
A Broadcast-Enabled Sensing System for
Embedded Multi-core Processors

Jia Zhao, Shiting (Justin) Lu, Wayne Burleson, and Russell Tessier
Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA 01003

Abstract—Contemporary multi-core architectures deployed in
embedded systems are expected to function near the operational
limits of temperature, voltage, and device wear-out. To date,
most on-chip sensing systems have been designed to collect
and use sensor information for these parameters locally. In this
paper, a new sensing system to enhance multi-core dependability
which supports both the local and global distribution of sensing
data in embedded processors is considered. The benefit of the
new sensing architecture is verified using the broadcast of
microarchitectural parameter signatures which can be used to
identify impending voltage droops. Low-latency broadcasts are
supported for a range of sensor data transfer rates. Up to a 9%
performance improvement for a 16-core system is determined via
the use of the distributed voltage droop sensor information (5.4%
on average). The entire sensing system, including broadcasting
resources, requires about 2.6% of multi-core area.

I. INTRODUCTION

As the range of embedded systems has expanded, the
use of multi-core processors in these systems has become
widespread. These processors often require access to sub-
stantial amounts of on-chip environmental data related to
temperature, voltage, and run-time errors to operate depend-
ably. On-line system adaptation, such as dynamic voltage
and frequency scaling (DVFS), wear-out based enabling of
redundant components, and fault recovery all rely on the
availability and analysis of temperature, voltage, error, and
processor performance data, among others (Fig. 1). The need
to collect and use this information has motivated the develop-
ment of a number of on-chip sensing systems [1][2][3] that
collect sampled data from on-chip sensors, transport it to an
analysis point, process the information, and dynamically adapt
the embedded multi-core. In general, these on-chip sensing
systems are characterized by two features:

• Most sensor data is collected and used in a confined, local
portion of the multi-core die.

• Data transfer for these sensor systems generally takes
place via unicast, source-to-single destination commu-
nication. Given the reduced bandwidth of sensor data
versus typical multi-core application data, the on-chip
communication and analysis infrastructure for sensing
data is generally of limited complexity.

Commercially, both IBM and Intel have integrated sensor
data collection resources into their multi-core devices. IBM
EnergyScale [4] uses temperature and critical path monitors
along with a microcontroller for sensor data processing. Intel’s

Core

Network
Interface

Cache

Thermal 
Sensor

Voltage 
Monitor

To Memories 
and Peripherals

Performance 
Monitor

Voltage/Freq
Control

Fig. 1. Embedded multi-core processor including on-chip sensors. Multi-
cores typically contain hundreds of sensors and per-core voltage and frequency
control.

Active Management Technology [5] provides a separate on-
chip communications channel to monitor device operation
and control system responses at the operating system level.
Both implementations and recent academic studies [3] have
shown the importance of dedicating small amounts of on-
chip interconnect and compute resources to address sensor
data collection and processing. In general, commercial systems
do not share sensor data interconnect with the existing multi-
core interconnect for regular data (e.g. bus, network-on-chip).
Additionally, it has been shown [3] that sharing one inter-core
interconnect for both sensor and application data can lead to
significant performance and reliability issues for multi-cores.
As a result, a series of limited, dedicated on-chip sensor data
systems which include the collection and processing of multi-
core sensor data have been introduced.

Although these sensor data systems have proved useful
for a number of on-chip sensing applications, a wider range
of multi-core adaptation uses necessitates an enhanced in-
frastructure which provides the ability to use critical sensor
data to control numerous processors across the die. This
enhancement must be implemented while maintaining the very
low overhead and minimal latency expected of sensor data
processing infrastructures. In this paper, this type of globally-
aware sensor infrastructure is introduced. The sensing system
includes a lightweight communication network-on-chip (NoC)
substrate which allows for sensor data unicast and broadcast
without burdening the main inter-core on-chip communication
system (e.g. bus or network-on-chip). A dedicated on-chip
sensor controller is used to evaluate sensor data and determine
appropriate system-level responses for the embedded system.



To fully assess the broadcast-enabled sensor data infrastruc-
ture, our new architecture is evaluated with the use of sensor
data obtained from processor performance registers, voltage
droop sensors, and temperature sensors. We demonstrate that
the infrastructure not only allows for the unicast transfer of
thermal information to a sensor controller, but also that new
uses of sensor data are possible using sensor data broadcasting.
In many cases, impending core voltage droops can be predicted
before they occur through the use of processor performance
information which is combined into a signature [6]. In this
work we demonstrate that, once discovered, these signatures
can be shared across all processor cores and used to reduce
per-core voltage droops on a global scale, improving embed-
ded processor dependability. Our enhanced sensor data infras-
tructure is used to broadcast voltage droop signatures when
they are discovered. A significant performance improvement
is achieved for signature broadcasting versus the case when
all signatures are determined and used locally.

II. BACKGROUND

A. Previous Multi-core Sensing Systems

The use of independent on-chip infrastructure to collect,
analyze, and use sensor data has been of increasing interest in
commercial and academic settings in the recent past. Bouajila
et al. [7] use a non-scalable token ring interconnect for trans-
porting sensor data, although the use of this data is unclear.
Fattah [8] and Guang et al. [1] introduce the conceptual idea
of collecting sensor data in individual cores and forwarding
them hierarchically to a centralized controller. No discussion
of the hardware needed to perform data analysis or system
control is presented. Phanibhushana et al. [9] limit their study
to a tree-like interconnect for sensor data collection. Although
lightweight, this type of interconnect does not allow for the
broadcast of time-critical sensor data.

Two more complete on-chip sensor systems evaluate data
collection for multiple types of sensors and hundreds of
sensors per die. Ituero et al. [2] present a full sensor data
collection system for several types of sensors. The interface
to a sensor data controller is defined along with latency and
area overheads. No experiments were performed using sensor
data broadcast or feedback from the controller to affect multi-
core behavior. Zhao et al. [3] examine the collection of sensor
data, its analysis, and use in DVFS. The use of sensor data
broadcast is not considered. Similar work by the authors is
targeted at sensor data driven DVFS implementation in 3D
many-cores.

Several projects have examined on-chip communications
technology which supports the broadcast of application data
(not sensor data) to all or most cores. Peng et al. [10] describe
extra control circuitry added to a NoC which allows for
broadcasts using crossbars. Moadeli and Vanderbauwhede [11]
describe a NoC protocol which allows for high-level wormhole
multicast for data destined for multiple applications. In gen-
eral, these approaches are not appropriate for the lightweight,
scalable interconnect required for the transfer and analysis of
sensor data to support on-chip embedded multi-core control.

B. Sensor Data Broadcasting Applications

The on-chip sensing infrastructures described in the previ-
ous section have been used for a variety of on-chip sensing
and control applications for embedded applications. In general,
the approaches follow a model where sensor data is collected
at the cores, sent to a centralized location, and remediation
responses (DVFS, system reconfiguration based on wear-out)
are determined and administered with an additional set of
messages sent to the affected cores. The availability of sensor
data broadcast enables additional types of sensor data uses for
embedded processors including:

• If an on-chip security sensor detects suspected tampering
[12], messages can be sent to all processor cores protect-
ing their memory and processing in a timely fashion.

• In the event of a voltage droop in a specific core,
information about the droop can be quickly sent to other
cores so residual effects can be monitored and addressed.

• Voltage droops can be predicted via the use of processor
performance information which is compressed to form
signatures. In this paper, we show that these signatures
can be broadcast across the chip using the new sensor
infrastructure to identify and eliminate future voltage
droops, enhancing system dependability.

While the first two points are self-descriptive, the final point
requires clarification. Large current swings can cause proces-
sor core voltage to swing beyond acceptable levels. Out-of-
range supply voltages frequently lead to incorrect computation,
requiring processor execution to be stopped and rolled back to
a previously-stored intermediate checkpoint with known-good
state. Voltage droops can be detected using voltage sensors
based on technologies such as ring oscillators. In addition to
processor rollback, the identification of a droop often leads
to frequency reduction. Since checkpoints generally occur
infrequently (once every 100 to 1000 instruction executions),
a rollback causes a significant application performance hit.
Therefore, if a droop can be predicted before it occurs,
improved application performance can be achieved.

One approach for identifying voltage droops before they
happen involves the use of combinations of processor perfor-
mance statistics. These predictors [6] use information regard-
ing cache misses, branches, and translation look-aside buffer
(TLB) misses, among others, to identify voltage droops. When
a voltage droop occurs, these parameters are measured and
combined to create a signature which can be used to flag
an upcoming droop the next time they have similar values.
After a signature is identified, its information can be stored
locally and used to dynamically identify if another droop is
imminent during execution. This action allows for a frequency
reduction before the droop occurs, eliminating the need for
a costly rollback. Our broadcast-enabled sensor infrastructure
shares these signatures across multiple cores once they are
discovered. This action eliminates the need for subsequent
voltage droop/rollback sequences in cores that differ from the
one where the signature was first identified.



III. BROADCAST-ENABLED SENSOR DATA ARCHITECTURE

Our broadcast-enabled sensor data infrastructure includes a
dedicated, low-complexity NoC and a sensor controller (SC).
Data from the sensors are sent to the sensor data router (SDR)
using a packetizer module. The basic structure of the SDR
is similar to a standard five-port NoC router with a crossbar
switch and input queues, but it has been extended to support
data broadcasting. Data received by the core from the SDR via
a depacketizer module can be used to influence core behavior
(e.g. voltage or frequency scaling). State machine controllers
are used to control the interfaces. Given the volume of sensors
in a typical core, an allocation of one SDR per core is used.
Five input and five output queues (one per port) are used
to store data packets in transit in the sensor data router. In
general, this router implementation is simplified from standard
NoC implementations for multi-cores, making it lightweight.
Data bit widths are limited to 16 to 24 bits and buffering is
limited to six flits per I/O queue.

Like the processor cores to which they interface, SDRs
are organized in a 2D mesh. In unicast (single source to
single destination) mode, sensor data are forwarded from
individual cores to a sensor controller. SC functionality can
be implemented in a small, dedicated microcontroller or in
one of the cores of the multi-core. The SC uses collected
thermal, wear-out, and voltage information to make decisions
about individual core remediation such as DVFS or redundant
resource activation. This model of data transfer to SCs, while
appropriate for many remediation responses, is insufficient for
some multi-core responses which require sensor data to be
broadcast to all cores.

The broadcast control block of the SDR examines the packet
header to determine if a broadcast bit is set. If so, the crossbar
is set so that multiple destination ports and the processor core
port are selected as destinations for the packet. An XY routing
algorithm is used to promote the broadcasting of packets which
originate from a single source. A packet is first sent in a north-
south direction to all nodes in a column. When a packet is
received at an adjacent node, it is then forwarded in an east-
west direction to nodes in the respective row.

To evaluate the size of the broadcast-enable SDR, the design
was written in Verilog and synthesized using Synopsys Design
Compiler. A 6-flit buffer size was used for each of the five
SDR ports. Each sensor data router (one per core), including
interfaces, was determined to require 26,773 logic gates and
require 0.068 mm2 in 90 nm technology. This hardware cost
is less than 0.3% of the hardware area of an Alpha 21264 core
(7.7 million gates) [13]. The hardware cost of the additional
broadcast controller is small (less than 10% of the sensor
data infrastructure) since it mainly involves control logic. The
power consumption of the SDR is also about 0.3% of the
processor core consumption.

IV. ANALYSIS OF A BROADCAST-ENABLED SENSOR DATA
SYSTEM

As mentioned in Section II, the broadcasting of sensor
data can be used in an embedded multi-core for security and

TLB 
miss

L1
miss

L2
miss

Instruction from
Issue stage

Pipeline
Flush

Event
Detector

Signature
Detector

PF BRL1 L2 BR

Sensor Router
Interface

Voltage
Droop

Detector

Signature
Storage

Write 
Data Write

Compare
Reduce 

Frequency

Event History Register

To/From
Router Queues

PF = Pipeline Flush
BR = Branch
L1 = L1 Miss
L2 = L2 miss

Fig. 2. Signature-based voltage droop avoidance module

voltage droop remediation, among other embedded processing
dependability uses. To demonstrate the effectiveness of our
approach, we analyze a realistic scenario which includes the
unicast and broadcast of sensor information for an embedded
multi-core environment.

Fig. 2 illustrates the voltage droop analysis module in the
sensor interface of each core of a multi-core system and
its connection to the associated SDR. The module dynami-
cally stores select processor state information regarding cache
misses, TLB misses, processor pipeline flushes, and control
flow branches in an event history register [6]. Each event is
represented using a three-bit code. Additionally, the program
counter of the last branch instruction is stored in the signature.
For 32 consecutive events, the signature requires 3 bits × 32 =
96 bits (12 bytes) plus 4 bytes for the stored anchor PC leading
to a total of 16 bytes of signature. In the event of a voltage
droop, the signature is stored, providing an early warning
since similar future computations would likely also cause a
droop. As execution progresses after the droop and associated
processor rollback, the current signature is dynamically com-
pared against stored signatures to determine if another voltage
droop is imminent. If so, frequency is reduced for a period of
time and the droop (and associated time-consuming rollback)
is eliminated. Per-core signature storage includes a 128-entry
content-addressable memory (CAM) which is used to match
the anchor PC. The remaining portion of the signatures can
be efficiently stored in a 8 KB Bloom filter [6]. Following
synthesis it was determined that the signature generation and
storage hardware in Fig. 2 represents a roughly 2.3% area
overhead versus the Alpha 21264 processor.

The availability of the broadcast-enabled sensor system
allows signatures generated in one core to be shared with all
other cores which execute similar code segments. This action
can prevent voltage droops in multiple cores even though the
signature was identified in a single core. Our signature sharing
method requires each core to have its own signature storage for
both locally-created and broadcast-received signatures. When



a core generates a signature, it is transferred to the attached
SDR and broadcast to other cores using the broadcast control
module. When the 17-byte packet (1-byte header packet with
routing destination information and the 16-byte signature)
arrives at a core, it is stored in the core’s signature storage. In
Section VI, the results of this sharing are quantified.

V. EXPERIMENTAL APPROACH

To evaluate the benefits of using sensor data broadcasting,
two simulators, Popnet [14] and SESC1, have been modified
and used in tandem. Enhancements were made to the Popnet
interconnect simulator to determine latency and throughput for
the lightweight sensor NoC. The interface has been integrated
into the simulated router along with broadcast capabilities.
This modified simulator provides a cycle-by-cycle analysis of
sensor data transfer.

The widely-used SESC simulator provides execution per-
formance results for our multi-core system. Parameter details
used for simulation are presented in Table I. Wattch and
CACTI are used to evaluate Alpha 21264 processor and
cache power models, respectively. Voltage droop is determined
by convolving the Alpha 21264 voltage supply system im-
pulse response with per-cycle power consumption [15]. A
voltage droop within a 4% operating margin necessitates a
500 cycle rollback recovery [6]. The generation of signatures
from microarchitectural parameters is performed using the
circuitry shown in Fig. 2, which uses instruction, cache, and
pipeline flush information. Two multi-core configurations are
considered: a 16-core system organized in a 4 × 4 mesh and
an 8-core system organized as a 3 × 3 mesh with one core
removed.

Our experiments assume that 8 temperature sensors are
located per core [3]. Data from these sensors are sampled once
every 800 clock cycles and forwarded to the sensor controller
via the lightweight NoC. So, effectively, a new temperature
sensor data packet is injected into the NoC by a core once
every 100 cycles. Like [6], we assume that each core includes
an event history register and signature storage, as shown in Fig.
2. Each signature includes a collection of 32 events. Signatures
are stored in a signature storage buffer for every core. Both
signatures generated locally (within the core) and globally
(generated by another core and transferred to the core via
the sensor data interconnect) can be stored in the table. Since
signatures are tied to specific instruction sequences, the same
code must be executed by multiple cores in the case of a global
signature match. In the global case, signatures generated in a
core are broadcast to all other cores, effectively sharing the
sensor data interconnect with the temperature sensor data. It
is assumed that voltage for each core is individually provided
so that a droop in one core does not affect the voltage level in a
neighboring core. Although previous work [16] has suggested
signature sharing across cores, this paper provides the first
communication mechanism to support it. A full analysis of
this mechanism for signature sharing is provided.

1http://sourceforge.net/projects/sesc/

TABLE I
EXPERIMENTAL SETUP

Simulator SESC
Technology 90nm
Num Proc. 8, 16
Frequency 2GHz
Benchmarks SPLASH2

Processor configuration
I-cache 64KB, 4-way
D-cache 64KB, 8-way
Branch predictor Hybrid
Branch target buffer 4K entry, 16 way
Instruction queue 16 entries
Retirement order buffer 176 entries
Load/store buffer 56/56 entries
L2 cache 1 MB, 8-way, 10 cycles

0

20

40

60

80

100

120

140

160

180

200

305580105130155180205230255280305

Clock cycles between broadcast packet injection

P
ac

k
et

 la
te

n
cy

 (
cy

cl
es

)

Worst latency

Avg latency

Fig. 3. Latency for broadcast packets in a 16-core multi-core for a thermal
packet injection rate of 1 packet per 100 clock cycles. Broadcast packet
injection rate is varied along the horizontal axis.

VI. EXPERIMENTAL RESULTS

In an initial experiment, the latency of data transfer for
broadcast packets using the SDR interconnect is considered if
temperature sensor data are simultaneously transferred to the
sensor controller (SC) using the same interconnect. Inter-core
transfer of regular application data is made using a different
interconnect. As mentioned in Section III, the SC is a small
controller or core which is dedicated to process sensor data.
In the experiment, temperature sensor data is inserted into the
lightweight NoC by each core once every 100 clock cycles.
Figure 3 illustrates the average and worst-case latency of
broadcast data to all 16 cores for different injection rates of
broadcast data. The number of cycles between the injections of
17-byte broadcast packets (including header with addressing
information and signature payload; format in Section IV) for
each core is shown on the horizontal axis. The smaller cycles
per injection values (right side of the graph) indicate more
frequent broadcast data injections. The graph shows that as
long as per-core broadcast packet injections take place at a
pace of one per 50 cycles or less, the average and worst case
latency of broadcast packet traffic is largely unaffected. For
an 8-core system, the knee of the curve is at about 30 cycles
per injection.



TABLE II
SIGNATURE COUNT COMPARISON BETWEEN LOCAL SIGNATURE
ONLY AND THE GLOBAL SIGNATURE SHARING FOR SPLASH2

BENCHMARKS. GLOBAL SHARING IS SUPPORTED BY SIGNATURE
BROADCAST TO ALL CORES.

8 core 16 core
Test Test Sign. % Sign. Sign. % Sign.

bench case count reduct. count reduct.
Water- Local 18,470 - 31,038 -
spatial Global 5,163 62 5,028 84

FFT Local 86 - 0 -
Global 86 0 0 0

LU Local 41,173 - 69,989 -
Global 15,995 62 16,341 77

Ocean Local 271,180 - 437,498 -
Global 224,152 17 346,079 21

In a system-level set of experiments, an 8-core and a 16-
core system were simulated using SESC to assess the benefit
for broadcasting voltage droop signatures across cores. The
total number of signatures generated by voltage droops for the
global (sharing) approach using broadcasting is compared to
the total when only local signatures generated within a core are
used to predict droops. Experiments with SESC using the four
benchmarks in Table II indicate that in the worst case (Ocean
for 16 cores) approximately one new signature is produced
every 279 clock cycles. This value indicates an injection rate
which falls in the constant region at the left of Fig. 3.

The system-level results demonstrate the importance of
supporting sensor data broadcasting. As seen in Table II,
signature global sharing allows for fewer signature generations
and, as a result, fewer rollbacks. For the Water-spatial, LU and
Ocean benchmarks, the total number of generated signatures
is reduced significantly as signatures are shared across cores.
The total number of generated signatures is reduced by more
than 60% for the Water-spatial and LU benchmark in both the
8-core and 16-core systems. However, the FFT benchmark has
very few voltage droop emergencies and therefore a very small
number of signatures (86 signatures in the 8-core system and
none in the 16-core system).

The reduced number of generated signatures leads directly
to a performance benefit if a penalty of 500 cycles per rollback
is assumed. The signature broadcast latency using the sensor
data infrastructure has been included in the experiment. To
evaluate the benefit of global signature sharing, the perfor-
mance of four SPLASH2 benchmarks is considered. Table
III shows the performance benefit for the global sharing of
signatures using broadcasting versus local signature generation
only. We can see from this table that global sharing provides
a benefit for three benchmarks (Water-spatial, LU and Ocean)
and virtually no benefit for one benchmark (FFT). The average
performance benefit is 3.13% and 5.36% in the 8- and the 16-
core system, respectively. The results of false positives are
considered in this analysis.

Since the results in Tables II and III include the NoC inter-
connect latency due to broadcasting, the effect of this latency
versus an ideal, zero-latency broadcast of signatures can be
considered. Popnet simulation results in Fig. 3 show that in

TABLE III
PERFORMANCE COMPARISON OF OUR GLOBAL SIGNATURE

SHARING METHOD VERSUS THE LOCAL PREDICTION METHOD
WHICH USES ONLY LOCAL SIGNATURES

8 core 16 core
Test Test Time Exec time Time Exec time

bench case (ms) reduct (%) (ms) reduct (%)
Water- Local 14.59 - 7.48 -
spatial Global 14.23 2.44 7.13 4.63

FFT Local 16.15 - 10.87 -
Global 16.15 0 10.87 0

LU Local 17.20 - 8.01 -
Global 16.43 4.48 7.32 8.62

Ocean Local 25.90 - 15.58 -
Global 24.46 5.57 14.31 8.18

TABLE IV
PERCENTAGE OF GLOBAL SIGNATURE MATCH LATENCIES WHICH
FALL INTO SPECIFIC CYCLE COUNT RANGES. ON AVERAGE, LESS
THAN 3% OF THE GLOBAL SIGNATURE MATCHES HAPPEN WITHIN
20 CYCLES OF INITIAL SIGNATURE DETECTION IN OTHER CORES

Global signature Percentage (%)
match latency (cycles) 8 core 16 core

< 20 2.49 1.84
20-100 28.24 19.92

100-1000 14.83 19.92
> 1000 54.44 60.40

a multi-core system with the broadcast-enabled interconnect
infrastructure, a newly detected signature in one core appears
in the signature tables of other cores within 20 cycles of
its detection, on average. We define global signature match
latency as the cycle count between the detection of a signature
in a core and the first time it is used in another core. As an
example, consider a signature detected in core 1 during a core
1 voltage droop and then used for voltage droop emergency
prediction in core 2. If the signature broadcast latency is
greater than the global signature match latency, this signature
will not be available in core 2’s signature storage before it
is needed. The signature is then detected in core 2 as a new
signature in response to a voltage emergency and rollback.

The SESC simulator was used to record typical values for
global signature match latencies so they could be compared
to signature broadcast latency. The results for 8- and 16-
core systems are shown in Table IV. This table shows the
fraction of global signature match latencies in specific cycle
count ranges (averaged over all four benchmarks). The table
indicates that the majority of global signature match latencies
are more than 20 clock cycles (over 97% on average). This
result makes our broadcast-enabled sensor data interconnect
infrastructure attractive since it successfully shares available
signatures across all cores before the first time they are used
in a different core. The performance of 8- and 16-core systems
using our sensor data interconnect infrastructure is contrasted
to that using an ideal (zero-latency) broadcast interconnect and
the results are shown in Table V. In the ideal, zero-latency
interconnect, signatures initially detected in one core can be
immediately used by other cores in the system.

As shown in Table V, the system performance using our
infrastructure is close to the performance using a zero-latency



TABLE V
PERFORMANCE COMPARISON OF GLOBAL SIGNATURE SHARING

USING THE ENHANCED INFRASTRUCTURE VERSUS AN IDEAL,
ZERO-LATENCY INTERCONNECT

8 core 16 core
Test Test Time Exec time Time Exec time

bench case (ms) reduct (%) (ms) reduct (%)
Water- Ideal 14.23 - 7.13 -
spatial Global 14.23 0.02 7.13 0.02

FFT Ideal 16.15 - 10.87 -
Global 16.15 0 10.87 0

LU Ideal 16.42 - 7.32 -
Global 16.43 0.10 7.32 0.04

Ocean Ideal 24.15 - 14.08 -
Global 24.46 1.30 14.31 1.59

0

20

40

60

80

100

120

140

160

180

200

10356085110135160

Clock cycles between thermal sensor packet injection

P
ac

k
et

 la
te

n
cy

 (
cy

cl
es

)

Worst latency

Avg latency

Fig. 4. Latency for temperature sensor packets in a 16-core multi-core for
a broadcast packet injection rate of 1 packet per 279 clock cycles. Thermal
packet injection rate is varied along the horizontal axis.

interconnect. The average performance penalty is less than
0.4% and the maximum performance penalty is less than 1.6%
for the Ocean benchmark. This result is understandable since
the low latency signature sharing achieved by our infrastruc-
ture ensures that the majority (>97%) of signatures can be
broadcast to all cores in the system before they are used for
the first time.

For a final experiment, we consider the capability of light-
weight sensor interconnect to handle increased core-to-sensor
controller traffic beyond 1 injection every 100 cycles if the
interconnect is also used to broadcast signature data. In Fig.
4, the latency of temperature sensor packets is illustrated for a
range of injection rates if broadcast signatures are injected by
each core at a fixed rate of 1 every 279 cycles. The results show
that the temperature sensor data (or data from other sensors)
could be transferred to the sensor controller using an injection
rate of up to about 1 every 30 clock cycles for a 16-core
system. This value drops to about 1 every 10 clock cycles for
an 8-core system.

VII. CONCLUSIONS

The use of sensor information is vital for multi-core proces-
sors used in embedded systems. In this paper, an on-chip sens-
ing system for embedded multi-cores which includes broadcast
capabilities is introduced. The amount of on-chip resources
required for this system is quite small (<3% of chip area). This

resource eliminates the need for sensor data to be transferred
and processed via the multi-core’s standard communication
and compute infrastructure. As a way of enhancing embedded
multi-core dependability, we demonstrate the importance of
supporting broadcasting through the distribution of voltage
droop signatures. Using interconnect and multi-core simulators
it is shown that a 5.4% performance improvement can be
achieved on average (9% best case) by broadcasting signatures
which allow cores to avoid voltage emergencies and costly
processor rollbacks2.

REFERENCES

[1] L. Guang, E. Nigussie, J. Isoaho, P. Rantala, and H. Tenhunen, “In-
terconnection alternatives for hierarchical monitoring communication in
parallel SoCs,” Microprocessors and Microsystems, vol. 34, pp. 118–
128, Jan. 2010.

[2] P. Ituero, M. Lopez-Vallejo, M. A. S. Marcos, and C. G. Osuna,
“Light-weight on-chip monitoring network for dynamic adaptation and
calibration,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1736–1745, June
2012.

[3] J. Zhao, S. Madduri, R. Vadlamani, W. Burleson, and R. Tessier, “A
dedicated monitoring infrastructure for multicore processors,” IEEE
Trans. on VLSI Systems, vol. 19, no. 6, pp. 1011–1022, June 2011.

[4] M. Floyd, B. Brock, M. Ware, K. Rajamani, A. Drake, C. Lefurgy, and
L. Pesantez, “Adaptive energy management features of the POWER7
processor,” in Proc., HotChips, Aug. 2010.

[5] (2012) Intel Active Management Technology. [Online]. Available:
http://www.intel.com/technology/platform-technology/intelamt/

[6] V. Reddi, M. Gupta, G. Holloway, M. Smith, G. Wei, , and D. Brooks,
“Voltage emergency prediction: A signature-based approach to reducing
voltage emergencies,” in Proc., Int’l Symp. on High Performance Comp.
Arch., Feb. 2009, pp. 18–27.

[7] A. Bouajila, A. Lakhtel, J. Zeppenfeld, W. Stechele, and A. Herkersdorf,
“A low-overhead monitoring ring interconnect for MPSoC parameter
optimization,” in Proc., Int’l Symposium on Design and Diagnostics of
Electronic Circuits and Systems, Apr. 2012, pp. 46–49.

[8] M. Fattah, “Exploration of MPSoC monitoring and management sys-
tems,” in Proc., Int’l Workshop on Reconfigurable Communication-
Centric Systems-on-Chip, June 2011, pp. 1–3.

[9] B. Phanibhushana, P. Vijayakumar, P. Shabadi, G. Prabhu, and S. Kundu,
“Towards efficient on-chip sensor interconnect architecture for multi-
core processors,” in Proc., Int’l SoC Design Conf., Nov. 2010, pp. 307–
310.

[10] Y. Peng, M. Saldana, and P. Chow, “Hardware support for broadcast and
reduce in MPSoC,” in Proc., Int’l Conf. on Field Programmable Logic
and Applicatons, Sept. 2011, pp. 144–150.

[11] M. Moadeli and W. Vanderbauwhede, “A communication model of
broadcast in wormhole-routed networks on-chip,” in Proc., Int’l Conf.
on Advanced Information Networking and Applications, May 2009, pp.
315–322.

[12] L. Fiorin, G. Palermo, and C. Silvano, “A security monitoring service
for NoCs,” in Proc., Int’l Conf. on Hardware/Software Codesign and
System Synthesis, Oct. 2008, pp. 197–202.

[13] B. Gieseke, et al., “A 600 MHz superscalar RISC microprocessor with
out-of-order execution,” in Proc., Int’l Solid State Circuits Conf., Feb.
1997, pp. 176–177.

[14] L. Shang, L. Peh, and N. Jha, “Dynamic voltage scaling with links for
power optimization of interconnection networks,” in Proc., IEEE Int’l
Symposium on High-Performance Computer Architecture, Feb. 2003, pp.
91–102.

[15] K. Hazelwood and D. Brooks, “Eliminating voltage emergencies via
microarchitectural voltage control feedback and dynamic optimization,”
in Proc., Int’l Symposium on Low-Power Electronics and Design, Aug.
2004, pp. 326–331.

[16] J. Zhao, B. Datta, W. Burleson, and R. Tessier, “Thermal-aware voltage
droop compensation for multi-core architectures,” in Proc., ACM Great
Lakes Symposium on VLSI, May 2010, pp. 335–340.

2This research was supported by the Semiconductor Research Corporation
under Task 2083.001


