
NestedNet: A Container-based Prototyping Tool for
Hierarchical Software Defined Networks

Xuzhi Zhang, Narendra Prabhu and Russell Tessier
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003

Abstract—Emulators for software-defined networks (SDNs) are
important prototyping tools in validating network hardware
performance under a broad range of topologies and parame-
ters. Modern SDNs typically contain hierarchical collections of
network nodes, each with interconnected compute devices. These
devices often have widely varying compute environments making
accurate emulation using discrete processes in a virtual machine
(VM) difficult. In this paper, we describe NestedNet, a new
container-based prototyping environment for hierarchical SDN
systems. Each network node is represented as a Docker container.
The node internals inside the container are implemented as
nested Docker containers interconnected via an Open vSwitch.
Unlike previous emulators, the execution of each heterogeneous
component in a network node can be accurately performed
using native code within the target execution environment. To
demonstrate the flexibility of our rapid prototyping system, we
emulate a mobile ad hoc network (MANET) topology of twelve
interconnected nodes of five components each and evaluate its
performance using throughput and latency metrics. Emulated
throughput values of up to 32 Gbps per link are achieved.

I. INTRODUCTION

As the spectrum of distributed applications and network
communication protocols that rely on software defined net-
working (SDN) has expanded, the need for low-cost, accurate
rapid prototyping environments has grown. These networks
typically contain complex compute nodes that can often be
characterized as SDN subnetworks with separate control and
data planes. This hierarchical network model allows for de-
sign flexibility and more straightforward system management.
However, increased design complexity makes it difficult to
accurately verify system and network performance without
expensive hardware prototyping. Two approaches to assist
in verification are software-only emulation and emulation
supported with some testbed hardware components. Large
scale testbeds, such as GENI [1], provide an effective SDN
prototyping infrastructure for some node topologies but may
not be appropriate for mobile-area networks (MANETs). For
distributed applications, topology changes due to mobility pose
further challenges.

A significant concern with network emulators is emulation
fidelity. Parallel execution environments, protocols, and inter-
faces must be accurately modeled in the prototyping envi-
ronment to allow for faithful latency, throughput, and packet
congestion analysis. In a hierarchical network, interconnected
systems (nodes), such as communicating drones or vehicles,
may use one set of SDN protocols, while intra-node compo-
nents (e.g. inside a drone) may have different requirements.

Intra-node components may vary widely in terms of compute
power, network interfaces, and SDN controls. The situation
is further complicated by multiple operating systems, file
systems, and libraries required by each node component. The
accurate emulation of these components requires compute
environment isolation.

In this paper, we present NestedNet, a new network proto-
typing environment based on nested Docker [2] containers.
Each network node is represented as a Docker container.
Inside each node container is a network of nested Docker
containers that represent node components. Docker provides
process, network, system and environment isolation using
namespaces [3] and cgroups [4]. A container has its own file
system, networking interfaces, and a separate process tree.
Docker components can be interconnected using an SDN-
compatible Open vSwitch (OVS) [5]. By using containers,
NestedNet allows for the dynamic creation and assembly of
networking components and nodes and for the replacement of
nodes with physical hardware. Our system is customized to
allow for Virtual Ethernet (Veth) [6] tunnels between network
namespaces both within and between Docker-based nodes.

To demonstrate the abilities of NestedNet, we show the
real-time emulation of twelve mobile nodes implemented as
a MANET. We examine the throughput and latency of chan-
nels for both intra-node and inter-node communication and
Docker container startup time. A visibility-based inter-node
link update mechanism is supported to allow for dynamically-
changing interconnect. The framework is shown to be similar
in terms of memory size and compute resources versus a
competing prototyping environment, Containernet [7], that
does not support nesting. Our prototyping system has run
successfully in PC and server-based Linux environments.

The remainder of the paper is organized as follows: Section
II describes prototyping background in this area. Section
III describes the design and implementation of NestedNet
using a nested container approach. Section IV describes our
experimental approach for NestedNet evaluation and Section V
presents experimental results. Section VI concludes the paper
and offers directions for future work.

II. RELATED WORK

A. SDN Rapid Prototyping Environments

Popular SDN emulators such as EMANE [8] and Mininet
[9] use distributed virtual machines (VMs) or processes to rep-
resent whole networking nodes and their interactions. EMANE
creates a Linux container for each network node and nodes978-1-7281-8466-1/20/$31.00 c©2020 IEEE

are interconnected at the media access control (MAC) layer.
EstiNet [10] is an OpenFlow-based network emulator that uses
kernel re-entry to enable the execution of unmodified applica-
tion code. The performance of this approach for isolated node
emulation can be limiting. CORE [11] uses FreeBSD network
stack virtualization to extend physical networks for planning,
testing and development.

Mininet is a popular network prototyping tool that has
been adopted for SDN emulation and development. It supports
process-based virtualization to represent a broad range of
network components. Each network node is assigned sepa-
rate network interfaces and routing tables. Although flexible,
Mininet requires file system, memory, and processor sharing
for intra-node emulation which can affect node performance
and accuracy, especially under high inter-node traffic rates.
Mininet also cannot isolate namespaces within nodes. This
issue limits the representation of hierarchical SDNs in Mininet.

B. Container-based Network Emulators

Containers, such as Docker, have grown significantly in pop-
ularity over the past few years. These virtualization environ-
ments are considerably more resource efficient than their VM
counterparts. Containers support low-overhead virtualization
for a native operating system (OS), including Linux, reduced
startup time, low overhead, and isolated namespaces, libraries,
and operating parameters (maximum CPU and memory usage).
To address these issues, our emulation system advances recent
container-based emulators, including several based on Docker.

To et al. [12] created Dockemu to emulate general-purpose
wired and wireless networks, although support for intra-
node isolation was not provided. Containernet [13] allows for
individual nodes to be represented in Docker containers. Intra-
node computation is represented as a series of processes. The
entire emulator can also be hosted in a Docker container to
support portability. Containernet 2.0 [7] extends this environ-
ment to include service function chains. CrystalNet [14] is
targeted at cloud networks. It implements each network device
as a VM or container and provides a network management
environment. CrystalNet incorporates a nested approach to
an extent by leveraging containers inside a VM. This allows
for the same network management environment in each VM.
However, the VMs consume significant resources. vSDNEmul
[15] has many similarities to our emulator, except for support
for nested containers. Each Docker container can include a
host, client, or switch and inter-node connections are made via
Veth tunnels. The filesystem of each container is completely
independent. These previous emulators do not address the
issue of nested containers for the isolation of processes in
each node container.

Although previous SDN emulators have not used nested
containers to represent network hierarchy, they have been used
in a similar fashion for microservices. Amaral et al. [16]
architected a framework for software systems based on a large
number of small services. Each service is represented as a
Docker container. For our system, unmodified application code
can be executed within each intra-node container, allowing

for realistic operating conditions and network interfaces. Each
container executes a series of user-mode processes.

III. NESTEDNET- DESIGN AND ARCHITECTURE

In this section, we present the architecture of NestedNet
and, as an example, describe its use in emulating a MANET
with a time-varying topology. Our modular, hierarchical ap-
proach allows for flexibility in prototyping a wide variety of
network systems with nodes representing drones, satellites, or
other systems. Dockerfiles are used to ease the definition and
modeling of applications, binaries, and tools.

A. NestedNet Architecture

Our SDN prototyping platform can best be illustrated
through an example that includes multiple nodes with inter-
connected components. Although we use a MANET as an
example, NestedNet can be used effectively for fixed topology
networks as well. In Figure 1, each mobile node contains
five Docker containers that represent internal components
and an Open vSwitch that is used for interconnection. The
five components are encapsulated within the node which is
implemented as a separate Docker container. Nodes in this
context could represent an entire drone, satellite, or vehicle,
while individual components represent networked subsystems,
such as a control system or a physical interface, within the
node.

Both nested (component-level) and node-level Docker con-
tainers have their own namespaces. Memory and CPU usage
within each container can be controlled through parameter-
ization. Each node in the example represents an intercon-
nected system with a global network access brain (GNAB)
and multiple communication interfaces (iPHYs). The Internal
Open vSwitch acts as a virtual bridge that connects intra-
node components and performs switching and routing tasks.
Inter-node connectivity is provided by the Main Open vSwitch
Bridge. This component is only used in emulation to configure
inter-node connections between iPHYs. In the physical system,
the iPHYs connect directly using physical media and do not
require the bridge.

For this example, we assume a MANET node has time-
varying visibility with other nodes. For emulation, node con-
nectivity must be periodically re-evaluated, and interconnec-
tions between nodes must be updated. In a physical system,
this process would be distributed among the nodes. For emu-
lation, a controller is used to dynamically update the MANET
topology and interconnections. A communication assistant
(CA) is responsible for addressing time-varying changes in
node visibility by configuring the addition and deletion of links
between nodes. The nodes in our emulated system have limited
visibility as defined by a visibility graph provided by a user.
The CA is responsible for parsing the graph and distributing
visibility information to the GNAB in each node. The GNABs
then determine inter-node connections and inform the CA. The
CA subsequently configures the Main Open vSwitch Bridge to
make or remove inter-node connections.

Mobile Node Parent Container

GNAB

Internal
OpenvSwitch

Child
Docker

Container

iPHY

Veth Veth

Veth

Veth

Veth
Veth

Child Docker Container

Communication
Assistant

NestedNet

Command
Line	UI

Main Open vSwitch Bridge

Veth

GNAB

Internal
OpenvSwitch

Veth

Veth

Veth
Veth Veth

Veth Veth Veth Veth

Mobile Node Parent Container
Child Docker Container

Veth Veth

Child
Docker

Container

iPHY

Child
Docker

Container

iPHY

Child
Docker

Container

iPHY

Child
Docker

Container

iPHY

Child
Docker

Container

iPHY

Child
Docker

Container

iPHY

Child
Docker

Container

iPHY

Fig. 1. An example MANET architecture implemented in NestedNet.

B. Nested Node Building Blocks

A distinctive feature of NestedNet is the use of nested
containers. Since each node contains multiple components,
a Docker-in-Docker (dind) image is used to support the
execution of a Docker container inside another Docker con-
tainer [17]. A child level of containers is created within each
Docker host container (parent). Child containers can run
application processes within the parent’s resource boundaries
after initialization and memory allocation. In NestedNet, each
component (child) container is assigned a namespace, network
stack, filesystem and process group.

To provide isolation and accessibility to each Docker con-
tainer, namespaces are used. In namespace isolation, process
groups are separated and cannot access resources in other
groups. A network namespace provides a replica of the parent
network stack but with its own routes and network devices.
The use of a network namespace isolates network interface
controllers and routing tables. The process identifier (PID)
namespace isolates the allocation of PIDs to a specific con-
tainer. Each container is instantiated with a separate process
tree. The PID namespace of each child container allows each
sub-component to have its own init-like process (PID 1), which
controls all the processes within it. This supports container
shutdown without affecting other child container operations,
similar to hardware implementation.

In the mobile host, Linux-provided Veth devices are used
to create intra-node connections. Veths connect namespaces in
virtual hosts and switches in the emulator environment forming
a virtual tunnel for packets via the network stack of the
OS kernel. These tunnels are used to interconnect containers
(nodes and components) to the Internal OVS or Main OVS
Bridge. For intra-node communication, each end of the Veth
pair is added as a port on the Internal OVS, and the other
ends are inserted into the network namespaces in component
containers. Veth links route packets between different names-

paces in isolated Docker containers. Each GNAB and iPHY
process is provided distinct network interfaces, each with an
Internet Protocol (IP) address, a gateway, a routing table and
Domain Name System (DNS) services. Processes ported from
different components can have the same port or IP address
and run without interference.

A control group (cgroup) [4] restricts access to resource
subsystems (memory, network, disk I/O, CPU) in a Linux
kernel by a collection of processes. Limits are applied to the
collection of processes in the group. In our emulator, cgroups
restrict access to resource subsystems such as memory, net-
work, disk I/O and CPU, so that one container cannot exceed
constraints or interfere with other containers operating in the
same environment. Each child container executes binaries for a
specific component. Resources are allocated by the container.
There is environment separation of network interfaces, ports
and libraries.

Each Docker container is built using instructions in a
Dockerfile. A text-based Dockerfile contains all the commands
needed to assemble an image. This approach facilitates the
packaging of user-specified binaries and libraries into an
image. The Dockerfile also includes file system information
for the container.

IV. EXPERIMENTAL SETUP

In this section, we describe our experimental setup, includ-
ing a comparison versus another Docker-based prototyping
environment.

A. Containernet

To assess the benefits of using nested containers in network
prototyping, we evaluate NestedNet against Containernet, an
existing network prototyping system based on Docker con-
tainers. Containernet is a fork of Mininet that uses Docker
containers as nodes in emulated network topologies. Like
NestedNet, it also supports OVS and Veth interfaces. Unlike
NestedNet, node components are not isolated in containers.
Their functionality is represented by processes in the node-
level Docker container. As a result, Containernet cannot run
binaries for multiple hardware platforms within the same con-
tainer. For example, it is not possible to execute binaries that
share the same IP address, MAC address, and Transmission
Control Protocol (TCP) port in the node-level container. Pro-
cesses running in a container share an execution environment.
The execution of multiple processes in the environment that
require different versions of the same library in the userspace
and filesystem can cause conflicts. At the network level, each
process must be configured to use separate ports. Unlike
NestedNet, cgroups cannot be used across node components
to manage resource usage.

Figure 2 illustrates the MANET topology from Figure 1
constructed using Containernet. The GNAB and iPHY code
runs as five separate processes in a Docker container host.
The processes communicate using Veth links through an
Internal Open vSwitch. External inter-node (iPHY-to-iPHY)
connections use the Main Open vSwitch Bridge with Veth

GNAB1

iPHY11

Internal	Open
vSwitch	(s1)

GNAB2

Internal	Open
vSwitch	(s2)

iPHY12 iPHY13 iPHY14 iPHY21 iPHY22 iPHY23 iPHY24

Mobile	Node	Docker	Containers

Main Open vSwitch Bridge

Processes Processes

Containernet

Communication
Assistant

Containernet
CLI

Veth

Veth Veth Veth Veth Veth Veth Veth Veth

Veth

Veth Veth Veth Veth Veth Veth Veth Veth

Fig. 2. Framework of MANET topology implemented with Containernet.
The GNAB and iPHYs run as processes inside a parent (node) container. The
GNAB and iPHY processes share interface, memory and CPU resources with
their host node Docker container.

links. Internal interfaces are created with Bash scripts. The
communication assistant and Main Open vSwitch Bridge op-
erate as described in Section III-A.

B. Evaluation Overview

Our experimentation was performed with a 14-core Intel
Xeon PowerEdge server (2.6 GHz, 128 GB). Both NestedNet
and Containernet are launched on a VM running Ubuntu
16.04, kernel version 4.4.0. Open vSwitch version 2.11.1 and
Docker daemon version 18.09.3 are used by both systems.
For NestedNet, node containers and the VM host are con-
figured with dind. The component containers are based on a
Ubuntu 16.04 Docker image. For NestedNet, a base MANET
topology is created using nested Docker containers, such that
each node (parent) container contains five child containers,
one GNAB and four iPHYs. Iperf servers and clients are
launched to evaluate link performance. For Containernet, all
containers represent nodes and each container runs multiple
processes (iperf server/clients connected via Veth interfaces)
representing GNAB and iPHYs.

C. Emulator-specific Setup

NestedNet: Each container has a set of interfaces belonging
to two local networks. One is the intra-node network for iPHY-
GNAB communication (192.168.0.x), the other is the network
through which all iPHYs are connected via the Main Open
vSwitch Bridge (192.168.2.x). For intra-node communication,
an iperf server is executed on the GNAB container allowing
all iPHYs within the node to connect as iperf clients. For the
inter-node link test, one iPHY runs the iperf server and the
other executes the iperf client. For latency evaluation, there
is no need for a client-server relationship. Round-trip time is
measured using an Internet Control Message Protocol (ICMP)
echo with ping.

Containernet: The Containernet topology is created using an
application programming interface (API) [18]. Veth interfaces

TABLE I
SYSTEM MEMORY USAGE FOR NESTEDNET AND CONTAINERNET. EACH

NODE CONTAINS ONE GNAB AND FOUR IPHYS

Emulator component NestedNet Containernet
Mem. usage (MB) Mem. usage (MB)

Node container 0.6 4.0
Component container 0.5 -
Internal Docker daemon 47.0 -
Internal Open vSwitch 50.3 50.3
Main Open vSwitch Bridge 50.3 50.3
Containernet daemon - 4.0
External Docker daemon 76.6 76.6
Single node 98.4 55.0
Four nodes 520.5 350.9

in the container are not assigned to a specific namespace. An
IP address within a container cannot be repeated and thus
each iPHY in the network is assigned different IP addresses
to enable inter-node link evaluation. A Bash script is used to
create a local network using pairs of Veth links. One end of
a Veth link is added as a port on the Internal OVS while the
other has an IP address of a local LAN and remains open
for process binding. For experimentation, an iperf server or
client can bind to an interface for intra-node and inter-node
communication.

V. RESULTS

A. Initial Evaluation

In an initial experiment, NestedNet was evaluated for mem-
ory requirements. The Docker stats [19] and htop [20] tools
were used to collect Docker container resource usage.

Table I shows the system memory usage for a test run of
the NestedNet emulator. A four-node system was created for
this evaluation. A Docker container uses about 600 KB and
an Open vSwitch instantiation consumes about 50MB. This is
the minimal memory usage for Docker container execution.
Each node-level Docker container is instantiated with its own
Docker daemon to support component containers. The daemon
consumes about 47MB of memory. Excluding the Docker dae-
mon on the host, 99MB are needed to represent a single mobile
node with containers and daemons. A total of 175MB are
needed to represent a one-node emulator including the Docker
software running on the host. The memory consumption for a
four-node emulator is:

• Four times the memory for a single node (98.4 MB)
• Memory for the Docker daemon on host (76.6 MB)
• Memory for the main Open vSwitch bridge (50.3 MB)

The total indicates a memory requirement of 521MB for a
four-node emulator. Although this memory requirement is
greater that Containernet, it is still modest and allows for
component-level isolation within the containers.

B. Intra-node and inter-node communication performance for
a 12-node network

In series of tests, the throughput and latency of NestedNet
and Containernet are compared. Intra-node and inter-node

communication is evaluated by observing intra-node iPHY-
GNAB connections and inter-node iPHY-iPHY connections.
Performance results are obtained for one, two and four si-
multaneous intra-node and inter-node network connections per
node for both emulators.

A 12-node network with four iPHYs each is used for this
experiment. Each intra-node link is a iPHY-GNAB link which
consists of a pair of Veth interfaces, interconnected via the
Internal Open vSwitch. One end of each interface acts as an
OVS port. For NestedNet, the other end is inserted into the
child container. For inter-node links, iPHYs from different
nodes are connected with Veth interfaces via the Main Open
vSwitch Bridge. Only a single iPHY-to-iPHY connection exists
between any two nodes. For intra-node tests, packets are sent
from iPHY to GNAB.

Bash scripts were used to run tests in both emulators. A
single test entails the transfer of a continuous data stream (TCP
or ICMP) between the selected nodes. A total of 100 tests of
60 seconds each were conducted to evaluate throughput and
delay. For inter-node communication, one of the two iPHYs is
randomly selected as an iperf server to establish connectivity.
Each connection sends a continuous TCP data stream of
1,500 byte packets for 60 seconds at the maximum bandwidth
available. Inter-iPHY data transfer is established when the
iperf server and client are run. Data is sent unidirectionally
from one iPHY to another in the experiments. Latency was
calculated using ping which echoes ICMP packets towards a
given IP address for 60 seconds.

Intra-node communication: For an intra-node connection,
the Bash script selects a node and one of its internal iPHYs.
The iperf server and client establish a link to the GNAB.
For the intra-node test with two connections, two iPHYs in
a node are selected. Two iperf clients are connected to the
GNAB iperf server for simultaneous data transfer. For the
four-connection tests, all four iPHYs are selected and links
are created in a similar fashion.

Experimental results over 100 tests are shown in Table II. It
is observed that the intra-node bandwidth of NestedNet is com-
parable to that of Containernet for all three sets of experiments.
The latency is about 20µs higher in NestedNet due to the
multiple layers of containers that requires packet processing
in the component (child) container, the node (parent) con-
tainer stack and the destination component container stacks.
Increasing the number of network connections communicating
simultaneously increases the network processing time in the
container network stacks and the CPU and memory usage of
the underlying virtualized OS kernel. This effect causes the
per-link bandwidth to drop with an increase in the number of
intra-node connections.

Inter-node communication: For single link inter-node com-
munication, the Bash script selects a random iPHY in each
of two random nodes and runs the iperf test for 60 seconds.
For the two node connection test, one iPHY is selected in
each of four random nodes. Two iPHYs in separate nodes run
the iperf server while the other two run the iperf client,
thus creating two distinct inter-node connections. To create

TABLE II
INTRA-NODE COMMUNICATION SUMMARY FOR A 12-NODE SYSTEM

Intra-Node Metrics (iPHY-GNAB) Containernet NestedNet
Avg. Throughput for 1 connection 30.36 Gbps 31.76 Gbps
Avg. Latency for 1 connection 0.056 ms 0.075 ms
Avg. Throughput for 2 connections 27.46 Gbps 26.29 Gbps
Avg. Latency for 2 connections 0.053 ms 0.072 ms
Avg. Throughput for 4 connections 17.57 Gbps 19.58 Gbps
Avg. Latency for 4 connections 0.052 ms 0.072 ms

TABLE III
INTER-NODE COMMUNICATION SUMMARY FOR A 12-NODE SYSTEM

Inter-Node Metrics (iPHY-iPHY) Containernet NestedNet
Avg. Throughput for 1 connection 26.92 Gbps 32.05 Gbps
Avg. Latency for 1 connection 0.082 ms 0.080 ms
Avg. Throughput for 2 connections 24.11 Gbps 25.42 Gbps
Avg. Latency for 2 connections 0.075 ms 0.074 ms
Avg. Throughput for 4 connections 14.19 Gbps 15.74 Gbps
Avg. Latency for 4 connections 0.074 ms 0.073 ms

four inter-node connections, eight nodes are randomly chosen.
Four nodes have an iperf server and four have iperf clients.
Not more than one connection exists between two nodes. The
results of the inter-node experiments are shown in Table III.
Every test selects a new random set of nodes and iPHYs to
allow for a distribution of samples.

In Table III, the inter-node throughput of NestedNet is
slightly better than that of Containernet for all three experi-
ments. NestedNet has a higher throughput for a single link, as
each process is encapsulated by a container and thus can share
the parent network stack evenly, as compared to Containernet.
This effect can be explained as follows: The VMs of both
emulators are allotted four CPU cores, where each core
represents 100% CPU. The Docker stats command indicates
the usage of each container with respect to total available CPU
i.e. 400%. It was observed that while running the iperf server
and client in Containernet, the node with the client used 120%
of 400% CPU, while the server used only 80%. Meanwhile, in
NestedNet, the client used 118%, while the server used 104%.
Resource allocation unevenness in Containernet caused the
server to react more slowly, requiring TCP re-transmission and
delayed acknowledgement packets. NestedNet provides better
resource sharing and more consistent data transmission.

The latency for NestedNet is comparable for all sets of
experiments. For inter-node communication, the ICMP pack-
ets in Containernet must cross different container network
stacks via the Main Open vSwitch and thus similar latency is
seen. Similar to intra-node connections, increasing the number
of connections simultaneously in the network worsens the
network processing and CPU and memory usage leading to
packets being delayed and backlogged.

C. Stress test for intra-node processes

In this experiment, the benefits of isolating node compo-
nents in containers is explored via an intensive network test.
A network intensive background process is executed in a node
to consume resources and affect other iPHY and GNAB pro-

I

I

35 :

-30
l/l

0.

c'.5 25
-

.....

l20
.c

Ol

::i 15
0

t- 10

5 -+- Containernet

....... NestedNet

0 l....--�-----1----------��-�-��-�--,-----'
0 5 10 15 20 25 30 35 40

Time (s)

Fig. 3. Effects of stress test on the baseline process throughput. The
background process executes from 10s to 20s. A large throughput drop is
observed for the baseline process in Containernet (98%) versus NestedNet
(72%).

cesses. The background process bombards the network stack
and increases system load by occupying the network stack
and increasing the CPU and memory usage of the container.
An iperf client that generates 120 TCP concurrent threads
and a loopback interface is used to implement the background
process. For testing, a standard intra-node iPHY-GNAB link
is established as a baseline. An iperf client sends 1,500 bytes
of TCP data to an iperf server using a single thread to form
the baseline process. Linux processes are scheduled to run
using prioritized round robin scheduling. In the case of TCP-
based iperf processes, slight delays at the data receive/send
queues cause the scheduler to temporarily preempt a process.
For instance, if the time slice for a process receiving data
ends before the receiving buffer’s lock is released, the lock will
remain until the next time slice is allocated to the process. The
time when the process resumes execution is directly dependent
on system load. The background process increases the system
load by introducing multiple parallel TCP streams.

Performance degradation of the baseline process due to the
background process is determined as D = T1−T2

T1 × 100,
where T1 and T2 are the throughputs of the baseline process
before and after introduction of the background process, re-
spectively. For Containernet, the background process executes
in the same container as the baseline process. For NestedNet,
the processes are isolated in separate containers. Containernet
and NestedNet experiments were conducted for 40 seconds.
The background process was started at the 10 second point
and ended at the 20 second point, as shown in Figure 3.

The figure shows a significant throughput drop of 30Gbps
to 500Mbps for Containernet (D = 98%). The baseline pro-
cess executes in the same environment (parent container) as
the background process. They share the same namespace,
interfaces and network stack. These effects may cause packet
processing delays due to higher system load exerted by the

25

-20
l/)
Q.
.D

l'.)

:C- 15
::J
Q.

.c
Ol

6 10
......

.c
t-

s

--+-- Containernet B/W --+- Containernet B/W Deviation

-.- NestedNet B/W Deviation NestedNet B/W

5 10 15 20 25
No. of iPHYs per Node

14

12

10�
-

8
C
0

.1-J
cu

6 >
Q)

0

4

2

0

Fig. 4. Intra-node throughput effect of scaling intra-node components in
a two-node network. The average GNAB-iPHY throughput per node and
corresponding percentage standard deviation from average with increasing
numbers of iPHYs per node are shown.

background process. Concurrent bombardment of packets by
the multi-threaded process further complicates timely packet
processing of the baseline process by the network stack of
the parent container. In Figure 3, a throughput drop from
30Gbps to 8Gbps is observed in NestedNet, i.e. D = 72%. The
processes execute in child containers with dedicated network
stacks, interfaces and namespaces. The containers enable fairer
CPU and memory sharing among the processes, so the baseline
process can send and receive packets in a timely manner. The
72% drop is attributed to the load on the underlying virtualized
kernel OS of the parent container and the host.

D. Scalability evaluation of intra-node components

In this experiment, the effects of using more than five nested
containers per node on intra-node throughput are considered.
The MANET topology is regenerated for each experiment with
an increasing number of iPHYs per node, ranging from five
to twenty-five. The bandwidth on iPHY to GNAB links is
considered. For a given number of iPHYs per node, a total
of 100 tests with TCP streams running for 90 seconds were
conducted. Each test entails iperf clients (iPHYs) sending
constant TCP data of 1,500 bytes to the GNAB iperf server.
The throughput was averaged over all iPHYs per node. The
standard deviation of the throughput was obtained for the
intra-node links. The effect of scaling on the GNAB-iPHY
link throughput for a two-node system is shown in Figure
4. The green and blue plots indicate the average link intra-
net throughput per node for Containernet and NestedNet. The
red and black plots show the increase in standard deviation
of throughput per node as a percentage of the average. Each
point is averaged over 100 trials.

In Figure 4, it is observed that increasing the number
of iPHYs significantly drops the throughput per intra-node
link. The iPHYs and GNAB processes execute in the parent

TABLE IV
CONTAINER STARTUP TIME (SECONDS)

Nodes iPHYs Containernet NestedNet
12 4 28s 98s
2 25 9s 93s

container resulting in network processing delays and affect-
ing the throughput. Our measurements indicate that average
throughput per link can deviate from 6% to 13% from the
average for Containernet. This deviation can be attributed to
the processes competing for the CPU and network resources.
Each client (process) may receive intermittent access to CPU
resources, resulting in a delay in transmission/re-transmission.
Moreover, the GNAB server may encounter delays in sending
acknowledgments due to the lack of CPU time consumed
by the clients. This issue may lead to TCP re-transmission,
duplicate packets and packet loss.

NestedNet shows a similar drop in intra-node throughput.
Increasing TCP application usage increases overall system
load, stressing the underlying kernel of the parent and the host.
The link throughput deviation is less in NestedNet, varying
from 4% for five iPHYs per node to 7% for 25 iPHYs per node.
The division of CPU shares among iPHY containers during
execution mitigates process allocation limitations. Hence, each
iPHY iperf process is more likely to transmit and receive
packets in a timely manner and receive associated acknowl-
edgements.

E. Emulator Startup

For NestedNet, emulation starts when the CA sends the
visibility graph to the GNABs. The CA then configures
the Main Open vSwitch Bridge to create direct connections
between iPHYs according to the link requests received from
the GNABs. Thus, initialization time is defined as the time
taken for the creation of all the containers and Open vSwitches
followed by the initial link creation. The emulator initialization
time relative to node count was measured.

The start-up time for NestedNet is significantly higher
(Table IV) than Containernet. A 12-node environment with
five sub-components (four iPHYs and one GNAB) needs over
a minute and a half to build. The primary overhead is related
to the child container image loading and creation. The time
taken for emulator startup is roughly linear in the number of
nodes. This trend is a result of Docker and Open vSwitch
instantiation and link setup that is proportional to the number
of direct links that must be established.

VI. CONCLUSION

Our new prototyping environment provides the first emula-
tion environment that includes nested containers. This feature
allows for a more accurate representation of subsystems in
complex network nodes. Both node components and nodes
themselves are represented as containers. Open vSwitch is
integrated into the system to allow for intra- and inter-node
connectivity. We have successfully tested this new system us-
ing an emulated MANET with 12 nodes. Our system provides

better throughput (32 Gbps) and more stable results compared
to a competing Docker-based emulation system. The use of
nested containers has a CPU, memory usage and start-up
time overhead, but the nested-containers approach is a suitable
model for network system hierarchies. Experimentation with
node counts of up to 120 is underway. The emulator could
also be used to evaluate networks-on-chip [21].

REFERENCES

[1] Geni: An Open Infrastructure, Geni, Jun. 2020. [Online]. Available:
”http://www.geni.net”

[2] Getting Started with Docker, Docker, Inc., Jun. 2020. [Online].
Available: ”http://www.docker.com”

[3] E. W. Biederman, “Multiple instances of the global Linux namespaces,”
in Proceedings of the Linux Symposium, 2006, pp. 101–112.

[4] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical
multiprocessor CPU reservations for the Linux kernel,” in Proceedings
of the International Workshop on Operating Systems Platforms for
Embedded Real-time Applications, 2009, pp. 15–22.

[5] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[6] M. Kerrisk, “Linux Programmer’s Manual - Virtual Ethernet Device
(veth),” Feb. 2018. [Online]. Available: ”http://man7.org/linux/man-
pages/man4/veth.4.html”

[7] M. Peuster, J. Kampmeyer, and H. Karl, “Containernet 2.0: A rapid
prototyping platform for hybrid service function chains,” in IEEE
Conference on Network Softwarization and Workshops (NetSoft), 2018,
pp. 335–337.

[8] S. Galgano, “EMANE distributed wireless network em-
ulation framework,” Feb. 2020. [Online]. Available:
”https://github.com/adjacentlink/emane”

[9] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg,
“Mininet-WiFi: Emulating software-defined wireless networks,” in IEEE
International Conference on Network and Service Management (CNSM),
2015, pp. 384–389.

[10] S.-Y. Wang, C.-L. Chou, and C.-M. Yang, “EstiNet OpenFlow network
simulator and emulator,” IEEE Communications Magazine, vol. 51,
no. 9, pp. 110–117, 2013.

[11] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE:
A real-time network emulator,” in IEEE Military Communications
Conference, 2008, pp. 1–7.

[12] M. A. To, M. Cano, and P. Biba, “DOCKEMU–A network emulation
tool,” in IEEE International Conference on Advanced Information Net-
working and Applications Workshops, 2015, pp. 593–598.

[13] M. Peuster, H. Karl, and S. van Rossem, “MeDICINE: Rapid prototyping
of production-ready network services in multi-PoP environments,” in
IEEE Conference on Network Function Virtualization and Software
Defined Networks, 2016, pp. 148–153.

[14] H. H. Liu et al., “CrystalNet: Faithfully emulating large production
networks,” in ACM Symposium on Operating Systems Principles, 2017,
pp. 599–613.

[15] F. Farias, A. de O. Junior, L. B. da Costa, B. A. Pinheiro, and A. J. G.
Abelem, “vSDNEmul: A software-defined network emulator based on
container virtualization,” International Journal of Simulation Systems,
Science & Technology, vol. 20, no. 4, 2019. [Online]. Available:
https://arxiv.org/abs/1908.10980

[16] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Stein-
der, “Performance evaluation of microservices architectures using con-
tainers,” in IEEE International Symposium on Network Computing and
Applications, 2015, pp. 27–34.

[17] J. Petazzoni, “Docker in Docker,” Feb. 2018. [Online]. Available:
”https://github.com/jpetazzo/dind”

[18] M. Peuster, “Containernet API,” 2020. [Online]. Available:
”https://github.com/containernet/containernet”

[19] Display a live stream of container resource usage
statistics, Docker, Inc., Jun. 2020. [Online]. Available:
https://docs.docker.com/engine/reference/commandline/stats/

[20] H. Muhammad, “htop - an interactive process viewer for Unix,”
https://hisham.hm/htop/, 2020, last accessed 7 June 2020.

[21] A. Laffely et al., “Adaptive systems on a chip (aSoC) for low-power
signal processing,” in Asilomar Conference on Signals, Systems, and
Computers, 2001.

