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Abstract—Over the past decade, a wide-ranging collection of
network functions in middleboxes has been used to accommodate
the needs of network users. Although the use of general-purpose
processors has been shown to be feasible for this purpose,
the serial nature of microprocessors limits network functional
virtualization (NFV) performance. In this paper, we describe a
new heterogeneous hardware-software approach to NFV con-
struction that provides scalability and programmability, while
supporting significant hardware-level parallelism and reconfig-
uration. Our computing platform uses both field-programmable
gate arrays (FPGA) and microprocessors to implement numerous
NFV operations that can be dynamically customized to specific
network flow needs. As the number of required functions and
their characteristics change, the hardware in the FPGA is
automatically reconfigured to support the updated requirements.
Traffic management and hardware reconfiguration functions are
performed by a global coordinator which allows for the rapid
sharing of middlebox state and continuous evaluation of network
function needs. To evaluate our approach, a series of software
tools and NFV modules have been implemented. Our system
is shown to be scalable for collections of network functions
exceeding one million shared states.

I. INTRODUCTION

As the Internet has evolved, increasingly diverse network
functions, or middleboxes, have been deployed to accommo-
date business and social needs. Typical network functions, such
as firewalls, network address translations (NATs), load bal-
ancers, packet classification, and proxy caches, process packets
in sophisticated ways, so as to ensure reliability and improve
performance in enterprise, service provider, and cloud provider
networks. Recently, operators have expressed interest in re-
placing dedicated ASIC-based appliances with software-based
network functions running on generic commodity hardware—a
trend known as network function virtualization (NFV). These
generic commodity hardware components are typically virtu-
alized into multiple network function instances, each of which
supports different network functions. NFV enables operators to
enforce high-level policies expressed by enterprise or service
networks by directing flows through appropriate network func-
tion instances, and further enables isolation among high-level
policies performed for different customers.

The customization of existing classification and manage-
ment blocks to support network functions is challenging.
In general, the serial nature of microprocessors limits the
achievable performance of NFV implementations while ASICs
limit real-time configurability. To achieve the parallelism and
flexible classification and management performance required,
CoNFV, a network function platform based on FPGAs, mi-
croprocessors, and supporting software running on commodity
hardware, has been developed. This distributed and scal-
able network function virtualization platform allows for the

sharing of state across middleboxes and the rebalancing of
NFV functions using FPGA reconfiguration and micropro-
cessor virtual machine thread creation, as needed. A library
of programmable modules has been constructed based on
specialized SQL attack detection, distributed denial-of-service
(DDoS) detection, flow classification, and network address
translation (NAT). These function modules, implemented in
either FPGA hardware or processor software, are swapped into
middleboxes in response to customer needs and network traffic.
To support system operation, a real-time NFV state sharing
and resource allocation tool has been implemented. The tool
periodically identifies required classification and management
functions, assembles the components from specified libraries,
and dynamically reconfigures the component FPGA(s) that
implement(s) the network function. Our prototype network
function virtualization environment is assessed using Altera
DE5 FPGA boards, microprocessor-based middleboxes, and
network switches. The system is shown to be scalable both in
middlebox count and quantity of shared state.

Section II presents NFV and the use of FPGAs in network-
ing functions. In Section III, we present our scalable hardware
and software system. Implementation details are provided in
Section IV and our experimental methodology is detailed in
Section V. Section VI quantifies the benefits of our dynamic
reconfiguration approach. Section VII concludes the paper and
offers directions for future work.

II. RELATED WORK

A. Network Function Virtualization

NFV is a concept that virtualizes an entire class of network
node (or middleware) functions into building blocks that may
be connected, or chained, together to create communication
services. These network nodes include border controllers (such
as firewalls, load balancers, and wide-area network (WAN)
accelerators) that protect a network. Traditionally, a network
border controller consists of a collection of custom hardware
appliances, each of which is designed for a specific network
function. With the advance of server virtualization technol-
ogy, it is possible to decompose traditional network border
controller functions into virtual machines running different
software. When designing and developing the software that
provides virtual network functions, it is possible to break
software into components and package those components into
one or more functions. To provide isolation among network
functions customized for each customer, it is important to
install each software component into a virtual machine. Virtual
machines are hosted in one or more physical nodes consisting
of commodity hardware. They are connected by tunnels to
satisfy the requirements of a customer.



Recent work on network function virtualization has mainly
focused on the control and management of middlebox func-
tions. Qazi et al. [1] employed Software Defined Networking
(SDN) principles to enforce policies for traffic steering. Sherry
et al. [2] proposed to use cloud services to perform network
functions. Gember et al. [3] aims to provide mechanisms for
tenants to specify their middlebox needs, and automatically
deploy and scale middleboxes that maximize performance.
A number of studies [4], [5] have focused on designing
software-based programmable middleboxes in a virtualized
environment.

B. FPGA-based Networking Functions

Reconfigurable logic provides an ideal platform for net-
work functions due to the parallelism, specialization, and
adaptability offered by FPGA devices [6]. These characteristics
match well with the multi Gigabit-per-second (Gbps) through-
put constraints frequently imposed on networking infrastruc-
ture and the need for frequent updates required by changing
packet analysis and filtering metrics. As FPGAs continue to
be integrated into cloud computing environments [7] and data
centers [8], their use in network and application processing
will continue to grow.

A number of FPGA-based platforms have been deployed
for network applications involving performance improvement,
load balancing, and reliability. A packet classifier [9] was used
in a decision-tree-based, 2-D multi-pipeline architecture in a
Virtex 5 device to obtain up to 80 Gbps throughput. A wide
range of FPGA-based network intrusion detection systems
have been implemented using CAMs [10], finite automata [11],
and Bloom filters [12]. FPGA logic allows for the imple-
mentation of a massive number of parallel matching FSMs
and Bloom filter hash functions that can be customized to a
changing set of matching rules, including the entire SNORT
NIDS ruleset [11]. Hardware-based FSMs for ruleset matching
can easily be synthesized from a high-level language, such as
C. In general, these network functions operate in isolation on
separate boards in a subnetwork.

State and configuration management for subnetwork FP-
GAs has been limited by a lack of global state coordina-
tion support and the inability to swap their functions using
network-wide information. Although a recent NFV system
using FPGAs [13] is a step in the right direction, the project
focuses more on NFV programmability than on the ability
to perform on-the-fly reconfiguration and state sharing. Our
primary contribution in this work is the development of such
a scalable and automated system in a networked environment.

III. SYSTEM OPERATION

A. System Overview

It is common for middleboxes positioned across a sub-
network to deploy distributed functions using commodity
hardware, custom hardware, virtual machines (VM), or recon-
figurable hardware. Information from multiple packet flows
must often be utilized for these stateful, distributed functions.
Information is collected locally during packet processing from
flows that pass through the middlebox. For a variety of
applications, such as NAT and SQL injection (SQLi) attack
detection, a distributed approach allows for parallel analysis
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Fig. 1: Overview of the CoNFV configurable network function
virtualization system using processor- and FPGA (DE5)-based
middleboxes

of multiple flows, each collecting correlated information. The
scalable CoNFV system collects global state information and
shares this information among distributed FPGA and micro-
processor packet processors. The CoNFV coordinator gives
each middlebox access to global state information using pro-
grammable interfaces. Subsets of this information are cached
in the middleboxes for some applications.

Middlebox and coordinator functionality can be quickly
updated as network function needs change. For example,
many NFV operations can initially be assigned to software
for low and moderate traffic loads. As network traffic and
computational workload increase for a function, instances can
be migrated to FPGA-based hardware. A traffic and workload
decrease for a specific function can have the opposite effect.
The allocation of functions to middleboxes is dynamically
assessed and orchestrated by the coordinator as state-based
network conditions are processed. The coordinator automati-
cally reallocates resources as needed.

An overview of our global state-sharing system for hetero-
geneous middleboxes is shown in Figure 1. Microprocessor-
and FPGA-based (DE5) middleboxes are distributed across
the network. The middleboxes share state information through
TCP connections to the CoNFV coordinator. As shown in
Section VI, the coordinator is able to handle state for a scalable
set of middleboxes, with minimal packet processing slowdown.
The network setup represents a number of interconnect con-
figurations, including those found in data centers.

Figure 2 shows the framework of the system. The coordi-
nator stores global state values in a table as a set of key-value
pairs. Each middlebox can access global state using a key. The
state manager, a software module which can be configured
for each application, can both retrieve and update state. The
resource evaluator assesses the current utilization of middle-
box resources in response to messages and state variables and
can choose to perform middlebox resource rebalancing. The
configuration manager coordinates the resource assignment in
collaboration with the resource evaluator.
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Fig. 2: Middlebox and global coordinator interaction. Middle-
boxes can be either processor- or FPGA-based.

Each middlebox contains a packet processor and an as-
sociated state proxy module. After a state request originates
in the packet processor, the state proxy module generates
and sends state requests to the coordinator, and receives state
updates from the coordinator. The configuration proxy mod-
ule coordinates either software thread activation/deactivation
for packet processors or hardware reconfiguration for FPGA
packet processors. A control interface allows for interaction
with the coordinator. The specific functions of these modules
for three applications is detailed in Section V.

B. Cross-Middlebox State Sharing

Our system relies on state sharing for two types of actions:
function triggering and state retrieval. Inspection functions
evaluate network traffic and examine packets for monitoring,
intrusion detection, and identification of other invasive attacks.
Manipulation functions examine and modify flows by drop-
ping, updating or creating new packets. State sharing for these
two types of flows proceeds as follows:

Trigger state: For inspection functions, data packets are
passively inspected as they enter a middlebox for specific
characteristics of attacks such as DDoS or SQLi. If an event is
observed that requires a global state update, state information
both in the middlebox and in the coordinator are updated.
As the state is updated in the centralized state table on
the coordinator, it is checked by the resource evaluator to
determine if remediation elsewhere in the network is needed.
In Section V, we describe how CoNFV can be used to address
distributed DDoS and SQLi attacks. A firewall or packet filter
can be enabled at one or more points in the network in
response.

Retrieval state: For manipulation functions, global states
are updated during packet processing. Middleboxes that require
retrieved state generally manipulate packets. In the case of state
retrieval, individual packet processors request state information
if it is not available locally. The coordinator provides a
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Fig. 3: High-level overview of processor- and FPGA-based
middleboxes in CoNFV

global repository for state information and can update state
as needed. A common use of state retrieval is for network
address translation (NAT). When NAT receives the first packet
of a flow it creates state which determines the translation from
an external (IP, port) pair to an internal (IP, port) pair on the
local subnetwork. This information must be shared across all
middleboxes performing NAT translation for the subnetwork
to avoid (IP, port) assignment overlap. In CoNFV, translation
information (global state) is stored in the coordinator. If a
middlebox receives a packet and its translation information
is not stored locally, the information can be obtained from the
centralized repository.

C. Dynamic Resource Management

NFV resources must be managed using a global view of
function deployment. In response to changing threats or moni-
toring goals, resources are reallocated under the control of the
configuration manager in the coordinator. This unit coordinates
the migration, creation, and destruction of functions in real-
time to meet functional needs. For processor-based middle-
boxes, virtual machines (VM) threads are created or destroyed
in response to stimuli from the coordinator. For FPGA-based
systems, portions of the FPGA circuitry are swapped to change
functionality. As shown in Figure 2, FPGA resources are split
into fixed resources that manage function interfaces and packet
processing resources that can be dynamically reconfigured. For
example, in response to the configuration proxy, portions of the
FPGAs can be swapped.

IV. FRAMEWORK IMPLEMENTATION

A. Framework Overview

Our coordinator and middlebox framework includes both
commodity processor-based components and FPGA boards
(Figure 3). The coordinator is implemented using a processor-
based Intel Duo server (2.66 GHz, 4 GB). Processor-based



middleboxes are implemented using a hexad-core Intel Xeon
workstation (2.4 GHz, 32 GB SDRAM, and six 1 Gbps
NICs). FPGA-based middleboxes are implemented using Al-
tera DE5 boards that include Stratix V FPGAs. TCP sockets
are used to enable middlebox/coordinator interactions. The
communication between the coordinator and the middleboxes
is sufficiently frequent that the coordinator maintains a live
connection for each middlebox since it is costly to initialize a
new connection for each state operation.

A high-level view of FPGA- and processor-based mid-
dleboxes appears in Figure 3. In this configuration, network
functions with the highest throughput and lowest latency are
assigned to the FPGA on the DE5 board. The DE5 contains 16
GB SDRAM, 256 MB flash, a Stratix V 5SGXEA7N FPGA,
and four 1 Gbps Ethernet ports. One port each is used for data
input and output and a third port is used for communication
with the coordinator via a network switch.

When the number of hardware middleboxes in the subnet-
work exceeds available FPGA hardware, additional middle-
boxes can be generated in software on PCs. A PC server is
sliced into virtual machines (VMs) using VirtualBox1 which
virtualizes the server at the operating system level. Each
virtual machine operates like a stand-alone server. Software
middleboxes are effectively isolated from each other in sepa-
rate VirtualBox containers that guarantee a fair share of CPU
cycles and physical memory to each middlebox. Hardware and
software middlebox functions can be customized based on the
designer’s specifications.

B. State Sharing

The step-by-step behavior of trigger and state retrieval
operations is described in the following.

1) Trigger States: A state table of trigger states is located
in the coordinator. Middleboxes update trigger states during
packet processing. Inside the coordinator, the state manager
updates or creates trigger states according to the received state
from middleboxes. When a packet comes into a middlebox, the
packet processor inspects the packet and sends it out. Accord-
ing to the semantics of the network function, the inspection
result might lead to a state update. Whenever the state manager
updates or creates a trigger state, a state checker in the resource
evaluator is triggered to detect malicious activities based on
the new state. If a malicious activity is detected, the associated
reactions, such as logging or notification, are engaged.

Trigger states do not directly affect the packet processing.
They are maintained to detect malicious activities. The se-
mantics of detections are determined by the network function
designer.

2) State Retrieval: Asynchronous state operations used in
our system allow a packet processor to process other packets
without blocking while state is retrieved from the coordinator.
However, asynchronous state operations might put packets
out of order. For example, if the processing of a packet
does not need a state operation, the packet can be processed
immediately without waiting for the state return. Network
functions that satisfy this condition are not uncommon. For
example, for NAT, every packet in a flow requires the same

1https://www.virtualbox.org/wiki/Downloads
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Fig. 4: Detailed FPGA implementation for multiple middlebox
packet processors

mapping from one (IP, port) pair to another (IP, port) pair.
Packets with known translations can proceed while others
wait for translation information. During asynchronous state
operation, the middlebox is able to process, for instance, the
next incoming packet first. When the state is returned from
the coordinator, the middlebox continues the processing of the
previous packet. Asynchronous state operations buffer packets
that require coordinator lookups using a packet buffer table.
Packets in the table are indexed by the keys of global states.
Then, when the state is returned, the associated packet is
retrieved from the table.

During packet processing, state retrievals can be much
more frequent than state updates. In this case, it is beneficial to
cache global states at middleboxes to reduce remote retrieval
delay. To cache states, the state proxy in each middlebox
maintains a cache table that stores the key-value pairs of
states. When the packet processor retrieves a state, the state
proxy checks the cache table first. If it misses, the state proxy
retrieves the state from the coordinator. When the state returns,
it is added into the cache table.

C. DE5 Middlebox and FPGA Module Library

A detailed view of the FPGA platform that can accom-
modate multiple packet processing middlebox functions is
shown in Figure 4. A NIOS II soft microprocessor is used
as the interface, state proxy, and configuration proxy. This
resource can communicate with the coordinator via a TCP
connection implemented on a 1 Gbps link through a switch.
The interface between the NIOS II and one or more middlebox
packet processors takes place via shared memory and a control
register accessed with the Avalon bus. The packet processors
implement functions in conjunction with a network interface
that includes data queues and port controllers. Incoming data
from the PHY are placed in the input queues. Processed
packets are sent to the output queues from which they are
forwarded to the physical interface.

The implementation shown in Figure 4 illustrates the signal
interfaces associated with the middlebox packet processors.
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These interfaces include data, address, and control connec-
tions to the shared memory and the network interface. These
interfaces represent an effective boundary for partial FPGA
reconfiguration of middlebox functionality. For this project,
three middlebox functions for NAT, SQLi, and DDoS have
been created with the interface, allowing for interoperability.

D. Dynamic Reconfiguration

The DE5 provides a high-performance platform to imple-
ment middleboxes. The choice of an FPGA platform for virtu-
alization does create scalability concerns. Not all middleboxes
may contain an FPGA or there may be insufficient resources
to implement all needed middlebox functions in FPGAs. As a
result, our system allows for the seamless use of both hardware
and software middleboxes in the same system with the same
coordinator interfaces.

Although minor updates to the hardware middlebox
through configuration registers can enable parallelism and
provide flexibility, it may not be sufficient for substantial
changes in threats which require new hardware modules. As
a result, techniques are needed to migrate computation from
hardware to software and vice versa. This migration takes
place following a sequence of events using FPGA dynamic
reconfiguration:

1) Configuration detection - The configuration man-
ager in the coordinator receives a trigger from the
resource evaluator to consider middlebox resource
allocation. The configuration manager contains state
that indicates current resource deployment and re-
quired middlebox computation.

2) Configuration update - Functions included in the
FPGA middlebox targeted for reconfiguration are
either terminated or migrated to software on a
processor-based middlebox. Traffic previously sent to
the FPGA middlebox is retargeted to a processor-
based middlebox via a network switch. The config-
uration manager sends messages to the middleboxes
to replace their current functions with alternative
configurations. In our system, an SDN switch is
configured to reroute affected traffic (Figure 5).

3) Middlebox configuration - An FPGA-based middle-
box loads the appropriate configuration for the new
function into the FPGA.

4) Middlebox response - When the middlebox reconfig-
uration is complete, a response is sent to the coordi-
nator. An SDN switch is configured to redirect traffic
through the newly-configured FPGA middlebox.

A detailed example using middlebox functionality migra-
tion is described in Section VI.

To support FPGA-based middlebox configuration (step
3 above), the FPGA can be either partially or completely
reconfigured. Both approaches are supported in our system.
Whole-chip FPGA programming on the DE5 is initiated by
a trigger signal sent from the FPGA to the MAX II CPLD
used for configuration loading. Multiple configurations for
the FPGA are available in on-board flash memory. The start
address of the configuration image is specified in flash and
used by the CPLD to initiate configuration image loading
into the FPGA. Before reconfiguration starts, the NIOS II can
overwrite this start address so that the next FPGA image can
be changed. Once the new FPGA image has been loaded,
the TCP connection between the coordinator and the interface
implemented in the NIOS II is reinitialized.

A more effective approach for middlebox configuration is
to swap one of the middlebox packet processor modules in
Figure 42. Our partial reconfiguration approach requires the
definition of a partial reconfiguration boundary that consists
of the 99 interface signals on the module. These signals
interface to lookup tables in the module which are driven to a
known value during reconfiguration. Partial reconfiguration is
controlled by the configuration proxy software implemented on
the NIOS II. During partial reconfiguration, the NIOS retrieves
new configuration information from flash and programs it into
the FPGA configuration memory via a partial reconfiguration
control block instantiated in the device. Once the middlebox
has been properly configured, the coordinator is notified and
the switch is reprogrammed to forward associated network
traffic for processing. Both partial and full reconfiguration have
been successfully used in our system.

V. MIDDLEBOX APPLICATIONS

For experimentation, three FPGA-based library modules
which meet the requirements of the previous section were
created and tested. The following discussion provides an
overview of module operation and use.

1) NAT Implementation: As mentioned in Section III-B,
the NAT function converts an inside, local subnet (IP, port)
pair to a public network (IP, port) pair. In our implementation,
all translations are determined at the coordinator and stored in
the coordinator’s global state memory. Translation information
is returned to a requesting middlebox via a reply state message
following a state fetch message. The middlebox packet proces-
sor was implemented in FPGA logic while the state proxy was
implemented using a NIOS II processor.

The blocks used in the FPGA-based NAT application are
shown in Figure 6. The interface signals on the left of the
figure match the packet processor interface signals shown in
Figure 4. The extraction module extracts the source address,
source port, destination address, destination port, and protocol

2Our current testing only uses one packet processor per FPGA
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Fig. 6: FPGA middlebox implementation of NAT application

information from the packet header to form a key. The ARP
module contains two ARP lists (caches) and reply modules.
These blocks allow for the conversion of IP addresses to
physical addresses. The NAT module allows other packets to be
forwarded while the middlebox waits for the NAT translation
to arrive from the coordinator. As a result, packet buffering
is needed. In our implementation, eight 16K entry × 40 bit
buffers are used for packet sizes ranging from 64 to 1,500
bytes. A buffer index table, implemented as a hash table, is
used to store the index of the buffers for specific flows. For
each flow, the key is used as the input to the buffer index table
and the local NAT translation table (implemented as a hash
table) of depth 4,096 entries. If the translation is not found in
the table, a NAT state fetch from the coordinator is initiated
by the state proxy. The round trip time to fetch the translation
from the coordinator is about 0.2 ms.

Separate translation units are provided in the middlebox for
inbound and outbound subnet traffic. The software version of
the NAT middlebox implemented on a PC performs the same
functions and uses the same message sizes. The state proxy
is implemented as a separate VirtualBox module programmed
with APIs.

2) SQL Injection Detection: The second function used to
test our system was an SQLi detection block. Both FPGA
and processor-based implementations of this application are
supported. Processor implementations are based on Bro3. SQLi
detection attempts to identify possible web-based attacks by
examining packet payloads for known attack data. The SQLi
implementation uses a regular expression matching engine
(REME) to find keywords in the GET and POST request lines
of an HTTP packet [14]. In the design, a REME can take at
most 64 input characters. In our system, TCPreplay4 is used
to send packets ranging in size from 54 to 1514 bytes through
SQLi detectors via 1 Gbps ports at varying speeds. A total of
32 regular expression matchers are used.

When a detection occurs, a 41-byte set of information is
sent to the coordinator as a message. This information includes
the packet source and destination. The coordinator then sends

3http://www.bro.org
4http://tcpreplay.synfin.net/
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a 51-byte signature to a firewall on another middlebox which
is either implemented in an FPGA or a VirtualBox container.
The firewall is located between the client and the switch input
to the subnets. After activation by the coordinator, the firewall
identifies packet headers with offending source and destination
addresses and ports and drops them.

3) DDoS Implementation: The final module used to test our
system was a distributed denial of service (DDoS) block, based
on an earlier design [15], [16]. During a DDoS attack, the
attacker floods a victim’s network with SYN packets without
sending the corresponding ACK packets. Incoming packets
which arrive at the middlebox are sampled and a counter
(SYN ACK CNT) is used to keep track of unmatched SYN
packets for up to 1,000 destination addresses. The values
of the SYN ACK CNT counters are periodically evaluated to
identify deviations from expected values as determined by the
mean and standard deviation of the counters. If the values
vary beyond a variable threshold for a destination address,
a possible DDoS attack is identified. This result triggers a
message for the coordinator. The coordinator can identify
messages from a number of middleboxes to identify if a pattern
exists for a specific destination address. After activation by the
coordinator, the software rate limiter identifies packets with
offending SYN messages and limits their transmission.

VI. RESULTS

Three separate experiments were performed using our PC
and FPGA-board virtualization system. Three Xeon processor-
based workstations were sliced into four VirtualBox middle-
boxes each. An Intel Duo processor-based machine was used as
the coordinator. Two Stratix V based DE5 boards were used as
FPGA processors. Hardware details of each component were
provided in Section IV-A. The results for the coordinator stress,
scalability, and reconfiguration tests are described below.

Stress Test: For a distributed system, the state manager
in the coordinator may manage millions of global states for a
network function. In this first experiment, the state manager
was flooded with state requests at the maximum rate of the
coordinator network interface to test its processing capabilities.
Figure 7 shows the throughput of the state manager portion



LUTs FFs Block Mem bits
NAT 56,345 59,637 18,202,624
SQLi attack detector 86,127 51,009 1,726,768
DDoS attack detector 16,273 10,467 1,191,936
Firewall 11,328 12,379 1,442,816
NIOS II system 24,634 34,340 3,412,704
Available in FPGA 469,440 938,880 52,428,800

TABLE I: Resource usage for NFV library cores targeted to a
Stratix V 5SGXEA7N

Throughput Latency
(Mbps) (ns)

VM FPGA VM FPGA
NAT 522 915 1,009,000 2,000
SQLi 408 898 10,600 336
DDoS 442 908 5,040 135

TABLE II: Latency and throughput comparison of FPGA and
VM module implementations.

of the coordinator for the three network functions with the
number of global states growing from ten thousand to one
million. As the figure shows, the coordinator keeps a high
processing speed of more than 100,000 operations per second
for the three functions. It was determined that the network
interface is the limiting factor in this setup.

Scalability Test: In a second experiment, the ability of
the FPGA circuits and virtual machine-based middleboxes to
process packets for a scaled set of middleboxes was tested.
For the FPGA functions, the resources of the packet processor
modules and NIOS II are shown in Table I. The SQLi attack
detector requires the most logic resources and defines the
region size for partial reconfiguration. All circuits operate
at 100 MHz. Table II shows the performance benefits of
using the FPGA circuits versus VM implementations. For all
three packet processor modules the data throughput of the
FPGA implementations matched the input throughput5. The
dramatically reduced latency numbers for FPGA versus VM
(hundreds versus thousands of ns) indicate the benefit of FPGA
usage. The FPGA throughput numbers for all three circuits are
constrained by the speed of the 1 Gbps network interface. All
three circuits support network speeds approaching 10 Gbps.

To evaluate scalability we measured the throughput of our
system using an increasingly large set of hardware and soft-
ware middleboxes and examining overall processing through-
put using the SQLi application. Software versions of SQLi
are implemented using Bro software. Two workstations sliced
into four VirtualBox middleboxes each are used to implement
software SQLi. Two DE5 boards implement FPGA versions.
All middleboxes are connected to the coordinator via TCP
connections. A separate PC is used to generate packets for
the subnetwork using TCPreplay and to retrieve packets. ARP
protocol is used to steer generated packets through switches to
middleboxes. Packets used for testing range in size from 54 to
1514 bytes. Figure 8 shows the scalability of our heterogeneous
network system for between 1 and 10 middleboxes for the
SQLi application. The first two middleboxes used in the system
are FPGA-based, hence the higher slope of throughput on
the left side of the graph. As more VM middleboxes are
added, system performance versus the ideal case remains close

5The TCPreplay tool sourced packets at a slightly reduced rate from 1 Gbps

 

Fig. 8: Scalability of SQLi implemented with up to 2 FPGAs
and 8 virtual machines

indicating the capability of the state manager in the coordinator
to keep up with simultaneous state requests from both FPGA
and VM middleboxes.

Reconfiguration Test: The use of NFV requires the ability
to dynamically reconfigure middleboxes in response to chang-
ing networking needs. For example, it may be necessary to pe-
riodically change middlebox functionality between DDoS and
SQLi operations. We performed an experiment with transient
variations in the incoming workloads for DDoS and SQLi.
Initially, FPGA hardware is used to detect DDoS attacks and
software is used to detect SQLi attacks. Although a traffic
increase targeted to the SQLi middlebox does not necessarily
imply an attack, a microprocessor cannot perform SQLi detec-
tion effectively due to throughput limitations. In this case, the
microprocessor sends a message to the coordinator indicating
the desire for an FPGA middlebox update to support SQLi.
The coordinator can decide to swap FPGA NFV functions
from DDoS to SQLi attack detection during this period of high
SQLi traffic if DDoS processing is limited at the moment.

In a final experiment we determined how quickly a packet
processing function can be replaced within an FPGA by the
configuration manager in a system with two VM and one
FPGA middleboxes. The steps needed to perform the recon-
figuration are described in Section IV-D. As seen in Figure 9,
initially a DDoS detector is implemented in the FPGA and an
SQLi detector is implemented in VM1. When input traffic rate
into VM1 consistently exceeds 408 Mbps (the VM throughput
limit in Table I), VM1 notifies the configuration manager in
the coordinator. Since the DDoS detector throughput is less
than 442 Mbps and can be handled in software, its function is
migrated to VM2 and the FPGA middlebox is reconfigured to
support SQLi detection.

Figures 9 and 10 show the delays associated with the
redirection of the SQLi traffic from VM1 to the FPGA and
FPGA reconfiguration using both full (FPGA FR) and par-
tial device (FPGA PR) configuration. Results in the graphs
were generated from experimentation with FPGA and VM



 

Fig. 9: Performance of system resources during full FPGA
reconfiguration.

 

Fig. 10: Performance of system resources during partial FPGA
reconfiguration.

middleboxes in the lab. The full FPGA reconfiguration process
requires about 12 seconds. This delay includes the time needed
to remap traffic using the SDN switch, reconfigure the FPGA,
reboot the NIOS II, and reinitiate the connection between the
NIOS II and the coordinator. The partial FPGA reconfiguration
process requires about 2.5 seconds which primarily consists
of partial bitstream loading from flash by the NIOS II. The
size of the entire bitstream is 31.3 MB, while the partial
bitstreams for both SQLi and DDoS are 15.7 MB. The FPGA
reconfiguration time is dramatically reduced for partial versus
full reconfiguration since the NIOS II does not need to be
resynchronized with the coordinator in the latter case. Since
partial reconfiguration is much faster, further advancement of
this concept for NFV is desirable.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a new heterogeneous hardware-software
approach to NFV construction is demonstrated that provides
scalability and programmability. The platform leverages both
FPGAs and microprocessors to support a range of user defined
network functions with a common interface. As the number
of required functions and their characteristics change, FPGA
logic is automatically reconfigured under system-wide control.
To evaluate our approach, a series of software tools and NFV
modules have been implemented. The scalability and hardware
reconfigurability of the hybrid system is demonstrated for
known network attacks. Partial FPGA reconfiguration is shown
to accelerate the migration of FPGA NFV functions by a factor
of 5. In the future we plan to migrate our system to 10 and
100 Gbps networks. Larger and more diverse functions will
also be targeted.6
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