example 6-67. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined (Continued)

ADD .D2 B7,B9,B9 ;esuml +=x2 *hl
Il ADD L1 A5,A9,A9 ;e sumO += x2 * h2
|l LDH .D1 *Ad++ B8 ;P X0 = x[j]
Il ADD .L2X A4,4.B1 ;0 set up pointer to x[j+2]
Il ADD .S1X B4,2,A8 ;0 set up pointer to h[1]
|l MVK .S2 8,B2 ;0 set up inner loop counter
ADD .L2X A7,B9,B9 ;e suml +=x3 * h2
I ADD L1X B8,A9,A9 ;e sum0 += x3 * h3
|l LDH .D2 *B1++[2],BO ;P X2 = X[j+i+2]
|l LDH .D1 *Ad4++[2],A0 P X1 = x[j+i+1]
[I[A2] SUB .S1 A2,1,A2 ;0 decrement outer loop counter
ADD L2 B7,B9,B9 ;e suml +=x0 * h3
Il SHR .S1 A9,15,A9 ;e sum0 >> 15
Il LDH .D1 *A8++[2],B6 ;p hl = h[i+1]
Il LDH .D2 *B4++[2],Al ;p hO = h[i]
SHR .S2 B9,15,B9 ;e sumil >> 15
|l LDH .D1 *Ad++[2],A5 ;P X3 = x[j+i+3]
Il LDH .D2 *B1++[2],B5 ;P X0 = x[j+i+4]
STH .D1 A9,*A6++[2] ;e Y[j] = sum0 >> 15
|l STH .D2 B9,*B11++[2] ;e y[j+1] =suml >> 15
Il ZERO .S1 A9 ;0 zero out sumO
Il ZERO .S2 B9 ;0 zero out sum1l
; outer loop branch occurs here

6.12.4 Comparing Performance

The improved cycle count for this loop is 2006 cycles: 50 ((7 x4) + 6 + 6) + 6. The
outer-loop overhead for this loop has been reduced from 16 to 8 (6 + 6 — 4);
the —4 represents one iteration less for the inner-loop iteration (seven instead

of eight).
Table 6-26. Compatrison of FIR Filter Code
Code Example Cycles Cycle Count
Example 6—60 FIR with redundant load elimination 50 (16 X 2+9+6)+2 2352
Example 6—65 FIR with redundant load elimination and no memory 50 (8 X 4+ 10+ 6) + 2 2402
hits
Example 6—67 FIR with redundant load elimination and no memory 50 (7 X 4+6 +6) +6 2006

hits with outer loop software-pipelined
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6.13 Outer Loop Conditionally Executed With Inner Loop

Software pipelining the outer loop improved the outer loop overhead in the
previous example from 16 cycles to 8 cycles. Executing the outer loop condi-
tionally and in parallel with the inner loop eliminates the overhead entirely.

6.13.1 Unrolled FIR Filter C Code

Example 6—68 shows the same unrolled FIR filter C code that used in the
previous example.

Example 6—68. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])
{
inti, j, sumO, sum1;
short x0,x1,x2,x3,h0,h1,h2,h3;
for (j =0; j < 100; j+=2) {
sumO = 0;
suml = 0;
x0 = x[j];
for (i=0; i< 32; i+=4){
x1 = x[j+i+1];
hO = h[i];
sumO += x0 * hO;
suml +=x1 * hO;
X2 = X[j+i+2];
hl = h[i+1];
sumO +=x1 * h1;
suml +=x2 * h1;
x3 = X[j+i+3];
h2 = h[i+2];
sumoO += x2 * h2;
suml +=x3 * h2;
X0 = x[j+i+4];
h3 = h[i+3];
sumO +=x3 * h3;
suml +=x0 * h3;
}
y[i] = sum0 >> 15;
yli+1] = suml >> 15;
}
}
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6.13.2 Translating C Code to Linear Assembly (Inner Loop)

Example 6—69 shows a list of linear assembly for the inner loop of the FIR filter
C code (identical to Example 6—63 on page 6-120).

Example 6—69. Linear Assembly for Unrolled FIR Inner Loop

Part Il

LDH *X++,X1 ; X1 = X[j+i+1]

LDH *h++,h0 ; h0 = h[i]

MPY x0,h0,p00 ; X0 * hO

MPY x1,h0,p10 ; X1 *h0

ADD p00,sum0,sumO :sumO0 +=x0 * h0

ADD p10,suml,suml ;suml +=x1*h0

LDH *X++,X2 ; X2 = X[j+i+2]

LDH *h++,h1l ; h1l = h[i+1]

MPY x1,h1,p01 :x1*hl

MPY x2,h1,pll ;X2 *hl

ADD p01,sum0,sumO :sumO0 +=x1*hl

ADD pll,suml,suml ;suml +=x2*hl

LDH *X++,X3 ; X3 = X[j+i+3]

LDH *h++,h2 ; h2 = h[i+2]

MPY x2,h2,p02 i X2 *h2

MPY x3,h2,p12 i X3 *h2

ADD p02,sum0,sumO :sumO0 +=x2 * h2

ADD pl2,suml,suml ;suml +=x3 * h2

LDH *x++,x0 ; X0 = X[j+i+4]

LDH *h++,h3 ; h3 = h[i+3]

MPY x3,h3,p03 ;X3 *h3

MPY x0,h3,p13 ; X0 * h3

ADD p03,sum0,sum0 :sumO0 +=x3 * h3

ADD pl3,suml,suml ;suml +=x0 * h3
[entr] SUB cntr,1,cntr ; decrement loop counter
[entr] B LOOP ; branch to loop
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6.13.3 Translating C Code to Linear Assembly (Outer Loop)

Example 6—70 shows the instructions that execute all of the outer loop func-
tions. All of these instructions are conditional on inner loop counters. Two
different counters are needed, because they must decrement to 0 on different
iterations.

[ The resetting of the x and h pointers is conditional on the pointer reset
counter, prc.

[ The shifting and storing of the even and odd y elements are conditional on
the store counter, sctr.

When these counters are 0, all of the instructions that are conditional on that
value execute.

(O The MVK instruction resets the pointers to 8 because after every eight
iterations of the loop, a new inner loop is completed (8 x 4 elements are
processed).

[ The pointer reset counter becomes O first to reset the load pointers, then
the store counter becomes 0 to shift and store the result.

Example 6-70. Linear Assembly for FIR Outer Loop

[sctr] SuB sctr,1,sctr ; dec store Ip cntr

['sctr] SHR sum07,15,y0 ; (sum0Q >> 15)

['sctr] SHR suml17,15,y1 ; (suml >> 15)

['sctr] STH y0,*y++[2] ; Y] = (sumO >> 15)

['sctr] STH y1,*y 1++[2] ; YIi+1] = (suml >> 15)

['sctr] MVK 4,sctr ; reset store Ip cntr

[pctr] SUB pctr,1,pctr ; dec pointer reset Ip cntr

['pctr] SUB X,rstx2,x ; reset x ptr

['pctr] SUB x_1,rstx1,x_1 ;reset x_1 ptr

['pctr] SUB h,rsth1,h ; reset h ptr

['pctr] SUB h_1,rsth2,h_1 ;reseth_1 ptr

['pctr] MVK 4,pctr ; reset pointer reset Ip cntr
6.13.4 Unrolled FIR Filter C Code

The total number of instructions to execute both the inner and outer loops is
38 (26 for the inner loop and 12 for the outer loop). A 4-cycle loop is no longer
possible. To avoid slowing down the throughput of the inner loop to reduce the
outer-loop overhead, you must unroll the FIR filter again.

Example 6—71 shows the C code for the FIR filter, which operates on eight
elements every inner loop. Two outer loops are also being processed together,
as in Example 6—68 on page 6-133.
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Example 6—-71. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])
{

inti, j, sumoO, sum1;
short x0,x1,x2,x3,x4,x5,x6,x7,h0,h1,h2,h3,h4,h5,h6,h7;

for (j = 0; j < 100; j+=2) {

sumO = 0;

suml =0;

x0 = X[i];

for (i=0;i< 32; i+=8){
x1 = x[j+i+1];
hO = h[i];
sumO += x0 * hO;
suml += x1 * hO;
X2 = X[j+i+2];
hl = h[i+1];
sumO +=x1 * h1;
suml +=x2 * hi;
x3 = X[j+i+3];
h2 = h[i+2];
sumO +=x2 * h2;
suml += x3 * h2;
x4 = X[j+i+4];
h3 = hl[i+3];
sumO += x3 * h3;
suml += x4 * h3;
x5 = X[j+i+5];
h4 = h[i+4];
sumO += x4 * h4;
suml += x5 * h4;
X6 = X[j+i+6];
h5 = hl[i+5];
sumO += x5 * h5;
suml += x6 * h5;
X7 = X[j+i+7];
h6 = h[i+6];
sumO += X6 * h6;
suml += X7 * h6;
X0 = x[j+i+8];
h7 = h[i+7];
sumO += X7 * h7;
suml +=x0 * h7;

y[j] = sumO0 >> 15;
yli+1] = suml >> 15;

6-136




Outer Loop Conditionally Executed With Inner Loop

6.13.5 Translating C Code to Linear Assembly (Inner Loop)

Example 6—72 shows the instructions that perform the inner and outer loops
of the FIR filter. These instructions reflect the following modifications:

a
a

LDWs are used instead of LDHs to reduce the number of loads in the loop.
The reset pointer instructions immediately follow the LDW instructions.

The first ADD instructions for sumO and sum1 are conditional on the same
value as the store counter, because when sctr is 0, the end of one inner
loop has been reached and the first ADD, which adds the previous sumQ7
to p00, must not be executed.

The first ADD for sumO writes to the same register as the first MPY p00.
The second ADD reads p00 and p01. At the beginning of each inner loop,
the first ADD is not performed, so the second ADD correctly reads the
results of the first two MPYs (p01 and p00) and adds them together. For
other iterations of the inner loop, the first ADD executes, and the second
ADD sums the second MPY result (p01) with the running accumulator. The
same is true for the first and second ADDs of sum1.
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Example 6-72. Linear Assembly for FIR With Outer Loop Conditionally Executed
With Inner Loop

LDW *h++[2],h01 ; h[i+0] & h[i+1]
LDW *h_1++[2],h23 ; h[i+2] & h[i+3]
LDW *h++[2],h45 ; h[i+4] & h[i+5]
LDW *h_1++[2],h67 ; h[i+6] & h[i+7]
LDW *x++[2],x01 ; X[+i+0] & x[j+i+1]
LDW *x_1++[2],x23 ; X[+1+2] & X[j+i+3]
LDW *X++[2],x45 ; X[+i+4] & x[j+i+5]
LDW *x_1++[2],x67 i X[j+1+6] & X[j+i+7]
LDH *X,X8 ; X[j+i+8]
[sctr] SUB sctr,1,sctr ; dec store Ip cntr
['sctr] SHR sum07,15,y0 ; (sum0 >> 15)
['sctr] SHR sum17,15,y1 ; (suml >> 15)
['sctr] STH y0,*y++[2] ; Y[] = (sum0 >> 15)
['sctr] STH yl,*y 1++[2] ; Y[j+1] = (suml >> 15)
MV x01,x01b ; move to other reg file
MPYLH h01,x01b,p10 ; P10 = h[i+0]*x[j+i+1]
[sctr] ADD p10,sum17,p10 ; sum1(p10) = p10 + suml
MPYHL h01,x23,p11 ; p11 = h[i+1]*x[j+i+2]
ADD pl11,p10,sumi1l ;suml +=pll
MPYLH h23,x23,p12 ; p12 = h[i+2]*x[j+i+3]
ADD pl2,sumll,sumi2 ;suml += pl2
MPYHL h23,x45,p13 ; p13 = h[i+3]*x[j+i+4]
ADD p13,suml12,sumi3 ; suml +=pl3
MPYLH h45,x45,p14 ; pl4 = h[i+4]*x[j+i+5]
ADD pl4,suml13,sumi4 ;suml +=pl4
MPYHL h45,x67,p15 ; p15 = h[i+5]*x[j+i+6]
ADD p15,suml14,sumi5 ;suml +=pl5
MPYLH h67,x67,p16 ; p16 = h[i+6]*x[j+i+7]
ADD p16,suml15,sumi16 ;suml +=pl6
MPYHL h67,x8,p17 ; P17 = h[i+7]*x[j+i+8]
ADD pl7,suml16,suml7 ;suml +=pl7
MPY h01,x01,p00 ; P00 = h[i+0]*x[j+i+0]
[sctr] ADD p00,sum07,p00 ; sumO(p00) = p00 + sumO
MPYH h01,x01,p01 ; PO1 = h[i+1]*x[j+i+1]
ADD p01,p00,sum01 ; sumO += p01
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Example 6—-72. Linear Assembly for FIR With Outer Loop Conditionally Executed

With Inner Loop (Continued)

MPY h23,x23,p02 ; P02 = h[i+2]*x[j+i+2]
ADD p02,sum01,sum02 ; sumO += p02
MPYH h23,x23,p03 ; PO3 = h[i+3]*x[j+i+3]
ADD p03,sum02,sum03 ; sumO += p03
MPY h45,x45,p04 ; p04 = h[i+4]*x[j+i+4]
ADD p04,sum03,sum04 ; sumO += p04
MPYH h45,x45,p05 ; P05 = h[i+5]*x[j+i+5]
ADD p05,sum04,sum05 ; sumO += p05
MPY h67,x67,p06 ; pO6 = h[i+6]*x[j+i+6]
ADD p06,sum05,sum06  ; sumO += p06
MPYH h67,x67,p07 ; PO7 = h[i+7]*X[j+i+7]
ADD p07,sum06,sum07  ; sumO += p07

['sctr] MVK 4,sctr ; reset store Ip cntr

[pctr] SUB pctr,1,pctr ; dec pointer reset Ip cntr

['pctr] SUB X,rstx2,x ; reset x ptr

['pctr] SUB x_1rstx1,x_1 ; reset x_1 ptr

['pctr] SUB h,rsth1,h ; reset h ptr

['pctr] SUB h_1,rsth2,h_1 ;reseth_1 ptr

['pctr] MVK 4,pctr ; reset pointer reset Ip cntr

[octr] SUB octr,1,octr ; dec outer Ip cntr

[octr] B LOOP ; Branch outer loop

6.13.6 Translating C Code to Linear Assembly (Inner Loop and Outer Loop)

Example 6—73 shows the linear assembly with functional units assigned. (As
in Example 6—64 on page 6-122, symbolic names now have an A or B in front
of them to signify the register file where they reside.) Although this allocation
is one of many possibilities, one goal is to keep the 1X and 2X paths to a
minimum. Even with this goal, you have five 2X paths and seven 1X paths.

One requirement that was assumed when the functional units were chosen
was that all the sumO0 values reside on the same side (A in this case) and all
the sum1 values reside on the other side (B). Because you are scheduling
eight accumulates for both sum0 and sum1in an 8-cycle loop, each ADD must
be scheduled immediately following the previous ADD. Therefore, itis undesir-
able for any sumO ADDs to use the same functional units as sum1 ADDs.

One MV instruction was added to get x01 on the B side for the MPYLH p10
instruction.
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Example 6—-73. Linear Assembly for FIR With Outer Loop Conditionally Executed
With Inner Loop (With Functional Units)

.global _fir
_fir: .cproc X, h,y
.reg x_1,h_1,y 1, octr, pctr, sctr
.reg sumO01, sum02, sum03, sum04, sum05, sum06, sum07
.reg sumll, sum12, sum13, sum14, sum15, sum16, sum17
.reg p00, p01, p02, p03, p04, p05, p06, p07
.reg pl0, pl11, p12, p13, pl14, p15, p16, p17
.reg x01b, x01, x23, x45, x67, x8, h01, h23, h45, h67
.reg y0, y1, rstx1, rstx2, rsthl, rsth2
ADD X, 4,x_1 ; point to x[2]
ADD h,4,h 1 ; point to h[2]
ADD y,2y 1 ; point to y[1]
MVK 60,rstx1 ; used to rst x pointer each outer loop
MVK 60,rstx2 ; used to rst x pointer each outer loop
MVK 64,rsthl ; used to rst h pointer each outer loop
MVK 64,rsth2 ; used to rst h pointer each outer loop
MVK 201,octr ; loop ctr = 201 = (100/2) * (32/8) + 1
MVK 4,pctr ; pointer reset Ip cntr = 32/8
MVK 5,sctr ; reset store Ip cntr = 32/8 + 1
ZERO sumO07 :sum07 =0
ZERO suml7 ;suml7 =0
.mptr X, X+0
.mptr x_1, x+4

.mptr h, h+0
.mptr h_1, h+4

LOOP: .trip 8
LDW .D1T1 *h++[2],h01 ; h[i+0] & h[i+1]
LDW .D2T2 *h_1++[2],h23; h[i+2] & h[i+3]
LDW .D1T1 *h++[2],h45 ; h[i+4] & h[i+5]
LDW .D2T2 *h_1++[2],h67; h[i+6] & h[i+7]
LDW .D2T1 *X++[2],x01 ; x[j+i+0] & x[j+i+1]
LDW .D1T2 *x_1++[2],x23; X[j+i+2] & x[j+i+3]
LDW .D2T1 *X++[2],x45 ; X[j+i+4] & X[j+i+5]
LDW .D1T2 *X_1++[2],X67 ; X[j+i+6] & X[j+i+7]
LDH .D2T1 *X,X8 i X[[+i+8]

[sctr] SUB S1 sctr,1,sctr  ; dec store Ip cntr

['sctr] SHR .S1 sum07,15,y0 ; (sumO0 >> 15)

['sctr] SHR .S2 suml17,15,y1 ;(suml >> 15)

['sctr] STH .D1 y0,*y++[2] ; Y[j] = (sumO >> 15)

['sctr] STH .D2 yl*y 1++[2] ;y[j+1] = (suml >> 15)
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Example 6—-73. Linear Assembly for FIR With Outer Loop Conditionally Executed
With Inner Loop (With Functional Units) (Continued)

MV L2X x01,x01b ; move to other reg file
MPYLH .M2X h01,x01b,p10 ; P10 = h[i+0]*x[j+i+1]
[sctr]  ADD L2 p10,suml17,p10 ; sum1(p10) = p10 + suml
MPYHL .M1X h01,x23,p11 ; p11 = h[i+1]*x[j+i+2]
ADD L2X pl1,p10,sumll ;suml +=pll
MPYLH M2 h23,x23,p12 ; p12 = h[i+2]*x[j+i+3]
ADD L2 pl2,sumll,sumi2 ;suml += pl2
MPYHL .M1X h23,x45,p13 ; p13 = h[i+3]*x[j+i+4]
ADD .L2X pl3,suml2,sum13 ;suml +=pl3
MPYLH M1 h45,x45,p14 ; p14 = h[i+4]*x[j+i+5]
ADD .L2X pl4,suml13,suml4 ;suml +=pl4
MPYHL .M2X h45,x67,p15 ; p15 = h[i+5]*x[j+i+6]
ADD .S2 p15,suml4,sum15 ;suml +=pl5
MPYLH M2 h67,x67,p16 ; p16 = h[i+6]*x[j+i+7]
ADD L2 pl6,sum15,sum16 ;suml +=pl6
MPYHL M1X h67,x8,p17 ; p17 = h[i+7]*x[j+i+8]
ADD .L2X pl7,suml16,suml7 ;suml +=pl7
MPY M1 h01,x01,p00 ; P00 = h[i+0]*x[j+i+0]
[sctr]  ADD L1 p00,sum07,p00 ; sumO(p00) = p00 + sumO
MPYH M1 h01,x01,p01 ; pO1 = h[i+1]*x[j+i+1]
ADD L1 p01,p00,sum01 ; sumO += p01
MPY M2 h23,x23,p02 ; P02 = h[i+2]*x[j+i+2]
ADD L1X p02,sum01,sum02 ; sumO += p02
MPYH M2 h23,x23,p03 ; P03 = h[i+3]*x[j+i+3]
ADD L1X p03,sum02,sum03 ; sumO += p03
MPY .M1 h45,x45,p04 ; p04 = h[i+4]*x[j+i+4]
ADD L1 p04,sum03,sum04 ; sumO += p04
MPYH M1 h45,x45,p05 ; P05 = h[i+5]*x[j+i+5]
ADD L1 p05,sum04,sum05 ; sumO += p05
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Example 6-73. Linear Assembly for FIR With Outer Loop Conditionally Executed
With Inner Loop (With Functional Units)(Continued)

MPY M2 h67,x67,p06 ; P06 = h[i+6]*x[j+i+6]
ADD .L1X p06,sum05,sum06  ; sumO += p06
MPYH M2 h67,x67,p07 ; PO7 = h[i+7]*x[j+i+7]
ADD .L1X p07,sum06,sum07  ; sumO += p07

[lsctr] MVK .S1 4,sctr ; reset store Ip cntr

[pctr] SUB .S1 pctr,1,pctr ; dec pointer reset Ip cntr

['pctr] SUB .S2 X,rstx2,x ; reset x ptr

['pctr] SUB .S1 x_1,rstx1,x_1 ; reset x_1 ptr

['pctr] SUB .S1 h,rsth1,h ; reset h ptr

['pctr] SUB .S2 h_1,rsth2,h_1 ;reseth_1 ptr

['pctr] MVK .S1 4,pctr ; reset pointer reset Ip cntr

[octr] SUB .S2 octr,1,octr ; dec outer Ip cntr

[octr] B .S2 LOOP ; Branch outer loop

.endproc
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6.13.7 Determining the Minimum Iteration Interval

Based on Table 6-27, the minimum iteration interval is 8. An iteration interval
of 8 means that two multiply-accumulates per cycle are still executing.

Table 6-27. Resource Table for FIR Filter Code

(a) A side (b) B side
unit(s) Total/Unit unit(s) Total/Unit
M1 8 M2 8
S1 7 .S2 6
.D1 5 .D2 6
L1 8 L2 8
Total non-.M units 20 Total non-.M units 20
1X paths 7 2X paths 5

6.13.8 Final Assembly

Example 6—74 shows the final assembly for the FIR filter with the outer loop
conditionally executing in parallel with the inner loop.
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Example 6—-74. Final Assembly Code for FIR Filter

|
II[AL]
|
|
I

I
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[1A1]
H[!Al]

”[!Al]

I

lI[A2]

Il
[lA2]

I

|

&

MV
ADD
MV
ADD
MVK

LDW
LDW
MVK

LDW
LDW
MVK
MVK

LDW
LDW
SUB
MVK
MVK
ADD

LDW
LDW
SUB

SUB
SUB
LDH

ADD
MVK

MPYLH
SUB
MPYHL

MPY

MPYLH
SuUB

ZERO

SHR
MPY
MPYH

ADD
LDW
LDW
ZERO

.L1X
.D2
.L2X
.D1
.S2

.D1
.D2
S1

.D2
.D1
S1
.S2

.D2
.D1
L1
S1
.S2
.L2X

.D1
.D2

S1

.52
.S1

.D2

.S2X
S1

.M2X

.S2

.M1X

M1

.M2
.S1

.L2

.S2

M2
M1
L2
.D1
.D2
L1

B4,A0
B4,4,B2
A4,B1
A4,4, A4
200,B0

*Ad4++[2],B9
*B1++[2],A10
4,A1

*B2++[2],B7
*AO++[2],A8
60,A3
60,B14

*B1++[2],A11

*Ad4++[2],B10
Al,1,Al

64,A5

64,B5

A6,2,B6

*AO++[2],A9
*B2++[2],B8
A4,A3,A4

B1,B14,B1
AO0,A5,A0
*B1,A8

A10,0,B8
5A2

A8,B8,B4
B2,B5,B2
A8,B9,A14

A8,A10,A7
B7,89,B13
A2,1,A2
B11l

B11,15,B11
B7,89,B9
A8,A10,A10

B4,B11,B4
*Ad++[2],B9
*B1++[2],A10

Al0

; point to h[0] & h[1]
; point to h[2] & h[3]
; point to x[j] & x[j+1]
; point to x[j+2] & x[j+3]
; set Ip ctr ((32/8)*(100/2))

; X[+i+2] & x[j+i+3]
; X[+i+0] & x[j+i+1]
; set pointer reset Ip cntr

; h[i+2] & h[i+3]

; h[i+0] & h[i+1]
; used to reset x ptr (16*4—4)
; used to reset x ptr (16*4—4)

s X[+i+4] & x[j+i+5]
; X[j+i+6] & X[j+i+7]
; dec pointer reset Ip cntr
; used to reset h ptr (16*4)
; used to reset h ptr (16*4)
; point to y[j+1]

; h[i+4] & h[i+5]
; h[i+6] & h[i+7]
; reset x ptr

; reset x ptr
; reset h ptr
; X[j+i+8]

; move to other reg file
; set store Ip cntr

; p10 = h[i+0]*x[j+i+1]
; reset h ptr
; P11 = h[i+1]*x[j+i+2]

; P00 = h[i+0]*x[j+i+0]
; P12 = h[i+2]*x[j+i+3]
; dec store Ip cntr
; zero out initial accumulator

; (Bsuml >> 15)
; P02 = h[i+2]*x[j+i+2]
; pO1 = h[i+1]*x[j+i+1]
; sum1(p10) = p10 + suml
¥ X[+i+2] & X[j+i+3]
¥ X[+i+0] & x[j+i+1]
; zero out initial accumulator
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Example 6—74. Final Assembly Code for FIR Filter (Continued)

LOOP:

[A2] SHR
[BO] SUB
I MPYH
I[A2] ADD
I MPYHL
I ADD
I LDW
I LDW

ADD
I MPYHL
I MPYLH
I ADD
I LDW
I LDW
I[A1] SUB

[BO] B

I MPY

I ADD

I MPYLH
I ADD

I LDW

I LDW
lAL] SuB

MPY
I MPYH
I ADD

I ADD
lA1] SuB
lAL] SuB

I LDH

[A2] MVK
I MPYH
I ADD
I MPYHL
I ADD
lA2] STH
lA2] STH
I ADD

ADD
I ADD
MPYLH
ALl MVK
lA1] SuB
I MPYHL

S1

.S2
M2

L1
.M1X
.L2X
.D2
.D1

L1

.M2X

M1

.L2

.D2

.D1
S1

.S2
M1
.L1x
.M2
.L2X
.D1
.D2

S1

.M2
M1
.L1X
.L2X

.S2
S1

.D2

.S1

M2
L1
.M1X
.S2

.D2
.D1

.L2X

L1
.L2
.M2X

S1
.S2

.M1X

A10,15,A12
B0,1,B0
B7,89,B13
A7,A10,A7
B7,A11,A10
Al4,B4,B7
*B2++[2],B7
*A0++[2],A8

A10,A7,A13
A9,B10,B12
A9,A11,A10

B13,B7,B7
*B1++[2] A1l
*A4++[2],B10

A1,1,A1

LOOP
A9,A11,A11l
B9,A13,A13
B8,B10,B13
Al10,B7,B7
*A0++[2],A9
*B2++[2],B8
A4,A3,A4

B8,B10,B11
A9,A11,A11
B13,A13,A9
A10,B7,B7
B1,B14,B1
AO0,A5,A0
*B1,A8

4,A2
B8,810,B13
A11,A9,A9
B8,A8,A9
B12,B7,B10
B11,*B6++[2]
A12 *A6++[2]
A10,0,B8

A11,A9,A12
B13,B810,B8
A8,B8,B4
4,A1
B2,B5,B2
A8,B9,A14

; (AsumO >> 15)
; dec outer Ip cntr
; P03 = h[i+3]*x[j+i+3]
; sum0(p00) = p00 + sum0
; P13 = h[i+3]*x[j+i+4]
;suml +=pll
;¥ hli+2] & h[i+3]
¥ h[i+0] & h[i+1]

; sumO += p01
; p15 = h[i+5]*x[j+i+6]
; p14 = h[i+4]*x[j+i+5]
;suml += pl2
¥ X[j+i+4] & x[j+i+5]
¥ X[j+i+6] & X[j+i+7]
;* dec pointer reset Ip cntr

; Branch outer loop
; P04 = h[i+4]*x[j+i+4]
; sumO += p02
; P16 = h[i+6]*x[j+i+7]
; suml +=pl3
* h[i+4] & h[i+5]
* h[i+6] & h[i+7]
¥ reset x ptr

; P06 = h[i+6]*x[j+i+6]
; pO5 = h[i+5]*x[j+i+5]
; sumO += p03
;suml +=pl4

¥ reset x ptr

;¥ reset h ptr
¥ X[j+i+8]

; reset store Ip cntr
; pO7 = h[i+7]*x[j+i+7]
; sumO += p04
; P17 = h[i+7]*x[j+i+8]
;suml += pl5
; Y[+1] = (Bsum1 >> 15)
; Y[ = (Asum0 >> 15)
;* move to other reg file

; sumO += p05
; suml += pl6
;¥ p10 = h[i+0]*x[j+i+1]
;* reset pointer reset Ip cntr
¥ reset h ptr
¥ pll = h[i+1]*x[j+i+2]

Optimizing Assembly Code via Linear Assembly
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Outer Loop Conditionally Executed With Inner Loop

Example 6—-74. Final Assembly Code for FIR Filter (Continued)

ADD .L2X A9,B8,B11 ;suml +=pl7
Il ADD .L1X B11,A12,A12 ; sumO += p06
Il MPY M1 A8,A10,A7 ;* p00 = h[i+0]*x[j+i+0]
Il MPYLH M2 B7,B9,B13 ¥ p12 = h[i+2]*x[j+i+3]
[[[A2] SUB .S1 A2,1,A2 ;* dec store Ip cntr
ADD .L1X B13,A12,A10 ; sumO += p07
[I'A2] SHR .S2 B11,15,B11 ;* (Bsuml >> 15)
Il MPY M2 B7,B9,B9 ;¥ p02 = h[i+2]*x[j+i+2]
Il MPYH M1 A8,A10,A10 ;* pO1 = h[i+1]*x[j+i+1]
[I[A2] ADD L2 B4,B11,B4 ;¥ sum1(p10) = p10 + suml
LDW .D1 *A4++[2],B9 % X[j+i+2] & X[j+i+3]
|l LDW .D2 *B1++[2],A10 ¥ X[+i1+0] & x[j+i+1]
:Branch occurs here
[!A2] SHR .S1 A10,15,A12 ; (AsumO0 >> 15)
[!A2] STH .D2 B11,*B6++[2] ; Y[j+1] = (Bsuml >> 15)
[I'A2] STH .D1 Al2,*A6++[2] ; Y[l = (AsumO0 >> 15)

6.13.9 Comparing Performance

The cycle count of this code is 1612: 50 (8 X 4 + 0) + 12. The overhead due
to the outer loop has been completely eliminated.

Table 6-28. Compatrison of FIR Filter Code

Code Example Cycles Cycle Count

Example 6-57 FIR with redundant load elimination 50 (16 X 2+9+6)+2 2352

Example 6-65 FIR with redundant load elimination and no memory 50 (8 X 4 + 10 + 6) + 2 2402
hits

Example 6—67 FIR with redundant load elimination and no memory 50 (7 X 4+6+6)+6 2006
hits with outer loop software-pipelined

Example 6-70 FIR with redundant load elimination and no memory 50 (8 X 4 + 0) + 12 1612
hits with outer loop conditionally executed with inner
loop
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Chapter 7

Interrupts

This chapter describes interrupts from a software-programming point of view.
A description of single and multiple register assignment is included, followed

by code generation of interruptible code and finally, descriptions of interrupt
subroutines.
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Overview of Interrupts

7.1 Overview of Interrupts

7-2

An interrupt is an event that stops the current process in the CPU so that the
CPU can attend to the task needing completion because of another event.
These events are external to the core CPU but may originate on-chip or off-
chip. Examples of on-chip interrupt sources include timers, serial ports, DMAs
and external memory stalls. Examples of off-chip interrupt sources include
analog-to-digital converters, host controllers and other peripheral devices.

Typically, DSPs compute different algorithms very quickly within an asynchro-
nous system environment. Asynchronous systems must be able to control the
DSP based on events outside of the DSP core. Because certain events can
have higher priority than algorithms already executing on the DSP, it is some-
times necessary to change, or interrupt, the task currently executing on the
DSP.

The 'C6x provides hardware interrupts that allow this to occur automatically.
Once an interrupt is taken, an interrupt subroutine performs certain tasks or
actions, as required by the event. Servicing an interrupt involves switching
contexts while saving all state of the machine. Thus, upon return from the inter-
rupt, operation of the interrupted algorithm is resumed as if there had been no
interrupt. Saving state involves saving various registers upon entry to the inter-
rupt subroutine and then restoring them to their original state upon exit.

This chapter focuses on the software issues associated with interrupts. The
hardware description of interrupt operation is fully described in the
TMS320C6x CPU and Instruction Set Reference Guide.

In order to understand the software issues of interrupts, we must talk about two
types of code: the code that is interrupted and the interrupt subroutine, which
performs the tasks required by the interrupt. The following sections provide in-
formation on:

[ Single and multiple assignment of registers

[ Loop interruptibility

[ Howtousethe’C6x code generation tools to satisfy different requirements
[ Interrupt subroutines



Single Assignment vs. Multiple Assignment

7.2 Single Assignment vs. Multiple Assignment

Register allocation on the 'C6x can be classified as either single assignment
or multiple assignment. Single assignment code is interruptible; multiple as-
signment is not interruptible. This section discusses the differences between
each and explains why only single assignment is interruptible.

Example 7-1 shows multiple assignment code. The term multiple assignment
means that a particular register has been assigned with more than one value
(inthis case 2 values). On cycle 4, at the beginning of the ADD instruction, reg-
ister Al is assigned to two different values. One value, written by the SUB in-
struction on cycle 1, already resides in the register. The second value is called
an in-flight value and is assigned by the LDW instruction on cycle 2. Because
the LDW instruction does not actually write a value into register Al until the end
of cycle 6, the assignment is considered in-flight.

In-flight operations cause code to be uninterruptible due to unpredictability.
Take, for example, the case where an interrupt is taken on cycle 3. At this point,
all instructions which have begun execution are allowed to complete and no
new instructions execute. So, 3 cycles after the interrupt is taken on cycle 3,
the LDW instruction writes to Al. After the interrupt service routine has been
processed, program execution continues on cycle 4 with the ADD instruction.
In this case, the ADD reads register A1 and will be reading the result of the
LDW, whereas normally the result of the SUB should be read. This unpredict-
ability means that in order to ensure correct operation, multiple assignment
code should not be interrupted and is thus, considered uninterruptible.

Example 7-1. Code With Multiple Assignment of A1

cycle
1

SUB
LDW
NOP
ADD
NOP
MPY

S1 A4,A5,A1 ; writes to Al in single cycle
.D1 *A0,Al ; writes to Al after 4 delay slots

L1 A1,A2,A3 ;usesold Al (result of SUB)

M1 Al1,A4,A5 ; uses new Al (result of LDW)

2

Example 7-2 shows the same code with a new register allocation to produce
single assignment code. Now the LDW assigns a value to register A6 instead
of Al. Now, regardless of whether an interrupt is taken or not, A1 maintains
the value written by the SUB instruction because LDW now writes to A6. Be-
cause there are no in-flight registers that are read before an in-flight instruction
completes, this code is interruptible.

Interrupts 7-3
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Example 7-2. Code Using Single Assignment

cycle
1 SUB S1 A4,A5 A1 ; writesto Al in single cycle
2 LDW .D1 *A0,A6 ; writes to Al after 4 delay slots
3 NOP
4 ADD L1 A1,A2,A3 ;usesold Al (result of SUB)
5-6 NOP 2
7  MPY M1 A6,A4,A5 ; uses new Al (result of LDW)

Both examples involve exactly the same schedule of instructions. The only dif-
ference is the register allocation. The single assignment register allocation, as
shown in Example 7-2, can result in higher register pressure (Example 7-2
uses one more register than Example 7-1).

The next section describes how to generate interruptible and non-interruptible
code with the 'C6x code generation tools.



Interruptible Loops

7.3 Interruptible Loops

Even if code employs single assignment, it may not be interruptible in a loop.
Because the delay slots of all branch operations are protected from interrupts
in hardware, all interrupts remain pending as long as the CPU has a pending
branch. Since the branch instruction on the 'C6x has 5 delay slots, loops small-
erthan 6 cycles always have a pending branch. For this reason, all loops small-
er than 6 cycles are uninterruptible.

There are two options for making a loop with an iteration interval less than 6
interruptible.

1) Simply slow down the loop and force an iteration interval of 6 cycles. This
is not always desirable since there will be a performance degradation.

2) Unroll the loop until an iteration interval of 6 or greater is achieved. This
ensures at least the same performance level and in some cases can im-
prove performance (see section 6.8 Loop Unrolling). The disadvantage is
that code size increases.

The next section describes how to automatically generate these different op-
tions with the 'C6x code generation tools.
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7.4

Interruptible Code Generation

The 'C6x code generation tools provide a large degree of flexibility for interrup-
tibility. Various combinations of single and multiple assignment code can be
generated automatically to provide the best tradeoff in interruptibility and per-
formance for each part of an application. In most cases, code performance is
not affected by interruptibility, but there are some exceptions:

(O Software pipelined loops that have high register pressure can fail to regis-
terallocate at a given iteration interval when single assignmentis required,
but might otherwise succeed to allocate if multiple assignment were al-
lowed. This can result in a larger iteration interval for single assignment
software pipelined loops and thus lower performance. To determine if this
is the problem for looped code, use the —-mw feedback option.

[ Because loops with minimum iteration intervals less than 6 are not inter-
ruptible, higher iteration intervals might be used which results in lower per-
formance. Unrolling the loop, however, prevents this reduction in perfor-
mance (see section 7.2)

(1 Higher register pressure in single assignment can cause data spilling to
memory in both looped code and non-looped code when there are not
enough registers to store all temporary values. This reduces performance
but occurs rarely and only in extreme cases.

The tools provide 3 levels of control to the user. These levels are described in
the following sections. For a full discussion of interruptible code generation,
see the TMS320C6x Optimizing C Compiler User’s Guide.

7.4.1 Level 0 — Specified Code is Guaranteed to Not Be Interrupted

7-6

The compiler does not disable interrupts. Thus, itis up to the system developer
to guarantee that no interrupts occur. This level has the advantage that the
compiler is allowed to use multiple assignment code and generate the mini-
mum iteration intervals for software pipelined loops.

The command line option —mi can be used for an entire module and the follow-
ing pragma can be used to force this level on a particular function:

#pragma FUNC_INTERRUPT_THRESHOLD(func, uint_max);



Interruptible Code Generation

7.4.2 Level 1 — Specified Code Interruptible at All Times

The compiler will not disable interrupts. Thus, the compiler will employ single
assignment everywhere and will never produce a loop of less than 6 cycles.
The command line option —mil can be used for an entire module and the fol-
lowing pragma can be used to force this level on a particular function:

#pragma FUNC_INTERRUPT_THRESHOLD(func, 1);

7.4.3 Level 2 — Specified Code Interruptible Within Threshold Cycles

The compiler will disable interrupts around loops if the specified threshold
number is not exceeded. In other words, the user can specify a threshold, or
maximum interrupt delay, that allows the compiler to use multiple assignment
in loops that do not exceed this threshold. The code outside of loops can have
interrupts disabled and also use multiple assignment as long as the threshold
of uninterruptible cycles is not exceeded. If the compiler cannot determine the
loop count of aloop, then it assumes the threshold is exceeded and will gener-
ate an interruptible loop.

The command line option —mi (threshold) can be used for an entire module and
the following pragma can be used to specify a threshold for a particular func-
tion.

#pragma FUNC_INTERRUPT_THRESHOLD(func, threshold);
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7.5 Interrupt Subroutines

The interrupt subroutine (ISR) is simply the routine, or function, that is called
by an interrupt. The 'C6x provides hardware to automatically branch to this
routine when an interruptis received based on an interrupt service table. (See
the Interrupt Service Tablein the TMS320C6x CPU and Instruction Set Refer-
ence Guide.) Once the branch is complete, execution begins at the first exe-
cute packet of the ISR.

Certain state must be saved upon entry to an ISR in order to ensure program
accuracy upon return from the interrupt. For this reason, all registers that are
used by the ISR must be saved to memory, preferably a stack pointed to by
a general purpose register acting as a stack pointer. Then, upon return, all val-
ues must be restored. This is all handled automatically by the C compiler, but
must be done manually when writing hand-coded assembly.

7.5.1 ISR with the C Compiler

The C compiler automatically generates ISRs with the keyword interrupt. The
interrupt function must be declared with no arguments and should return void.
For example:

interrupt void int_handler()

unsigned int flags;

Alternatively, you can use the interrupt pragma to define a function to be an
ISR:

#pragma INTERRUPT (func);

The result either case is that the C compiler automatically creates a function
that obeys all the requirements for an ISR. These are different from the calling
convention of a normal C function in the following ways:

[0 Allgeneral purpose registers used by the subroutine must be saved to the
stack. If another function is called from the ISR, then all the registers
(AO-A15, BO-B15) are saved to the stack.

(O ABIRP instruction is used to return from the interrupt subroutine instead
of the B B3 instruction used for standard C functions

[ A function cannot return a value and thus, must be declared void.

See the section on Register Conventions in the TMS320C6x Optimizing C
Compiler User’s Guide for more information on standard function calling con-
ventions.
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7.5.2 ISR with Hand-Coded Assembly

When writing an ISR by hand, it is necessary to handle the same tasks the C
compiler does. So, the following steps must be taken:

[ Allregisters used must be saved to the stack before modification. For this
reason, itis preferable to maintain one general purpose register to be used
as a stack pointer in your application. (The C compiler uses B15.)

[ If another C routine is called from the ISR (with an assembly branch in-
struction to the _c_func_name label) then all registers must be saved to
the stack on entry.

(1 A B IRP instruction must be used to return from the routine. If this is the
NMI ISR, a B NRP must be used instead.

(1 An NOP 4 is required after the last LDW in this case to ensure that BO is
restored before returning from the interrupt.

Example 7-3. Hand-Coded Assembly ISR

STW BO0,*B15—
STW A0,*B15—
STW B1,*B15—
STW B2,*B15—
STW B3,*B15—
STW B4,*B15—
* Beginning of ISR code

* Enc'i"of ISR code

LDW *++B15,B4
LDW *++B15,B3
LDW *++B15,B2
LDW *++B15,B1
LDW *++B15,A0

IB IRP
LDW *++B15,B0
NOP 4

* Assume Register BO—B4 & A0 are the only registers used by the
* ISR and no other functions are called

: store BO to stack
; store A0 to stack
; store B1 to stack
: store B2 to stack
; store B3 to stack
: store B4 to stack

; restore B4
: restore B3
; restore B2
: restore B1
: restore AO
; return from interrupt
; restore BO
; allow all multi-cycle instructions
; to complete before branch is taken

7.5.3 Nested Interrupts

Sometimes it is desirable to allow higher priority interrupts to interrupt lower
priority ISRs. To allow nested interrupts to occur, you must first save the IRP,
IER, and CSR to aregister which is not being used or to or some other memory
location (usually the stack). Once these have been saved, you can reenable
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the appropriate interrupts. This involves resetting the GIE bit and then doing
any necessary modifications to the IER, providing only certain interrupts are
allowed to interrupt the particular ISR. On return from the ISR, the original val-
ues of the IRP, IER, and CSR must be restored.

Example 7—4. Hand-Coded Assembly ISR Allowing Nesting of Interrupts

STW
I MvC
STW
I MvC
I MVK
STW
MVC
STW
| MvC
STW
[lOR
STW
| MvC
STW
STW
STW

LDW
LDW
LDW
LDW
LDW

I MvC
LDW

I MvC
LDW

I MvC
LDW

[l B
LDW
NOP

* Assume Register BO-B4 & A0 are the only registers used by the
* ISR and no other functions are called

BO,*B15—
IRP, BO
A0,*B15—
IER, B1
mask,A0
B1,*B15—
A0, IER
B2,*B15—
CSR,A0
B3,*B15—
1,A0,A0
B4,*B15—
AO0,CSR
BO,*B15—
B1,*B15—
A0,*B15—

* Beginning of ISR code

* En(.:i”of ISR code

*++B15,A0
*++B15,B1
*++B15,B0
*++B15,B4
*++B15,B3

AO0,CSR
*++B15,B2

BO,IRP
*++B15,B1

B1,IER
*++B15,A0

IRP

*++B15,B0
4

; store BO to stack

; save IRP
; store AO to stack

: save |IER

; setup a new IER (if desirable)
: store B1 to stack
; setup a new IER (if desirable)
; store B2 to stack
; read current CSR
; store B3 to stack
; set GIE bit field in CSR

; store B4 to stack
; write new CSR with GIE enabled
; store BO to stack (contains IRP)
; store B1 to stack (contains IER)
; store AO to stack (original CSR)

; restore AO (original CSR)
; restore B1 (contains IER)
; restore BO (contains IRP)
; restore B4
: restore B3
; restore original CSR
; restore B2
; restore original IRP
: restore B1
; restore original IER
; restore AO
; return from interrupt
; restore BO
; allow all multi—cycle instructions
; to complete before branch is taken
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Appendix A

Applications Programming

This appendix provides extensive code examples from the Global Systems for
Mobile Communications (GSM) enhanced full-rate (EFR) vocoder. The assem-
bly code examples in this appendix represent hand-optimized code; the code
produced by the assembly optimizer will vary, depending on the version used.
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Summary of Major Programming Methods

A.1 Summary of Major Programming Methods

The key to implementing applications on the 'C6x is to take advantage of the
processor’s full speed. The main technique for achieving this goal involves un-
rolling software loops to reach the limits of the functional units while meeting the
data dependency constraints.

In addition to loop unrolling, the following methods are helpful for improving
performance:

[ Rearranging the C code

If you are implementing a system based on an existing C code, rearranging
the tasks in the C code is a useful method to gain better performance.

(1 Avoiding memory bank hits

Memory bank hits, especially those in the inner loop in a nested loop
application, hurt the performance dramatically and must be avoided. Most
of the memory bank hits, however, can be eliminated by allocating the
relevant arrays properly. Some situations, like accessing a word and a half-
word in the same cycle, can also create the chance of a memory bank hit
and should also be avoided.

If the system implementation is quite complicated, the program-memory size
becomes an issue. To achieve a good balance between program-memory size
and speed, you can implement the less critical portions with highly-compact
assembly code that sacrifices performance.



Implementation of the GSM EFR Vocoder

A.2 Implementation of the GSM EFR Vocoder

This section presents the implementation of some representative pieces of code
for the Global Systems for Mobile Communications (GSM) enhanced full-rate
(EFR) vocoder. These include the:

Multiply-accumulate loop

Windowing and scaling part of autocorr.c
cor_h

rrv computation in search_10i40

Index search in search_10i40

FIR filter (residu.c)

Lag search in the lag_max () routine

Uoodoood

Note:

European Telecommunications Standards Institute (ETSI) has the copyright
to all the C code used in this section.

The following global constants/symbols are defined in the EFR vocoder:

#define Word16 short

#define Word32 int

#define MAX 32 OXTfffffffL
#define MIN_32  0x80000000L
#define MAX_16 Ox7fff
#define MIN_16 0x8000

Applications Programming A-3
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A.2.1 Implementation of the Multiply-Accumulate Loop

First, examine the most popular loop used in almost every fixed-point vocoder,
the multiply-accumulate (MAC) loop, shown in Example A-1.

Example A-1. C Code for the Typical MAC Loop

input:
Word16 N; (typical value of N is an even integer,
greater than or equal to 20)
Word16 *x, *y;

result:
Word32 sum;

C Code

sum=0;
for(i=0;i<N;i++) sum=L_mac(sum,x[i],y[i]);

where L_mac(a,b,c) = _sadd(a,_smpy(b,c))

Example A—2 shows a list of symbolic instructions for each iteration of the loop.

Example A-2. Linear Assembly for the MAC Loop

LOOP:

LDH .D *Xptr++, Xi ; load X[i]

LDH .D *yptr++, yi ; load y[i]

SMPY M xi,yi,tmp ;o smpy(X[i],y[i])

SADD L sum,tmp,sum ; sum=sadd(sum,smpy(X[i],y[i])
[entr] SUB ALU cntr,1,cntr ;  decrement the loop counter
[entr] B .S LOOP ; branch to the loop

In Example A-2, xptr is the pointer for the x array and yptr is the pointer for the
y array. Because there are eight functional units, these instructions can easily
fit into one execution packet.

In general, unrolling the loop once as in the code in Example A-3 does not give
the same result as the code shown in Example A-1, because of the ordering
dependence of the saturated addition.
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Example A-3. C Code for MAC Loop With Loop Unrolling

Word32 sum_e, sum_o;
sum_e=0;
sum_o=0;
for(i=0;i<N;i+=2) {
sum_e=L_mac(sum_e,Xx[i],y[i]);
sum_o=L_mac(sum_o,x[i+1],y[i+1]);

sum=L_add(sum_o,sum_e);

where L_add(a,b)=_sadd(a,b)

However, both approaches lead to the same result if x[i] = y[i] for every i, Be-
cause _smpy (X[i], X[i]) is always greater than or equal to 0. This special MAC
loop is used to compute the energy of a particular signal segment. In this case,
take the approach shown in Example A-3, because it doubles the performance
of the code shown in Example A—2. Example A—4 shows the C code for this spe-
cial MAC loop. Example A-5 lists the symbolic instructions for this loop.

Example A—4. C Code for Energy Computation MAC Loop

sum=0;
for(i=0;i<N;i++)
sum = L_mac(sum,X[i],x[i]);

or
sum_e=0;
sum_o=0;
for(i=0;i<N;i+=2) {
sum_e=L_mac(sum_ex][i],x[i]);
sum_o=L_mac(sum_o X[i+1] x[i+1]);

sum=L_add(sum_o,sum_e);

Example A-5. Linear Assembly for Energy Computation MAC Loop

LOOP:
LDH .D *xptre++, xi ; load x([i]
SMPY .M xixi,tmp_e ; smpy(X[i],x[i])
SADD L sum_e,tmp_e,sum_e ; sum_e=sadd(sum_e,smpy(x[i],Xi])
LDH .D *xptro++, xi+1 ; load x[i+1]
SMPY .M xi+1xi+1,tmp_o ; smpy(X[i+1],x[i+1])
SADD .L sum_o,tmp_o,sum_o ; sum_o=sadd(sum_o,smpy(x[i+1] x[i+1])
[cntr] SUB .S cntr,2,cntr ; decrement the loop counter
[cntr] B .S LOOP ; branch to the loop
SADD .L sum_e, sum_o, sum ; sum=sadd(sum_o+sum_e)

Applications Programming A-5
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In Example A-5, xptre and xptro are the pointers for the x array and, at the be-
ginning, point to x[0] and x[1], respectively. The eight instructions in the loop fit
perfectly into one execution packet. This approach computes two MACs in one
cycle. It doubles the performance of the code shown in Example A-2 for the
general MAC loop.

The final assembly code is shown in Example A-6.

Example A—6. Assembly Code for the Energy Computation MAC Loop

*x Texas Instruments, Inc *
*% *%
* MAC Loop — Energy Computation *
*% *%
* Compute two samples a time **
*% *%
* Total cycles = (N/2+2) *
*% *%
* Register Usage: A o
*% 4 5 *%
*% *%
*k Notice that x[0] and x[1] will not be available till LOOP *
*x is executed once. Therefore, sum_e and sum_o should be 0s **
*k for the first three iterations. This is why A5, B5, A6, xk
b and B6 should be set to Os in the prolog. b
; Ad — &x[0]
;B4—N
; A6 — sum
ADD .L2X  A4,2B4 ; &X[1]
[l SUB .D2 B4,6,B1 ; loop counter
[l B .S2 LOOP ; branch to the loop
Il MVK S1 0,A6 ; initialize sum_e
LDH .D1 *Ad++[2],A5 ; load x[0]
Il LDH .D2 *B4++[2],B5 ; load x[1]
[l B .S2 LOOP ; branch to the loop
Il MV .L2X A6,B6 ; initialize sum_o
LDH .D1 *Ad++[2],A5 ; load x[2]
Il LDH .D2 *B4++[2],B5 ; load x[3]
[l B S1 LOOP ; branch to the loop
Il MV L1 AB6,A5 ; take care the i nitial three iterations
Il MV L2 B6,B5 : take care the i nitial three iterations
LDH .D1 *Ad++[2],A5 ; load x[4]
Il LDH .D2 *B4++[2],B5 ; load x[5]
Il B S1 LOOP

A-6
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Example A—6. Assembly Code for the Energy Computation MAC Loop (Continued)

LDH .D1 *Ad++[2],A5 ; load x[6]
Il LDH .D2 *B4++[2],B5 ; load x[7]
LOOP:
SMPY M1 A5,A5,A7 ;o smpy(X[i]LXx[i])
1 SMPY M2 B5,B5,B7 ; smpy(X[i+1], x[i+1])
Il SADD L1 A7,A6,A6 ;. sum_e=sadd(sum_e,smpy(X[i],X[i]))
Il SADD L2 B7,B6,B6 ; sum_o=sadd(sum_o,smpy(x[i+1],x[i+1]))
Il LDH .D1 *Ad++[2],A5 ; load X[i]
[l LDH .D2 *B4++[2],B5 ; load x[i+1]
|I[[B1] B S1 LOOP ;  branch to the loop
|I[[B1] SuB .S2 B1,2,B1 ;  decrement loop counter
SADD .L1X A6,B6,A6 ;  final result, sum = sum_e + sum_o

A.2.2 Implementation of the Windowing and Scaling Part of autocorr.c

The autocorr.c routine is one of the most computationally intensive modules
in the EFR vocoder. The part used in Example A—7 is used for windowing
speech samples and for scaling down the windowed sample sequence if the
input level is too high. Figure A—1 shows the flow diagram for this code.

Applications Programming A-7
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Example A-7. C Code for the Windowing and Scaling Part of autocorr.c

#define L_WINDOW 240

input:
Word16 x[L_WINDOW], wind[L_WINDOW];

local variables/arrays:
Word16 i;
Word16 y[L_WINDOW];
Word32 sum;
Word16 overfl, overfl_shft;

Original C code:

/* Windowing of signal */
for (i=0;i<L_WINDOW; i++)

yli] = mult_r (x[i], wind[i]);

/* Compute r[0] and test for overflow */

overfl_shft = 0;

do

{
overfl = 0;
sum = 0L;

for (i = 0; i < L_WINDOW; i++)
{

}
/* If overflow divide y[] by 4 */

sum = L_mac (sum, y[i], y[i]);

if (L_sub (sum, MAX_32) == 0L)

overfl_shft = add (overfl_shft, 4);
overfl = 1; /* Set the overflow flag */

for (i=0; i< L_WINDOW; i++)
ylil = shr (y[i], 2);
}

while (overfl = 0);

Where  mult_r(a,b) = _sadd(_smpy(a,b),0x8000L)>>16
L_mac(a,b,c)= _sadd(a,_smpy(b,c))
L_sub(a,b) = _ssub(a,b)
add(a,b) = ((_sadd((a)<<16,((b)<<16)))>>16)
shr(a,b) = ((b)<0 ? (_sshl((a),(—b+16))>>16):((a)>>(b)))

A-8
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Figure A-1. Flow Diagram for the Windowing and Scaling Part of autocorr.c

( Start )

for(i = 0; i < L_WINDOW; i++) Loop 1
y[i] = mult_r (x[i], wind[i])

for(i = 0;i < L_WINDOW; i++) | LOOP 2
sum = L_mac (sum, y[il, y[il)

L_sub (sum, MAX_32) == 0L

lYes

for = 0; 1 < L WINDOW; i++) | -0°P3

ylil = shr (y[i], 2)

A.2.2.1 Unrolling the Loop

Try the loop unrolling technique for each loop.

Example A-8 shows the list of symbolic instructions needed to execute one it-
eration of loop 1. You can use any arithmetic logic unit (ALU) for the loop-count-
er update.

Example A-8. Linear Assembly for One Iteration of autocorr.c (Loop 1)

LOOP1:

STH
[cntr] SUB AL
[entr] B S

*windptr++,windi ;load wind]i]
*Xptr++ Xi ;load X[i]
windi,xi,windxiO ;smpy(X[i],wind[i])
windxi0,0x8000L,wind1xil  ;sadd(smpy(xi],wind]i]),0x8000L)
windxi1,16,yi ;sadd(smpy(x[i],wind[i]),0x8000L)>>16
yi,*yptr++ ;store V]

cntr,1,cntr ;decrement loop counter

LOOP1 ;branch to loop
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In Example A-8, windptr, xptr, and yptr are the pointers of wind, x, and y.

The .D unitis used most often (three times). With properly partitioned resources,

this is a 2-cycle loop.

If you unroll the loop once and load both x and wind in words (in GSM EFR,
both x and wind can be loaded in words if they are map-aligned with the word
boundary), you can compute two y values with two cycles. The following is the

new list of the instructions in one loop iteration.

Example A-9. Linear Assembly for Loop 1 of autocorr.c (Using LDW)

LOOP1:
LDW D *windptr++,windi_windi+1
LDW D *xptr++xi_xi+1
SMPY .M windi_windi+1,xi_xi+1,windxiO
SMPYH .M windi_windi+1,xi_xi+1,windxiO+1
SADD L windxi0,0x8000L ,windxil
SADD L windxiO+1,0x8000L,windxil1+1
SHR S windxil,16,yi
SHR S windxil+1,16,yi+1
STH D vyi*yptre++[2]
STH .D yi+1*yptro++[2]

[entr] SUB .S cntr,2,cntr

[entr] B .S LOOP1

;load wind[i] and wind[i+1]
;load x[i] and x[i+1]

ssmpy(X[i],wind[i])

;smpy(X[i+1],wind[i+1])
;sadd(smpy(x[i],wind][i]),0x8000L)
;sadd(smpy(x[i+1],wind[i+1]),0x8000L)

;sadd(smpy(x[i],wind[i]),0x8000L)>>16
;sadd(smpy(x[i+1],wind[i+1]),0x8000L)>>16
;store Vi]
;store y[i+1]
;decrement loop counter
;branch to loop

In Example A-9, yptre and yptro are the pointers for the y array and, at the be-

ginning, point to y[0] and y[1], respectively.

Note:

Loop 2 is a special MAC loop, as described in section A.2.1 on page A-4. It
can be implemented either as shown in Example A—10 without loop unrolling

or as in Example A—11 with loop unrolling for one iteration.

Example A—-10. Linear Assembly for Loop 2 of autocorr.c (No Loop Unrolling)

LOOP2:
LDH .D *yptr++,yi
SMPY M yi,yi,yyi
SADD L sum,yyi,sum
[entr] SUB .S cntr,1,cntr
[entr] B .S LOOP2

;load y[i]
;smpy(y[il.y[il)
;sadd(sum,smpy(y[i],y[i]))

;decrement loop counter

;branch to loop

A-10




Implementation of the GSM EFR Vocoder

Example A-11. Linear Assembly for Loop 2 of autocorr.c (With Loop Unrolling)

LOOP2:
LDH
LDH
SMPY
SMPY
SADD
SADD

[entr] SUB

[entr] B

SADD

D
D
.M
M
L
L

.S
.S

*yptre++,yi ;load y[i]
*yptro++,yi+1 ;load y[i+1]
yiyi,yyi ;smpy (y[il.y[i])
yi+lyi+1,yyi+l ;smpy(y[i+1],y[i+1])
sum_e,yyi,sum_e ;sadd(sum_e,smpy(y[il,y[i])
sum_o,yyi+1,sum_o ;sadd(sum_o,smpy(y[i+1],y[i+1]))
cntr,2,cntr ;decrement loop counter
LOOP2 ;branch to loop
sum_e,sum_o,sum ;sum=sum_o+sum_e

Later, you will see that both approaches are used in this application.

Loop 3 is a single-cycle loop and you cannot speed it up by simply unrolling
the loop. The instructions for each iteration are shown in Example A-12.

Example A-12. Linear Assembly for Loop 3 of autocorr.c

LOOP3:
LDH
SHR
STH
[entr] SUB
[entr] B

L

.D

*yptri++,yi ;load V]

yi,2,yi0 ;shr(y[i],2)

yi0,*yptrs++ ;store y([i]=shr(y[i],2)
cntr,1,cntr ;decrement loop counter
LOOP3 ;branch to loop

In Example A-12, yptrl is the pointer for loading the y array and yptrs is the
pointer for storing the y array.

The new flow diagram is shown in Figure A-2.
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Figure A-2. Flow Diagram for autocorr.c With Loop Unrolling

( Start )

for(i=0; i< L_WINDOW, i+=2) {
ylil = mult_r (x[i], wind[i]) Loop 1
yli+1] = mult_r (x[i+1], wind[i+1])
for(i = 0; i < L_WINDOW; i++) { Loop 2

sum_o =L_mac (sum_o, y[i], y[i])
sum_e = L_mac (sum_e, y[i+1], y[i+1])

sum =sum_o + sum_e

L_sub (sum, MAX_32) == 0L
?

for(i = 0; i < L_WINDOW; i++) Loop 3
y[i] = shr(y[il, 2)

A.2.2.2 Rearrange the C Code

The first execution of loop 2 can be combined with loop 1 to form a new loop |
and its subsequent executions can be combined with loop 3 to form a new
loop II.

Another small change is the implementation of if L_sub(sum, MAX_ 32) == 0L
as if sum == MAX_32.

The new flow diagram with rearranged C code is shown in Figure A-3.
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Figure A-3. Flow Diagram for autocorr.c With Rearranged C Code

( Start )

Loop |

for(i=0; i <L_WINDOW,; i+=2) {
y[i] = mult_r (x[i], wind[i])
yli+1] = mult_r (x[i+1], wind[i+1])
sum_o = L_mac (sum_o, y[i], y[i])
sum_e=L_mac (sum_e, y[i+1], y[i+1])
}

SUm =sum_o + sum_e

sum == MAX_32
?

for(i = 0;i<L_WINDOW; i++) { Loop Il
yli] = shr(y[i], 2)
sum = L_mac (sum, y[i, y[i])

)
|

You can implement loop | as one of the two approaches as shown in
Example A-13.
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Example A-13. Linear Assembly for Loop | of autocorr.c (Modified)

LOOPI:
LDW .D *windptr++,windi_windi+1 ;load wind[i] and wind[i+1]
LDW .D  *xptr++xi_xi+1 ;load x[i] and x[i+1]
SMPY .M windi_windi+1,xi_xi+1,windxiO ;smpy(x[i],wind[i])
SMPYH .M windi_windi+1,xi_xi+1,windxiO+1 ;smpy(x[i+1],wind[i+1])
SADD .L windxi0,0x8000L,windxil ;sadd(smpy(x[i],wind[i]),0x8000L)
SADD .L windxiO+1,0x8000L,windxil+1 ;sadd(smpy(x[i+1],wind[i+1]),0x8000L)
SHR .S windxil,16,yi ;sadd(smpy(x[i],wind[i]),0x8000L)>>16
SHR .S windxil+1,16,yi+1 ;sadd(smpy(x[i+1],wind[i+1]),0x8000L)>>16
SMPY .M viyiyyi ssmpy(y[iLy[il)
SMPY .M yi+lyi+l,yyi+l ;smpy(y[i+1],y[i+1])
SADD .L sum_e,yyi,sum_e ;sum_e=sadd(sum_e,smpy(y[i],y[i]))
SADD .L sum_o,yyi+l,sum_o ;sum_o=sadd(sum_o,smpy(y[i+1],y[i+1])
STD .D vyi*yptre++[2] ;store y[i]
STD .D yi+1 *yptro++[2] ;store y[i+1]
[cntr] SUB .S cntr,2,cntr ;decrement loop counter
[ent] B .S LOOPI ;branch to loop
or as
LOOPI:
LDW D *windptr++,windi_windi+1 ;load wind[i] and wind[i+1]
LDW D *xptr++xi_xi+1 ;load x[i] and x[i+1]
SMPY M windi_windi+1,xi_xi+1,windxiO ;smpy(X[i],wind[i])
SMPYH .M windi_windi+1,xi_xi+1,windxiO+1 ;smpy(x[i+1],wind[i+1])
SADD L windxi0,0x8000L,windxil ;sadd(smpy(x[i],wind][i]),0x8000L)
SADD  .L windxiO+1,0x8000L,windxil+1 ;sadd(smpy(x[i+1],wind[i+1]),0x8000L)
SHR .S windxi1,16,yi ;sadd(smpy(x[i],wind[i]),0x8000L)>>16
SHR S windxil+1,16,yi+1 ;sadd(smpy(x[i+1],wind[i+1]),0x8000L)>>16
SMPYH .M windxil,windxil,yyi ;smpy(Y[il.y[il)
SMPYH .M  windxi+1,windxi+1,yyi+1 ;smpy(y[i+1],y[i+1])
SADD L sum_eyyissum_e ;sum_e=sadd(sum_e,smpy(y[ily[i]))
SADD L sum_o,yyi+l,sum_o ;sum_o=sadd(sum_o,smpy(y[i+1],y[i+1])
STD .D i *yptre++2] ;store y[i]
STD .D yi+1*yptro++[2] ;store y[i+1]
[ent]  SUB .S cntr,2,centr ;decrement loop counter
[entr] B .S LOOPI ;branch to loop

A-14

The only difference between these two implementations is how to compute yyi
and yyi + 1. Using yyi as an example, the former approach computes yyi follow-
ing the order of the original C code:

yyi = _smpy(_sadd(_smpy(a,b),0x8000L)>>16,
_sadd(_smpy(a,b),0x8000L)>>16),

The latter computes yyi in a slightly different way as:

yyi = _smpyh(_sadd(_smpy(a,b),0x8000L),
_sadd(_smpy(a,b),0x8000L)).
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This provides the flexibility to better pack the instructions and reduces cycle
count.

Loop lis atwo-cycle loop. Loop Il is still a single-cycle loop. Its instructions are
shown in Example A-14.

Example A-14. Linear Assembly for Loop Il of autocorr.c (Modified)

LOOPII:
LDH D *yptri++,yi  ;load yJi]
SHR S yi,2,yi0 ;shr(y[i],2)
SMPY M yi0,yi0,yyi ;smpy(shr(y[il,2),shr(y[i],2))
SADD L sum,yyi,sum ;sum=sadd(sum,smpy(shr(y[i],2),shr(y[i],2)))
STH D yi0,*yptrs++ ;store y[i]=shr(y[i],2)
[entr] SUB L cntr,1,cntr  ;decrement loop counter
[cntr] B .S LOOPII ;branch to loop

A.2.2.3 Memory Bank Hits
To schedule loop | as a 2-cycle loop:

[ X[i] + x[i + 1] << 16 and wind[i] + wind[i + 1] << 16 must be loaded in the
same cycle.

J Y[i] and y[i+1] must be stored in the other cycle.
To avoid a memory bank hit:

[ Allocate x and wind in different memory spaces, if possible. For instance,
allocate wind[i] in data ROM and x in data RAM.

[ If no data ROM is available, allocate x and wind so they are offset from
each other by one word.

There is no memory bank problem when storing y[i] and y[i + 1].

No memory bank hits occur in loop Il, because the distance between the load
and store is always six halfwords.

The modified C code of this part of autocorr.c is shown in Example A-15.
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Example A-15. Implemented C Code for autocorr.c

Word16 i;

Word16 y[L_WINDOW];
Word32 sum, sum_e, sum_o;
Word16 overfl, overfl_shft;

/* Windowing of signal */

sum_e=sum_o=0L;
for (i=0; i< L_WINDOW; i+=2)

{
yli] = mult_r (x[i], wind[i]);
yli+1] = mult_r(x[i+1], window[i+1]);
sum_e = L_mac(sum_e, y[i], y[i]);
sum_o = L_mac(sum_o, y[i+1], y[i+1]);
}

sum=sum_e+sum_o;

/* Compute r[0] and test for overflow */

overfl_shft = 0;
do
{
overfl = 0;

/* If overflow divide y[] by 4 */

if (sum == MAX_32)

{
overfl_shft = add (overfl_shft, 4);
overfl = 1; /* Set the overflow flag */
sum=0L,;
for (i=0; i <L_WINDOW; i++)
ylil = shr (y[il, 2);
sum = L_mac(sum, y[i], y[i]);
}
}

while (overfl 1= 0);

A.2.2.4 Code-Size Reduction

Finally, consider the code-size reduction. In Figure A-3 on page A-13, loop | is
always executed and loop Il is executed only for high-input levels. This means
that cycle count is the most important factor for loop I, while code size is more
critical for loop 1.
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The final assembly code is presented in Example A-16.

Example A-16. Assembly Code for Windowing and Scaling Part of autocorr.c

*%

Texas Instruments, Inc

*%

*%

Implementation of The Windowing and Scaling Part of autocorr.c bl

In EFR
Compute two samples a time

Total cycles = 257 (No Scaling)
=519 (One Scaling)

Register Usage: A

*%

*%

*%

*%

*%

*%

*%

*%

*%k

*%

11 9
; B4 — &x[0]
; A4 — &window][0]
; A6 — &y[0]

; B8 — L_WINDOW

; AO— sum and sum_e
; BO—sum_o

; B15 — stack pointer

; hotice that we use the latter approach in Example A-13

LDW .D2 *B4++,B5
LDW .D1 *Ad++,A5
MVK S1 480,A6
SuUB .S2 B8,6,B1

SUB .L1X  B15,A6,A6
MVK .52 1,B7

LDW .D2 *B4++,B5
LDW .D1 *Ad++, A5

SHL .S2 B7,15,B7
MVK .S1 -1,A10
ADD .L2X  A6,2,B6

MV L1 A6,A3

LDW .D2 *B4++,B5
LDW .D1 *Ad++ A5
MVKLH .S1 32767,A10
MV .L1X B7,A7

; load x[0] & x[1]
; load wind[0] & wind[1]
; reserve space for y[i]
; LOOP [ counter

; &y[0]
; load x[2] & X[3]
; load wind[2] & wind[3]
; 32768 or 0x8000L for rounding

» &y[1]
; &y[0]

; load x[4] & x[5]
; load wind[4] & wind[5]
; THfffff = MAX_32
; 32768

Applications Programming
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Example A—16. Assembly Code for Windowing and Scaling Part of autocorr.c (Continued)

SMPYH .M2X B5,A5,B2
Il SMPY .M1X B5,A5,A2
I B 82 LOOPI
LDW .D2 *B4++,B5
1 LDW .D1 *Ad++ A5
I MVK S1 0,A0
I MVK .S2 0,B0
SMPYH .M2X B5,A5,B2
Il SMPY .M1X B5,A5,A2
I SADD L1 A2,A7,A2
I SADD L2 B2,B7,B2
Il B S1 LOOPI
LDW .D2 *B4++,B5
1 LDW .D1 *Ad++ A5
I SHR S1 A2,16,A9
I SHR .S2 B2,16,B9
1 SMPYH M1 A2,A2,A11
Il SMPYH .M2 B2,B2,B11
LOOPI:
STH D1 A9, *AB++[2]
I STH .D2 B9,*B6++[2]
I SADD L1 A2,A7,A2
Il SADD L2 B2,B7,B2
Il SMPYH .M2X B5,A5,B2
Il SMPY .M1X B5,A5,A2
|[B1] SuB .S2 B1,2,B1
I[B1] B S1 LOOPI
SADD L1 A0,A11,A0
Il SADD L2 B0,B11,BO
Il SMPYH M1 A2,A2,A11
I SMPYH .M2 B2,B2,B11
I SHR S1 A2,16,A9
I SHR S2 B2,16,B9
1 LDW .D2 *B4++,B5
I LDW D1 *Ad++ A5
SADD L1X A0,B0,A0
I MPY M2 B0,0,B0

; smpy(X[1],wind[1])
; smpy(x[0],wind[0])

; load x[6] & X[7]
; load wind[6] & wind[7]
;sum_o0=0
;sum_e =0

; smpy(x[3],wind[3])
; smpy(x[2],wind[2])
; sadd(smpy(x[1],wind[1]),0x8000L)
; sadd(smpy(x[0],wind[0]),0x8000L)

; load x[8] & x[9]
; load wind[8] & wind[9]
; Y[1]=sadd(smpy(x[1],wind[1]),0x8000L)>>16
; Y[O]=sadd(smpy(x[0],wind[0])+0x8000L)>>16
; smpy(y[0].y[0])
» smpy(y[1].y[1])

; store y[1]
; store y[0]
; sadd(smpy(x[3],wind[3]),0x8000L)
; sadd(smpy(x[2],wind[2]),0x8000L)
; smpy(x[5],wind[5])
; smpy(x[4],wind[4])
; decrement the loop counter

; sum_e += smpy(y[0],y[0])

; sum_o += smpy(y[1].y[1])

» smpy(y[2].y[2])

» smpy(y[3].y[3])
; Y[3]=sadd(smpy(x[3],wind[3]),0x8000L)>>16
; Y[2]=sadd(smpy(x[2],wind[2]),0x8000L)>>16

; load x[10] & x[11]

; load wind[10] & wind[11]

; sum = sum_e + sum_o
; overfl_shift=0
; LOOP | completed
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Example A—16. Assembly Code for Windowing and Scaling Part of autocorr.c (Continued)

LTEST:
CMPEQ .L1 A0,A10,A1 ; if (sum == MAX_32)
['A1] B .S1 FINISH ; No, exit
[I[A1] LDH .D1 *A3,B5 ; load y[0]
[I[A1] ADD .L2X  A3,2,B9 ; &y[1]
|[[A1] ADD .D2 B0,4,B0 ; add (overfl_shift,4)
[A1] LDH .D2 *B9++,B5 ; load y[1]
[[[A1] SUB .S2 B8,7,B1 ; counter for LOOPII
[I[A1] B S1 LOOP I
[I[A1] MV L1 A3,A9 ; &y[0]
[Al] LDH .D2 *B9++,B5 ; load y[2]
[I[A1] MVK .S1 0,A0 ;sum=0
[I[A1] B .S2 LOOPII
[A1] LDH .D2 *B9++,B5 ; load y[3]
[I[A1] B S1 LOOPII
[I[AL] MV L1 A0,A2 ; to take care of the initial condition
[Al] LDH .D2 *B9++,B5 ; load y[4]
[I[A1] B S1 LOOPII
[A1] LDH .D2 *B9++,B5 ; load y[5]
[I[A1] SHR .S1X B5,2,A5 ; Y[0]=shr(y[0],2)
[I[A1] B .S2 LOOPII
LOORPIL:
LDH .D2 *B9++,B5 ; load y[6]
I SHR .S1X  B5,2,A5 ; Y[1] = shr(y[1],2)
|I[B1] B .S2 LOOPII ; branch
Il STH .D1 A5, *A9++ ; store y[0]
|I[B1] ADD L2 B1,-1,B1 : decrement LOOPII counter
Il SMPY M1 A5,A5,A2 ; smpy(y[0],y[0])
Il SADD L1 A2,A0,A0 ; sum +=smpy(y[il,y[i])
STH .D1 A5,*A9++ ; store y[n—1]
Il SMPY M1 A5,A5,A2 ; smpy(y[n—-1],y[n-1])
Il SADD L1 A2,A0,A0 ; sum +=smpy(y[n—3],y[n-3])
Il B .S2 LTEST ; branch back to LTEST
SADD L1 A2,A0,A0 ; sum +=smpy(y[n—-2],y[n-2])
SADD L1 A2,A0,A0 ; sum +=smpy(y[n—1],y[n-1])
NOP 3 ; save the code size
FINISH:
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If code size is not an issue, you can eliminate the last three NOPs by ex-
panding the epilog of loop II. This saves three cycle counts every time loop |l
executes; however, code size increases by two fetch packets (2 X 32 = 64 bytes).

A.2.3 Implementation of cor_h

The cor_h routine is the second most computationally intensive routine
called to compute the matrix of autocorrelation, rr. The core part of cor_h is
presented in Example A-17.

Example A-17. C Code for cor_h

#define L_CODE 40

input:
Word16 sign[L_CODE], h[L_CODE],

output:
Word16 rr[L_CODE][L_CODE];

local variables/arrays:
Word16 h2[L_CODE]; /* function of h, the impulse response of weighted
synthesis filter */
Word16 dec, j, i, k;
Word32 s;

Original C code

for (dec=1; dec<L_CODE; dec++)

{
s=0;
j=L_CODE-1,
i = sub(j, dec);
for (k=0; k<(L_CODE-dec); k++, i—, j—)
{
s = L_mac(s, h2[k], h2[k+dec]);
rrj][i] = mult(round(s), mult(signli],sign[j]));
re[il] = reQ0T;
}

where  sub(a,b) = _ssub(a<<16, b<<16)>>16
L_mac(a,b,c) = _sadd(a,_smpy(b,c))
mult(a,b) = _smpy(a,b)>>16

and round(a) = _sadd(a,0x8000L)>>16

The instructions to execute one iteration of the inner loop are listed in
Example A-18.
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Example A-18. Linear Assembly for cor_h (One Inner Loop Iteration)

INNERLOOP:
LDH
LDH
SMPY
SADD
SADD
LDH
LDH
SMPY
SMPYH
SHR
STH
STH

[icntr] SUB.ALU

icnt] B .S

D
D
.M
L
L
.D
.D
M
.M
S
D
.D

icntr,1,icntr ;decrement inner loop counter
INNERLOOP ;branch to inner loop

*h2ptr++,h2k ;load h2[K]
*h2decptr++,h2deck ;load h2[k+dec]
h2k,h2deck,h2kk ;smpy(h2[k],h2[k+dec])
s,h2kk,s ;sadd(s,smpy(h2[k],h2[k+dec])
s,0x8000L,sround ;round(s)<<16
*signiptr—,signi ;load sign(i]

*signjptr—,sign;j ;load signlj]

signi,signj,signij ;smpy(sign[i],sign[j])=mult(sign[i],sign[j])<<16
signij,sround,rrjio ;L_mult(round(s),mult(sign(i],sign[j]))
11ji0, 16, rrji sl
rrji *rrjiptr—[41]  ;store rr[j][i]
rrji, *rrijptr—[41] ;store rri][j]

In Example A—18, h2ptr and h2decptr are the pointers for h2, pointing to h2[k]
and h2[k+dec]. The pointers for sign, signiptr and signjptr, pointto sign[i] and
sign[j]. The pointers for rr, rrjiptr and rrijptr, pointto rr[j][i]and rr[i][j], respec-
tively.

Notice that each element rr[j][i] is implemented as:
re[j][i] = (_smpyh (_sadd (s, 0x8000L), _smpy (sign[i], sign[j]))) >> 16

The .D unit is used most often (six times in the inner loop). Ideally, these
instructions can be arranged in three cycles. However, memory bank hits oc-
cur with any combination of the load and/or store instructions.
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Next, consider unrolling the inner loop once. The C code is shown in
Example A-19.

Example A-19. C Code for cor_h (With Inner Loop Unrolling)

for (dec=1; dec<L_CODE; dec++)
{
s=0;
j=L_CODE-1;
i = sub(j, dec);
for (k=0; k<(L_CODE—dec); k+=2, i-=2, j-=2)
{
s = L_mac(s, h2[k], h2[k+dec]);
rr[j][i] = mult(round(s), mult(sign[i],sign[j]));
re(i]fi] = re{i(il;
s = L_mac(s, h2[k+1], h2[k+1+dec]);
rr[j—1][i—1] = mult(round(s), mult(sign[i—-1],sign[j—1]));
rr[i—1][—-1] = rr[j—1][i-1];
}
if((dec&1)!=0) {
s = L_mac(s,h2[L_CODE—dec-1],h2[L_CODE-1]);
rr{dec][0] = mult(round(s),mult(sign[0],sign[dec]));
rr[0][dec] = rr[dec][0];
}
}

Eightvalues must be loaded and four values must be stored in every iteration;
however, h2[k] and h2[k+ 1] can be loaded in a word. The same is true for

sign[j] and sign[j—1]. A total of six loads are required. The inner loop
instructions are shown in Example A-20.
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Example A-20. Linear Assembly for cor_h (With Inner Loop Unrolling)

INNER LOOP:
LDW .D  *h2ptr++h2k_h2k+1 ;load h2[k] and h2[k+1]
LDH .D  *h2decptr++,h2deck ;load h2[k+dec]
SMPY .M h2k_h2k+1,h2deck,h2kk0 ;smpy(h2[k],h2[k+dec])
SADD L sh2kkO,s ;sadd(s,smpy(h2[K],h2[k+dec])
SADD L s,0x8000L,sround ;round(s)<<16
LDH .D  *signipt—,signi ;load signli]
LDW .D  *signjptr—,signj_signj—1 ;load sign[j] and sign[j-1]
SMPYLH .M signi,signj_signj-1,signij0 ;smpy(sign[i],sign[j])
SMPYH .M  signijO,sround,rrji0 ;L_mult(round(s),mult(sign(i],sign(i]))
SHR S 1mji0,16,riji el
STH .D  rji,*rrjiptr—{82] ;store rr{j][i]
STH .D i *rrijptr—{[82] ;store rrfi][j]
LDH .D  *h2decptr++,h2deck+1 ;load h2[k+1+dec]
SMPYHL M h2k_h2k+1,h2deck+1,h2kk1l ;smpy(h2[k+1],h2[k+1+dec])
SADD L sh2kkl,s ;sadd(s,smpy(h2[k+1],h2[k+1+dec])
SADD L s,0x8000L,sround ;round(s)<<16
LDH .D  *signiptr—,signi-1 ;load sign[i-1]
SMPY .M signi-1,signj_signj—1,signij1;smpy(sign[i—1],sign[j-1])
SMPYH .M  signijl,sround,mjil ;L_mult(round(s),mult(sign[i~1],sign[j~1]))
SHR S mjil,16,mjlil rl1li-1]
STH .D  mjlil,*rmjlilptr—{82] ;store rr{—1][-1]
STH .D  rmjdil*rriljlpt—{82] ;store rr{i—1][-1]
[icntr]SUB.ALU icntr,2,icntr ;decrement inner loop counter
[icntrlB .S INNERLOOP ;branch to loop

To avoid memory bank hits:

(1 Load words (h2[k], h2[k+1]) and (sign[i—1], sign[i]) together and allo-
cate h2 and sign so that they are aligned with each other.

[ Store rr[j][i] and rr[j—1][i—1] together and rr[i][j] and rr[i—1][j—1] to-
gether.

There are five load/store pairs, so each iteration requires only five cycles. You
gain speed by eliminating both the memory bank hits, as well as by reducing
the cycles required to complete each rr.

The final assembly code with reduced code size is shown in Example A-21.
Here, the primitive technique introduced in section 6.4.3.4, Priming the Loop,
on page 6-47 is used to reduce the code size for both the prolog and epilog
of the inner loop.
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Example A-21. Assembly Code for cor_h With Reduced Code Size

** Texas Instruments, Inc **
*% *%
xx Implementation of cor_h in EFR *x
*% *%
xx Compute four rrs at a time b
*% *%
xx Total cycles = 2533 *x
*% *%
ki Register Usage: A B i
*% *%
ki 16 15 o
*% *%
; AA—L_CODE
; B4 — &h2[0]
; A6 — &sign[0]
; B6 — &rr[0][0]
SUB L1 A4,1,A13 ; used to obtain &rr[i][j] and &rr[i-1][j-1]
I ADDK .51 76,A6 ; &sign[L_CODE-2]
I ADDK .S2 3360,B6 ; &rr[L_CODE-1][L_CODE-2]+[82]=&rr[j][i]+[82]
Il SUB .D1 A4,1,A2 ; outer loop counter
MVK .S2 0,B2 ; not doing the initial store
I ADD L2 B4,2,B13 : &h2[k+dec]
Il MVK .S1 2,A11 ; used to increase/decrease the pointers
; for h2 and sign
OUTERLOOP:
LDW .D1 *A6,A10 ; load sign[j—1] & sign[j]
I LDW .D2 *B4,B12 ; load h2[k] & h2[k+1]
I ADD .L1X B13,2,A3 ; &h2[k+dec+1]
| SuB S1  A6,A11,A4 ; &sign[i-1]
[[[A2] ADD .L2X A2,2,B0 ; define the inner loop counter
Il MPY M1 Al13,A11,A3
I MPY .M2 B11,0,B11 ; initialize s
LDH .D2 *B13++[2],A7 ;load h2[k+dec]
I LDH D1 *A3B7 : load h2[k+dec+1]
I ADD L2X  A4,2B9 ; &signli]
I MV .S2 B6,B14 ; &rrfillil+[82]
SUB L1 A6,4,A8 ; &sign[j—3]
[I[B2] ADDK .S1 -164,A14 ; from &rr[dec][0]+[82] to &rr[dec][0]
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Example A-21. Assembly Code for cor_h With Reduced Code Size (Continued)

LDH .D2  *B9,A0 ; load sign(i]
I LDH .D1  *A4—[2]B5 ; load sign[i-1]
1 ADD L2 B44B8 ; &h2[k+2]
I ADD Ll Al12A11 : update A1l
I ADDK  .S2 -82,Bl4 &[]
I MVK S1 3A1 ; determine when the stores in the inner loop

; actually starts

[B2] STH .D1  Al2*Al4 ; store rr[dec][0]
[IB2] ADDK S1  -164,A9 ; from &rr[0][dec]+[82] tp &rr[O][dec]
1 MV L1X B6,A14 ; &rrillil+82]
1 SHR .S2  B0,1,BO ; inner loop counter
I SUB L2X B14,A3,B3 ; &rri-1][-1]
1 SuB .D2 B6,2,B6 ; &rrfjjli~1], for the next
; outer loop iteration
[BO] B .S2  INNERLOOP
[I[A2] SUB Sl A21A2 ; decrement outer loop counter
[I[A2] AND L2X A2,1B2 ; decide if the last store is needed
[IB2] STH .D1  Al2*A9 ; store rr[O][dec]
1 SUB L1  A14,A3,A9 ; &rri][i]+[82]
[IBO] MV .D2  BO,B1 ; counter for branching to outer loop
INNERLOOP:
SHR .S2  B9,16,B10 ; ## obtain rrfj-1][i-1]
[ SMPYH M1  A3,A0,A3 ; # smpyh(sadd(s,0x8000L),smpy(sign(i],sign(j]))

1 SADD .L2X B11,A15B9 ; # sadd(s,0x8000L)

I LDW .D1 *A8—Al0 ; *load sign[j] & sign[j-1]
1 LDW .D2  *B8++B12 ; *load h2[k] & h2[k+1]
Bl B .S1  OUTERLOOP ; outer LOOP
1 ADD L1X B13,2,A3 ; &h2[k+dec+1]
LDH .D1  *A3B7 ; *h2[k+dec+1]
1 LDH .D2  *B13++[2],A7 ; *h2[k+dec]
1 SMPYH .M2  B9,B5,B9 ; # smpyh(sadd(s,0x8000L),smpy(sign[i—1],sign[-1]))
1 SMPY .M1X A7,B12,A7 ; smpy(h2[k],h2[k+dec]
I SUB .S2 B11B1 ; decrement the counter for branching to the outer loop
[[A1]] SuB L1 AL1Al ; decrement the inner loop
[ ADD L2X A4,2,B9 ; &sign[i]

LDH .D2 *B9,A0 ; *load signli]
Il LDH .D1 *Ad—(2],B5 ; *load sign[i—1]
Il SMPYHL .M1 A10,A0,A0 ; smpy(sign[j],sign[i])
I SMPYLH M2 B7,B12,B7 ;smpy(h2[k+1],h2[k+1+dec])
[I'A1] ADDK .S1 -164,Al4 ; ## from &rr[j][i]+[82] to &rr[j][i]
[I!A1] ADDK .S2 -164,B14 ; ## from &rr[j—1][i—1]+[82] to &rr[j—1][i—1]
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Example A-21. Assembly Code for cor_h With Reduced Code Size (Continued)

[IA1]
H[!Al]

|
[I[BO]

[I['AL]
Il'A1]

[1A1]
[I['A1]
I

Il

|
[I[BO]

lIl'A2]

FINISH:

STH
STH
SADD
SMPY
SuB
ADDK
ADDK

STH
STH
SHR
SADD
SADD
B

ADD
B

NOP

Al12,*Al14 ; ## store rr{j][i]
B10,*B14 ; ##t store rr[j—1][i-1]
B11,A7,A5 ;' s = sadd(s,smpy(h2[k],h2[k+dec])
A10,B5,B5 ; smpy(sign[i—1],sign[j—1]
B0,1,B0 ; decrement inner loop counter
-164,A9 ; ## from &rr[i][j]+[82] to rr[i][j]
-164,B3 ; ## from &rr[i-1][j—1]+[82] to &rr[i—-1][j—1]
A12*A9 ; ## store rrli][j]
B10,*B3 ; #i# store rr[j—-1][i-1]
A3,16,A12 ; # obtain rr[j—1][i—1]
A5,A15,A3 ; sadd(s,0x8000L)
.L2X A5,B7,B11 ;'S = sadd(s,smpy(h2[k+1],h2[k+dec+1]
INNERLOOP ; end of INNERLOOP

.L2X  B4,A11,B13 ; &h2[k+dec]

FINISH ; exit
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The value of s is represented by both B11 and A5 to avoid two .L1 or two .L2
units occurring in the same execute packet. Due to the dependence on s, as
well as the removal of memory bank hits, it takes 20 cycles for each iteration
of the modified C code. The pound sign (#) in the comments indicates that,
each time the outer loop enters the inner loop, this instruction is not executed
(or that the result of this instruction is not useful) until the number of iterations
denoted by # has occurred.

The code size is 11 fetch packets (352 bytes). Without applying the primitive
technique, the code size will be at least four fetch packets more than the code
shown in Example A-21.

You can squeeze the instruction

ADD .L2X B4,A11,B13 ; &h2[k+dec]

into the inner loop to save about 1.5% of the cycle counts, with an increase in
program memory of one fetch packet.



Implementation of the GSM EFR Vocoder

A.2.4 Implementation of the rrv Computation in search_10i40

Example A—22 shows the implementation of the rrv computation in search_10i40.

Example A-22. C Code for the rrv Computation in search_10i40

#define L_CODE 40

#define STEP 5

#define _1_16 (Word16)(32768L/16)
#define _1 8 (Word16)(32768L/8)

input:
Word16 rr[L_CODE][L_CODE], ipos[L_CODE];

local variables/arrays:
Word16 rrv[L_CODE];

Word16 i0,i1,i2,i3,i4,i5,i6,i7,i8,i9; /* defined on [0,L_CODE-1] */
Word32 s;

(The values of i0, i1, i2, i3, i4, i5, i6, and i7 were obtained before entering this loop.)

Original C code

for (19 = ipos[9]; i9 < L_CODE; i9 += STEP)
{

_mult (rr[i9][i9], _1_16);
_mac (s, rr[io][i9], _1_8);
_mac (s, rrfi1][i9], _1_8);
_mac (s, rrfi2][i9], _1_8);
_mac (s, rri3][i9], _1_8);
_mac (s, rrfi4][i9], _1_8);
_mac (s, rr[i5][i9], _1_8);
_mac (s, rr[i6][i9], _1_8);
=L_mac (s, rrfi7][i9], _1_8);
rrv[i9] = round (s);

uununnnnnonon
I 1 1 | B A 1|
rrr -

where L_mult(a,b) = _smpy(a,b)
L_mac(a,b,c) = _sadd(a,_smpy(b,c))
and round(a) = _sadd(a,0x8000L)>>16

The instructions for one loop iteration are shown in Example A—23.
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Example A-23. Linear Assembly for the rrv Computation in Search_10i40

(One Loop lIteration)

LOOP:
LDH .D *rr9ptr++[205],rr99 ;load rr[i9][i9]
SMPY M m99, 1 16,s ;5=L_mult(rr[i9][i9],_1_16)
LDH .D *rrOptr++[5],rr09 ;load rr[i0][i9]
SMPY M rr09, 1 8,s0 ;L_mult(rr[i0][i9],_1_8)
SADD L s,s0,s ;s=L_mac(s,rr[i0][i9],_1_8)
LDH .D *rrlptr++[5],rrl9 ;load rr[i1][i9]
SMPY M 19, 1 8,s1 ;L_mult(rr[i1][i9],_1_8)
SADD L s,sls ;s=L_mac(s,rr[i1][i9],_1_8)
LDH .D *rr2ptr++[5],rr29 ;load rr[i2][i9]
SMPY M rm29, 1 8,s2 ;L_mult(rr[i2][i9],_1_8)
SADD L S,82,8 ;s=L_mac(s,rr[i2][i9],_1_8)
LDH .D *re3ptr++[5],rr39 ;load rr[i3][i9]
SMPY M 39, 1 8,s3 ;L_mult(rr[i3][i9],_1_8)
SADD L s,583,s ;s=L_mac(s,rri3][i9],_1_8)
LDH .D *rrdptr++[5],rr49 ;load rr[i4][i9]
SMPY M 49, 1 8,54 ;L_mult(rr[i4][i9],_1_8)
SADD L s,s4,s ;s=L_mac(s,rr[i4][i9],_1_8)
LDH .D *rr5ptr++[5],rr59 ;load rr[i5][i9]
SMPY M 59, 1 8,s5 ;L_mult(rr[i5][i9],_1_8)
SADD L s,s5,8 ;s=L_mac(s,rr[i5][i9],_1_8)
LDH .D *rr6ptr++[5],rr69 ;load rr[i6][i9]
SMPY M rm69,_1_8,s6 ;L_mult(rr[i6][i9],_1_8)
SADD L s,56,S ;s=L_mac(s,rr[i6][i9],_1_8)
LDH .D *rr7ptr++[5],rr79 ;load rr[i7][i9]
SMPY M rr79,_1 8,s7 ;L_mult(rr[i7][i9],_1_8)
SADD L S,S7,S ;s=L_mac(s,rr[i7][i9],_1_8)
SADD L s,0x8000L,sround ;round(s)
SHR .S sround,16,rrv9 ;rrv[io]
STH .D rrv9,*rrvoptr++[5]  ;store rrv[i9]
[icntr]SUB ALU icntr,1,icntr ;decrement inner loop counter
[icntr]B .S LOOP ;branch to loop
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The following table shows the pointers In Example A—23 and the arrays they
point to.

Pointer for array

rroptr rr[i9][i9]
rrOptr rr[i0][19]
rrlptr rr[i1][i9]
rr2ptr rr[i2][19]
rr3ptr rr[i3][19]
rr4ptr rr[i4][i9]
rr5ptr rr[i5][i9]
rréptr rr[i6][i9]
rr7ptr rr[i7][19]
rrvoptr rrv[i9]

The .D unit is used the most (ten times per iteration). Although these instruc-
tions can be arranged in five cycles, any combination of the load hits the same
memory bank, Because any two values loaded are exactly 40 halfwords apart.
It still takes ten cycles for one rrv.
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Next, consider unrolling the inner loop once. The C code is shown in
Example A-24.

Example A-24. C Code for the rrv Computation in search_10i40 (Unrolled Loop)

for (19 = ipos[9]; i9 < L_CODE; i9 += 2*STEP)
{

L_mult (rr[i9][i9], _1_16);
L_mult (rr[i9+5][i9+5], _1_16);
L_mac (s, rri0][i9], _1_8);
L_mac (S, rr[i0][i9+5], _1_8);
L_mac (s, rr[i1][i9], _1_8);
L_mac (S, rr[i1][i9+5], _1_8);
L_mac (s, rrfi2][i9], _1_8);
L_mac (S, rr[i2][i9+5], _1_8);
L_mac (s, rr[i3][i9], _1_8);
L_mac (S, rr[i3][i9+5], _1_8);
L_mac (s, rri4][i9], _1_8);
L_mac (S, rr[i4][i9+5], _1_8);
L_mac (s, rr[i5][i9], _1_8);
L_mac (S, rr[i5][i9+5], _1_8);
=L_mac (s, rr[i6][i9], _1_8);

S =L_mac (S, rr[i6][i9+5], _1_8);
s=L_mac (s, rr[i7][i9], _1_8);

S =L_mac (S, ri7][i9+5], _1_8);
rrv[i9] = round (s);

rrv[i9+5] = round (S);

DO NN OO DO DY NV
L 1 T 1 T 1 T 1 O | S R | A A 1|
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Example A-25. Linear Assembly for rrv Computation in search_10i40 (One Loop Iteration)

LOOP:

LDH
SMPY
LDH
SMPY
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY
SADD
LDH
SMPY

z0Frz0Frz0rz0F-rz20Fz0F-r20rz20-rz20Fz0F-r2z20-rz0-rz20z0%z0

*rr9ptr++[410],rr99
99, 1 16,s

*rr95ptr++[410],rr995

995, 1 16,S
*rrOptr++[10],rr09
09, 1 8,s0
s,s0,s
*rrO5ptr++[10],rr095
rr095,_1_8,S0
S,S0,S
*rrlptr++[10],rr19
rr19, 1 8,s1
s,s1,s
*rrl5ptr++[10],rr195
rr195, 1 8,S1
S,S1,S
*rr2ptr++[10],rr29
29, 1 8,s2
S,52,S
*rr2ptr++[10],rr295
295, 1 8,S2
S,82,S
*rr3ptr++[10],rr39
39, 1 8,s3
S,83,S
*rr3ptr++[10],rr395
395, 1 8,S3
S,S3,S
*rrdptr++[10],rr49
49, 1 8,54
s,s4,s
*rrdptr++[10],rr49
49, 1 8,54
S,54,S
*ri5ptr++[10],rr59
59, 1 8,s5
S,s5,s
*rr5ptr++[10],rr595
595, 1 8,S5
S,S5,S
*rréptr++[10],rr69
69, 1 8,s6

;load rrli9][i9]
;s=L_mult(rr[i9][i9],_1_16)
;load rr[i9+5][i9+5]
;S=L_mult(rr[i9+5][i9+5],_1_16)
;load rr[i0][i9]
;L_mult(rr[i0][i9],_1_8)
;s=L_mac(s,rr[i0][i9],_1_8)
;load rrfi0][i9+5]
;L_mult(rr[i0][i9+5],_1_8)
;S=L_mac(S,rr[i0][i9+5],_1_8)
;load rr[i1][i9]
;L_mult(rr[i1][i9],_1_8)
;s=L_mac(s,rr[i1][i9],_1_8)
;load rr[i1][i9+5]
;L_mult(rr[i1][i9+5],_1_8)
;S=L_mac(S,rr[i1][i9+5],_1_8)
;load rr[i2][i9]
;L_mult(rr[i2][i9],_1_8)
;s=L_mac(s,rr[i2][i9],_1_8)
;load rr[i2][i9+5]
;L_mult(rr[i2][i9+5],_1_8)
;S=L_mac(S,rr[i2][i9+5],_1_8)
;load rr[i3][i9]
;L_mult(rr[i3][i9],_1_8)
;s=L_mac(s,rr[i3][i9],_1_8)
;load rr[i3][i9+5]
;L_mult(rr[i3][i9+5],_1_8)
;S=L_mac(S,rr[i3][i9+5],_1_8)
;load rr[i4][i9]
;L_mult(rr[i4][i9],_1_8)
;s=L_mac(s,rr[i4][i9],_1_8)
;load rr[i4][i9]
;L_mult(rr[i4][i9],_1_8)
;S=L_mac(S,rr[i4][i9],_1_8)
;load rr[i5][i9]
;L_mult(rr[i5][i9],_1_8)
;s=L_mac(s,rr[i5][i9],_1_8)
;load rr[i5][i9+5]
;L_mult(rr[i5][i9+5],_1_8)
;S=L_mac(S,rr[i5][i9+5],_1_8)
;load rr[i6][i9]
;L_mult(rr[i6][i9],_1_8)
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Example A-25. Linear Assembly for rrv Computation in search_10i40 (One Loop Iteration)

(Continued)

SADD L s,56,s ;s=L_mac(s,rr[i6][i9],_1_8)
LDH .D *rr6ptr++[10],rr695 ;load rr[i6][i9+5]
SMPY M 695, 1 8,S6 ;L_mult(rr[i6][i9+5],_1_8)
SADD L S,S6,S ;S=L_mac(S,rr[i6][i9+5],_1_8)
LDH .D *rr7ptr++[10],rr79 ;load rrli7][i9]
SMPY M rr79,_1 8,s7 ;L_mult(rr[i7][i9],_1_8)
SADD L s,57,S ;s=L_mac(s,rr[i7][i9],_1_8)
LDH .D *rr7ptr++[10],rr795 ;load rr[i7][i9+5]
SMPY M rr795, 1 8,S7 ;L_mult(rr[i7][i9+5],_1_8)
SADD L S,S7,S ;S=L_mac(S,ri7][i9+5],_1_8)
SADD L s,0x8000L,sround ;round(s)
SHR .S sround,16,rrv9 ;rrv[io]
STH .D rrv9,*rrv9ptr++[10] ;store rrv[i9]
SADD L S,0x8000L,Sround ;round(S)
SHR .S Sround,16,rrv95 ;rrv[i9+5]
STH .D rrv95,*rrv95ptr++[10] ;store rrv[i9+5]

[ientr]SUB ALU icntr,2,icntr ;decrement inner loop counter

[icntr]B .S INNERLOOP ;branch to loop
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The following table shows the pointers In Example A-25 and the arrays they

point to.

Pointer

for array

rr9ptr and rr95ptr
rrxptr and rrx5ptr

rrv9ptr and rrv95ptr

rr[i9][i9]and rr[i9+5][i9+5]
rr[ix][i9]and rr[ix][i9+5] (wherex=0,1,...,7)

rrv[i9] and rrv[i9+5]

Again, the .D unit is used the most (twenty times per iteration).

None of the pairs of rr[ix][i9], rr[iy][i9+5] hit the same memory bank (where
ix, iy =10, i1, ..., i7). The same is true for pairs rrv[i9], rrv[i9+5], as well as
for rr[i9][19] and rr[i9+5][i9+5]. For ease of understanding:

[ Load rr[ix][i9], rr[ix][19+5] together.
[ Load rr[i9][i9], rr[i9+5][i9+5] together.
[ Store rrv[i9], rrv[i9+5] together.

In this way, each iteration takes ten cycles without any memory bank hits. You
double the speed by unrolling the loop once.

The final assembly code is shown in Example A—26.
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Example A—26. Assembly Code for the rrv Computation in search_10i40

Texas Instruments, Inc

*%

*%

Implementation of the rrv Computation in search_10i40 in EFR o

Compute two rrvs a time

Total cycles = 55

*%

*%

*%

*%

*%

b Register Usage: A e
*% *%
o 16 14 ok
*% *%
; B4—1i0
;B5—il
; B6 —i2
; BT —i3
; AB—i4
;B9 —i5
; Al0 —i6
A1l —i7
; B3—1i9
; A15 — &rr[0][0]
; AO — &rrv[0]
; B14 — stack pointer
MVK S1 410,A2 ; offset of rr[i9][i9]
I MVK .S2 410,B2 ; offset of rr[i9+5][i9+5]
MVK .S2 82,B0
MPYU M2 B3,B0,B3 ; [191[i9]
I SHL .S1X  B3,1,A13
I SUB L2 B0,2,B0 ; 80
I ADD .S2X  Al15,B2,B13 ; &rr[5][5]
MPYU .M2 B4,B0,B4 ; [i0][0]
I ADD .L2X  A15,10,B15 ; &rr[0][5]
I MVK S1 80,A1
MPYU .M2 B5,B0,B5 ; [1I1][0]
I ADD .L1X  B3,A15,A3 ; &rri9][i9]
I ADD L2 B3,B13,B3 ; &Ir[i9+5][i9+5]
I ADD S1 A15,A13,A15 : &rr[0][i9]
I ADD 82X  B15,A13,B15 : &rr[0][i9+5]
I MPYU M1 A10,A1,A10 : [i6][0]
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Example A-26. Assembly Code for the rrv Computation in search_10i40 (Continued)

MPYU  .M2 B6,B0,B6
[ MPYU M1  A11A1Al1l
I ADD L1X B4,Al15A4
I ADD L2 B4,B15,B4
I LDH D1 *A3++[A2],A13
I LDH D2  *B3++[B2],B13
I ADD S1  A0,A13,A0
MPYU  .M2 B7,B0,B7
I MPYU M1  A8ALA8
I ADD L1X B5A15A5
I ADD L2 B5,B15,B5
I ADD S1  A10,A15,A10
I ADD S2X  A10,B15,B10
I LDH D1 *A4++[10],A13
I LDH D2 *B4++[10],B13
MPYU  .M2 B9,B0,B9
I ADD L1X  B6,A15A6
I ADD L2 B6,B15,86
I ADD S1  Al1A15A11
I ADD S2X  Al1,B15,B11
I LDH D1 *A5++[10],A13
I LDH D2 *B5++[10],813
ADD L1X B7,A15A7
[ ADD L2 B7,B15,B7
I ADD S1  A8A15A8
I ADD S2X  A8,B15,B8
I LDH D1 *A6++[10],A13
I LDH D2 *B6++[10],B13
ADD L1X B9,A15A9
I ADD L2 B9,B15,B9
I LDH D1 *A7++[10],A13
I LDH D2  *B7,B13
I MVK  .S2  2048B7
LDH D1 *A8++[10],A13
[ LDH D2 *B8++[10],B13
I SMPY  .M1X A13,B7,A12
I SMPY M2 B13,B7,B12
I SHL  .S2 B7,1,B7
I ADD L2X  AO0,10,B0

; [i2][0]
s [i71[0]
; &rr[i0][i9]
; &rr[i0][i9+5]
; load rr[i9][i9]
; load rr[i9+5][i9+5]
; &rrv[io]

; [13][0]
; [14][0]

; &rr[id][i9]

; &rr[i1][i9+5]

; &rr[i6][9]

; &rr[i6][i9+5]
; load rr[i0][i9]
; load rr[i0][i9+5]

; [i91[0]
; &rrli2][i9]
; &rr[i2][i9+5]
; &rr[i7][i9]
; &rr[i7][19+5]
; load rr[i1][i9]
; load rr[i1][i9+5]

; &rr[i3][i9]
; &rr[i3][i19+5]
; &rrli4][i9]
; &rr[i4][i9+5]
; load rr[i2][i9]
; load rr[i2][i9+5]

; &rr[i5][i9]
; &rr[i5][i19+5]
; load rr[i3][i9]
; load rr[i3][i19+5]
;.1 16

; load rr[i4][i9]
; load rr[i4][i9+5]
; s=smpy(rr[i9][i9],_1_16)
; S=smpy(rr[i9+5][i9+5],_1 16)
;.18
; &rrv[i9+5]

A-34




Example A—-26. Assembly Code for the rrv Computation in search_10i40 (Continued)

Implementation of the GSM EFR Vocoder

LDH
LDH
SMPY
SMPY

LDH
LDH
SMPY
SMPY

LDH
LDH
SMPY
SMPY
SADD
SADD
MVK

SMPY
SMPY
SADD
SADD
MVK

SADD
SADD
SMPY
SMPY
LDH
LDH
ADD

SMPY
SMPY
SADD
SADD
LDH
LDH

SMPY
SMPY
SADD
SADD
LDH
LDH

.D1

.D2

.M1X
M2

.D1

.D2

.M1X
.M2

.D1

.D2

.M1X
.M2

L1
L2
.S1

.M1X
.M2

L1
L2
S1

L1

L2

.M1X
.M2

.D1
.D2
S1

.M1X
M2

L1
L2
.D1
.D2

.M1X
.M2

L1
L2
.D1
.D2

*A9++[10],A13
*B9++[10],B13
A13,B7,A15
B13,B7,B15

*A10++[10],A13
*B10++[10],B13

A13,B7,A15

B13,87,B15

*A11++[10],A13
*B11++[10],B13

A13,B7,A15

B13,B7,B15
A12,A15A12
B12,B15,B12
3,A1

A13,B7,A15
B13,B7,B15
A12,A15,A12
B12,B15,B12
32767,A14

Al12,A15A12
B12,B15,B12
A13,B7,A15
B13,87,B15
*A3++[A2],A13
*B3++[B2],B13
Al4,1,A14

A13,B7,A15
B13,B7,B15
Al12,A15,A12
B12,B15,B12
*A4++[10],A13
*B4,B13

A13,B7,A15
B13,B7,B15
A12,A15A12
B12,B15,B12

*A5++[10],A13

*B5++[10],B13

; load rr[i5][i9]
; load rr[i5][i9+5]
; SO=smpy(rr[iO][i9],_1_8)
; SO=smpy(rr[i0][i9+5],_1_8)

; load rr[i6][i9]
; load rr[i6][i9+5]
; sl=smpy(rr[i1][i9],_1_8)
; S1=smpy(rr[i1][i9+5],_1_8)

; load rr[i7][i9]
; load rr[i7][i9+5]
; s2=smpy(rr[i2][i9],_1_8)
; S2=smpy(rr[i2][i9+5],_1_8)
; s=sadd(s,s0)
; S=sadd(S,S0)
; loop counter

; s3=smpy(rr[i3][i9],_1_8)
; S3=smpy(rr[i3][i9+5],_1_8)
; s=sadd(s,s1)
; S=sadd(S,S1)

; s=sadd(s,s2)
; S=sadd(S,S2)
; s4=smpy(rr[i4][i9],_1_8)
; S4=smpy(rr[i4][i9+5],_1_8)
;* load rr[i9][i9]
;* load rr[i9+5][19+5]
; 32768 for rounding

; s5=smpy(rr[i5][i9],_1_8)
; S5=smpy(rr[i5][i9+5],_1_8)
; s=sadd(s,s3)
; S=sadd(S,S3)
;* load rr[i0][i9]
;* load rr[i0][i9+5]

; s6=smpy(rr[i6][i9],_1_8)
; S6=smpy(rr[i6][i9+5],_1_8)
; s=sadd(s,s4)
; S=sadd(S,S4)
;* load rr[i1][i9]
;* load rr[i1][i9+5]
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Example A-26. Assembly Code for the rrv Computation in search_10i40 (Continued)

SMPY  .M1X A13B7,A15
I SMPY M2 B13,B7,B15
I SADD L1  Al12,A15A12
I SADD L2 B12,B15,B12
I LDH D1 *A6++[10],A13
I LDH D2 *B6++[10],B13
I ADD S2X  A7,10,B7
SADD L1  Al12,A15A12
I SADD L2 B12,B15,B12
I LDH D1 *A7++[10],A13
I LDH D2  *B7,B13
I MVK  .S2  2048B7
A1] B S1 LOOP
SADD L1  Al12,A15A12
I SADD L2 B12,B15,B12
I LDH D1 *A8++[10],A13
I LDH D2 *B8++[10],B13
I SMPY  .MI1X  A13,B7,A12
I SMPY M2 B13,B7,B12
I SHL S2 B7,1,B7
IA1] SuB S1 AL1A1L
SADD L1  Al2,Al14Al4
I SADD  .L2X B12,A14,B4
I LDH D1 *A9++[10],A13
I LDH D2 *B9++[10],B13
I SMPY  .MI1X  A13,B7,A15
I SMPY M2 B13,B7,B15
SHR S1  Al4,16,A14
I SHR S2  B4,16,B4
I SMPY  .M1X  A13,B7,A15
I SMPY M2 B13,B7,B15
I LDH D1 *A10++[10],A13
I LDH D2 *B10++[10],B13
SMPY  .M1X  A13,B7,A15
I SMPY M2 B13,B7,B15
I SADD L1  Al12,A15A12
I SADD L2 B12,B15,B12
I LDH D1 *Al1++[10],A13
I LDH D2 *B11++[10],B13

; s7T=smpy(rr[i7][i9],_1_8)
; S7=smpy(rr[i7][i9+5],_1_8)
; s=sadd(s,sb)
; S=sadd(S,S5)
* load rr[i2][i9]
;¥ load rr[i2][i9+5]
; &rr[i3][i19+5]

; s=sadd(s,s6)
; S=sadd(S,S6)
* load rr[i3][i9]
;* load rr[i3][i9+5]
;116
; branch to the loop

; s=sadd(s,s7)
; S=sadd(S,S7)
* load rr[i4][i9]
;* load rr[i4][i9+5]
¥ s=smpy(rr[i9)[i9],_1_16)
;¥ S=smpy(rr[i9+5][i9+5],_1_16)
;18
; decrement loop counter

; round(s)
; round(S)
;* load rr[i5][i9]
;* load rr[i5][i9+5]
;* sO=smpy(rr[i0][i9],_1_8)
;* SO=smpy(rr[i0][i9+5],_1_8)

; rrv[io)]
; Irv[i9+5]
;¥ s1=smpy(rr[i1][i9],_1_8)
* S1=smpy(rr[i1][i9+5],_1 8)
;* load rr[i6][i9]
;* load rr[i6][i9+5]

¥ s2=smpy(rr[i2][i9],_1_8)
;¥ S2=smpy(rr[i2][i9+5],_1_8)
;* s=sadd(s,s0)
;* S=sadd(S,S0)
;* load rr[i7][i9]
;* load rr[i7][i9+5]
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Example A—-26. Assembly Code for the rrv Computation in search_10i40 (Continued)

STH
STH
SMPY
SMPY
SADD
SADD
ADD
MVK

.D1

.D2
.M1X
M2
L1
L2
.S2X
.S1

Al14,*A0++[10] ; store rrv[i9]
B4,*BO++[10] ; store rrv[i9+5]
Al13,B7,A15 ;* s3=smpy(rr[i3][i9],_1_8)
B13,B7,B15 ¥ S3=smpy(rr[i3][i9+5],_1_8)
Al12,A15,A12 ;* s=sadd(s,s1)
B12,B15,B12 * S=sadd(S,S1)
A4,10,B4 ;* &rr[i0][i9+5]
32767,A14 ; end of LOOP

Because of the shortage of registers:

[J B7servesas_1 16, 1 8 and as the pointer for rr[i3][i9+5].
[J B4 serves both the value of rrv[i9+5] and the pointer to rr[i0][i9+5].
O Al14 represents 0x8000L as well as rrv[i9].

The last iteration of the loop can be expanded as the epilog of the loop to over-
lap with the prolog of the code that follows this part of the code.
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A.2.5 Implementation of the Index Search in search_10i40

The index search in search_10i40 is the core of search_10i40. The C code is
shown in Example A-27.

Example A-27. C Code for the Index Search for search_10i40

#define L_CODE 40

#define STEP 5

#define _1 16 (Word16)(32768L/16)
#define _1_ 8 (Word16)(32768L/8)

input:
Word16 rr[L_CODE][L_CODE], ipos[L_CODE], dn[L_CODE];

local variables/arrays:
Word16 rrv[L_CODE];
Word16 i0,i1,i2,i3,i4,i5,i6,i7,i8,i9; /* defined on [0,L_CODE-1] */
Word16 ia,ib;
Word16 ps,ps0,psl,ps2,sq,sq2;
Word16 alp,alp_16;
Word32 s,alp0,alpl,alp2;

(The values of i0, i1, i2, i3, i4, i5, i6, i7 , psO, and alpO have
been obtained before entering this loop.)

Original C code

sq =-1;
alp=1;

ps =0;

ia = ipos|[8];
ib = ipos[9];

[* initialize 10 indices for i8 loop (see i2—i3 loop) */
for (i8 = ipos|[8]; i8 < L_CODE; i8 += STEP)
{

psl = add (psO, dn[i8]);

alpl = L_mac (alp0, rr[i8][i8], _1_128);
alpl = L_mac (alpl, rr[i0][i8], _1_64);
alpl = L_mac (alpl, rr[i1][i8], _1_64);
alpl = L_mac (alpl, rr[i2][i8], _1_64);
alpl = L_mac (alpl, rr[i3][i8], _1_64);
alpl = L_mac (alpl, rr[i4][i8], _1_64);
alpl = L_mac (alpl, rr[i5][i8], _1_64);
alpl = L_mac (alpl, rr[i6][i8], _1_64);
alpl = L_mac (alpl, rr[i7][i8], _1_64);
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Example A-27. C Code for the Index Search for search_10i40 (Continued)

/* initialize 3 indices for i9 inner loop (see i2—i3 loop) */
for (i9 = ipos|[9]; i9 < L_CODE; i9 += STEP)
{
ps2 = add (ps1, dn[i9]);

alp2 = L_mac (alpl, rrv[i9], _1 8);
alp2 = L_mac (alp2, rr[i8][i9], _1_64);

sq2 = mult (ps2, ps2);
alp_16 =round (alp2);
s=L_msu (L_mult (alp, sq2), sq, alp_16);

if (s> 0) {
sq = sqg2;
ps = ps2;
alp = alp_16;
ia=1i8;
ib=19;

}

}
}

where add(a,b) = _sadd(a<<16,b<<16)>>16
L_mac(a,b,c) = _sadd(a,_smpy(b,c))
mult(a,b) = _smpy(a<<16,b<<16)>>16
L_mult(a,b)=_smpy(a,b)
round(a) = _sadd(a,0x8000L)>>16

and L_msu(a,b,c)=_ssub(a,_smpy(b,c))

This is a typical example of the performance being limited by data dependency
constraints. In this case, the dependency is between the values of alp and sq.
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A.2.5.1 Rearranging the C Code

To avoid the unnecessary shift, ps, psl, ps2, alp, alp_16, sq, and sqg2 are
implemented as int (Word32) variables. The calculations are implemented as:

Original Implemented as

psl = add (psO0, dn[i8]); psl = _sadd(psO0, dn[i8]<<16);
ps2 = add (ps1, dn[i9]); ps2 = _sadd(ps1, dn[i9]<<16);

sg2 = mult (ps2, ps2); sq2 = _smpyh(ps2,ps2);

alp_16 =round(alp2); alp_16 = _sadd(alp2,0x8000L);

There is no need to compute s explicitly. Instead of implementing the following
sequence:

s =L_msu (L_mult (alp, sg2), sq, alp_16);

if (s> 0)

{
sq = sqg2;
ps = psZ;
alp = alp_16;
ia=i8;
ib=1i9;
}

you can do this sequence to fulfill the same task:

if(_smpyh(alp,sq2) > _smpyh(sqg,alp_16)) {
sq = sqz2;
ps = ps2;
alp = alp_16;
ia = i8;
ib =1i9;
}

A.2.5.2 Performance Analysis
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Example A-28. Linear Assembly for the Index Search for search_10i40 (Inner Loop)

INNERLOOP:
LDH D
SHL .S
SADD L
SMPYH .M
LDH D
SMPY .M
SADD L
LDH D
SMPY M
SADD L
SADD L
SMPYH .M
SMPYH .M
CMPGT L
[cndr] MV ALU
[cndr] MV ALU
[cndr] MV ALU
[endr] MV ALU
[cndr] MV ALU
[icntr]SUB ALU
[icntr]B .S

icntr,1,icntr
INNERLOOP

*dn9ptr++[5],dn9 ; load dn[i9]
dn9,16,dn%h ; dn[i9] << 16
psl1,dn9h,ps2 ; ps2 = sadd(ps1, dn[i9] << 16)
ps2,ps2,sg2 ; Sq2 = smpyh(ps2,ps2)
*rrvptr++[5],rrv ; load rrv[i9]
rrv,_1 8,tmpl ; smpy(rrv[i9], _1_8)

alpl,templ,alp2
*rrf89prt++,rr89
89, _1_64,tmp2
alp2,tmp2,alp2
alp2,0x8000L,alp_16
alp,sg2,tmp3
sg,alp_16,tmp4
tmp3,tmp4,cndr
sq2,sq
ps2,ps
alp_16,alp
i8,ia
i9,ib

; alp2=sadd(alpl,smpy(rrv[i9],_1_8))
; load rr[i8][i9]
; smpy(rr[i8][i9],_1_64)
; alp2=sadd(alp2,smpy(rr[i8][i9],_1_64))
; alp_16=sadd(alp2,0x8000L)
; smpyh(alp,sq2)
; smpyh(sq,alp_16)
; if(smpyh(alp,sg2) > smpyh(sq,alp_16))

;branch to the loop

Because both sq and alp are carried over and required from one iteration to
the next, their values should be put in registers to allow speedy retrieval. At
least four cycles are required to compute new sq and alp values, and the
requirement on the functional units does not exceed four execution packets.
Therefore, the inner loop can be effected in four cycles per iteration.

For the outer loop, any pair of rr[ix][i8], rr[iy][i8] (where ix, iy =0, i1, ..., i7)
will definitely hit the memory bank if they are read together. Therefore, they
should be loaded in one cycle each.

A.2.5.3 Partitioning the Registers

The total number of registers required for this code, including the registers for
the pointer of the arrays, loop counters, intermediate results, etc., exceeds the
number of registers available. To partition the registers without losing speed,
the strategies are:

[J Fortheinnerloop, store the results of ps, ia, and ib, whose values are not
used in this code.

[J For the outer loop, store the pointers of arrays starting at rr[i5][i8],
rr[i6][i8], and rr[i7][i8], whose values are needed last in the outer loop.
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Assume that before entering this code, the following values are known: &dn[0],
&ipos|0], &rr[0][0], &rrv[0][0], i0, i1, i2, i3, i4, i5, i6, i7, psO, and alp0. Assume
that the short (Word16) integers are stored in the stack in the order i0, i1, i2,
i3,1i4, 15,6, 17, ia, and ib, and that a pointer &local_16[0], pointing to i0, is also
known. The intintegers and the pointers of the rr arrays are stored in the stack
in the following order: ps0, ps, alp0, alpl, &rr[i5][i8], &rr[i6][i8], and &rr[i7][i8].
The pointer, &local_32[0], pointing to ps0, is known as well.

The C code is shown in Example A-29.

Example A-29. Modified C Code for the Index Search

sq=-1

alp=1;

local_32[1] =0;
local_16[8] = ipos[8];
local_16[9] = ipos[9];

[* initialize 10 indices for i8 loop (see i2—i3 loop) */

for (i8 = ipos[8]; i8 < L_CODE; i8 += STEP) {
psl = _sadd (local_32[0], dn[i8]<<16);

local_32[3] = _sadd(local_32[2], _smpy(rr[i8][i8], _1_128));
local_32[3] = _sadd(local_32[3], _smpy(rr[i0][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i1][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i2][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i3][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i4][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i5][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i6][i8], _1_64));
local_32[3] = _sadd(local_32[3], _smpy(rr[i7][i8], _1_64));

[* initialize 3 indices for i9 inner loop (see i2—i3 loop) */
for (19 = ipos[9]; i9 < L_CODE; i9 += STEP) {
ps2 = _sadd(psl, dn[i9]<<16);

alp2 = _sadd(local_32[3], _smpy(rrv[i9], _1_8));
alp2 = _sadd(alp2, _smpy(rr[i8][i9], _1_64));

sq2 = _smpyh(ps2, ps2);

alp_16 = _sadd(alp2,0x8000L);
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Example A—29. Modified C Code for the Index Search (Continued)

if (_smpyh(alp,sg2) > _smpyh(sq,alp_16)) {

sg = sQ2;
local_32[1]= ps2;
alp = alp_16;
local_16[8] =i8;
local_16[9] =9;
}
}

A.2.5.4 Final Assembly Code

The final code consists of the following steps:

Step 1. Loadio, il, ... i9, alp0, and ps0; and initialize sq, ia, and ib. Part
of the code overlaps that of the last iteration of the code in section
A.2.4 on page A-27.

Step 2: Obtain the pointer for the arrays started at rr[i0][i8], rr[i1][i8],
L Ir[i7]008], rr[i8]11917, rrv[i9], dn[i8], and dn[i9].

Step 3: Load rr[i0][i8], rr[i1][i8], ... rr[i7][i8] and dn[i8], compute
the new psl and alpl, update the pointers, and store pointers
&rr[i5][i8], &rr[i6][i8], and &rr[i7][i8].

Step 4: Loadrr[i8][i9],rrv[i9],anddn[i9]. Compute alp2, ps2, alp_16,
sq2 and perform a comparison. Update the parametersia, ib, alp,
sq, and ps based on the comparison result. Repeat this step eight
times.

Step 5: Reload the values of ps0 and alp0, and &rr[i5][i8], &rr[i6][i8],
and &rr[i7][i8]. Verify that step 3 has been repeated eight times.
If not, go to step 3. If so, exit.

To avoid memory bank hits, arrays rr and rrv must not be aligned on the same
word or half-word boundary. The same applies to arrays rr and dn. As you can
see in the final assembly code shown in Example A-30, there are several
places that LDH (or STH) and LDW (or STW) occur in the same execution
packet. They belongto one of the two categories; that is, always loading values
from or storing values to the same memory locations, as in iterations like this:

LDW .D1 *+A6[3],A11l ;load alpl
[I[B2] STH .D2 B13,*+B6[9] ; store ib=i9
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The following instructions are used in the inner loop in different memory locations
such as the outer loop:

[B2] STW .D1 B11,*+A6[1] ; store ps
I LDH .D2 *B10++[5],A5 ; load rr[i5][i8]

In the former case, memory bank hits can be completely eliminated by
allocating the corresponding arrays in memory properly. Memory bank hits
occur in every other iteration in the latter case, however. Although, in general,
you should avoid writing such code, in this case, the performance of the prolog
of the outer loop after the first iteration is limited by the .D unit. You still save
some cycle counts in this example.

To improve the performance, the last two iterations of the inner loop overlap
part of the prolog of the outer loop.

Example A-30. Assembly Code for the search_10i40 Index Search

*%

** Texas Instruments, Inc **

*% *%

*x Implementation of The Index Search in search_10i40 in EFR *x
*% *%

*x Total cycles = 400 (among the 400 cycles, 10 cycles are caused *k
*x by memory bank hits) xx

*% *%

i Register Usage: A B *x

*% *%

i 15 15 i

*%

; A13 — &ipos[0] and alp
; B6 —— &local_16][0]
; A6 —— stack pointer, point to &local_32[0]

; B8 —— &rr[0][0]

; Ad — &rrv[0]

; B14 — &dn[0]

: B1 — reserved for the counter of the

; outmost loop in search_10i40

LDH .D1 *+A13[8],A7 ; load i8 = ipos[8]
LDH .D1 *+A13[9],B13 ; load i9 = ipos[9]
Il LDH .D2 *B6,A13 ; load i0
Il MV .S1X  B6,A5 ; &local_v16][0]
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Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

LDH
LDH
MVK

LDH
LDH
MVK
MVK

STW
LDH
SHL
MPYU

STH
STH
ADD
MPYU

LDW
LDH
ADD
ADD
ADD
MPYU
MPYU

LDW
LDH
ADD
ADD

LDH
LDH
ADD
ADD

LDH
ADD
MPYU

LDH
ADD
MPYU
MPYU

.D2

.D1

.S1

.D1

.D2

.S1
.S2

.D1

.D2
.S2X

M1

.D1

.D2
L2

.M2X

.D1

.D2
.S1X
.S2
.L2X

M1
M2

.D1

.D2
.S2
L2

.D1

.D2
.S2
.L1X

.D2

L2

.M1X

.D1

.L1X

M1
M2

*+B6[2],B9
*+A5[1],A14
0,A8

*+A5[4],A15
*+B6[3],B10
80,A0

80,B0

A8,*+A6[1]
*+B6[5],B11
A7,1,B10

A7,A0,A12

A7,*+A5[8]
B13,*+B6[9)]
B8,B10,B2

A13,B0,B3

*A6,B15
“+B6[6],Al
A12,B2,A12
B14,810,B7
B8,A12,B8

A14,A0,A14
B9,B0,B9

*+AB[2],A11
*+B6[7],B5
B13,B13,B12
B3,B2,B3

*A12,A5
*B7++[5],B12
B14,B12,B14
Al14,B2,A14

*B3++[5],A5
B9,B2,B9
B10,A0,A9

*A14++[5),A5
A4,B12,A4

A15,A0,A15

B11,80,B11

;load i2
; load il
: could insert two .D
; units here for the store
; of rrv[i9+30] and rrv[i9+35]
; in the code which this piece
; immediately follows

; load i4
; load i3

; ps=0

; load i5

; [O[i8]
; [i8][0]

; store ia=i8
; store ib=i9
; &rr[0][i8]
; [i0][0]

; load psO
; load i6
; &rr[i8][i8]
; &dn[i8]
; &rr[i8][0]
; [11][0]
; [i2][0]

; load alpO
; load i7
; [010i9]
; &rrli0][i8]

; load rr[i8][i8]
; load dn[i8]
; &dn[i9]
; &rrfi1][i8]

; load rr[i0][i8]
; &rr[i2][i8]
; [13][0]

; load rr[i1][i8]
; &rrv[io)

; [14][0]

; [15][0]

Applications Programming

A-45

Part IV



Part IV

Implementation of the GSM EFR Vocoder

Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

LDH
MVK
ADD
MPYU

LDH
ADD
MVK
MVK
ADD
ADD
MPYU

LDH
SHL

SHL
ADD
SMPY

LDH
MVK
SMPY

LDH
ADD
SHL
SADD
SADD
SMPY

LDH
SADD
SMPY

OUTERLOORP:

LDH
LDH
SADD
SUB
SMPY

LDH
SADD
SMPY

.D2
.S1
L1X
M1

.D1
.D2
.S1
.S
.L1X
L2
M2

.D1

.S1

.S2

.L1X
M1

.D2
.S1
M1

.D1
.D2

.S1

L1
L2
M1

.D2

L1
M1

.D1

.D2

L1
.L2
.M1X

.D2
L1
M1

*B9++[5],A5
256,A0
A9,B2,A9
A1,A0,A1

*A9++[5],B12
B11,B2,B10
7,A2
512,B0
A15,B2,A15
B8,B12,B4

B5,B0,B5

*A15++[5],A5
A0,1,A0

B12,16,B11
Al1,B2,Al
A5,A0,A8

*B10++[5],A5
~1,A3
A5,A0,A8

*A1++[5],B12
B5,82,B11
A0,7,A13
A11,A8,A11
B15,B11,B15
A5,A0,A8

*B11++[5],A5
A11,A8,A11
A5,A0,A8

*A4++[5],A5
*B4++[5],B12
A11,A8,A11
B13,5,B13
B12,A0,A8

*B14++[5],B12
A11,A8,A11
A5,A0,A8

; load rr[i2][i8]
; AO=_1 128
; &rr[i3][i8]

; [16][0]

; load rri3][i8]

; &rr[i5][i8]
; outer loop counter
;BO=_1_64

; &rr[i4][i8]

; &rr[i8][i9]
; [i71[0]

; load rr[i4][i8]
;.1 64

; dn[i8] << 16
; &rr[i6][i8]
; smpy(rr[i8][i8],_1_128)

; load rr[i5][i8]
»sq=-1
; smpy(rr[i0][i8],_1_64)

; load rr[i6][i8]
; &rr[i7][i8]
; alp=0x10000
; alpl=sadd(alpO,smpy(rr[i8][i8],_1_128))
; psl
; smpy(rr[il][i8],_1_64)

; load rr[i7][i8]
; alpl=sadd(alpl,smpy(rr[i0][i8],_1_64))
; smpy(rrfi2][i8],_1_64)

; load rrv[i9]
; load rri8][i9]
; alpl=sadd(alpl,smpy(rr[i1][i8],_1_64))

; smpy(rrfi3][i8],_1_64)
; load dn[i9]

; alpl=sadd(alpl,smpy(rr[i2][i8],_1_64))
; smpy(rr[i4][i8],_1_64)
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Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

STW
SADD
SMPY

STW
SHL
SADD
SMPY

LDH
LDH
SHL
SADD
SMPY

LDH
SADD
SMPY
SMPY

STW
SHL
SADD

STW
SADD
SADD

LDH
LDH
B
SADD
SMPYH

LDH
MVK
MVK
SADD
SMPY
SMPY

.D1
L1
M1

.D1

.S1

L1
.M1X

.D1

.D2
.S1

L1
M1

.D2
L1

M1
M2

.S2

L1

.D1
L1
L2

.D1

.D2
.S2

.L1X
M2

.D2
.S1
.52
L1
M1
M2

B10,*+A6[4]
A11,A8,A11
A5,A0,A8

AL *+AB[5]
A0,6,A10
A11,A8,A11

B12,A0,A8

*Ad++[5] A5
*B4++[5],B12
A0,3,A0
Al11,A8,A11

A5,A0,A8

*B14++[5],B12
A11,A8,A11

A5,A0,A5

B12,B0,B12

B11,*+A6[6]
B12,16,B1
Al11,A8,A11

Al11,*+A6[3]
A11,A5 A5
B11,B15,B5

*A4++[5],A5
*B4++[5],B12
INNERLOOP
A5,B12,A1

B5,B5,B8

*B14++[5],B12
4,A1
0,82
A1,A10,A8
A5,A0,A5
B12,B0,B12

; store &rr[i5][i8+5]
; alpl=sadd(alpl,smpy(rr[i3][i8],_1_64))
; smpy(rr[i5][i8],_1_64)

; store &rr[i6][i8+5]

; 0x8000L

; alpl=sadd(alp1,smpy(rr[i4][i8],_1_64))
; smpy(rr[i6][i8],_1_64)

* load rrv[i9]
;* load rr[i8][i9]
;A0=_1_8
; alpl=sadd(alp1,smpy(rr[i5][i8],_1 64))
; smpy(rr[i7][i8],_1_64)

;* load dn[i9]

; alpl=sadd(alpl,smyp(rr[i6][i8],_1_64))
; smpy(rrv[i9],_1_8)
; smpy(rr[i8][i9],_1_64)

; store &rr[i7][i8+5]
;dn[i9] << 16
; done alpl=sadd(alp1,smpy(rr(i7][i8],_1_64))

; store alpl
; alp2=sadd(alpl,smpy(rrv[i9],_1_8))
; ps2=sadd(ps1,dn[i9]<<16)

;** load rrv[i9]
;*¥* load rr[i8][i9]
; branch to the innerloop
; alp2=sadd(alp2,smpy(rr[i8][i9],_1_64))
; sq2=smpyh(ps2,ps2)

;** load dn[i9]
; innerloop counter

; alp_16 = sacc(alp2, 0x8000L)
;* smpy(rrv[i9],_1_8)
* smpy(rr[i8][i9],_1_64)
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Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

INNERLOOP:
LDW D1 *+A6[3],A11
[B2] STH D2 B13,*+B6[9]
I SHL S2 B12,16,B10
I ADD L2 B13,5,813
I SMPYH M1 A8,A3,A11
I SMPYH .M2X  B8,A13,B10
B2] STW D1 B11,*+A6[1]
[B2] STH D2 A7 *+B6[8]
I MV S2 B5,B11
I SADD L1 A11,A5 A5
I SADD L2 B10,B15,B5
LDH D1 *Ad++[5],A5
I LDH D2 *BA4++[5],B12
[Al] SuB S1 Al1,1,A1
Al B S2 INNERLOOP
I SADD  .L1IX  A5BI12Al1
I CMPGT .L2X  B10,A11,B2
I SMPYH .M2 B5,B5,B8
B2] MV D1 A8,A13
I LDH D2 *B14++[5],B12
lB2] MV S1X  B8A3
I SADD L1 A11,A10,A8
I SMPY M1 A5,A0,A5
I SMPY M2 B12,B0,B12
[B2] STW  .D1  B11*+A6[1]
[B2] STH D2 A7*+B6[8]
I SHL  .S2  B12,16,B10
I MV L2 B5BIl
I SMPYH M1  A8A3All
I SMPYH .M2X  B8,A13,B10
LDW  .D1  *+A6[2],All
[B2] STH D2 B13*+B6[9]
I MV S2X  A6,B2
I SADD L1  Al11,A5A5
I SADD L2  B10,B15B5

; load alpl
; store ib=i9
;* dn[i9]<<16
; 19=i19+STEP
; smpyh(alp_16,sq)
; smpyh(alp,sq2)

; store ps
; store ia = i8

;”*alp2=sadd(alp1,smpy(rrv[i9],_1_8))
;* ps2=sadd(ps1,dn[i9]<<16)

;¥** load rrv[i9+10]
7% load rr[i8][i19+10]
; decrement innerloop counter
; branch to INNERLOOP
Jalp2=sadd(alp2,smpy(rr[i8][i9],_1_64))
; if smpyh(alp,sq2) > smpyh(alp_16,sq)
;¥ sq2=smpyh(ps2,ps2)

; alp=alp_16
;¥** load dn[i9+10]
; 80=s02
;* alp_16=sadd(alp2, 0x8000L)
*A0=_18
F*BO=_1 64
; end of innerloop

; store ps
; store ia = i8
; dn[i9]<<16
; ps2
; smpyh(alp_16,sq)
; smpyh(alp,sq2)

; load alp0
: store ib=i9
; stack pointer
; alp2=sadd(alp2,smpy(rr[i8][i9],_1_64))
; ps2=sadd(ps1,dn[i9]<<16)
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Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

|
[I(B2]

I(B2]

I[B2]

|
|
[I[A2]

[I[B2]

[I[BO]

|
i

LDW  .D1  *+A6[5],Al
LDW  .D2  *B2,B15
MVK  .S1  205A0
SADD  .L1X AS5,B12,A11
CMPGT .L2X B10,A11,B2
SMPYH .M2  B5,B5,B8
LDH D1l *++A12[A0],A5
LDH D2 *B7++[5],B12
MV S1  A8A13
ADDK .S2  -90,B14
MV L1X B8A3
LDW  .D1  *+A6[4],B10
LDH D2 *B3++[5],A5
ADDK .S1  -90,A4
SADD L1  A11,A10,A8
ADD L2 B13,5,B13
LDH D1l *Al4++[5),A5
STH D2 B13,*+B6[9]
SMPYH .M1  A8,A3,A10
SMPYH .M2X  B8,A13,B10
MVK  .S1  256,A0
LDW  .D1  *+A6[6],B11
LDH D2 *B9++[5],A5
B S2  OUTERLOOP
LDH D1l *A9++[5],B12
STH D2 A7*+B6[8]
ADD S2 B13,5,B13
CMPGT .L2X B10,A10,B0
LDH D1 *Al5++[5],A5
STH D2 B13,*+B6[9]
SHL  .S1  A0,1,A0
ADDK .S2  -35B13
MV L1 A8A13
SMPY M1  A5A0A

; &rr[i6][i8]
; load psO

; alp2=sadd(alp2,smpy(rr[i8][i9],_1_64))
; if smpyh(alp,sg2) > smpyh(alp_16,sq)
; sq2=smpyh(ps2,ps2)

; load rrli8][i8]
; load dn[ig]
; alp=alp_16
; &dn[i9)
; Sg=sq2

; &rr[i5][i8]
; load rr[i0][i8]
; &rrv[io)]
; alp_16=sadd(alp2, 0x8000L)

; load rr[i1][i8]
; store ib=i9
; smpyh(alp_16,sq)
; smpyh(alp,sq2)

;1128
; &rr[i7][i8]
; load rr[i2][i8]
; branch to OUTERLOOP

; load rri3][i8]
; store ia = i8
; update i9
; iIf smpyh(alp,sg2) > smpyh(alp_16,sq)

; load rr[i4][i8]
; store ib=i9
;.1 64
; update i9
; alp=alp_16
; smpy(rr[i8][i8],_1_128)
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Example A-30. Assembly Code for the search_10i40 Index Search (Continued)

[B2] STW
I LDH
[I[BO] MV

I SHL
[A2] SuB

I SMPY

LDH
[BO] STH
I ADDK
I SADD
I SADD
I SMPY

[BO] STW
I LDH
I ADD
I SADD
I MV
I SMPY

.D1B11,*+A6[1]
D2 *B10++[5],A5

.S1X B8,A3

.S2 B12,16,B11

L1 A2,1,A2

M1 A5,A0,A8

Dl *Al++[5],B12

D2 A7*+B6[8]

.52 310,B4

L1 Al11,A8,A11
L2 B15,B11,B15
M1 A5,A0,A8

.D1 B5,*+A6[1]
.D2 *B11++[5],A5
S1 A7,5A7

L1 Al1l,A8,A11
.L2X  A0,BO

M1 A5,A0,A8

; store ps
; load rr[i5][i8]
; Sg=sq2
; dn[i8] << 16
; decrement OUTERLOOP counter
; smpy(rr[io][i8],_1_64)

; load rr[i6][i8]
; store ia = i8
; &rr[i8][i9]
; alpl=sadd(alp0,smpy(rr[i8][i8],_1_128))
; psl = sadd(ps0,dn[i8]<<16)
; smpy(rr[i1][i8],_1_64)

; store ps
; load rr[i7][i8]
; update i8
; alpl=sadd(alpl,smpy(rr[i0][i8],_1_64))
;1 64
; smpy(rr[i2][i8],_1_64)
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Implementation of the FIR Filter, residu.c, in GSM EFR Vocoder

Example A-31 shows the C code for the FIR filter, residu.c, in the GSM EFR

vocoder.

Example A-31. C Code for residu.c

#define Word16 short #define Word32 int
Original C code

}

/*m = LPC order == 10 */ #define m 10

void Residu (

Word16 a[], /* (i)
Word16 x([], /* (i)
Word16 y[], /* (0)
Word16 Ig /* (i)

: prediction coefficients
: speech signal

: residual signal
: size of filtering

Word16 i, j;
Word32 s;

for (i=0;i<Ig; i++)
s = L_mult (x[i], a[0]);

for (j = 1; j <= m; j++)
s=L_mac (s, afj], x[i — i]);

s=L_shl(s, 3);
yl[i] = round (s);
return;

*
*
*
*

where L_mult(a,b) = _smpy(a,b)

L_mac(a,b,c) = _sadd(a,_smpy(b,c))
L_shl(a,b) = (b>0) ? _sshl(a,b) : a >> (—b)
round(a) = _sadd(a,0x8000L)>>16

and Ig = 40.

A.2.6.1 Rearranging the C Code

L_shl (s, 3) can be implemented simply as _sshl (s,3). Because array a has
dimension m + 1 =11 and the inner loop is always executed 10 times per outer
loop iteration, you can completely unroll the inner loop to gain speed by
representing array a with registers. Because a is a short integer array, it
requires six registers at most for full representation. You can assign one

register only for a[0] for the following reasons:

[ a[0] is always a constant, 4096

O _shr (0x8000L, 3) = 4096
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You can change the order of rounding and left shift to save one register. (Other-
wise, you need another register for 0Ox8000L.) The C code, after complete
inner loop unrolling, is shown in Example A-32.

Example A-32. C Code for residu.c After Rearrangement Using Intrinsics

{

for (i=0;i<Ig;i++)

s = _smpy(x[i], a[0]);

s = _sadd(s,_smpy(a[1], x[i-1]));
s = _sadd(s,_smpy(a[2], x[i-2]));
s = _sadd(s,_smpy(a[3], x[i-3]));
s = _sadd(s,_smpy(a[4], x[i-4]));
s = _sadd(s,_smpy(a[5], x[i-5]));
s = _sadd(s,_smpy(a[6], x[i-6]));
s = _sadd(s,_smpy(a[7], X[i-7]));
s = _sadd(s,_smpy(a[8], x[i-8]));
s = _sadd(s,_smpy(a[9], x[i-9]));
s = _sadd(s,_smpy(a[10], x[i—10]));
s = _sadd(s, a[0]);

s = _sshl(s,3);

yl[i] = _shr(s,16);

A.2.6.2 Performance Analysis
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The performance is limited by the .L unit for _sadd because this unit is used
at least 11 times per iteration. In other words, it takes at least six cycles per
iteration. You may choose to unroll the loop once to compute two y values per
iteration for the following reasons:

(1 To satisfy the ordering property of _sadd

[0 To maximize speed: eleven cycles are required to compute two y values,
while six cycles are needed for one y

The C code is is shown in Example A-33.
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Example A-33. Implemented C Code for residu.c

for (i=0;i<lg; i+=2)

{
s0 = _smpy(x[i], a[0]);
s1=_smpy(x[i+1], a[0]);
s0 = _sadd(s0,_smpy(a[1], x[i-1]));
sl = _sadd(s1,_smpy(a[l], x[i]));
s0 = _sadd(s0,_smpy(a[2], x[i-2]));
sl =_sadd(s1,_smpy(a[2], x[i-1]));
s0 = _sadd(s0,_smpy(a[3], x[i-3]));
sl = _sadd(s1,_smpy(a[3], x[i-2]));
s0 = _sadd(s0,_smpy(a[4], x[i-4]));
sl = _sadd(s1,_smpy(a[4], x[i-3]));
s0 = _sadd(s0,_smpy(a[5], x[i-5]));

sl = _sadd(s1,_smpy(a[5], x[i-4]));

s0 = _sadd(s0,_smpy(a[6], x[i-6]));

sl = _sadd(s1,_smpy(a[6], x[i-5]));

s0 = _sadd(s0,_smpy(a[7], x[i-7]));

sl = _sadd(s1,_smpy(a[7], x[i-6]));

s0 = _sadd(s0,_smpy(a[8], x[i-8]));

sl = _sadd(s1,_smpy(a[8], x[i=7]));

s0 = _sadd(s0,_smpy(a[9], x[i-9]));

sl = _sadd(s1,_smpy(a[9], x[i-8]));

s0 = _sadd(s0,_smpy(a[10], x[i—10]));

sl = _sadd(s1,_smpy(a[10], x[i-9]));

s0 = _sadd(s0, a[0]);

sl = _sadd(sl, a[0]);

s0 = _sshl(s0,3);

sl =_sshl(s1,3);

y[i] = _shr(s0,16);

y[i+1] = _shr(s1,16);

A.2.6.3 Final Assembly Code for residu.c

The final assembly code is shown in Example A-34.
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Example A-34. Assembly Code for residu.c

*%k

**  |mplementation of residu.c EFR
*%

**  Compute two ys at a time

*%

**  Total cycles = (Ig/2+1)*11+6

*%k

*%k

*%

*%

*%

*%

** =237 (forlg = 40) *
**  Register Usage: A B *x
*% 9 10 *%
; Ad — &al0]
; B4 — &x[0]
; A6 — &y[0]
;B6—1g
LDH .D2 *B4++,B0 ; load a[0] = 4096
LDW .D1 *Ad— A3 ; load x[0] & x[1]
I LDW .D2 *B4++,B4 ; load a[1] & a[2]
LDW .D1 *Ad— Al ; load x[-2] & x[-1]
Il LDW .D2 *B4++,B1 ; load a[3] & a[4]
LDW .D2 *B4++,B5 ; load a[5] & a[6]
LDW .D2 *B4++,B6 ; load a[7] & a[8]
I LDW .D1 *Ad— A3 ; load x[-4] & x[-3]
LDW .D2 *B4++,B7 ; load a[9] & a[10]
I MVK .S1 1,A2 ; to take care of the first execution
I MV L1X BO,AO ; a[0] = 4096
Il MV .S2 B6,B2 ; loop counter, L_SUBFR/2
LOOP:
SMPY M1 A3,A0,A8 ; smpy(x[0],a[0])
I SMPYHL .M2X A3,B0,B8 ; smpy(x[1],a[0])
I LDW .D1 *Ad— Al ; load X[-6] & x[-5]

[I['/A2] SADD L1 A8,A9,A9 ; s0 = sadd(s0, smpy(x[-9],a[9]))
[I['/A2] SADD L2 B8,B9,B9 ; s1 = sadd(s1, smpy(x[-8],a[9]))
SMPYHL .M1X Al1,B4,A8 ; smpy(x[-1],a[1])

SMPY .M2X A3,B4,B8 ; smpy(x[0],a[1])
[I['A2] SADD L1 A8,A9,A9 ; SO = sadd(s0, smpy(x[-10],a[10]))
[I['/A2] SADD L2 B8,B9,B9 ; s1 = sadd(sl, smpy(x[-9],a[10]))
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Example A-34. Assembly Code for residu.c (Continued)

SMPYLH .MIX  Al1B4A8
I SMPYH  .M2X  A1,B4,B8
I ADD S1 A8,0,A9
I ADD S2 B8,0,B9
LDW D1 *Ad— A3
llA2] SADD L1 A9,A0,A9
IIlA2] SADD L2 B9,B0,B9
SMPYHL .M1X  A3B1A8
I SMPY M2X  Al1B1,B8
I SADD L1 A8,A9,A9
I SADD L2 B8,B9,B9
IlA2] SSHL S1 A9,3,A7
llA2] SSHL S2 B9,3,B1
SMPYLH .MIX  A3B1A8
I SMPYH  .M2X  A3,B1B8
I SADD L1 A8,A9,A9
I SADD L2 B8,B9,B9
I LDW D1 *Ad++[6],AL
IlA2] SHR S1 A7,16,A7
IlA2] SHR 82 B10,16,810
SMPYHL .M1X A1,B5,A8
I SMPY M2X  A3,B5,B8
I SADD L1 A8,A9,A9
I SADD L2 B8,B9,B
IlA2] STH D1 AT *AG++
Il [B2] SuB S2 B2,2,B
II[B2] B s1 LOOP
SMPYLH .M1X  Al1B5A8
I SMPYH  .M2X  A1,B5B8
I SADD L1 A8,A9,A9
I SADD L2 B8,B9,B9
I LDW D1 *Ad— A3
SMPYHL .MI1X  A3,B6,A8
I SMPY M2X  A1,B6,B8
I SADD L1 A8,A9,A9
I SADD L2 B8,B9,B9
I LDW D1 *Ad— Al

; smpy(x[-2],a[2])
; smpy(x[-1].a[2])
; sO=smpy(x[0],a[0])
; s1=smpy(x[1],a[0])
; load x[-8] & x[-7]
; SO = sadd(s0, 4096)
; s1 = sadd(s1, 4096)

; smpy(x[-3],a[3])
; smpy(x[—2],a[3])
; SO = sadd(s0, smpy(x[-1],a[1]))

; s1 = sadd(s1, smpy(x[0],a[1]))
; 0 = L_shi(s0,3)
;s1=L_shi(s1,3)

; smpy(x[-4],a[4])
» smpy(x[-3],a[4])
; SO = sadd(s0, smpy(x[-2],a[2]))
; s1 = sadd(s1, smpy(x[-1],a[2]))
; load x[-10] & x[-9] and update the
pointer
; y[0] = shr(s0, 16)
; Y[1] = shr(s1, 16)

; to the new &x[0]

; smpy(x[-5].a[5])
; smpy(x[-4].,a[5])
; sO = sadd(s0, smpy(x[-3],a[3]))
; s1 = sadd(s1, smpy(x[-2],a[3]))
; store y[0]
; decrement loop counter
; branch to the loop

; smpy(x[-6],a[6])
; smpy(x[-5],a[6])

; sO = sadd(s0, smpy(x[-4],a[4]))

; s1 = sadd(s1, smpy(x[-3],a[4]))

;* load x[0] & x[1] for the next i teration
; smpy(x[-7],a[7])

; smpy(x[-6],a[7])

; SO = sadd(s0, smpy(x[-5],a[5]))

; s1 = sadd(s1, smpy(x[-4],a[5]))

* load x[-1] & x[-2]
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Example A-34. Assembly Code for residu.c (Continued)

SMPYLH .M1X A3,B6,A8 ; smpy(x[-8],a[8])
I SMPYH  .M2X A3,B6,B8 ; smpy(x[-7],a[8])
Il SADD L1 A8,A9,A9 ; SO = sadd(s0, smpy(x[—6],a[6]))
Il SADD L2 B8,B9,B9 ; s1 = sadd(s1, smpy(x[-5],a[6]))
[I!A2] STH .D1 B10,*A6++ ; store y[1]

SMPYHL .M1X Al1,B7,A8 ; smpy(X[-9],a[9])
I SMPY .M2X A3,B7,B8 ; smpy(x[-8],a[9])
Il SADD L1 A8,A9,A9 ; sO = sadd(s0, smpy(x[-7],a[7]))
Il SADD L2 B8,B9,B9 ; s1 = sadd(s1, smpy(x[-6],a[7]))
[I[A2] SuB .S2 A2,1,A2
I LDW .D1 *Ad— A3 ;¥ load x[-3] & x[-4]

SMPYLH .M1X Al1,B7,A8 ; smpy(x[-10],a[10])
I SMPYH .M2X Al1,B7,B8 ; smpy(x[-9],a[10])
Il SADD L1 A8,A9,A9 ; SO = sadd(s0, smpy(x[-8],a[8]))
Il SADD L2 B8,B9,B9 ; s1 = sadd(s1, smpy(x[-7],a[8]))

There is no memory bank hit within the loop. To avoid a memory bank hit within
the prolog of the loop, arrays a and x must be allocated so that a[1] and x[0] are
offset from each other by one word. Some of the instructions in the loop cannot
be executed in the first iteration. Register A2 indicates which instructions these
are.

A.2.7 Implementation of the Lag Search in the lag_max ( ) Routine
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The lag_max () routine performs an open-loop pitch (or lag) search and
computes the normalized correlation for the selected lag. This section
illustrates the implementation of the lag search. The lag search C code is
shown in Example A-35.
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Example A-35. C Code for the Lag Search in lag_max()

#define Word16 short

#define Word32 int

#define MIN_32 0x80000000L
#define PIT_MAX 143

#define L_FRAME 160

input:
Word16 scal_sig[PIT_MAX+L_FRAME]; (pointed at scal_sig[PIT_MAX] when passed)
Word16 scal_fac; (not used in this part of the code)
Word16 L_frame, lag_min, lag_max;

local variables:
Word16 i, j, *p, *pl, p_max;
Word32 t0, max;

return:
Word16 p_max;

Original C code

max = MIN_32;

for (i = lag_max; i >= lag_min; i—)
{

p = scal_sig;

pl = &scal_sig[-i];

t0=0;

for (j = 0; j < L_frame; j++, p++, pl++)

{
t0 = L_mac (t0, *p, *pl);

}
if (L_sub (t0, max) >=0)
{
max = t0;
p_max =i;
}
}

where L_mac(a,b,c) = _sadd(a,_smpy(b,c))
L_sub(a,b) = _ssub(a,b)
L_frame = L_FRAME/2 = 80
and the search range (lag_min, lag_max) is (18,35), (36,71), or (72,143).
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A.2.7.1 Rearranging The C Code and Unrolling The Loops

This algorithm is preferable to smaller lag candidates, because it performs a
comparison with if(L_sub (t0,max) >= 0) and the search starts from lag_max.
Because there is not a single instruction for the >= (or <=) comparison, you can
change the search order to start from lag_min to compare with if (t0 > max);
p_max is initialized to lag_min. The C code is modified as shown in
Example A-36.

Example A-36. C Code for the Lag Search in lag_max () (Comparison Order Changed)

max = MIN_32;
p_max = lag_min;
for (i = lag_min; i < lag_max; i++)
{
p = scal_sig;
pl = &scal_sig[-i];
t0=0;

for (j=0; j<L_frame; j++, *p++, *pl++) {
t0 = L_mac(t0, *p, *pl);

if (t0 > max)
{
max = t0;
p_max =i;
}
}

Next, look at the inner loop, a general MAC loop. Because *p does not always
equal *pl, it does not fall into the special case described in section A.2.1, Imple-
mentation of the Multiply-Accumulate Loop, beginning on page A-4. Therefore,
the performance cannot be improved by simply unrolling the inner loop.

Now consider unrolling the outer loop once. The C code with outer loop
unrolling is shown in Example A—-37. Because the number of lags that needs
to be searched within each search range is always even, such unrolling does
not create an additional case to handle.
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Example A-37. C Code for the Lag Search in lag_max() With Outer Loop Unrolling

Word32 t1;

max = MIN_32;
p_max = lag_min;
for (i = lag_min; i < lag_max; i+=2)

{
p = scal_sig;
pl = scal_sig[-i];
t0=0;
t1=0;

for (j=0; j<L_frame; j++, p++, pl++) {
t1=_sadd(tl, smpy(*p,*—pl)); (or t1=_sadd(t1, _smpy(scal_sig[j],scal_sig[-i—1+j]))
t0=_sadd(t0,_smpy(*p,*pl)); (or tO=_sadd(t0,_smpy(scal_sig[j],scal_sig[—i+j]))
}
if (t0 > max)
{
max = t0;
p_max = i;
}
if( t1 > max)
{
max = t1;
p_max = i+1;
}
}

with intrinsics substitutes.

The smaller lag is always compared first in the order of the comparisons.

The instructions required for one iteration of the inner loop are shown in
Example A-38.

Example A-38. Linear Assembly for the Lag Search in lag_max() Inner Loop

INNERLOOP:
LDH .D *p++, sigj ; load scal_sig[j]
LDH .D *—pl, scalijl ; load scal_sig[—i—1+i]
SMPY M sigj,scalij1,tmpl ; smpy(scal_sig[j],scal_sig[—i—1+j])
SADD L t1,tmpl,tl ; tl=sadd(t1,smpy(scal_sig[j],scal_sig[-i—1+])
LDH .D *pl++,scalij ; load scal_sig[—i+j]
SMPY M sigj,scalij,tmp0 ; smpy(scal_sig[j],scal_sig[—i+]])
SADD L t0,tmp0,t0 ; t0=sadd(t0,smpy(scal_sig[j],scal_sig[-i+j])
[icntr] SUB .S icntr,1,icntr ; decrement inner loop counter
[icntr] B .S INNERLOOP ; branch to inner loop
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The .D unitis used the most (three times). Therefore, the inner loop takes two
cycles.

Now unroll the inner loop once. The first iteration of t1 and the last iteration of
t0 perform outside the inner loop. This avoids memory bank hits. The C code
with the inner and outer loops unrolled is shown in Example A—39.

Example A-39.C Code for the Lag Search in lag_max() With Inner and Outer Loops Unrolled

Word32 ti1;

max = MIN_32;
p_max = lag_min;
for (i = lag_min; i < lag_max; i+=2)
{
p = scal_sig;
pl = scal_sig[-];
t0=0;
t1=_sadd(tl,_smpy(*p,*—pl)); (or t1=_sadd(tl, smpy(scal_sig[j],scal_sig[-i—1+j]))
for (j=0; j<(L_frame-1); j+=2, p+=2, p1+=2) {
t0=_sadd(t0,_smpy(*p,*pl)); (or t0=_sadd(t0,_smpy(scal_sigl[jl,scal_sig[-i+]]))
tl=_sadd(tl,_smpy(*+p,*pl)); (or t1=_sadd(tl,_smpy(scal_sig[j+1],scal_sig[—i+j]))
t0=_sadd(t0,_smpy(*+p,*+pl)); (or t0=_sadd(t0,_smpy(scal_sig[j+1],scal_sig[-i+j+1]))
t1=_sadd(tl,_smpy(*+p[2],*+pl)); (or t1=_sadd(tl,_smpy(scal_sig[j+2],scal_sig[-i+j+1]))
}
t0=_sadd(t0,_smpy(scal_sig[L_frame-1],scal_sig[-i+L_frame-1]));
if (10 > max) {
max = t0;
p_max =i;
}
if(t1 > max) {
max = tl;
p_max = i+1;

}

Although five values of scal_sig, scal_sig[j], scal_sig[j+1], scal_sig[j+2],
scal_sig[—i+j], and scal_sig[—i+j+1], are required for each inner loop
iteration, scal_sig[j] does not need to be loaded, because it was loaded in the
previous iteration. This means only four loads are required per iteration.
Example A—40 gives the instructions for the modified inner loop.
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Example A—40. Linear Assembly for the Lag Search in lag_max() Inner Loop

LDH .D *p++, sigj ; load scal_sig[j]
LDH .D *—pl, scalijl ; load scal_sig[—i—1+j]
SMPY .M sigj, scalijl,tl ; tl=smpy(scal_sig[j],scal_sig[—i—1+j])
INNERLOOP:
LDH D *pl++, scalij ; load scal_sig[—i+j]
SMPY .M sigj,scalij,tmpO ; smpy(scal_sig[j],scal_sig[—i+j])
SADD .L t0,tmp0,t0 ; t0=sadd(t0,smpy(scal_sig[j],scal_sig[—i+j])
LDH .D *p++, sigj+l ; load scal_sig[j+1]
SMPY .M  sigj+1,scalij,tmpl ; smpy(scal_sig[j+1],scal_sig[-i+j])
SADD .L t1,tmpltl ; t1=sadd(tl,smpy(scal_sig[j+1],scal_sig[-i+j])
LDH .D *pl++,scalij+l ; load scal_sig[—i+j+1]
SMPY .M sigj+1,scalij+1,tmp0 ; smpy(scal_sig[j+1],scal_sig[-i+j+1])
SADD .L t0,tmp0,t0 ; t0=sadd(t0,smpy(scal_sig[j+1],scal_sig[-i+j+1])
LDH .D ‘*p++, sigj+2 ; load scal_sig[j+2], the scal_sig[j] for the
; next iteration
SMPY .M sigj+2,scalij+1,tmpl ; smpy(scal_sig[j+2],scal_sig[-i+j+1])
SADD .L tl,tmpl,tl ; tl=sadd(t1,smpy(scal_sig[j+2],scal_sig[—i+j+1])
[icntr] SUB .S icntr,2,icnt ; decrement inner loop counter
[icntr] B .S INNERLOOP ; branch to inner loop

The inner loop uses two cycles. You double the performance, therefore, by
unrolling both the outer loop and inner loop if no memory bank hits occur.

A.2.7.2 Avoiding Memory Bank Hits

Load scal_sig[—i+]] and scal_sig[j+1] together and scal_sig[—i+j+1] and
scal_sig[j+2]together to avoid memory bank hits. Memory bank hits can also
be avoided by loading scal_sig[—i+j] and scal_sig[—i+j+1] together and
scal_sig[j+1] and scal_sig[j+2] together.

A.2.7.3 Final Assembly Code for Lag Search

The final assembly code for the lag search segment is shown in
Example A-41.
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Example A—41. Assembly Code for the Lag Search in lag_max()

*% *%
**  Implementation of residu.c EFR ki
*% *%
**  Compare two lags a time i
*% *%
**  Total cycles = 7+(L_frame+6)*(lag_max—lag_min+1)/2 *
*% *%
**  Register Usage: A B *
*% 10 9 *%
*% *%
; Ad — &scal_sig
; A6 — lag_max
; B6 — lag_min
SUBAH  .D1 A4,A6,A7 ; p1=&scal_sig[-LAG_MIN]
I MVK .S2 1,B2
Il SUB .L1X B6,A6,A1 ; the outer loop counter
Il MV .L2X A4,B7 ; p=&scal_sig[0]
Il MPY M2 B0,0,BO ; initialize the comparison result
[ MPY M1 A2,0,A2 : take care the initial iteration
[ MV .S1 A6,A4 ; p_max = lag_min
SHL .S2 B2,31,B2 ; max=MIN_32=0x80000000L
1 LDH .D1 *~A7[1],A5 ; scal_sig[-LAG_MIN-1]
Il LDH .D2 *B7,B5 ; scal_sig[0]
[l ADD L1 Al,1,A1 : make the counter to be an even number
OUTERLOOP:
LDH .D1 *A7,A5 ; scal_sig[-LAG_MIN]
[l LDH .D2 *+B7[1],B6 ; scal_sig[1]
[[A2] SADD L2 B10,B8,B10
[I[A1] MV .S2 37,B1 ; inner loop counter
1 MPY M1 A3,0,A3
Il MPY M2 B8,0,B8
Il ADD S1 A7,2,A9 ; &scal_sig[-LAG_MIN+1]
[ SuUB L1 A7,4,A7 ; update pl = &scal_sig[-LAG_MIN-2]
LDH .D1 *A9++,A5 ; scal_sig[-LAG_MIN+1]
[ LDH .D2 *+B7[2],B5 ; scal_sig[2]
|I[B1] B .S INNERLOOP ; branch to the inner loop
[I[A2] CMPGT L2 B10,B2,B0 ; if(t0>max)
LDH .D1 *AQ++,A5 ; scal_sig[-LAG_MIN+2]
Il LDH .D2 *+B7[3],B6 ; scal_sig[3]
[I[BO] MV L2 B10,B2 ; max = t0
Il MPY .M1X B1,1,A2 ; counter to branch to the outerloop
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Example A—41. Assembly Code for the Lag Search in lag_max() (Continued)

LDH .D1 *A9++,A5 ; scal_sig[-LAG_MIN+3]
I LDH .D2 *+B7[4],B5 ; scal_sig[4]
|[[B1] B .S2 INNERLOOP ; branch to the inner loop
[I[A2] CMPGT .L2X  A0,B2,BO ; if(t1>max)
[|[BO] SuB L1 AB,2,A4 cp_max =i
Il ADD S1 AB,2,A6 ; update i
I MPY M1 A0,0,A0 ; initialize t1=0
I MPY M2 B10,0,B10 ; initialize t0=0

LDH .D1 *A9++,A5 ; scal_sig[-LAG_MIN+4]
Il LDH .D2 *+B7[5],B6 ; scal_sig[5]
Il SMPY .M1X  A5,B5,A3 ; _smpy(scal_sig[-LAG_MIN-1], scal_sig[0])
||[[BO] MV .L2X A0,B2 ;max =tl
||[[BO] SUB L1 A6,3,A4 ;p_max =i+l
|I[Al] SuB S1 Al,2,Al ; update inner loop counter
Il ADD .S2 B7,12,B9 ; &scal_sig[1]
INNERLOOP:

LDH .D1 *A9++,Ab ; scal_sig[-LAG_MIN+5]
Il LDH .D2 *B9++,B5 ; scal_sig[6]
I SMPY .M1X  A5,B6,A3 ; _smpy(scal_sig[-LAG_MIN], scal_sig[1])
I SMPY .M2X  A5,B5,B8 ; _smpy(scal_sig[-LAG_MIN], scal_sig[0])
Il SADD L1 A0,A3,A0 ; update t1

SADD L2 B10,B8,B10 ; update t0

lI[B1] B 51 INNERLOOP ; branch to inner loop
|[[B1] SUB .S2 B1,1,B1 ; decrement inner loop counter

LDH .D1 *A9++,A5 ; scal_sig[-LAG_MIN+6]
Il LDH .D2 *B9++,B6 ; scal_sig[7]
Il SMPY  .M1X  A5,B5A3 ; _smpy(scal_sig[-LAG_MIN+1], scal_sig[2])
Il SMPY .M2X  A5,B6,B8 ; _smpy(scal_sig[-LAG_MIN+1], scal_sig[1])
Il SADD L1 AO0,A3,A0 ; update t1
Il SADD L2 B10,B8,B10 ; update tO

SUB .S1 A2,1,A2 ; decrement the counter to branch to the outer loop

|I['A2]B .S2 OUTERLOOP ; branch to the outer loop

LDH D1 *_A7[1],A5 : scal_sig[-LAG_MIN=3]
I LDH .D2 *B7,B5 ; scal_sig[0]
[l SADD L1 A0,A3,A0 ; update t1
Il SADD L2 B10,B8,B10 ; update t0
|[['A1]B S1 FINISH ; lag search is complete
FINISH:

NOP 5

Allthe epilogs and prologs of the outer and inner loops are compressed to mini-
mize the code size. A2 is both the indicator for avoiding comparisons during
the initial iteration of the outer loop and the counter for branching to the outer
loop during inner loop executions.
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loops @
reg directive [2-25}[6-16}[6-17]
register
allocation
operands
partitioning
residu.c (FIR filter in EFR)
resource
conflicts
described
live-too-long issues
table
FIR filter code B-110, b-124|[6-142
if-then-else code p-85|16-93
IIR filter code §-7
live-too-long code  -100
routines
autocorr.c  |A-7
cor_h [A-20
lag_max () [A-56]
rrv computation in search_10i40
rts6201.lib file
rts6201e.lib file
RUNB debugger command @

.sa extension
_sadd intrinsic E -

scheduling table. See modulo iteration interval table
shell program (cl6x) [2-5, [4-4
short
arrays
data type 4-2, 14-14
single assignment, code example

software pipeline
accumulation, staggered results due to 3-cycle
delay
described [6-25
when not used |4-2
software-pipelined schedule, creating
source operands [5-8

split-join path

Index

stand-alone simulator (load6x) -3
SunOS shell initialization
symbolic names, for data and pointers

techniques
for priming the loop  [6-47
for refining C code K-
for removing extra instructions  [6-41,
using intrinsics  |4-9
word access for short data  4-14
TMS320C6x pipeline

translating C code to 'C6x instructions
dot product

fixed-point, unrolled E
floating-point, unrolled

IR filter
with reduced loop carry path
weighted vector sum
unrolled inner loop  p-56

translating C code to linear assembly, dot product,
fixed-point

trip count
communicating information to the compiler
determining the minimum

trip counter
converting to a downcounting loop
defined @

.trip directive |2-25

vec_mpyl.asm kernel, inner loop
vec_mpyl.c example code -4
vector multiply function
C with word instructions and intrinsics [2-18
inner loop kernel
of assembly from C with intrinsics P-22
of original assembly code
original C code
tutorial C code example (vec_mpyl.c)
vector sum function
See also weighted vector sum
C code
with const keyword  f-7
with const keywords and _nassert }-23
with const keywords, _nassert, word
reads ﬁ/

Index-7



Index

vector sum function (continued)
C code

with const keywords, _nassert, word reads,

and loop unrolling

with const keywords, nassert, and word reads

(generic)
with three memory operations
word-aligned

compiler output (original assembly code) @

dependency graph [4-6,

handling odd-numbered loop counter with

handling short-aligned data with
rewriting to use word accesses

VelociTl |1-2
very long instruction word (VLIW) E

vocoder
application |A-1
implementing  |A-3

Index-8

weighted vector sum
C code [6-54
unrolled version
final assembly
linear assembly
for inner loop  §-54
with resources allocated
translating C code to assembly instruc-
tions m
windowing and scaling, autocorr.c @
word access

in dot producto
4-16

in FIR filter
using for short data |4-1£_l|to |4_1-19|

—z compiler option
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