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Abstract—The integration of Field Programmable Gate Arrays
(FPGAs) into cloud computing systems has become common-
place. As the operating systems used to manage these systems
evolve, special consideration must be given to DRAM devices
accessible by FPGAs. These devices may hold sensitive data that
can become inadvertently exposed to adversaries following user
logout. Although addressed in some cloud FPGA environments,
automatic DRAM clearing after process termination is not
automatically included in popular FPGA runtime environments
nor in most proposed cloud FPGA hypervisors. In this paper,
we examine DRAM data persistence in AMD/Xilinx Alveo U280
nodes that are part of the Open Cloud Testbed (OCT). Our results
indicate that DDR4 DRAM is not automatically cleared following
user logout from an allocated node and subsequent node users
can easily obtain recognizable data from the DRAM following
node reallocation over 17 minutes later. This issue is particularly
relevant for systems which support FPGA multi-tenancy.

Index Terms—FPGA, cloud computing, DRAM, security, and
data persistence

I. INTRODUCTION

FPGA use in the cloud is substantial and likely to grow
as the spectrum of cloud applications increases [1]. Cloud
FPGAs generally are attached to substantial DRAM storage
that is either directly attached to the devices or accessible via a
system-level bus [2] (e.g., PCIe). Current cloud FPGA vendors
allocate a single user to an FPGA at a time (single-tenant),
although multi-tenant use in which multiple independent users
share FPGA logic and attached memory at the same time [3]
has been proposed. In both scenarios, FPGAs and attached
DRAM are used by numerous untrusted users. DRAM data
should obviously stay confidential for individual users. How-
ever, unlike cloud CPUs that are often allocated as virtual
machines managed by operating systems with sophisticated
memory management such as Linux, cloud FPGA resources
often are managed at a lower level. As we describe in this
paper, simply clearing an FPGA logic configuration upon
user deallocation does not immediately erase its data in the
attached DRAM. These memory locations must be explicitly
cleared when a user is deallocated memory space. Although
explicit DRAM clearing is used by some existing cloud FPGA
platforms (notably AWS EC2 F1 [2]), it is not universally
deployed in all cloud platforms.

In this paper we comprehensively examine DRAM data
persistence in AMD/Xilinx Alveo U280 platforms found in the
publicly-available Open Cloud Testbed (OCT) [4]. We show
that even though a user’s FPGA configuration information,

including a DRAM controller, is removed from the device
upon system logout, usable DRAM data persists for well
over twenty minutes even if DRAM refresh is not performed.
This data is accessible to subsequent users after the FPGA is
reallocated to another user. The issue is even more significant
in the case of multi-tenancy when DRAM use by one tenant
may lead to refreshes of stale data from previous users that has
not yet been erased. These issues are explored in the context
of OCT and the Xilinx Runtime Library (XRT).

The remainder of the paper is structured as follows. In
Section II, we discuss how bulk memory is typically ac-
cessed by cloud FPGAs, with a focus on DRAM that is
directly attached to the devices. We also discuss OCT and
how runtime management software initiates DRAM access
and manages FPGA resources. In Section III, we describe
several experiments which lead to the retention of data values
written into DRAM following FPGA reconfiguration. We draw
parallels between the cloud FPGA architecture in OCT and
similar cloud FPGA architectures. In Section IV, experimental
results are presented showing data persistence in OCT DRAM
attached to FPGAs. We conclude the paper in Section V.

II. BACKGROUND

A. DRAM data retention

Cloud computing platforms contain a wide variety of com-
puting components such as microprocessors (CPUs), graphics
processing units (GPUs), and FPGAs. CPU-based systems,
including the platforms which serve as computing node hosts
in the cloud, typically use Linux- or Windows-based operating
systems (OSs) to allocate DRAM and other memory attached
to the processor. Individual DRAM pages are explicitly erased
prior to reallocation ensuring that retained data from an earlier
process cannot be snooped by a subsequent process [5]. This
protection is not necessarily present in Linux-based systems-
on-chip that include both CPU and FPGA logic, as a recent
memory-scraping attack showed [6].

GPUs can suffer from memory persistence issues [7], [8].
The application programming interfaces (APIs) associated
with GPUs offer significant sharing but often do not ini-
tialize newly-allocated memory. These weaknesses have been
enumerated and successful attacks have obtained portions of
persistent web pages and other images [8] following user lo-
gout. Suggested remediations include user-initiated scrubbing
of memory following use. Similar issues affect ARM Mali



GPUs, where new processes can access terminated process
pages due to the reuse of freed pages [9].

Several operating systems and hypervisors have been in-
troduced that time multiplex one or more user circuits into
reconfigurable regions in cloud FPGA devices. Each user
circuit (often called a kernel) is generally allocated a logic
region and portions of attached and bus-accessed DRAM. For
example, OPTIMUS [10] allocates FPGA logic and data pages
on demand. Although internal FPGA state is cleared after use,
no discussion of DRAM clearing is provided. In Byma et
al. [11] address space is partitioned across tasks, effectively
creating private pages and in Ruan et al. [12] allocation
is controlled by an ARM processor. Finally, Korolija et al.
[13] restrict inter-kernel access to DRAM using translation
lookaside buffers (TLBs). None of these systems indicate
DRAM clearing upon kernel clearing or DRAM reallocation.

B. Experimental Platform

In this paper, we examine the disposition of FPGA-
connected DRAM following user logout under typical use.
Our experimentation is performed using the publicly-available
OCT, which includes CPUs, GPUs, and FPGA accelerators.
The OCT host processor executes a version of Linux and
supports virtual machines. Only one user is allocated to a node
at a time. The Alveo U280 data center accelerator cards [14] in
OCT use PCIe connections to the host processor and are also
directly connected to a network switch via two independent
100Gbps connections [15]. The configuration of an FPGA
node within the OCT and its internal logical connections are
depicted in Figure 1. It should be noted that similar Alveo
U250 cards are integrated into some Microsoft Azure nodes
[16].

The host processor in OCT interfaces to the XCU280
UltraScale+ FPGA via APIs provided by the Xilinx Runtime
Library. The XRT environment facilitates FPGA configuration
and runtime data transfer between the host and an FPGA
in a variety of cloud and embedded computing systems. As
shown in Figure 1, in OCT, the FPGA’s PCIe connection is
created using a dynamic function exchange (DFX) interface.
This circuitry, which is loaded into the FPGA from flash,
accepts data from the PCIe bus to configure FPGA kernels
(user circuits) via ICAP and transfers data to FPGA memory
(attached DRAM, embedded high bandwidth memory (HBM)
and programmable logic RAM (PLRAM)). FPGA DRAM is
accessed via a DRAM controller. The controller is attached
to an AXI bus connected to the DFX interface and kernel
circuitry. In general, XRT and the similar Open Programmable
Acceleration Engine (OPEA) [17] for Intel FPGA fabrics do
not natively clear DRAM attached to FPGAs following process
termination, leaving it to the user to clear memory resources.

C. DRAM Decay

The DRAM attached to the XCU280 FPGA in Figure 1
is controlled by a DRAM controller fashioned from FPGA
logic that is only present when the associated controller
circuit is instantiated in the device. In addition to write and
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Fig. 1: Overview of AMD Alveo U280 integration in OCT

read requests, this controller generates signals to perform
auto refresh for the two 16GB Micron MTA18ASF2G72PZ
DDR4 SDRAM RDIMMs [18] in the U280. If the FPGA is
reset (configuration cleared) or a new FPGA configuration is
programmed into the device that does not contain a DRAM
controller, refresh signals will cease, and stored DRAM values
will decay. For older DDR1 and DDR2 devices [19], [20],
this decay is generally quite rapid (on the order of seconds).
Experiments with more recent DRAM technology measured
extended decay that ranges into minutes [21]. However, these
experiments do not consider cloud FPGA interfacing and more
modern DDR4 technology.

It should be noted that “charged” DRAM cells may be read
as either a logic 1 or a logic 0 depending on DRAM device
architecture. Our research shows that half the initially charged
cells in the DDR4 chips in the U280 will decay from a logic
1 to a logic 0 and half will decay from a logic 0 to a logic
1, similar to observations in [22]. This characterization can
be performed by an attacker prior to performing an attack by
programming the DRAM with all zeros or ones and observing
decay patterns after re-logging into the same node.

III. EXPERIMENTAL APPROACH

The bitstreams used in our experimentation were generated
using AMD Vitis version 2023.1 which produces bitstreams
for the Alveo U280 hardware. The OCT host computer in-
cludes an Intel Xeon Gold 6226R CPU operating at 2.90GHz
with 187GB of memory.

To determine DDR4 DRAM data retention in the byte-
addressed Alveo U280 following the loss of refresh capabili-
ties, a series of experiments were performed to write data into
the DRAM, remove DRAM refresh in auto refresh mode, and
resample the DRAM data following specific time periods. In
all experiments (except where noted), each DRAM cell was
initially charged. As noted in the previous section, half the
cells stored a logic 1 which decayed to 0 and half stored a logic
0 which decayed to a 1. For example, if byte address location
0x00000000 decays to 0x00, we write 0xFF, and vice versa for
addresses with the opposite polarity. The polarity of each cell
was determined prior to experimentation. Our data retention
results were generated using two types of experiments:



Experiment 1 - Session termination: In this experiment,
a user logs into an OCT node and uses an FPGA kernel
and DRAM controller to write 4GB of data to DRAM bank
DDR 0. After these writes are complete, the user logs out of
the node, causing an immediate FPGA warm reset (and cor-
responding configuration and DRAM controller clear). Once
the node is reset and free, any user (including the one that just
logged out) can attempt to reclaim it. After re-login success,
the FPGA is configured with a new user kernel and a DRAM
controller and the contents of DDR 0 are retrieved by the host
via the AXI and PCIe busses. As noted later in this section,
the average time from node release via logout to re-login is
about 17.25 minutes. This experiment mimics a realistic attack
since the second user could be anyone, including an attacker.
Effectively, this value measures the amount of time between
when one user logs out and the next user can log in.

Experiment 2 - DRAM controller removal and sub-
sequent reinsertion: Although Experiment 1 is useful for
examining data persistence for a attack involving multiple
independent node logins, it does not allow for examination of
data persistence for time spans of less than 18 minutes. Thus,
we constructed a second experiment that controls the length
of DRAM decay. Although this experiment does not mimic
an actual attack, it provides information on data persistence
during the time period between logout and re-login. In this
experiment, the user logs into an OCT node and uses an FPGA
kernel and DRAM controller to write 4GB of data to DRAM
bank DDR 0. After these writes are complete, the FPGA
is reconfigured to remove the DRAM controller, effectively
ending DRAM refreshes. After a user-determined period of
time, the FPGA is reconfigured with a new user kernel and a
DRAM controller and the contents of DDR 0 are retrieved by
the host via the AXI and PCIe busses. The original user does
not log out of the node during this experiment. We performed a
series of trials using this approach in which the DRAM values
were sampled with an increasing wait time of one minute per
trial (e.g., one minute, two minutes, three minutes, etc., up to
18 minutes).

For both experiments, it is straightforward for an attacker to
determine which DRAM cells in a node decay. By taking the
XOR of the reference data and the read data after the attacker
logs back into the same node it is possible to find the faulty bit
locations. In a subsequent attack, an attacker can log into the
same node immediately after a victim uses it and access the
DRAM bits that have been previously identified as unlikely to
decay.

It should be noted that DRAM readback from bank DDR 0
cannot be performed directly following FPGA reconfiguration
in Experiments 1 and 2. XRT requires that data be copied from
bank DDR 0 to bank DDR 1 first before being read by the
host via the AXI and PCIe busses. However, this step does
not impact the values read from DDR 0 since DDR 1 simply
serves as an intermediate buffer. The 4GB DRAM readback
required 336 ms on average in our experimentation.

Our experimentation was performed on four separate OCT
FPGA-based nodes. Each node produced similar results for

minimum logout to re-login time for Experiment 1. For
example, across four trials, this time gap ranged from 16
minutes, 58 seconds to 17 minutes, 53 seconds, with an
average of 17 minutes, 24 seconds. Therefore, an attacker
who has been monitoring a victim and waits for the victim
to terminate their connection to an Alveo U280 in OCT can
reconnect to the same U280 in less than 18 minutes and inspect
any leftover DRAM values. This time gap includes time for
the OCT management software to clear the victim’s virtual
machine, create a new virtual machine for the attacker, boot
the new virtual machine, install the XRT tools, and establish
a connection for the attacker.

IV. RESULTS

A. Data Decay Analysis

In this section we examine the decay of DRAM data at
one minute intervals from one minute to 18 minutes (re-login
delay). Experiment 2 was used to generate all data except
the last data point (Experiment 1) in our plots. Our analysis
considers the decay of words (32 bits) and individual bits in
a 4GB portion of bank DDR 0. We consider a 32-bit word to
be decayed if any of the bits have changed from their original
values. Figure 2 shows decay percentages of values over four
sets of trials for OCT Alveo U280 nodes PC151, indicating
consistency across trials. The average decay rates across the
four OCT nodes mentioned in the previous section are shown
in Figure 3.

The decay percentages indicate that a substantial fraction
of the words in the DRAM (between 30 and 50%) remain
unchanged four minutes after refreshes are terminated. How-
ever, by the 18 minute mark (re-login delay) less than 1%
of 32-bit values are unaffected. Despite this small percentage,
more than one million byte address locations are unaffected.
The addresses of the unaffected data remained consistent
across trials. For example, on PC151, 95.45% of the addresses
of unaffected data remained consistent from trial to trail
while the number was 95.79% for PC157. Although there
is a significant decay in word data, the integrity of single-
bit data remains considerably better. After 18 minutes using
Experiment 1, as demonstrated in Figure 4, 86% of bits remain
valid (undecayed).

Table I provides an additional data point regarding valid data
at the 18-minute mark. The table illustrates the percentage of
nibbles that remain undecayed per 32-bit word. The column
sums to 100%. Notably, the table demonstrates a significant
preservation of original data states, with approximately 55%
of words retaining at least half of their nibbles.

In a final experiment, we performed Experiment 1 using a
3,344×5,016 RGB image. Each 32-bit pixel includes eight
bits each of red, green, and blue and eight bits of alpha
(opaqueness). The original image [23] is shown in Figure 5a.
The decayed version, retrieved after 18 minutes on PC151
is shown in Figure 5b. Except for discoloration and some
distortion, the image is still recognizable. It should be noted
that after 18 minutes, 85% of bits remain unchanged in
DRAM, according to Figure 4. Bit retention values varied
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Fig. 2: Decay rate of 32-bit words in OCT node PC151. Decay
indicates a change in value of any of the 32 bits of a word.
Total memory size is 4 GB.
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Fig. 3: Decay rate of 32-bit words for four OCT nodes
averaged over four trials. Decay indicates a change in value
of any of the 32 bits of a word. Total memory size is 4 GB.

across eight bit channels (red: 83%, green: 80%, blue: 82%,
alpha: 96%) leading to a purplish hue in the recovered picture.
Since alpha values are typically 0xFF rather than random
values, their retention values were higher.

B. Observations

• The DRAM controller in the AMD Alveo series of
accelerators is implemented as a soft IP. When the FPGA
is reset, the DRAM controller is deleted and the DRAM
no longer refreshes.

• Consequently, data in the FPGA’s local DRAM begins to
decay. The decay rate is different for different bits, with
some bits retaining data beyond 18 minutes, allowing
attackers to access these values.

• Additionally, we observe that address locations exhibit
consistent decay rates over time. This implies that specific
address locations within an FPGA’s DRAM decay at the
same rate. For instance, shortly after a warm reset is
applied, certain address locations decay more rapidly than
others, while some decay at a slower pace, and so forth.

• In a multi-tenant environment, the DRAM controller
persists in an active state even after a process termination
to service other ongoing processes. This issue allows a
full read of the previous user’s data from the FPGA’s
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Fig. 4: Fraction of valid individual bits in four OCT nodes
over time. Total memory size is 4 GB.

# of Undecayed Nibbles Percentage
8 1.5%
7 7.9%
6 18.8%
5 26.3%
4 23.7%
3 14.3%
2 5.7%
1 1.5%
0 0.1%

TABLE I: Percentage of undecayed nibbles in each 32-bit
value at the 18-minute decay point

DRAM by a subsequent user allocated the previous user’s
address space.

• These findings extend to other FPGAs that use a soft-core
DRAM controller.

C. Other Comments

DRAMs, including the chips used on the Alveo U280, gen-
erally support a self-refresh mode which allows the memory
chips to refresh values even in the absence of an external
refresh signal. This mode could be abused to retain fully
valid data indefinitely if power to the DRAM is maintained
after FPGA reconfiguration. However, the U280 appears to
assert a reset signal to DRAM if the FPGA configuration is
cleared, which draws the DRAM out of self refresh mode. This
prevents the use of self refresh data retention and requires the
use of auto refresh.

V. CONCLUSION

This work investigates security vulnerabilities arising from
FPGA DRAM usage in cloud environments. Experiments
on the Open Cloud Testbed (OCT) platform, incorporating
Alveo U280 boards, were conducted to assess DRAM data
persistence after user access. The results underscore the critical
need for DRAM data erasure following user sessions in cloud
FPGAs, which serves as an effective countermeasure to our
attack. Even with DRAM controller removal during a warm
reset, residual data persists in various DRAM locations that a
new user can access, despite an overhead of nearly 18 minutes
to reconfigure a FPGA virtual machine on the OCT platform.
This vulnerability is particularly concerning in multi-tenant
environments, where auto-refresh can continuously maintain



(a) Initial (b) Readback after 18 minutes

Fig. 5: Contrast between the initial image and the image read
back via Experiment 1 after 18 minutes

data integrity, potentially leading to indefinite data retention.
These observations highlight the necessity for robust data
shredding mechanisms to ensure data privacy and security in
cloud FPGA deployments.
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