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CoNFV: A Heterogeneous Platform for Scalable
Network Function Virtualization

XUZHI ZHANG, XIAOZHE SHAO,GEORGEPROVELENGIOS, NAVEENKUMARDUMPALA,
LIXIN GAO, and RUSSELL TESSIER, University of Massachusetts Amherst, USA

Network function virtualization (NFV) is a powerful networking approach that leverages computing resources
to perform a time-varying set of network processing functions. Although microprocessors can be used for this
purpose, their performance limitations and lack of specialization present implementation challenges. In this
manuscript, we describe a new heterogeneous hardware-software NFV platform called CoNFV that provides
scalability and programmability while supporting significant hardware-level parallelism and reconfiguration.
Our computing platform takes advantage of both field-programmable gate arrays (FPGAs) and microprocessors
to implement numerous virtual network functions (VNF) that can be dynamically customized to specific
network flow needs. The most distinctive feature of our system is the use of global network state to coordinate
NFV operations. Traffic management and hardware reconfiguration functions are performed by a global
coordinatorwhich allows for the rapid sharing of network function states and continuous evaluation of network
function needs. With the help of state sharing mechanism offered by the coordinator, customer-defined VNF
instances can be easily migrated between heterogeneous middleboxes as the network environment changes. A
resource allocation and scheduling algorithm dynamically assesses resource deployments as network flows
and conditions are updated. We show that our deployment algorithm can successfully reallocate FPGA and
microprocessor resources in a fraction of a second in response to changes in network flow capacity and
network security threats including intrusion.

CCS Concepts: • Networks → Middle boxes / network appliances; Network management; Network
resources allocation; • Hardware→ Reconfigurable logic applications; Hardware accelerators.

Additional Key Words and Phrases: Network function virtualization, Coordinator, Heterogeneous middleboxes,
FPGA, Performance-aware VNF deployment.

ACM Reference Format:
Xuzhi Zhang, Xiaozhe Shao, George Provelengios, Naveen Kumar Dumpala, Lixin Gao, and Russell Tessier.
2020. CoNFV: A Heterogeneous Platform for Scalable Network Function Virtualization. ACM Trans. Reconfig.
Technol. Syst. 37, 4, Article 111 (August 2020), 29 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
As the Internet has grown, the need for increasingly complex operations in network infrastructure
has led to the implementation of numerous embedded network functions. These functions serve an
array of purposes ranging from general-purpose computation to security to improving network
efficiency. For example, firewalls and intrusion detection functions provide security while network
address translators (NATs), load balancers, packet classifiers, and proxy caches support efficient
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network operation in enterpise, cloud and data center environments. Although application-specific
integrated circuits (ASICs) were initially the network function implementation mechanism of
choice [22], the need to dynamically update and swap functions has led to increased interest in
network function virtualization (NFV). To support NFV, programmable compute platforms based on
microprocessors and field-programmable gate arrays (FPGAs) respond to rapid in-network updates
as function needs change.

The coordination of heterogeneous network function platforms in a distributed environment is a
challenge. Microprocessors are straightforward to program and allow for fast network interfacing
using toolsets such as the Data Plane Development Kit (DPDK)1. However, they are inherently
sequential and specialized network functions often require significant run time. To augment these
common NFV components, several researchers [13, 20] have examined implementing complex NFV
functions in FPGAs and managing their functions over time through dynamic reconfiguration.
Although effective, these systems generally take a localized view of network state information in
individual middleboxes rather than a global perspective that simultaneously considers state from
multiple middleboxes to enhance NFV deployment.

In this manuscript, we describe CoNFV, a network function platform based on FPGAs, micropro-
cessors, and supporting software. CoNFV makes three significant extensions beyond existing NFV
platforms:

(1) CoNVF uses a global coordinator to collect and distribute global state information across
middleboxes. Unlike earlier systems, state information is used to dynamically allocate virtual
network functions (VNFs) to both FPGA and microprocessor-based middleboxes.

(2) In our system, VNFs can be automatically migrated from microprocessors to FPGAs and vice
versa. Migration to FPGAs is supported with partial FPGA reconfiguration.

(3) A customized allocation and scheduling algorithm has been developed to dynamically evaluate
heterogeneous middlebox deployment based on global state information and middlebox usage.

To demonstrate our system, a library of FPGA-based and software modules has been implemented
and tested for the following VNFs: specialized SQL injection (SQLi) attack detection, distributed
denial-of-service (DDoS) detection, and network address translation (NAT). These function modules,
implemented in either FPGA hardware or processor software, are swapped into middleboxes on de-
mand. In some cases, multiple microprocessors are grouped together to achieve needed throughput,
latency, and computer performance levels. Our allocation and scheduling tool periodically identifies
changes in required VNF deployment, assembles the components from available libraries, and
dynamically reconfigures the component FPGAs and virtual machines (VMs) that implement the
network functions. Our prototype network function virtualization environment is assessed using
Intel DE5 FPGA boards, microprocessor-based VirtualBox middleboxes, and a 10 Gigabit-per-second
(Gbps) software defined networking (SDN) network switch. The system is shown to be scalable
both in middlebox count and in state request rate to the coordinator.
The remainder of this manuscript is structured as follows. Section 2 presents NFV and the use

of FPGAs in networking functions. In Section 3, we present our scalable hardware and software
system. Implementation details for the NFV framework and support for dynamic reconfiguration
are provided in Sections 4 and 5. Section 6 provides details on data plane traffic management. Our
allocation and scheduling algorithms are outlined in Section 7 and the experimental methodology
is detailed in Section 8. The benefits of our dynamic reconfiguration approach are quantified in
Section 9. Section 10 concludes the paper and offers directions for future work.

1dpdk.org
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2 RELATEDWORK
To provide context for our new NFV system that manages global state information and uses it
for VNF allocation and scheduling, we review the basics of NFV and contrast our approach with
previous efforts.

2.1 Network Function Virtualization
NFV has been a focus of network builders for nearly ten years, as network hardware and program-
ming environments have matured. The approach supports the virtualization of network appliance
(middlebox) operations into programmable components that may be chained to provide a range of
networking services. Although NFV is most often considered in the context of data centers [21],
any extended networking environment is a candidate platform. Typical network functions include
border controllers such as firewalls, load balancers, and wide-area network (WAN) accelerators
that protect a network. With the advance of server virtualization technology, it became possible to
decompose traditional network border controller functions into virtual machines running different
software, and into reconfigurable FPGA components. When designing and developing the software
and FPGA circuits that provide virtual network functions, it is possible to break operations into
components and package those components into one or more functions. Programmable middle-
boxes are often hosted in one or more physical nodes consisting of commodity hardware. They
are connected by tunnels to satisfy the requirements of a customer. For example, each customer
might provide a policy rule set for its firewall and install those rule sets in its own middlebox. In
addition to the firewall, the customer might install a WAN accelerator that is installed in the same
or a different middlebox.

2.2 Reconfigurable Network Functions
Reconfigurable logic provides an ideal platform for network functions due to the parallelism,
specialization, and adaptability offered by FPGA devices [23]. These characteristics match well
with the multi-Gbps throughput constraints frequently imposed on networking infrastructure and
the need for frequent updates required by changing packet analysis and filtering metrics. As FPGAs
continue to be integrated into cloud computing environments [2] and data centers [17], their use
in network and application processing will continue to grow. As an example of the efficiency of
FPGAs versus microprocessors for NFV we contrast the performance of DPDK, which gives the
CPU low-level access to network interface card drivers, to a Stratix V FPGA implementation of
regular expression matching (REME)2. Figure 1 shows that by using DPDK, the throughput of
software implementation is moderately less than the FPGA version for one REME. As the number
of REMEs scales, the software throughput is attenuated by microprocessor performance limitations
while the parallelism of the FPGA allows for relatively constant throughput.

2.2.1 Need for NFV Global State. A number of microprocessor and FPGA-based platforms have
been deployed for network applications involving performance improvement, load balancing, and
security. A key aspect of these systems is the need to maintain state to evaluate the performance
and threat level of the system over time. A wide range of FPGA-based network intrusion detection
systems have been implemented using CAMs [6], shift and compare circuits [1, 16], and Bloom
filters [3]. FPGA logic allows for the implementation of a massive number of parallel matching
circuits and Bloom filter hash functions that can be customized to a changing set of matching rules,
including the entire SNORT network intrusion detection system (NIDS) ruleset [16]. Although
DDoS prevention using FPGAs has received less attention than packet classification and NIDS,

2More details on the microprocessor and FPGA test framework are provided in Section 4.1
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Fig. 1. Regular expression using DPDK: Processing throughput versus number of regular expressions

worm identification and matching circuits have been implemented in FPGAs that operate at line
rates [10]. Ge et al. [4] use OpenStack with partial FPGA reconfiguration to support deep packet
inspection and NAT. These NIDS, NAT, and DDoS applications locally buffer state information
related to pattern matching hit rates and address translations. We show that the sharing of this
information across middleboxes can improve overall system performance.

2.3 Network Function Virtualization Global State Management
Several previous works have explored the management of global VNF state information. Split/Merge
[18], OpenNF [5] and E-State [15] manage global state in a distributed fashion. OpenNF delegates
global state management to the control plane of the network function, an approach that is inappro-
priate for FPGAs. Split/Merge and E-State require each middlebox to maintain a partial supply of
the global state. When a middlebox requests state, it must be fetched from another middlebox. Read
global state operations incur considerable overhead (up to 20 ms [15]) due to peer-to-peer network
communication versus the 0.2 ms per read operation required by our approach. Our centralized state
approach also allows for larger state storage (1 million state entries) versus previous techniques
(65,000 entries [14]). StatelessNF [8] isolates states from middleboxes and stores them in a separate
repository connected via a high-speed network, in contrast to our approach that uses standard
Ethernet links. The global coordinator in CoNFV also not only stores state information but uses
the information to schedule and allocate NFV resources.
Several NFV management systems for FPGA-based VNFs have been developed in the past

although none use global state collection and resource allocation based on global state. Kachris et
al. [9] provide an analysis of the potential use of FPGA reconfiguration to dynamically support
functions such as firewalls, packet parsing, IP lookup, deep packet inspection, and virus scanning.
A comprehensive system [20] takes advantage of the flexibility and on-the-fly reconfigurability
of FPGA and CPU resources within a cloud data center. This approach builds upon OpenStack
resource management functions to dynamically allocate both types of resources. Nobach et al. [13]
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developed a system that can move functions between microprocessors and FPGAs on-demand. The
Hyper system [19] uses a global mediator to hide middlebox resource heterogeneity when assigning
VNFs to resources, although state information is not used. Our allocation algorithm operates about
5× faster than the one used in Hyper on a similarly-equipped workstation. Although these works
allow for VNF migration, they do not directly address global state management and global state is
not used to allocate NFV resources for the available functions.

2.4 Comparison to Previous Implementation
This paper substantially extends our previous conference publication that describes a heterogeneous
network function virtualization system [26]. Our platform possesses the ability to share network
state information and migrate network functions between heterogeneous middleboxes based on a
changing network environment using partial FPGA reconfiguration and the deployment of VMs.
New additions in this work include the deployment of a resource reassignment algorithm that
considers resource constraints versus application needs. Additionally, an OpenFlow-based SDN
switch has been integrated into our system to facilitate flow steering at much faster network speeds
than our previous work. Finally, we show that the use of global state in a centralized coordinator
facilitates allocation algorithm decision making and leads to rapid resource deployment in case of
network intrusion and SQLi attacks.

3 SYSTEM DESIGN
3.1 System Overview
It is common for middleboxes positioned across a subnetwork to deploy distributed functions
using commodity hardware, custom hardware, virtual machines (VM), or reconfigurable hardware.
Information frommultiple packet flowsmust often be utilized for these stateful, distributed functions.
Information is collected locally during packet processing from flows that pass through themiddlebox.
For a variety of applications, such as NAT and SQLi attack detection, a distributed approach allows
for parallel analysis of multiple flows, each collecting correlated information. The scalable CoNFV
system collects global state information and shares this information among distributed FPGA and
microprocessor packet processors. The CoNFV coordinator gives each middlebox access to global
state information using programmable interfaces. Subsets of this information are cached in the
middleboxes for some applications.
Middlebox and coordinator functionality can be quickly updated as network function needs

change. For example, many NFV operations can initially be assigned to software for low and
moderate traffic loads. As network traffic and computational workload increase for a function,
instances can be migrated to FPGA-based hardware. A traffic and workload decrease for a specific
function can have the opposite effect. The allocation of functions to middleboxes is dynamically
assessed and orchestrated by the coordinator as state-based network conditions are processed. The
coordinator automatically reallocates resources as needed.
An overview of our global state-sharing system for heterogeneous middleboxes is shown in

Figure 2. Microprocessor- and FPGA-based middleboxes are distributed across the network. The
middleboxes share state information through TCP connections to the CoNFV coordinator. As shown
in Section 9, the coordinator is able to handle state for a scalable set of middleboxes, with minimal
packet processing slowdown. SDN switches are used to control middlebox access and provide
support for chaining. The network setup represents a number of interconnect configurations,
including those found in data centers.
Figure 3 shows the framework of the system. The coordinator stores global state values in a

table as a set of key-value pairs. Each middlebox can access global state (𝐺𝑉 ) using a key. The
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Fig. 2. Overview of the CoNFV configurable network function virtualization system using processor- and
FPGA-based middleboxes.

state manager, a software module which can be configured for each application, can both retrieve
and update state. The resource evaluator assesses the current utilization of middlebox resources in
response to messages and state variables and can choose to performmiddlebox resource rebalancing.
The configuration manager creates an entry for each enrolled middlebox in the resource table and
updates their properties according to the information collected by the resource evaluator. These
properties include the resource state (𝑆𝑡 - idle/active) and throughput (𝑇𝑝). The configuration
manager coordinates the resource assignment based on the global middlebox information recorded
in the resource table and triggers an in-line SDN switch controller to steer traffic flows running
through the SDN switch.
Each middlebox contains one or more packet processors and an associated state proxy module.

After a state request originates in the packet processor, the state proxy module generates and sends
state requests to the coordinator, and receives state updates from the coordinator. The configuration
proxy module coordinates either software thread activation/deactivation for packet processors or
hardware reconfiguration for FPGA packet processors. A control interface allows for interaction
with the coordinator. The specific functions of these modules for three applications is detailed in
Section 8.
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3.2 Cross-Middlebox State Sharing
Our system relies on state sharing for two types of actions: function triggering and state retrieval.
Inspection functions evaluate network traffic and examine packets for monitoring, intrusion de-
tection, and identification of other invasive attacks. Manipulation functions examine and modify
flows by dropping, updating or creating new packets. State sharing for these two types of flows
proceeds as follows:

Trigger state: For inspection functions, data packets are passively inspected as they enter a
middlebox for specific characteristics of attacks such as DDoS or SQLi. If an event is observed that
requires a global state update, state information both in the middlebox and in the coordinator are
updated. As the state is updated in the centralized state table on the coordinator, it is checked by
the resource evaluator to determine if remediation elsewhere in the network is needed. In Section
8, we describe how CoNFV can be used to address DDoS and SQLi attacks. A firewall or packet
filter can be enabled at one or more points in the network in response.

Retrieval state: For manipulation functions, global states are updated during packet processing.
Middleboxes that require retrieved state generally manipulate packets. In the case of state retrieval,
individual packet processors request state information if it is not available locally. The coordinator
provides a global repository for state information and can update state as needed. A common use
of state retrieval is for network address translation. When NAT receives the first packet of a flow
it creates state which determines the translation from an external (IP, port) pair to an internal
(IP, port) pair on the local subnetwork. This information must be shared across all middleboxes
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performing NAT translation for the subnetwork to avoid (IP, port) assignment overlap. In CoNFV,
translation information (global state) is stored in the coordinator. If a middlebox receives a packet
and its translation information is not stored locally, the information can be obtained from the
centralized repository.

3.3 Dynamic Resource Management
NFV resources must be managed using a global view of function deployment. In response to chang-
ing threats or monitoring goals, resources are reallocated under the control of the configuration
manager in the coordinator. This unit coordinates the migration, creation, and destruction of
functions in real-time to meet functional needs. For processor-based middleboxes, virtual machine
(VM) threads are created or destroyed in response to stimuli from the coordinator. For FPGA-based
systems, portions of the FPGA circuitry are swapped to change functionality. As shown in Figure 3,
FPGA resources are split into fixed resources that manage function interfaces and packet processing
resources that can be dynamically reconfigured. For example, in response to the configuration
proxy, portions of the FPGAs can be swapped.

After the rebalancing of the resource assignment, traffic flows need to be steered to corresponding
middleboxes. The configuration manager coordinates the flow steering in collaboration with the
SDN switch controller by rewriting the flow table located in the SDN switch. OpenFlow [12], a
standard protocol for enabling SDN, is leveraged.

4 SYSTEM IMPLEMENTATION
4.1 Framework Overview
Our coordinator and middlebox framework includes commodity processor-based components,
FPGA boards and an SDN switch. The coordinator is implemented using a processor-based Intel
Duo server (2.66 GHz, 4 GB). Processor-based middleboxes are implemented using a twelve-core
Intel Xeon workstation (2.4 GHz, 32 GB SDRAM, two 10 Gbps NICs, and four 1 Gbps NICs). FPGA-
based middleboxes are implemented using Terasic DE5 boards that include Intel Stratix V FPGAs.
TCP sockets are used to enable middlebox/coordinator interactions. The communication between
the coordinator and the middleboxes is sufficiently frequent that the coordinator maintains a
live connection for each middlebox since it is costly to initialize a new connection for each state
operation. The SDN switch is a Netgear ProSafe M4300-8X8F 10 Gbps switch with 16 data ports
and a 1 Gbps control port. The coordinator and SDN switch are interconnected via a 1 Gbps link.
A high-level view of FPGA- and processor-based middleboxes appears in Figure 4. In this

configuration, network functions with the highest throughput and lowest latency are assigned to
the FPGA on the DE5 board. The DE5 contains 16 GB SDRAM, 256 MB flash, a Stratix V 5SGXEA7N
FPGA and four 10 Gbps Ethernet ports. Three 10 Gbps ports are used for data input and output and
the fourth is used for 1 Gbps communication with the coordinator.

When the number of needed middleboxes exceeds available FPGA hardware, additional middle-
boxes can be spawned in software on the PC servers. A PC server is sliced into virtual machines
(VMs) using VirtualBox3 which allows full virtualization of a guest operating system. Virtual-
Box allows multiple isolated user spaces (virtual machines). Each virtual machine operates like
a stand-alone server. Software middleboxes are effectively isolated from each other in separate
VirtualBox containers that guarantee a fair share of CPU cycles and physical memory to each
middlebox. Hardware and software middlebox functions can be customized based on the designer’s
specifications.

3https://www.virtualbox.org/wiki/Downloads
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Fig. 4. High-level overview of processor- (top) and FPGA-based (bottom) middleboxes in CoNFV

4.2 Coordinator Implementation
4.2.1 Coordinator and SDN Switch Initialization. During system operation, middleboxes can either
be active or idle. To indicate availability, a middlebox informs the coordinator via an enroll message
that includes information about the middlebox’s compute capabilities. Prior to use, a middlebox
must be registered with the coordinator and the SDN switch must be configured to forward flows
to the required destination middlebox. The coordinator’s middlebox registration function, which
is implemented in the configuration manager and SDN switch controller blocks, performs this
function.

The configuration manager maintains a resource table for each middlebox. The table contains the
following per-middlebox information: device ID, device status, device type, available NFV functions,
assigned switch ports, and source/destination processing capacities. Upon system startup, the
configuration manager sets the source and destination ports and other information in the resource
table as enroll messages from middleboxes are received. When a middlebox completes operation in
response to a message from the coordinator or an unplanned service interruption, an exit message
is sent to the coordinator.
The SDN switch controller in the coordinator oversees setting ports in the SDN switch via a

series of flow modification (flow-mod) messages. These messages configure the switch by writing
values into the flow table in the switch. Entries in the table are used to route incoming packets
based on header information. During system startup, the switch sends its operational parameters
to the SDN switch controller. If a packet arrives with a header that does not match an entry in the
flow table, a default rule will broadcast the packet to the switch output ports. A reply message is
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used to record input and output port information and source and destination MAC addresses in the
flow table. Port information is also forwarded to the SDN switch controller. OpenFlow protocol is
used to communicate between the coordinator and the SDN switch.

4.2.2 Trigger States. A state table of trigger states is located in the coordinator. Middleboxes update
trigger states through the state proxy during packet processing. Inside the coordinator, the state
manager updates or creates trigger states according to the received state from middleboxes. As
Figure 5 shows, when a packet comes into a middlebox, the packet processor inspects the packet
and sends it out. According to the semantics of the network function, the inspection result might
lead to a state update. Whenever the state manager updates or creates a trigger state, a state checker
in the resource evaluator is triggered to detect malicious activities based on the new state. If a
malicious activity is detected, the associated reactions, such as logging or notification, are engaged.

Trigger states do not directly affect the packet processing. They aremaintained to detect malicious
activities. The semantics of detections are determined by the network function designer and
provided to the coordinator for use by the resource evaluator.

4.2.3 State Retrieval. Asynchronous state operations used in our system allow a packet processor
to process other packets without blocking while state is retrieved from the coordinator. However,
asynchronous state operations might put packets out of order. For example, if the processing of a
packet does not need a state operation, the packet can be processed immediately without waiting
for the state return. Network functions that satisfy this condition are not uncommon. For example,
for NAT, every packet in a flow requires the same mapping from one (IP, port) pair to another
(IP, port) pair. Packets with known translations can proceed while others wait for translation
information. During asynchronous state operation, the middlebox is able to process, for instance,
the next incoming packet first. When the state is returned from the coordinator, the middlebox
continues the processing of the previous packet. Asynchronous state operations buffer packets
that require coordinator lookups using a packet buffer table. Figure 6 illustrates the procedure of
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asynchronous state operations. Each packet that incurs a state operation is buffered in the table.
Packets in the table are indexed by the keys of global states. Then, when the state is returned,
the associated packet is retrieved from the table. If the table becomes full, an incoming packet
may be dropped if it requires a coordinator lookup. We did not encounter this scenario in our
experimentation.

During packet processing, state retrievals can be much more frequent than state updates. In this
case, it is beneficial to cache global states at middleboxes to reduce remote retrieval delay. To cache
states, the state proxy in each middlebox maintains a cache table that stores the key-value pairs of
states. When the packet processor retrieves a state, the state proxy checks the cache table first. If it
misses, the state proxy retrieves the state from the coordinator. When the state returns, it is added
into the cache table. To record the locations of all local copies of state, the coordinator maintains a
set of locators for each state value in a duplication table.
To keep copies consistent, the coordinator collects two kinds of information: where the copies

of state are located and when the state is updated. When a state value needs to be updated in
the coordinator, an invalidation message is first sent to affected middleboxes to clear stale values.
Following acknowledgment messages from the middleboxes, the new state value is written in
the centralized state table. As a result, local cache tables always either have a valid translation or
must request an up-to-date one from the global coordinator. For the NAT application, state table
invalidations only occur when the table is full.

4.2.4 Middlebox-Coordinator Configuration. Inside a middlebox, incoming packets are processed
by a packet processor and state is manipulated by the state proxy. Both FPGA-based and processor-
based state proxies provide defined interfaces for state update and retrieval. The state proxy provides
APIs for updating or retrieving different kinds of states. Thus the packet processor is able to operate
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Fig. 7. Detailed FPGA implementation for multiple middlebox packet processors

on global states even if it does not know where the state is located. The state proxy interacts with
the state manager in the coordinator using a collection of message types.

Messages from a middlebox to the coordinator include:
• State Configure: information about the format of state information.
• Event Configure: information about events that can be detected by the coordinator.
• State Update: information to update the global state stored in the coordinator
• State Fetch: a retrieval request for data from the coordinator.

Messages from the coordinator to a middlebox include:
• Reply State: retrieved state information from the coordinator.
• Event Trigger: a message which initiates a remediation effort at a middlebox (e.g. firewall
configuration).

These messages are used to coordinate real-time middlebox response.

4.3 DE5 Middlebox and FPGA Module Library
A detailed view of the FPGA platform that can accommodate multiple packet processing middlebox
functions is shown in Figure 7. A NIOS II soft microprocessor is used as the interface, state proxy,
and configuration proxy. This resource can communicate with the coordinator via a TCP connection
implemented on a 1 Gbps link through a switch.
The interface between the Nios II and one or more middlebox packet processors takes place

via shared memory, a control register and an interrupt request (IRQ) controller accessed with
the Avalon interface. The packet processors implement functions in conjunction with a network
interface (NI) that includes media access controller (MAC) IP cores, data queues and port controllers.
Incoming data from the PHY are placed in the input queues. Processed packets are sent to the output
queues from which they are forwarded to the physical Ethernet interfaces. In our FPGA platform,
fixed FPGA circuitry includes two subsystems: the network interface (NI) subsystem and the Nios
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II-based system on chip (SoC) subsystem (Figure 7). The NI subsystem contains one 1GMAC IP core,
three 10G MAC IP cores, and a direct memory access (DMA) controller used to manage the data
switching between the 1G MAC and the Nios II microprocessor connected through a data buffer.
Three 10G MAC cores are connected individually to different packet processors via the Avalon
streaming interface. Two off-chip memories (SDRAM, flash memory) are accessed by the Nios II via
memory interface controllers. SDRAM is used for data and instructions, and flash memory is used
for boot code. Embedded NIOS II software was developed using MicroC/OS-II and the NicheStack
TCP/IP Stack. The software operates as a TCP client, a state proxy and a configuration proxy for all
packet processors in one middlebox.
The implementation shown in Figure 7 illustrates the signal interfaces associated with the

middlebox packet processors. These interfaces include data, address, and control connections to
the shared memory and the network interface. These interfaces represent an effective boundary for
partial FPGA reconfiguration of middlebox functionality. For this project, three middlebox functions
for NAT, SQLi, and DDoS have been created with the interface, allowing for interoperability.

5 DYNAMIC RECONFIGURATION
As described in Section 7, the assignment of VNFs to middleboxes is a dynamic process based
on two factors, the throughput requirements of data streams and threats, as assessed by the
resource evaluator in the coordinator. The DE5 provides a high-performance platform to implement
middleboxes. However, the choice of an FPGA platform for virtualization does create scalability
concerns. Not all middleboxes may contain an FPGA or there may be insufficient resources to
implement all needed middlebox functions in FPGAs. As a result, our system allows for the seamless
use of both hardware and software middleboxes in the same system with the same coordinator
interfaces and support for VNF implementation of the same functions at different performance levels.
Both types of resources are considered for dynamic VNF allocation. Although minor updates to the
hardware middlebox through configuration registers can enable parallelism and provide flexibility,
it may not be sufficient for substantial changes in threats which require new hardware modules. As
a result, techniques are needed to trade off computation between hardware and software to best
use resources. This evaluation takes place under control of the configuration manager based on
feedback from the middleboxes.

Resource assessment. To assess the throughput performance of currently executing VNFs,
middleboxes send update messages to the coordinator with input rate and output throughput
statistics every 10 ms. Based on the reconfiguration algorithm described in the next section, the
resource evaluator dynamically determines the need for spawning, elimination, or migration of
VNFs across middlebox resources. The configuration manager in the coordinator may also receive
a trigger from the resource evaluator to consider middlebox resource allocation. The resource table
in the configuration manager is used to compare current resource deployment, required middlebox
computation, and the ability to accommodate triggers. A request for VNF migration, spawning, or
removal is added to a task queue in the coordinator that is checked once every 0.1s.

Configuration update. To initiate VNF functionality on a processor-based or FPGA-based
middlebox, a message is sent from the coordinator to the host system with the required action and
VNF specified. A new software VNF middlebox is started in an isolated VirtualBox. The creation
of a new VNF function in an FPGA middlebox requires a series of steps. To support FPGA-based
middlebox configuration, the FPGA is partially reconfigured. An effective approach for middlebox
configuration is to swap one of the middlebox packet processor modules in Figure 7. Multiple
configurations for the FPGA are available in on-board flash memory. Our partial reconfiguration
approach requires the definition of a partial reconfiguration boundary that consists of the 207
interface signals on the module. These signals interface to lookup tables in the module which are
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driven to a known value during reconfiguration. Partial reconfiguration is controlled by a state
machine implemented in FPGA logic. During partial reconfiguration, the state machine calculates
the memory address where the reconfiguration bitstream is stored and sends it to a dedicated FPGA
circuit, which is triggered to retrieve new configuration information from flash and programs it
into the FPGA configuration memory via a control block instantiated in the device.

SDN switch configuration. Once the processor-based or FPGA-based middlebox has been
properly configured, the coordinator is notified and the configuration manager and SDN switch
controller work together to send flow modification messages to the SDN switch to modify source
and destination port entries in the switch flow table. These updates allow packet traffic to (or away
from) the newly configured (or stopped) middleboxes. Level 2 routing is used for packet transfer in
this case.

As described in Section 7, traffic previously sent to a processor-based middlebox can be rerouted
to an FPGA-based middlebox due to an increase in required VNF throughput. In our system, this
action includes the activation of the FPGA VNF, reprogramming of the SDN switch followed by
processor-based VNF deactivation. The configuration manager sends messages to the middleboxes
to replace their current functions with alternative configurations and to the SDN switch to reroute
affected traffic. A detailed example using middlebox functionality migration is described in Section
9.

6 DATA PLANE MANAGEMENT
Data plane traffic management is necessary to support middlebox functionality migration. For our
system, the SDN controller in the coordinator was implemented using the RYU SDN framework4
with OpenFlow 1.3 protocol used to communicate with the NETGEAR ProSafe switch. By setting
the flow table located in the SDN switch, the SDN controller configures the switch to steer the
traffic flows. The table defines what actions should be applied to packets that enter the switch. The
actions are saved as entries in the flow table.
Per-packet actions are specified via a series of match criteria in the table. A match criteria is

defined over fields in the Ethernet header, IP header, TCP or UDP header, and potentially other
header information. For example, criteria can match over source IP, destination IP, protocol, and
input port fields. Actions can include packet dropping, sending a packet out of a particular port,
sending the packet to the SDN controller, modifying packet header fields or performing other
actions. If an incoming packet matches multiple rules in the flow table, the action in the rule
with the highest priority is executed. Two timeout fields are associated with how the SDN switch
automatically removes a rule. The hard timeout field determines when a rule should be deleted
after the rule is installed in the flow table. The idle timeout field indicates that if no packet matches
a rule for a given amount of time, the rule should be removed.

The SDN controller supports three different operations to manage input traffic flows, forwarding,
copying, and splitting. By default, the SDN switch operates as a standard layer-2 switch which
utilizes a MAC address to determine the port used to forward a frame. For manipulation functions
(e.g. NAT), the SDN switch forwards network traffic to middleboxes that perform specific functions.
The packet header is updated in the middlebox and then forwarded to its original destination. The
SDN controller adds a new rule with specific match criteria (i.e. input port, source IP, destination IP,
protocol) and action (i.e. output port) fields to the flow table to achieve this forwarding operation.
Inspection functions (e.g. SQLi, DDoS) may operate in parallel in different middleboxes to monitor
the same network flows. Therefore, input packets to the SDN switch can be copied prior to
transmission to inspection functions. Copying typically does not influence the original flow direction

4https://osrg.github.io/ryu/
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of the input packets. The SDN controller modifies an existing rule by adding a new output port to
the action field to make a copy of an input flow.
When the traffic volume moves beyond the processing capability of a single middlebox, the

network function may be spread across multiple middleboxes. The traffic is split by the switch and
each middlebox processes a subset of flows. A weighted round-robin load balancer was implemented
in the SDN controller to guide traffic flow splitting in the switch. As the number of middleboxes for
the same network function increases, the SDN controller adds new output channels under guidance
from the resource evaluator. Each output channel corresponds to an output port on the SDN switch
which connects to a middlebox.

7 PERFORMANCE-AWARE VNF DEPLOYMENT
Due to state sharing, CoNFV is capable of scaling capacity or migrating VNF instances as perfor-
mance requirements change within the hybrid network middlebox infrastructure. To support this
feature, a performance-aware VNF deployment algorithm has been designed into CoNFV to satisfy
both functional and performance requirements from customers and dynamically-changing online
traffic volumes. Since a VNF can be performed by multiple heterogeneous compute resources (e.g.
FPGA or microprocessor) in the network, an algorithmic approach is needed to assign VNFs to
computation resources (CRs). In our system, these regions can be either virtual machines executed
by general-purpose processors or FPGA-based packet processors. The VNF instantiation must sat-
isfy performance constraints in terms of latency, throughput, and compute capacity requirements,
ideally at minimal cost.

7.1 Performance and Resource Management for CRs
To support our VNF deployment algorithm, a resource model for a selected VNF and a CR operating
as a specific VNF has been created. The model is based on performance and capacity parameters. The
model capacity indicates the available computational capability in terms of processing functions. For
example, for SQLi injection detection, a regular expression matching unit (REME), represents a unit
of computation. For hardware CRs, the number of parallel REMEs represents the compute capacity
of the CR. Latency and throughput represent the processing latency and throughput required by a
VNF or available from a VNF implementation. Throughput directly affects the achievable input and
output data rate for a VNF implementation. The requested input rate and achieved output rate for
an implementation are measured in real time and periodically collected by the coordinator to guide
the online resource deployment.

7.2 Performance-Aware VNF Allocation
For VNF allocation, the resource allocator considers VNF performance requirements such as latency,
throughput and compute capacity. Although some VNFs may be constrained to a software-only
implementation, we consider here that three different implementations of the same VNF (one
VM, multiple VMs, and FPGA) are available. Given the breadth of possible resource choices and
VNF implementations, the initial and dynamic assignment of VNFs to CRs is a significant issue. In
the following subsections, VNF allocation algorithms that can assign VNFs to both hardware and
software CRs are described. A goal of the algorithm is to assign VNFs to resources that best match
the required latency, throughput, and compute capacity constraints. Based on the results presented
in Section 9, VM (software-based) VNF implementations, although more plentiful, generally provide
inferior performance compared to FPGA (hardware-based) implementations.
Upon network system reset, an initial, offline assignment of VNFs to CRs is performed using

a resource-based cost function. During system operation, CRs are deployed or redeployed based
on changes in network traffic and triggers activated by global state within the coordinator. VNF
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Table 1. Notations used in VNF deployment algorithm

R set of computation resources (CRs)
M set of customer-defined VNF instances

𝜆𝑚 latency requirement of VNF instance𝑚 ∈ 𝑀

Λ𝑟𝑚 processing latency of computation resource 𝑟 ∈ 𝑅 working as VNF m
𝜃𝑚 throughput requirement of VNF instance𝑚 ∈ 𝑀

Θ𝑟𝑚 expected throughput of computation resource 𝑟 ∈ 𝑅 working as VNF𝑚
𝜙𝑚 required processing capacity of VNF instance𝑚 ∈ 𝑀

Φ𝑟𝑚 processing capacity of computation resource 𝑟 ∈ 𝑅 working as VNF𝑚
𝑐𝑟𝑚 overall cost of computation resource 𝑟 ∈ 𝑅 working as VNF𝑚
𝑔𝑟𝑚 Binary value to designate computation resource 𝑟 was used for VNF𝑚

migration between CR resources can be performed if the cost associated with system down time is
considered in concert with the cost benefit of more balanced resource deployment. This second,
on-line algorithm is activated repetitively in the deployed system.

7.3 Offline Initialization
During network reset, customer-required VNF instances must be allocated to available hardware
and software CRs. The purpose of the offline deployment is to support the performance and resource
requirements of all VNF instances while minimizing performance costs. The latency, throughput
and capacity consumptions of VNF instances using models determined via simulation and test
execution are used to choose software or hardware instances and place them at available locations
in the platform. The SDN switch is used for inter-CR interconnection.
A bin packing solution is used to minimize the overall cost while meeting VNF resource con-

straints and latency and throughput requirements. Table 1 presents notation for VNF instance
parameters and (1) represents the cost of using a CR 𝑟 to implement VNF𝑚.

𝑐𝑟𝑚 =
𝜆𝑚 − Λ𝑟𝑚

𝜆𝑚
+ Θ𝑟𝑚 − 𝜃𝑚

𝜃𝑚
+ Φ𝑟𝑚 − 𝜙𝑚

𝜙𝑚
(1)

In general, the cost of assigning a VNF to a CR is minimized when the latency, throughput, and
computational capacity of the CR is best matched to the VNF. In the context of VMs, computational
capacity indicates the number of operations (e.g. expression matchers) required by the VNF. Our
bin packing formulation assigns a VNF𝑚 to a CR 𝑟 as indicated by the binary variable 𝑔𝑟𝑚 . Iterative
improvement progresses through a series of cost reducing swaps until further cost reductions
are not possible (2). For the number of resources in our system, a full enumeration of possible
assignments is possible to find the lowest cost match.

min
∑

𝑟 ∈𝑅,𝑚∈𝑀
𝑐𝑟𝑚 · 𝑔𝑟𝑚 (2)

It should be noted that multiple resources from the set 𝑅 can be grouped to implement a VNF
𝑚. Depending on performance requirements, between one and four VMs can be instantiated to
implement a single VNF. The offline initialization is performed infrequently. A full evaluation of
minimum cost VNF implementation takes less than one second.
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Data: Num. VNFs:𝑀 , Num. CRs: 𝑅
Result: Assignment of VNFs to CRs

1 while network system operational do
2 if at least one 𝑢𝑛𝑑𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝑟𝑚 ,𝑚 ∈ 𝑀 then
3 Identify𝑚 with largest resource gap
4 Call underprovision(𝑚)
5 end
6 if new VNF creation due to trigger then
7 Create VNF𝑀 + 1
8 Call underprovision(𝑀 + 1)
9 end

10 if at least one 𝑜𝑣𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝑟𝑚 ,𝑚 ∈ 𝑀 then
11 Identify𝑚 with largest resource gap
12 Call overprovision(decrease_resource,𝑚)
13 end
14 if trigger condition for VNF𝑚 no longer valid then
15 Call overprovision(remove_VNF,𝑚)
16 end
17 end

Algorithm 1: High-level allocation algorithm

7.4 Online VNF Instance Deployment
As network traffic volumes vary, some VNFs implemented in CRs may provide insufficient pro-
cessing capabilities. Our networking platform has the ability to assess new traffic patterns and
flow rates and update deployments via a fast online approach, while still optimizing resource costs.
The input and output traffic rates at each CR are collected by the coordinator every 0.1s to detect
network performance imbalances. If a VNF𝑚 is underprovisioned or overprovisioned in a CR 𝑟 ,
online redeployment is triggered. Online redeployment can also take place if the resource evaluator
determines a condition has been triggered based on an evaluation of global state (e.g. a firewall
deployment as a result of SQLi attack detection) or if the condition no longer exists.
To handle increased traffic volumes, two strategies can be adopted: scaling up the current

deployment of VNF m by adding more of the same type of CR resources (e.g. VMs) or migrating
VNF m to a CR with additional resources and performance. To perform scaling, the coordinator
must choose available resources which satisfy the performance and resource constraints. To support
on-line deployment, new dynamic allocation algorithms were created. The algorithms consider
both the resource and performance costs outlined in (1). If a new VNF is needed or an existing one
is underprovisioned, (re)deployment can straightforwardly be performed if a suitable free resource
is available in the system. However, if a free resource is not present, it may also be appropriate to
migrate a currently deployed and overprovisioned VNF to a lower provisioned resource to make
room in the CR for the underprovisioned or new VNF.

𝑢𝑛𝑑𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝑟𝑚 → (Λ𝑟𝑚 > 𝜆𝑟 ) 𝑜𝑟 (Θ𝑟𝑚 < 𝜃𝑚) 𝑜𝑟 (Φ𝑟𝑚 < 𝜙𝑚) (3)

To support dynamic on-line VNF allocation, algorithms for addressing both resource underprovi-
sioning and overprovisioning have been developed. VNF deployment is continually assessed in a
loop by the resource manager in the coordinator as illustrated in Algorithm 1. The coordinator
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Data: VNF num.𝑚
Result: Assignment of VNFs to CRs

1 Identify CRs (multiple VMs, FPGA) that meet performance and resource requirements
2 if at least one suitable CR is free then
3 Identify CR 𝑟 with lowest cost 𝑐𝑟𝑚 in (1)
4 // In this case, the move is implementation in FPGA or adding another VM
5 Move𝑚 into 𝑟
6 end
7 else if all suitable CRs are busy then
8 Identify suitable CRs with VNFs that are overprovisioned, set 𝑂𝑃
9 Identify VNFs in 𝑂𝑃 that can be implemented with a free CR

10 // Determine migration cost for VNFs in 𝑂𝑃 to free resources
11 Identify CR 𝑟 in 𝑂𝑃 for lowest-cost implementation of𝑚 and lowest-cost

implementation of VNF in 𝑟 to a free CR
12 Perform swap
13 end

Algorithm 2: Algorithm to address underprovisioning.

Data: Parameter: decrease_resource or remove_VNF, VNF num.𝑚
Result: Assignment of VNFs to CRs

1 if decrease_resource then
2 if CR 𝑟 contains multiple VMs then
3 Remove one or more VMs implementing𝑚
4 end
5 if CR 𝑟 is a single VM or an FPGA then
6 Make no change
7 end
8 end
9 if remove_VNF then
10 Remove𝑚 and deallocate associated CR 𝑟

11 end

Algorithm 3: Algorithm to address overprovisioning

monitors middlebox performance and global state to identify resource provisioning imbalances and
global state triggers. As defined by (3), underprovisioning indicates that the current CR assignment
for a VNF is insufficient in throughput, latency, or compute capacity.

Overprovisioned (𝑜𝑣𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝑟𝑚) indicates that performance and resource needs are met by
the current CR but they could also be met by another, more resource efficient CR. The coordinator
examines all computation resources to select appropriate resources, then calculates the overall
deployment costs and picks the lowest cost one to achieve the online deployment update. In the case
of underprovisioning due to a resource mismatch or a trigger, an attempt is made to commence VNF
operation in a free CR. If a free resource is unavailable, a swap with an overprovisioned resource is
performed, as shown in Algorithm 2. If a VNF is overprovisioned and contains multiple VMs, a VM
is deallocated, as shown in Algorithm 3. If an FPGA-bound VNF that could be supported by VMs is
overprovisioned, it is left intact until an underprovisioned VNF requests its use. Overall, if there
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Fig. 8. FPGA middlebox implementation of NAT application

are 𝑛 CRs, the calculation time complexity is 𝑂 (𝑛) and allows the coordinator to quickly adapt to
network dynamics.

8 MIDDLEBOX APPLICATIONS
For experimentation, three FPGA-based library modules which meet the requirements of the
previous section were created and tested. The following discussion provides an overview of module
operation and use.

8.1 NAT Implementation
As mentioned in Section 3.2, the NAT function converts an inside, local subnet (IP, port) pair
to a public network (IP, port) pair. In our implementation, all translations are determined at the
coordinator and stored in the coordinator’s global state memory. Translation information is returned
to a requesting middlebox via a reply state message following a state fetch message. The middlebox
packet processor was implemented in FPGA logic while the state proxy was implemented using a
NIOS II processor.

The blocks used in the FPGA-based NAT application are shown in Figure 8. The interface signals
on the left of the figure match the packet processor interface signals shown in Figure 7. The
extraction module extracts the source address, source port, destination address, destination port,
and protocol information from the packet header to form a key. The address resolution protocol
(ARP) module contains two ARP lists (caches) and reply modules. These blocks allow for the
conversion of IP addresses to physical addresses. The NAT module allows other packets to be
forwarded while the middlebox waits for the NAT translation to arrive from the coordinator. As a
result, packet buffering is needed. In our implementation, eight 8K entry × 69 bit buffers are used
for packet sizes ranging from 64 to 1,500 bytes. A buffer index table, implemented as a hash table,
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is used to store the index of the buffers for specific flows. For each flow, the key is used as the input
to the buffer index table and the local NAT translation table (implemented as a hash table) of depth
4,096 entries. If the translation is not found in the table, a NAT state fetch from the coordinator is
initiated by the state proxy. The round trip time to fetch the translation from the coordinator is
about 0.2 ms.

A NAT update message provides the translation which is stored in the local NAT table. Separate
translation units are provided in the middlebox for inbound and outbound subnet traffic. Inbound
and outboard messages to/from the coordinator are 39 and 29 bytes in size, respectively. The
software version of the NAT middlebox implemented on a PC performs the same functions and
uses the same message sizes. The state proxy is implemented as a separate VirtualBox module
programmed with APIs.

8.2 SQL Injection Detection
The second function used to test our system was an SQLi detection block. Both FPGA and processor-
based implementations of this application are supported. Processor implementations are based on
Bro5. SQLi detection attempts to identify possible web-based attacks by examining packet payloads
for known attack data. The SQLi implementation uses a regular expression matching engine (REME)
to find keywords in the GET and POST request lines of an HTTP packet [25]. In the design, a REME
can take at most 64 input characters. In our system, TCPreplay6 is used to send packets ranging in
size from 54 to 1514 bytes through SQLi detectors via 10 Gbps ports at varying speeds. Our regular
expression matching engine has similarities to a previous implementation [25] except that a CAM
is used to preprocess each character.
When a detection occurs, a 41-byte set of information is sent to the coordinator as a message.

This information includes the packet source and destination. The coordinator then sends a 51-
byte signature to a firewall on another middlebox which is either implemented in an FPGA or
a VirtualBox VM. The firewall is located between the client and the switch input to the subnets.
After activation by the coordinator, the firewall identifies packet headers with offending source
and destination addresses and ports and drops them.

8.3 DDoS Implementation
An additional module used to test our system was a distributed denial of service (DDoS) block,
based on an earlier design [7, 11]. During a DDoS attack, the attacker floods a victim’s network
with SYN packets without sending the corresponding ACK packets. To detect a DDoS attack,
the sequential change-point method described in [24] is used. Incoming packets which arrive at
the middlebox are sampled and a counter (SYN_ACK_CNT ) is used to keep track of unmatched
SYN packets for up to 1,000 destination addresses. The values of the SYN_ACK_CNT counters are
periodically evaluated to identify deviations from expected values as determined by the mean and
standard deviation of the counters. If the values vary beyond a variable threshold for a destination
address, a possible DDoS attack is identified. This result triggers a message for the coordinator. The
coordinator can identify messages from a number of middleboxes to identify if a pattern exists for a
specific destination address. After activation by the coordinator, the software rate limiter identifies
packets with offending SYN messages and limits their transmission.

5http://www.bro.org
6http://tcpreplay.synfin.net/
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Table 2. Resource usage for NFV library cores targeted to a Stratix V 5SGXEA7N

LUTs FFs Block Mem bits
NAT 40,309 54,779 24,017,920
SQLi attack detector 25,708 15,172 2,755,072
DDoS attack detector 14,608 9,979 3,004,928
Firewall 10,571 12,609 3,490,560
NIOS II 2,034 1,806 1,137,408
Network interface 12,938 15,103 239,595
Memory interface 16,036 18,002 225,040
Shared memory 3 0 1,572,864
Available in FPGA 469,440 938,880 52,428,800

Table 3. Throughput and latency comparison of VM and FPGA module implementations without using DPDK

Throughput Latency
(Gbps) (us)

VM FPGA VM FPGA
NAT 0.52 8.48 1,009.00 1.34
SQLi 0.41 9.20 10.60 1.20
DDoS 0.44 9.28 5.04 1.20
Firewall - 9.35 - 1.20

8.4 Firewall Implementation
The final module used to test our system was a packet-based firewall blocker. A hardware hash
table was implemented in the module to save packet blocking information. The firewall tracks
in-transit packets and filters them by source and destination network addresses, protocol, and
source and destination port numbers. When a packet matches a set of filtering rules stored in the
firewall (the packet exists in the blocking list), it is dropped by the firewall. Otherwise it is allowed
to pass. The coordinator sends messages to add new entries to the blocking list as needed.

9 EXPERIMENTAL RESULTS
Experiments were performed in the lab using our PC and FPGA-board virtualization system
described in detail in Section 4.1. Three Xeon processor-based workstations were sliced into four
VirtualBox middleboxes each (unless otherwise noted), an Intel Duo processor-based machine was
used as the coordinator, and two Stratix V based DE5 boards were used as FPGA processors. Each
FPGA can support two computation regions. Experimental results for the performance, scalability,
and reconfiguration of the system are described below.

Performance Test: The resource counts of the packet processor modules, the NIOS II and
supporting components are shown in Table 2. Comparing the SQLi attack detector and the DDoS
attack detector, the former requires more logic resources and defines the region size for partial
reconfiguration. Any combination of two DDoS and SQLi cores or one NAT core can be included in
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Fig. 9. Results of coordinator stress test. For each test, requests are made to the coordinator at the fastest
rate supported by the network interface.

an FPGA at a time in the two partially reconfigurable regions. Each region includes 154,300 lookup
tables (LUTs), 308,600 flip flops (FFs), and 17,315,000 block RAM (BRAM) bits. All circuits operate at
156.25 MHz, a clock speed that is derived from the data transfer rate of 10 GHz / 64. Network and
memory interface circuits consume a non-trivial amount of logic resources since data flow control
is needed. The performance benefits of using the FPGA circuits versus VM implementations in a
10G network were assessed by measuring the throughput and latency of the same VNFs working
on different infrastructures. The three network functions introduced in Section 8 were used. The
test results are shown in Table 3. The reduced latency numbers and higher throughput for FPGA
versus VM indicate the benefit of FPGA usage.

Scalability: Coordinator Stress Test: For a distributed system, the state manager in the coor-
dinator may manage millions of global states for a VNF instance. In a second experiment, the state
manager was flooded with state requests at the maximum rate of the coordinator network interface
to test its processing capabilities. Figure 9 shows the throughput of the state manager portion of
the coordinator for the three VNFs with the number of global states growing from ten thousand
to one million. As the figure shows, the coordinator keeps a high processing speed of more than
100,000 operations per second for the three functions.

From the figure, it is apparent that the coordinator supports similar throughput for SQLi states
(matched patterns) and DDoS states (destination address count mismatches), which are both
inspection functions. In both cases, the global state table is supported with hash tables in the
coordinator. As the number of states increases, more hash collisions occur in the global state
table during state insertion or update which affects performance. For the NAT application, the
coordinator generates new translations when misses occur in the global state table, decreasing
coordinator throughput.
Based on the results in Figure 9, the operation processing rate of the coordinator scales to

support tens of high-throughput FPGA middleboxes. If a middlebox has a 10 Gbps input rate, at
most 23,148,148 and 825,627 packets per second would be processsed for 54 and 1,514 byte packets,
respectively. However, since SQLi, DDoS, and NAT state requests are only generated at most once
per thousands of packets, on average, state processing by the coordinator is scalable.
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Fig. 10. Scalability of SQLi implemented with up to 2 FPGAs (2 CRs each) and 3 servers (30 virtual machines)

Scalability: Packet Processing The ability of the FPGA circuits and virtual machine-based
middleboxes to process packets for a scaled set of middleboxes was tested. To get a comparable test
result and exhibit the scalability clearly, this experiment was performed using the 10G network. To
evaluate scalability, system throughput was measured using an increasingly large set of hardware
and software middleboxes and examining overall processing throughput using the SQLi application.
Software versions of SQLi were implemented using Bro software. Three workstations sliced into
between one and ten VirtualBox middleboxes each were used to implement software SQLi. Two DE5
boards implemented FPGA versions (two SQLi cores per FPGA). All middleboxes were connected
to the coordinator via TCP connections. A separate PC was used to generate packets for the
subnetwork using TCPreplay and to retrieve packets. An SDN switch under coordinator control
was used to steer generated packets to middleboxes. Packets used for testing range in size from 54
to 1,514 bytes. Figure 10 shows the scalability of our heterogeneous network system for between 1
and 34 middleboxes for the SQLi application. The first four middleboxes used in the system are
FPGA-based (two cores each), hence the higher slope of throughput on the left side of the graph.
As middleboxes are scaled up to a total of 16 (12 VM and 4 FPGA cores), system performance

versus the ideal case initially remains nearly identical indicating the capability of the state manager
in the coordinator to keep upwith simultaneous state requests from both FPGA and VMmiddleboxes.
A flattening of the curve is observed at 22 middleboxes (18 VM and 4 FPGA cores). At this point,
all cores in each of the three workstations hosting the VM middleboxes are assigned dedicated
processes. The addition of middleboxes causes processing limitations beyond this point, leading to
reduced throughput scaling.

Time Cost for Resource Allocation: In preparation for examining the performance of VNF
migration, the time costs for reallocating hardware resources to deal with underprovisioning or
overprovisioning are evaluated. A VNF instance can be either migrated between a VM and an FPGA
packet processor, or deployed to multiple VMs to gain more computational power. The migration
of a VNF instance needs three steps: reconfiguring the new hardware resource to support the VNF,
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Fig. 11. Cumulative distribution function of configuration and migration times of VNFs in CoNFV. The term
scaling_1to4 indicates the amount of time needed to scale from 1 VM to 4 VMs

.

steering the network flows from an old hardware resource to a new one, and releasing the old
resource. Similarly, scaling up the VNF deployment by adding more VM resources also has two
steps. The first step is to run the same VNF in newly added VMs. The second step is to rebalance
the distribution of workloads across the group of VM resources. The configuration manager in the
coordinator performs these processes and interacts with the SDN switch controller to steer and
balance the network flows.

A series of 100 tests were conducted in the laboratory using four VMs and a DE5 board to assess
the duration of various system configuration changes for VNF deployment. Figure 11 illustrates the
cumulative distribution function (CDF) of the time required to perform several system configuration
changes. As shown in Figure 11, migrating a VNF instance from a VM to an FPGA packet processor
(red curve) takes less time than performing migration in the opposite direction (orange curve). Thus,
reconfiguring the FPGA packet processor to support a given VNF instance is faster than launching
the same VNF software on the VM due to overheads associated with the operating system. The blue,
green and yellow curves indicate that the duration of scaling up VMs increases with the number of
added VM resources added. As more VMs are added to support the same VNF instance, the time it
takes to launch the same VNF software on multiple VMs and rebalance the network traffic load
across the VM group increases accordingly.

It should be noted that the configuration proxy in the middlebox allows the currently-processed
packet and any buffered packets associated with the VNF to complete processing before it is shut
down or migrated. Packets destined for the VNF that arrive after the VNF has been removed are
dropped. Since an SDN switch update is not performed until the new VNF is ready during migration,
in practice, dropped packets for this case occur infrequently.

Reconfiguration Test: The use of NFV requires the ability to dynamically reconfigure middle-
boxes in response to changing networking needs. For example, it may be necessary to periodically
change middlebox functionality between DDoS and SQLi operations. We performed an experiment
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Fig. 12. Performance of system resources during partial FPGA reconfiguration. Resource migration is per-
formed between the yellow lines in the figure.

with transient variations in the incoming workloads for DDoS and SQLi. Initially, software is used to
detect SQLi attacks. Although a traffic increase targeted to the SQLi middlebox does not necessarily
imply an attack, a microprocessor cannot perform SQLi detection effectively due to throughput
limitations. In this case, the coordinator detects the imbalance of input and output traffic rates of
the software SQLi attack detection and then determines that it can perform an FPGA middlebox
update to support SQLi. The coordinator locates an overprovisioned FPGA NFV function, and
swaps the current FPGA NFV function with an SQLi detection core during this period of high SQLi
traffic.
In a multi-application experiment, a system with two VMs and one FPGA middlebox was used

to demonstrate how quickly a packet processing function can be replaced within an FPGA by the
configuration manager. The steps needed to perform the reconfiguration are described in Section
5. A software-based flow generator on the source host generates the packets that are checked for
SQLi and DDoS attacks, and sends them to the sink host via the SDN switch. The SDN switch is
controlled by the coordinator to copy and forward flows to processor- and FPGA-based middleboxes.
The coordinator connects with the proxy on the server and the Nios II microprocessor via a general
L2 switch. It monitors the traffic volume changes on both FPGA- and VM-based packet processors
and dynamically triggers the reconfiguration of the packet processors in response to the situation.
Initially a DDoS detector is implemented in the FPGA and an SQLi detector is implemented in VM1.
When input traffic rate into VM1 consistently exceeds 0.41 Gbps (the VM throughput limit in Table
2), the configuration manager in the coordinator detects the imbalance of the input and output
traffic rates of VM1. Since the DDoS detector throughput is less than 0.44 Gbps and can be handled
in software, its function is migrated to VM2 and the FPGA middlebox is reconfigured to support
SQLi detection.
Figure 12 show the delays associated with the redirection of the SQLi traffic from VM1 to the

FPGA and FPGA reconfiguration using partial device (FPGA_PR) configuration. Results in the graph
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Fig. 13. Demand for SQLi and DDoS and resource supply using FPGAs and VMs. The processing demand and
supply for DDoS is shown in (a). The corresponding values for SQLi are shown in (b). The resource demand
curves are taken from prior work [13].

were generated from experimentation with FPGA and VM middleboxes in the lab. The partial FPGA
reconfiguration process requires about 0.4 seconds which primarily consists of partial bitstream
loading from flash by the FPGA circuit. The size of the entire bitstream is 31.3 MB, while the partial
bitstreams for both SQLi and DDoS are 15.7 MB. The connection between the coordinator and the
NIOS II on the FPGA stays active during the partial reconfiguration of the SQLi bitstream.

Algorithm Test: In this experiment, we evaluate the performance of the allocation algorithms
described in Section 7 using realistic network workloads that have been previously used to assess
NFV platforms [13]. Throughput demand and supply curves for one VNF of DDoS (a) and SQLi (b)
appear in Figure 13. Results were collected from the system hardware. As shown in the Light+Peak
scenario in Figure 13(b), the instantaneous surge in SQLi attacking flows results in an increased
demand for the computation power of CRs, ultimately exceeding the processing power provided by
four VMs in the testbed at around the 140 second mark. At that point, the coordinator identifies
that all the FPGA packet processors are occupied by other VNFs, but the DDoS detection function
on one FPGA packet processor is overprovisioned. Migration of SQLi to the FPGA and DDoS to
one VM takes place at this point. As DDoS traffic increases, more VMs are allocated to the flow
processing until at 235 seconds the resources are swapped back.
Figure 14 shows the traffic load variation for the same experiment from the perspective of

the FPGA packet processor and the VM group. The FPGA packet processor provides sufficient
processing power to the accommodated VNF instances. To avoid underprovisioning, the number of
VMs scales upwards based on traffic load demand. Figure 15 provides a timeline of activities for
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Fig. 14. Demand for SQLi and DDoS and resource supply using FPGAs and VMs
.

scaling from one VM to two VMs. In this case VNF traffic is split evenly by the switch for the two
VMs.

10 CONCLUSION AND FUTUREWORK
In this manuscript, we have described a new heterogeneous hardware-software NFV platform that
provides scalability and programmability while supporting significant hardware-level parallelism
and reconfiguration (Figure 16). Field-programmable gate arrays and microprocessors are used to
implement VNFs in a series of middleboxes. The assignment of VNFs to middleboxes is period-
ically assessed by a global coordinator that stores shared state. With the help of a state sharing
mechanism offered by the coordinator, customer-defined VNF instances can be easily migrated
between heterogeneous middleboxes as the network environment changes. A resource allocation
algorithm dynamically assesses resource deployments as network flows and conditions are updated.
Our system was tested with multiple VNFs and standard traffic flow models. In the future we
will explore using larger FPGAs that have numerous partially reconfigurable regions. New, faster
reconfiguration approaches using internal FPGA reconfiguration ports will also be explored.
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