

Lecture 7-Radar

ECE 197SA - Systems Appreciation

Air Traffic Control

- Radar has broad application in daily life
 - Sensing of object locations
 - Sensing of object speed
 - Sensing of object properties
- Today's lecture:
 - Air traffic control
 - » Very large application of ECE technologies
 - Radar
 - » Basics of radar systems
 - » System design for air traffic control
 - · Radar for speed measurement

© 2010-14 Tilman Wolf

Air Traffic

- Air travel important mode of transportation
 - 13 million commercial flights per year
 - 3 billion passengers between 2002 and 2006
 - Fatal accident rate only 0.023 per 100,000 flights

© 2010-14 Tilman Wolf

3

Daily Flight Activity

- Over 87,000 flights per day
 - Commercial flights: 28,537
 - · General aviation flights: 27,178
 - Air taxi flights: 24,548
 - Military flights: 5,260
 - Air cargo flights: 2,148
 - On average: 5,000 planes in the skies
 - From: http://sos.noaa.gov/Datasets/dataset.php?id=44#
 http://www.natca.org/

© 2010-14 Tilman Wolf

Air Traffic Control

- Coordination of air space critical
 - Planes are very restricted in their movements
 - Small problems can lead to large accidents
- Traffic control requires complete picture of all planes
 - Central coordination by ATC
 - Instructions radioed to pilots
- Necessary information:
 - Location
 - Altitude
 - Heading
 - Speed
 - Other
 - » Destination
 - » Type of aircraft

» ..

Pacific Coans and Fig. 1 The State Flora In The Sta

© 2010-14 Tilman Wolf

5

Flight Tracking

- All commercial flights in the U.S. can be tracked
 - Example (flights to/from Newark (EWR)):

Flight Tracking

- All commercial flights in the U.S. can be tracked
 - Example (flights to/from Newark (EWR)):

7

Location Problem

- How to determine where something is located?
 - General systems problem with many uses
- Example scenarios:
 - Air traffic control
 - Warfare (e.g., missiles)
 - Weather (e.g., severe weather)
 - Automotive traffic (e.g., adaptive cruise control)

© 2010-14 Tilman Wolf

R

Location Problem

- How would you design system to locate object?
 - · Locate in 3 dimensions
 - · Use any technology you like
 - What accuracy can you achieve?

© 2010-14 Tilman Wolf

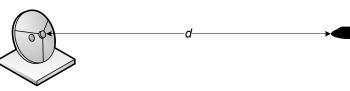
9

Principles of Radar

- RAdio Detection And Ranging (RADAR)
 - Radar transmits short pulse of radio signal
 - » Typically 1-60GHz
 - Signal reflects/scatters off object
 - · Reflected signal travels back to radar
 - Round-trip time proportional to distance of object
 - » Pulse propagates at speed of light
- Radar needs to switch from sending to receiving
 - · No simultaneous send and receive
- Tradeoff
 - · Longer pulses easier to detect
 - · Shorter pulses lower minimum range

•

© 2010-14 Tilman Wolf


1 Ո

Radar Frequency Bands

Band name	Frequency range	Wavelength range	Notes
HF	3-30 MHz	10–100 m	coastal radar systems, over-the-horizon radar (OTH) radars; 'high frequency'
Р	< 300 MHz	1 m+	'P' for 'previous', applied retrospectively to early radar systems
VHF	30-330 MHz	0.9–6 m	Very long range, ground penetrating; 'very high frequency'
UHF	300–1000 MHz	0.3–1 m	Very long range (e.g. ballistic missile early warning), ground penetrating, foliage penetrating; 'ultra high frequency'
L	1–2 GHz	15–30 cm	Long range air traffic control and surveillance; 'L' for 'long'
S	2-4 GHz	7.5–15 cm	Terminal air traffic control, long-range weather, marine radar; 'S' for 'short'
С	4-8 GHz	3.75-7.5 cm	Satellite transponders; a compromise (hence 'C') between X and S bands; weather
х	8–12 GHz	2.5-3.75 cm	Missile guidance, marine radar, weather, medium-resolution mapping and ground surveillance; in the USA the narrow range 10.525 GHz ±25 MHz is used for airport radar. Named X band because the frequency was a secret during WW2.
Ku	12-18 GHz	1.67-2.5 cm	high-resolution
К	18–24 GHz	1.11–1.67 cm	from German $Kurz$, meaning 'short'; limited use due to absorption by water vapour, so K_u and K_a were used instead for surveillance. K-band is used for detecting clouds by meteorologists, and by police for detecting speeding motorists. K-band radar guns operate at 24.150 \pm 0.100 GHz.
Ka	24-40 GHz	0.75-1.11 cm	mapping, short range, airport surveillance; frequency just above K band (hence 'a') Photo radar, used to trigger cameras which take pictures of license plates of cars running red lights, operates at 34.300 ± 0.100 GHz.
mm	40–300 GHz	7.5 mm – 1 mm	millimetre band, subdivided as below. The frequency ranges depend on waveguide size. Multiple letters are assigned to these bands by different groups. These are from Baytron, a now defunct company that made test equipment.
Q	40-60 GHz	7.5 mm – 5 mm	Used for Military communication.
V	50-75 GHz	6.0–4 mm	Very strongly absorbed by atmospheric oxygen, which resonates at 60 GHz.
E	60-90 GHz	6.0-3.33 mm	
w	75–110 GHz	2.7 – 4.0 mm	used as a visual sensor for experimental autonomous vehicles, high-resolution meteorological observation, and imaging.
UWB	1.6–10.5 GHz	18.75 cm – 2.8 cm	used for through-the-wall radar and imaging systems. From wikipedia.com

Ranging with Radar

• How can the radar calculate distance *d*?

© 2010-14 Tilman Wolf

Ranging with Radar

• How can the radar calculate distance *d*?

- Observations:
 - Radar pulse travels twice the distance d during one roundtrip time t
 - Propagation speed of pulse is c≈300,000km/s
- Distance $d = \frac{c \cdot t}{2}$
- Example: pulse returns after t=25µs
 - Distance $d = 3.10^8 \text{m/s} \cdot 2.5 \cdot 10^{-5} \text{s} / 2 = 3.75 \text{ km}$
- How to determine bearing?

© 2010-14 Tilman Wolf

13

Air Traffic Control Radar

- Primary Surveillance Radar (PSR)
 - · Determines distance of planes from reflection echo
 - Determines bearing from its rotation at time of transmission
 - Cannot determine altitude of plane
- Secondary Surveillance Radar (SSR)
 - Triggers airplane transponder
 - Receives messages from airplane transponder with altitude information
- SSR similar to IFF
 - "Identification friend or foe"
 - Used by military to authenticate airplanes

© 2010-14 Tilman Wolf

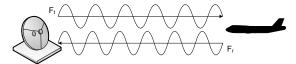
Global Positioning System

- Technical details next lecture
- Planes can determine their own location
 - Planes can share information if they choose
- Recent legislation
 - · Update air traffic control system with GPS

© 2010-14 Tilman Wolf

Avoiding Radar

- Mechanical countermeasures
 - Chaff: metal-coated glass fibers
- Electronic countermeasures
 - Generation of fake/noisy/etc radar responses

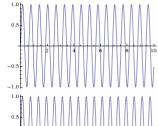


© 2010-14 Tilman Wolf

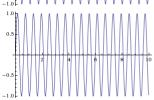
Speed Measurement with Radar

- ... and now for something completely different
 - Determining speed with radar ("radar gun")
- Doppler effect can be used to determine speed
 - Reflection of approaching object increases frequency of pulse
 - Frequency increase proportional to relative speed

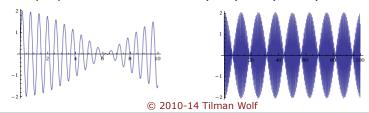
- Superposition of F_t and F_r leads to "beat frequency" F_d
- Speed v of object:


$$F_d \approx 2v \frac{F_t}{c}$$
 or $v \approx c \frac{F_d}{2F_t}$

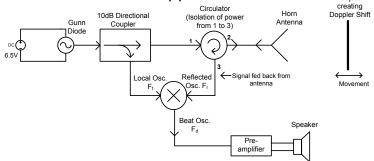
© 2010-14 Tilman Wolf


19

Superposition of Sine Waves


- Example:
 - Original wave: sin(10x)

• Reflected wave: sin(10.5x)



Superposition of waves: sin(10x)+sin(10.5x)

Experiment

Continuous wave Doppler radar

- Beat frequency F_d on speaker
- Beat frequency in audible range
 - · Approximately 9 GHz radar signal
 - Assume 2m/s of object movement:

$$F_d \approx 2v \frac{F_t}{c} = 2 \cdot 2m/s \cdot \frac{9 \cdot 10^9 \, Hz}{3 \cdot 10^8 \, m/s} = 120 Hz$$

© 2010-14 Tilman Wolf

21

Courses in ECE Curriculum

- ECE 333 Fields and Waves
- ECE 584 Microwave Engineering I
- ECE 585 Microwave Engineering II
- ECE 606 Electro-Magnetic Field Theory
- ECE 686 Intro Radar Systems
- ECE 687 Antenna Theory & Design

© 2010-14 Tilman Wolf

Upcoming...

- Global Positioning System
- Moodle quiz

© 2010-14 Tilman Wolf

23

Interesting Links

- Air traffic control maps
 - http://flightaware.com/live/
 - http://travel.flightexplorer.com/
- Live air traffic control audio
 - http://www.liveatc.net/

© 2010-14 Tilman Wolf