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Abstract—In this paper, we describe a new session-level ap-
proach for network function virtualization that steers packets
through both FPGA- and processor-based middleboxes. We
support inter-domain service chaining, dynamic modification of
service chains for ongoing sessions, and application of session-
level approaches for UDP-based protocols. To demonstrate our
approach, we establish and dynamically update inter-domain
service chains for QUIC protocol sessions across a scalable set
of FPGA- and processor-based middleboxes. The middleboxes
implemented with distributed agents show 96% better latency
and 10% better throughput than accelerated software for a
firewall application.

I. INTRODUCTION

FPGAs have been used to implement a wide variety of
high-performance network functions [1]–[4], such as packet
filters and intrusion detection circuits. This approach to net-
work function virtualization (NFV) provides for low-latency,
line-rate processing that is orders of magnitude faster than
microprocessor-based software implementations. FPGAs allow
users to create custom hardware to process packets without
the overhead of network stack processing supported by an
operating system (OS).

Most NFV systems, including systems with FPGAs, use
chains of functions. For large-scale NFV systems, traffic must
be steered through functions in a sequence. Although most sys-
tems use a centralized controller for sequence orchestration [5,
6], the approach is burdened by the risk of central point failure,
difficulties in synchronizing routing table rules, and traffic
steering across network domain boundaries. In contrast, the
use of distributed agents in session-based traffic coordination
can effectively overcome these shortcomings [7]. A session
includes a series of interactions between two communication
endpoints. To date, NFV based on session-level approaches has
only been applied to microprocessor-based systems due to dif-
ficulties in managing traffic steering across heterogeneous mid-
dleboxes and managing partial FPGA reconfiguration when
functions updates are needed.

In this paper, we describe a new distributed-agent NFV
system that supports the service function chaining of FPGAs
and microprocessors. Our new approach deploys distributed
agents in end-hosts and FPGA- and processor-based mid-
dleboxes. An agent cooperates with a partial reconfiguration
core to manage the dynamic reconfiguration of middlebox
functions on FPGAs. Agents update packet headers at the
transport layer to steer packets belonging to different sessions
through corresponding service chains. We verify our new
approach with QUIC protocol sessions [8] and show the

benefits of implementing our agents with FPGA circuits versus
software-based implementations. Our prototype distributed-
agent NFV system is assessed using Intel DE5-Net FPGA
boards, microprocessor-based middleboxes, and a network
router for up to nine middleboxes. The use of FPGA-based
service chaining results in a 96% reduction in function packet
latency versus a software-based approach.

II. RELATED WORK

Service function chaining (SFC) [9] steers traffic through a
set of functions provided by middleboxes to compose complex
network services. Traditionally SFC deployments are static and
rely on network configurations to stitch middleboxes together.
As NFV and software-defined networking (SDN) technologies
have matured, dynamically-composed service chains and fine-
grained packet forwarding have become possible. Several pre-
vious service function chain solutions steer network traffic by
controlling network elements (e.g., switches). Stratos [5] and
E2 [6] use fine-grained forwarding rules to build static service
chains within clouds. OpenNF [10] and Split-Merge [11] pro-
vide dynamic service chaining by updating packet forwarding
rules in SDN switches. These solutions rely on logically
centralized controllers to install and update forwarding rules.

Session-level control of NFV chains has recently been intro-
duced [12] to lessen the impact of centralized NFV control.
Existing protocols for session-level service chaining include
Network Service Header (NSH) [12], Segment Routing Header
(SRH) [13], and Dysco [7]. NSH supports service chaining
without the use of forwarding rules. SRH encodes a list of
IPv6 addresses of virtual network functions (VNFs) in packet
headers to perform SFC. Dysco is a session-level protocol
that steers the traffic of a session through an SFC. Like our
approach, it can dynamically update the SFC without requiring
changes to IP routing, end-host applications, or middlebox
applications. However, Dysco does not support connectionless
protocols. None of these protocols have been implemented
using FPGAs.

Previous research projects [2, 3] have integrated FPGAs into
NFV systems and developed resource management algorithms
to allocate functions across heterogeneous resources. These
systems rely on centralized SDN controllers to update the
forwarding rules in SDN switches that direct packets through
heterogeneous middleboxes. Tarafdar et al. [14] developed
an FPGA-based switch to steer packets through FPGA-based
middleboxes based on the addresses of network function
kernels in the Ethernet packet header. This approach avoids
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Fig. 1: An example of an inter-domain service chain established with agents and a policy server.

the use of a central controller, but it cannot steer packets at the
session level. As a result, it does not support the establishment
of service chains across network domain boundaries.

III. ARCHITECTURE

Network functions in a service chain, such as a firewall,
intrusion detection system (IDS), or content cache, can be
implemented on custom hardware, virtual machines (VM),
or reconfigurable hardware deployed across multiple subnet-
works. In Figure 1, the client and server at either end of the
service chain are located in different subnetworks. FPGA and
processor resources in the local area network (LAN) and cloud
are used to deploy network functions to process in-transit data
packets.

A session is a series of interactions between two communi-
cation endpoints. In Figure 1, end-hosts (i.e., server and client)
communicate with each other by establishing sessions. Our
approach runs agents on end-hosts and FPGA- and processor-
based middleboxes, builds a service chain while creating a
session, and directs session packets through network functions
in the service chain. Agents rely on basic IP routing and high-
level policies, which can be obtained from a policy server, to
steer packets between end-hosts and middleboxes located in
different subnetworks.

A. Components and interfaces

A service chain for a session includes a series of subses-
sions. Each subsession connects an end-host and a neighboring
middlebox, or two neighboring middleboxes. Agents set up
individual subsessions in the service chain and an agent
can maintain multiple subsessions at the same time. Each
subsession is identified by a five-tuple (i.e., source/destination
IP address, source/destination port number, and protocol) that
is used for a specific service chain. The agent on an end-
host or a middlebox in a service chain forwards packets with
the original header of the session to the end-host application
or the middlebox application; as such, our approach works
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Fig. 2: Agents reconfigure a segment of a service chain,
replacing an old path with two middleboxes by a new path
with one

with existing application-layer protocols. Before transmitting
session packets to the next middlebox or end-host, the agent
rewrites packet headers using the subsession five-tuple. In this
way, agents steer packets through the service chain.

The first agent in a service chain (e.g., the agent on the client
end-host in Figure 1) starts service chain creation according to
a chaining policy received from a policy server. The chaining
policy specifies an ordered list of middleboxes and end-hosts
located in the service chain. Each middlebox or end-host in
the policy is identified by its IP address. For example, the
policy for establishing the service chain in Figure 1 includes
an ordered list of IP addresses for the client end-host, the
first processor-based middlebox, the FPGA-based middlebox,
the second processor-based middlebox, and the server end-
host. During service chain creation, the chaining policy is
passed forward by the agents along the service chain from
the first agent in the chain to the last one. Each agent sets up
a subsession to connect to the next neighboring middlebox or
end-host indicated by the policy.

IV. DYNAMIC SERVICE CHAIN MODIFICATION

A service chain can benefit from dynamic path updates to
improve network resource utilization, reduce resource con-
sumption, and adjust network resources to adapt to changes
in the network environment. The agents at the two ends of a
segment of a service chain are the left anchor and the right



anchor (Figure 2). Here, we define the left anchor as the agent
close to the client, and the right anchor as the agent close to
the server. Path updates are initiated by the agent acting as the
left anchor. The policy server sends a new address list to the
left anchor. The new address list includes the IP addresses of
the left anchor, middleboxes, and right anchor of the new path
that will replace the old path. For example, the left anchor B
in Figure 2 receives the address list [B, G, E] in which B is the
left anchor and E is the right anchor. The address list [B, G, E]
indicates the new path. Service chain modification is achieved
by transmitting a series of control packets between the left and
right anchors to create a new path and then switching the old
path [B, C, D, E] to the new path through two anchors. Control
packets are used to resolve contention if multiple portions of
a service chain try to change at the same time, set up a new
path for the service chain, and cancel modification if a new
path cannot be created.

Our approach allows an agent on an FPGA-based middlebox
to partially reconfigure a virtual network function (VNF)
implementation during service chain modification without in-
terrupting the operation of other VNFs on the same hardware.
Agents running on processor-based middleboxes can adjust
(reconfigure) middlebox functionality by starting/terminating
VNF processes. The need for a specific VNF can be included
in the control packet during service chain modification. The
agent triggers the partial FPGA reconfiguration of middlebox
functionality before forwarding the control packet to the next
middlebox. The session on the service chain continues to op-
erate during reconfiguration, as session data is still transmitted
on the old path during the FPGA partial reconfiguration.

V. IMPLEMENTATION

In our system, agents can be implemented on FPGA-
and processor-based middleboxes, and end-hosts. The agents
establish and dynamically update service chains across het-
erogeneous middleboxes. FPGA-based middleboxes were im-
plemented using two Terasic DE5-Net boards that include
Intel Stratix V FPGAs. Processor-based middleboxes were
implemented as Docker1 containers on three twelve-core Intel
Xeon workstations (2.4 GHz, 32 GB SDRAM, two 10 Gbps
NICs, and four 1 Gbps NICs). QUIC clients and servers run on
a 28-core Intel Xeon workstation (2.6 GHz, 128 GB SDRAM,
two 10 Gbps NICs, and two 1 Gbps NICs). The policy server
was implemented using an Intel Duo server (2.66 GHz, 4 GB).

Agents forward network packets to FPGA- and processor-
based VNFs. An agent on general-purpose commodity hard-
ware (i.e. end-hosts, processor-based middleboxes) is imple-
mented as software running in user space. It utilizes the host
network stack to communicate with the applications running
on the host (e.g. client and server) and receive/send session
packets from/to NICs. The agent on the FPGA platform (top
of Figure 3), developed as part of this work, is implemented
as a dedicated hardware circuit that interacts with packet
processors and network interfaces via the Avalon streaming

1www.docker.com
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Fig. 3: Implementation of an agent on an FPGA. The agent unit in
the top subfigure is expanded in the bottom subfigure.

bus. One FPGA platform can support up to three packet
processors that operate as separate network functions. The
agent connects each packet processor to a physical network
port. FPGA packet processors are dynamically reconfigurable
using partial reconfiguration. The policy for reconfiguring
local packet processors is obtained from the policy server. A
proxy module in each middlebox and end-host communicates
with the policy server via a TCP connection. For processor-
based middleboxes, the proxy module was implemented as a
software program. On the FPGA platform it was implemented
using a NIOS II processor.

For experimentation, we implemented our custom agent
design on a Stratix V 5SGXEA7N FPGA. The FPGA platform
has three packet processors deployed (top half of Figure 3).
The agent unit module (expanded in the bottom part of
Figure 3) is pipelined and divided into five submodules: the
unwrapping module, the payload parser module, the recon-
figuration manager module, the agent core, and the wrapping
module. The agent implemented on an FPGA contains three
agent units (one for each packet processor), each of which
connects a single packet processor with an individual 10G
MAC core through the Avalon streaming bus. The data packets
from the network are fed to the unwrapping module. This
module extracts the five-tuple information from the packet
header and sends it and the payload to the payload parser
module. This module uses the five-tuple as a key to search
the hash table to obtain the address of the next middlebox and



TABLE I: Resource usage for SFC implementation cores targeted
to a Stratix V 5SGXEA7N

LUTs FFs Block Mem bits

Agent unit 20,976 21,948 891,770
Proxy 14,598 19,957 2,934,968
PR region 11,440 5,720 839,680
Firewall 2,822 5,283 504,960
Network interface 12,807 18,082 239,657

Available in FPGA 469,440 938,880 52,428,800

the original five-tuple of the session. The module also extracts
the data packet payload and the control information used for
service chain establishment and reconfiguration. When needed,
the payload parser module updates the control information
according to the policy received from the proxy module and
adds an address list for constructing a service chain to the
control frame. The payload parser module stores the received
data packet in a small buffer.

The reconfiguration manager module responds to the SFC
reconfiguration control command to generate reconfiguration
control packets and start the reconfiguration of a service chain
segment. This module uses a state machine to manage the
various stages of the service chain reconfiguration process. It
obtains the address of the next middlebox on the service chain
segment to be reconfigured from the hash table. The agent core
module performs hash table operations, rewrites the packet
headers for data packets processed by the packet processor,
forwards packets emerging from the packet processor, and
provides header information about the next subsession to the
wrapping module. The packet payload and header information
are integrated into a complete data packet in the wrapping
module, which is sent to the 10G MAC through the network
bus. For experimentation, a firewall packet processor was
created and tested. The firewall module was implemented in
a partially reconfigurable packet processor region (PR region)
on the FPGA device.

VI. EVALUATION

Lab experiments were performed using our PC and FPGA-
board virtualization system. An open-source tool ngtcp22 was
used to generate QUIC protocol sessions between clients and
servers. We measured the latencies for session initiation to
quantify the overhead introduced by our agents in establishing
a service chain. Then, we measured the throughput of QUIC
sessions in a service chain to verify the scalability of chains
with agents. Finally, we assessed the ability of the system
to modify a service chain path across multiple subnetworks.
The FPGA resource counts of the agent, the proxy, the PR
region for a single packet processor, the firewall module, and
the network interface are shown in Table I. The size of the
partial bitstream for the PR region is 5.8 MB, while the entire
bitstream for the Stratix V FPGA is 31.4 MB.

Fig. 4: Throughput scalability for chains of up to 2 FPGAs (3 agents
each) and 3 workstations (3 non-DPDK agents or 3 DPDK-based
agents). Six sessions were used for this experiment.

A. Throughput test

The service chain throughput of VNFs with software agents
implemented with and without the Data Plane Development
Kit (DPDK) and with FPGA agents was tested. DPDK allows
for packet processing in user space3. Six QUIC sessions were
run simultaneously on the same service chain. Overall through-
put on the service chain was measured using an increasing
set of hardware and software middleboxes. Software agents
implemented without DPDK were run in containers installed
in three workstations (one container per workstation). DPDK-
based software agents were run directly on the host OS for
three workstations. Two DE5-Net boards were used to imple-
ment FPGA versions (three agent units per FPGA). Figure 4
shows the scalability of our agent-based approach working on
heterogeneous middleboxes with up to nine agents deployed in
the service chain. The first six middleboxes used in the chain
are FPGA-based, which show a consistent chain throughput on
the left side of the graph. The blue and green plots in Figure 4
show that software agents introduce throughput degradation
to the service chain. The serial nature of processor execution
causes system performance slowdown. Although the FPGA
throughput can reach close to 10 Gbps, the throughput shown
at the left of Figure 4 for the chain is limited by the packet
generation rate of the processor-based server.

B. Dynamic path modification

Our agent-based approach implements inter-domain service
chaining by deploying agents in multiple subnetworks and
connecting the middleboxes and end-hosts by establishing sub-
sessions across network boundaries. In a second experiment,
QUIC clients and servers, located in different subnetworks,
and FPGA and processor-based middleboxes were connected
through a level-3 router. Each subnetwork has its own IP

2https://github.com/ngtcp2/ngtcp2/tree/draft-23
3www.dpdk.org



TABLE II: Throughput and latency comparison of software and
FPGA firewall implementations for three QUIC sessions

Software
(w/o DPDK)

Software
(w/ DPDK)

FPGA

Throughput (Mbps) 796 1,157 1,270

Latency (µs) 115.6 85.8 3.7

Fig. 5: Throughput of three QUIC sessions on processor and
FPGA middleboxes. Initially, all three sessions are implemented on
processors (left). Service chain modification is performed every 5
seconds to migrate a QUIC session from a processor (container)
middlebox to the FPGA middlebox.

address domain. As shown in Table II, the FPGA-based
firewall has significantly better throughput and latency than
software versions for three QUIC sessions. FPGA throughput
was again limited by the processor-based generation of QUIC
packets. During service chain operation, agents are used to
modify the service chain three times, each time migrating one
QUIC session from a processor-based middlebox to the FPGA-
based middlebox.

Figure 5 shows the QUIC throughput of the software-
based and FPGA-based middleboxes over time, including
three session migrations to the FPGA. The time series repre-
sents throughput measures at one-hundred-millisecond inter-
vals. Three QUIC sessions initially pass through the software
middlebox with a total traffic rate less than 1,000 Mbps (the
software firewall throughput limitation shown in Table II).
Service chain modification occurs at 5, 10, and 15 seconds
after the start of the experiment. When the first QUIC session
is redirected, the control message sent by the left anchor
triggers the agent on the FPGA middlebox to configure an
FPGA firewall circuit as a packet processor in a PR region.
Partial FPGA reconfiguration requires about 196 ms and
requires the loading of a firewall partial bitstream from flash.
The agent stays active during the partial reconfiguration of
the firewall bitstream. The time interval between the two
yellow vertical dashed lines in Figure 5 indicates the partial
reconfiguration of the firewall on the FPGA middlebox. After
all three QUIC sessions have been redirected to pass through

the FPGA middlebox, the overall throughput (blue plot on
the right) is significantly higher than when all sessions passed
through the software-based middleboxes (red plot on the left).

VII. CONCLUSION

In this paper, we have described the first session-level imple-
mentation for the service chaining of heterogeneous middle-
boxes. Distributed agents implemented on field-programmable
gate arrays and microprocessors are used to steer packets
through service chains. Our results using QUIC protocol ses-
sions show that the hardware agent implementations have good
scalability and better throughput and latency than software
implementations during packet processing. Partial reconfigu-
ration is used to migrate functions to FPGAs.
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