
Tetris-XL:A Performance-Driven Spill Reduction

Technique for Embedded VLIW Processors

Weifeng Xu and Russell Tessier

University of Massachusetts Amherst

As technology has advanced, the application space of Very Long Instruction Word (VLIW) pro-
cessors has grown to include a variety of embedded platforms. Due to cost and power consumption
constraints, many embedded VLIW processors contain limited resources, including registers. As

a result, a VLIW compiler that maximizes instruction level parallelism (ILP) without considering
register constraints may generate excessive register spills, leading to reduced overall system per-
formance. To address this issue, this paper presents a new spill reduction technique that improves

VLIW runtime performance by reordering operations prior to register allocation and instruction
scheduling. Unlike earlier algorithms, our approach explicitly considers both register reduction
and data dependency in performing operation reordering. Data dependency control limits un-
expected schedule length increases during subsequent instruction scheduling. Our technique has

been evaluated using Trimaran, an academic VLIW compiler, and evaluated using a set of embed-
ded systems benchmarks. Experimental results show that, on average, this technique improves
VLIW performance by 10% for VLIW processors with 32 registers and 8 functional units compared
with previous spill reduction techniques. Limited improvement is seen versus prior approaches for

VLIW processors with 64 registers and 8 functional units.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors - compilers,

optimization

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Register Pressure, Instruction Level Parallelism, Very Long
Instruction Word (VLIW) Processor

1. INTRODUCTION

VLIW processors are currently used in a variety of embedded systems that require
high performance within constrained operating conditions [Goossens et al. 1997;
Faraboschi et al. 2000]. In an effort to minimize hardware, typical VLIW processors
do not provide specialized hardware to support dynamic scheduling or out of order
execution [Hennessy and Patterson 1996]. Rather, compile-time scheduling is used
to determine a fixed schedule for multiple operations performed in parallel on VLIW
functional units. As a result, the runtime performance of a VLIW processor depends

A preliminary version of this paper was presented at ACM SIGPLAN LCTES 2007, San Diego,
CA, in June 2007. This work was supported by National Science Foundation grant CCR-9988238.
Authors’ address: Department of Electrical and Computer Engineering, University of Mas-

sachusetts, Amherst, MA 01003.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 0000-0000/2009/0000-0001 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009, Pages 1–0??.

2 · W.Xu and R.Tessier

Instruction

scheduling

Max_reg

measurement

ReductionMax_reg > Phy_reg

Straightline

code

Optimized

code

Yes

No

Register

allocation

Register pressure control

Max_reg: maximum register requirement

Phy_reg: available physical registers

Fig. 1. VLIW compilation flow with register pressure control

heavily on the efficiency of its compiler.
A typical VLIW compilation flow includes several optimization phases, includ-

ing instruction scheduling and register allocation [Freudenberger and Ruttenberg
1991]. Instruction scheduling attempts to maximize ILP by scheduling as many
operations as possible in parallel, which may require a large number of registers
to hold variables generated in the schedule. Register allocation assigns a physical
register to each variable. If a given schedule requires more registers than available
physical registers, variables must be spilled to memory, regardless of the register
allocation algorithm that is used. Given the latencies involved in main memory
access, spills may result in significantly reduced system performance.

Due to cost and power consumption constraints of embedded systems, many
embedded VLIW processors only contain a limited number of physical registers,
exacerbating the possibility of memory spills. For example, the Freescale MSC8101
[Freescale Semiconductor, Inc. 2005] and TI C62x [Texas Instruments, Inc. 2000]
VLIW processors contain 16 and 32 physical registers, respectively. In these sit-
uations, if a VLIW compiler simply maximizes ILP without considering register
constraints, a substantial number of spills may be generated. However, simply
minimizing spills may not always improve performance if application parallelism is
negatively affected. In this paper we show that both of these issues must be taken
into account during the early stages of compilation to achieve the best possible
application performance.

A number of spill reduction techniques [Kim 2001; Govindarajan et al. 2003;
Touati 2005], including register pressure control [Touati 2005], have been devel-
oped. As shown in Figure 1, register pressure control is applied before instruction
scheduling and register allocation. Using data dependencies, the measure step es-
timates the maximum register requirement (Max reg) of all possible straightline
code schedules. If Max reg exceeds the number of available physical registers,

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 3

Phy reg, a reduction step is used to reduce Max reg to Phy reg. The reduction
step allows subsequent instruction scheduling to focus on improving parallelism.

In this paper, we present a new register pressure control technique based on the
reordering of operations. Our technique reorders operations to reduce the num-
ber of required registers and spills while attempting to maintain instruction level
parallelism. To demonstrate its benefit, we have integrated this algorithm into an
academic VLIW compiler, Trimaran [Chakrapani et al. 2004]. As shown in Section
6, the algorithm can achieve at least a 10% reduction in benchmark execution time
compared with previously-published approaches [Kim 2001; Govindarajan et al.
2003; Touati 2005] for a VLIW architecture with 32 registers and 8 functional units
at the cost of a modest compile time increase. For 64 register VLIW architectures
with lower register pressure, all approaches perform roughly equally.

The remainder of this paper is organized as follows. In Section 2, a brief discussion
of previous work is presented. Section 3 provides background information and
discusses the limitations of previous techniques. Section 4 presents a heuristic
called Tetris that focuses on reducing the maximum register requirement (Max reg)
without considering data dependencies. In Section 5, an extension of Tetris, called
Tetris-XL, is presented. This algorithm considers both register reduction and data
dependencies. Our experimental approach and results are presented in Section 6.
Section 7 provides a summary of this work.

2. RELATED WORK

Previous work in spill code reduction can be put into several categories, general reg-
ister allocation, schedule-sensitive register allocation, register-sensitive instruction
scheduling, integrated register allocation and instruction scheduling, and register
pressure control.

General register allocation aims to minimize the number of spills based on a given
schedule. Graph coloring-based register allocation [Chaitin 1982; Briggs et al. 1989;
Briggs 1992; Bouchez et al. 2007] is one of the most effective register allocation ap-
proaches. Graph-based algorithms build an interference graph based on a given
schedule, in which each node represents a variable and an edge between two nodes
indicates that two variables cannot share the same physical register. If there are
not enough physical registers to hold all variables in the interference graph, spill
code must be inserted to transfer some variable storage to memory. The frequency-
based live-range splitting (FBS) technique [Kim 2001] attempts to isolate spill code
reduction to frequently executed (hot) program regions to improve program perfor-
mance. FBS uses execution frequency information to guide the splitting of variable
live ranges (lifetimes) during coloring. By splitting variable live ranges in regions
with lower frequency first, the overall number of spills can be reduced. A limi-
tation of general register allocation is that once an instruction schedule has been
determined, the flexibility needed to avoid register overuse is significantly reduced,
regardless of the allocation algorithm. Our approach attempts to predict register
overusage before instruction scheduling to make subsequent register allocation more
effective.

Schedule-sensitive register allocation techniques [Norris and Pollock 1993; Pin-
ter 1993] are applied to straightline code before instruction scheduling. In these

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

4 · W.Xu and R.Tessier

approaches, a parallel interference graph (PIG) is created to represent all possi-
ble live range interference. To reduce the negative impact on achievable schedule
length during subsequent instruction scheduling, schedule-sensitive heuristics insert
a minimum number of false dependencies between variables to reduce variable in-
terference. Govindarajan presented another early register allocation technique, the
minimum register instruction sequence (MRIS) [Govindarajan et al. 2003]. MRIS
applies a special interference graph, where each node represents an instruction lin-
eage, a series of variables that can share the same physical register. If a lineage
interference graph requires more registers than available physical registers, a fusion
step is applied to reorder operations so that two lineages can share the same register.
Based on the coloring result of the lineage interference graph, MRIS applies a mod-
ified list scheduling algorithm, which schedules operations based on the availability
of physical registers. A limitation of this approach is the insertion of additional
name dependency created by assigning registers before scheduling. As a result,
the achievable schedule length may be increased, causing performance degradation.
Unlike schedule-sensitive register allocation, register pressure control does not as-
sign registers so it avoids the adverse effect of name dependency. In Section 6 it is
shown that our register pressure control technique outperforms schedule-sensitive
register allocation techniques, such as MRIS.

Register-sensitive instruction scheduling controls register requirements during in-
struction scheduling, which is performed before register allocation. Goodman and
Hsu [Goodman and Hsu 1988] presented an integrated pre-pass scheduling (IPS)
approach, where two scheduling heuristics are combined. During scheduling, regis-
ter requirements are dynamically evaluated. Based on the analysis, the scheduler
can switch scheduling heuristics. One heuristic improves ILP and the other heuris-
tic reduces register usage. Register-sensitive instruction scheduling is limited since
scheduling heuristic switching is based on the instantaneous register requirement.
Because the register requirement after switching is not predicted, the scheduler
may not be able to reduce register usage and avoid spills. Our new approach ad-
dresses register pressure earlier in the compilation flow to allow for more efficient
exploration of the reduced register usage space.

Integrated register allocation and instruction scheduling techniques attempt to
ensure register constraints while optimizing performance during scheduling. In the
Register on Demand (RoD) algorithm [Cilio and Corporaal 1999], an operation is
scheduled only if a free register and functional unit are present. Register assign-
ment or spill insertion are done on the fly. Because spill insertion is based on the
instantaneous register and schedule requirements, it may be difficult to consider the
effect of operation interdependencies. A second integrated technique [Zeitlhofer and
Wess 2003] ensures that only schedules that satisfy all register constraints are gen-
erated. As a result, final register assignment is guaranteed to be successful. Our
new approach attempts to address performance by considering an assessment of
operation orderings while leaving specific register allocation and scheduling to later
in the compilation flow.

Unlike the above approaches, register pressure control has more freedom in mov-
ing operations to reduce spills. Berson presented a technique called unified resource
allocation (URSA) to reduce register pressure so that the schedule generated in

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 5

A

GFE

DCB

(a). Original DDG

(Phy_reg = 3)

A

G

F

E

DCB

(c). Serialization (D -> F)

(Max_reg = 4)

A

GF

E

DCB

Data flow edge Serial edge

(b). Excessive set

(Max_reg = 5)

(d). Serialization ({B,C,D} -> {F,G})

(Max_reg = 3)

Excessive set

A

GF

E

DCB

Fig. 2. Register pressure reduction via variable serializations

subsequent instruction scheduling does not overuse registers [Berson et al. 1993;
1998]. This measure-and-reduce methodology is shown in Figure 1. Experimen-
tal results [Berson et al. 1998] show that register pressure control outperforms
both schedule-sensitive register allocation (PIG) and register-sensitive instruction
scheduling (IPS). Based on Berson’s measure-and-reduce approach, Touati pre-
sented several new heuristics to further improve register pressure control [Touati
2001; 2005]. These extensions are discussed in Section 3. In general, previous
register pressure control approaches only consider the movement of an individual
operation at a time. In situations with high ILP, it is more beneficial to consider
groups rather than individual operations [Berson et al. 1998]. To address this lim-
itation, our heuristics consider the effect of moving a set of operations together,
which allows for a better register reduction.

The work described in this paper extends an earlier version of our previous reg-
ister pressure control algorithm [Xu and Tessier 2007] in several important ways.
As described in [Xu and Tessier 2007], our earlier algorithm only considers register
reduction when performing operation reordering. Although this approach aggres-
sively reduces required register count and associated spills, generated data depen-
dencies may lead to reduced instruction level parallelism. This issue may lead to
increased application cycle counts as a result of longer instruction schedules. This
paper also provides a comparison of our register pressure control algorithms to re-
sults generated by MRIS [Govindarajan et al. 2003], an early register allocation
technique. This comparison was missing from our earlier work.

3. BACKGROUND

In this section, we first present several basic definitions. After discussing the lim-
itation of previous techniques [Touati 2001; 2005], our performance-enhancement
algorithm is presented.

As shown in Figure 2-a, data dependencies of the input code can be represented
in a data dependency graph (DDG), G(V,E). A DDG contains a set of nodes V and
a set of directed edges E = u, v : u, v ∈ E. A node u ∈ V represents an operation
that defines variable u. A directed edge (u, v) ∈ E represents a data flow, where
node v uses the variable defined by node u.

The delay of node u is equal to d(u) clock cycles. Node u reads registers on
the first cycle of d(u) and writes the register on the last cycle. Our heuristics

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

6 · W.Xu and R.Tessier

consider both unit and multi-cycle delay operations. However, for demonstration
purposes, subsequent examples shown in the figures assume all nodes have unit
delay, d(u) = 1. Additional terms are defined as follows:

—Pred(u) = v ∈ V : (v, u) ∈ E is a set of predecessor nodes required by u. Figure
2-a shows that Pred(E) = {B,C,D}.

—Succ(u) = v ∈ V : (u, v) ∈ E is a set of successor nodes that use u as an input.
Figure 2-a shows that Succ(A) = {B,C,D}.

—A Use(u) is node v ∈ V such that v ∈ Succ(u). A node v which is a Use(u)
uses variable u as an input.

—Lv(u) is the live range of variable u. Lv(u) is the distance from node u to the
last Use(u). As shown in Figure 2-a, live range Lv(B), is from node B to node
E, the only node which uses variable B. Live ranges are independent of original
statement ordering and are only dependent on variable definition and use nodes.

—An excessive set (ES) is a maximal set of nodes (variables) in a DDG which
can be alive simultaneously such that the size of the set, Max reg, exceeds the
number of available physical registers, Phy reg. Formally, ES is the maximal
set of nodes v ∈ V that satisfies the following conditions: (a) ∀u, v ∈ ES,Lv(u)∩
Lv(v) 6= ∅; (b) |ES| > Phy reg. Multiple excessive sets may exist for a given
DDG.

For a given DDG, the maximum register requirement is the largest number of
variables that are alive simultaneously. Since the instruction schedule is not fixed
until the instruction scheduling phase, the maximum register requirement is esti-
mated using the data dependencies of straightline code. In [Berson et al. 1993], it
was shown that the maximum register requirement of a given DDG can be estimated
by applying a minimum chain decomposition based on the Dilworth algorithm [Dil-
worth 1950]. In this paper, we use an improved estimation technique called register
saturation [Touati 2005]. Previous results show that the estimated result is within
one register of the measured maximum register requirement [Touati 2005].

Using register saturation [Touati 2005], the maximum register requirement of the
DDG in Figure 2-a is 5. As shown in Figure 2-b, if E is scheduled last, 5 variables
{B,C,D, F,G} are alive simultaneously since variables {B,C,D} required by node
E and {F,G} are output variables. If there are less than 5 physical registers,
{B,C,D, F,G} becomes an excessive set, ES.

To reduce the size of the excessive set, live ranges of variables in the excessive set
must be separated so that they do not overlap. In general, separating the live ranges
of two variables u and v can be achieved by serialization (u → v) or serialization
(v → u), which is defined below:

—A serial edge (w to v) is a directed edge from w to v. Serial edge (w to v)
enforces an ordering such that variable v cannot be written before all inputs to
node w have been read.

—Serialization (u → v) enforces an ordering such that Lv(v) begins after Lv(u)
ends. Formally, serialization creates serial edges (w to v): ∀w ∈ (Succ(u)− v).

It has been proven [Touati 2005] that minimizing the excessive set size via se-
rialization is NP-hard. To address this problem, Touati [Touati 2005] presented a

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 7

greedy serialization technique, which evaluates all possible serializations between
any pair of variables and selects the one which can best reduce the maximum reg-
ister requirement while increasing the critical path the least.

To reduce the excessive set {B,C,D, F,G} in Figure 2-b, greedy serialization
selects serialization (D → F) as shown in Figure 2-c. To force an ordering so that
F cannot be scheduled earlier than D, two serial edges (E to F) and (G to F) are
inserted into the original DDG. After applying serialization (D → F), Max reg of
the augmented DDG in Figure 2-c is reduced from 5 to 4. The new excessive set
is {E,C,D,G}, where {C,D} are required by F and {E,G} are output variables.
Due to serial edges (E to F) and (G to F), the critical path changes from A-B-E
to A-B-E-F.

A limitation of greedy serialization is that only a single serialization is considered
by the algorithm at a time, limiting tradeoffs across multiple potential serializations.
This greedy behavior often leads to poor performance. Figure 2-c shows that se-
rialization (D → F) requires a serial edge (G to F). Additionally, serialization
(D → G) requires a serial edge (F to G). Applying both serializations causes a
cycle between F and G, which makes scheduling impossible. Therefore, the ex-
cessive set {E,C,D,G} in the augmented DDG can no longer be reduced because
serialization {D → F} prevents other serializations.

To address this problem, a better reduction can be achieved by considering mul-
tiple variable serializations simultaneously, serializations (set1 → set2), which is
defined below:

—AG(V,E, SE) is an augmented version of graph G(V,E), which includes serial
edges SE. To allow for a feasible scheduling, AG(V,E, SE) must contain no
cycles.

—Two serializations are compatible if they can be applied together without creating
a cycle in AG(V,E, SE). The expression (u → v) | (s → t) indicates that
serializations (u→ v) and (s→ t) are compatible.

—The expression (set1 → set2) indicates the maximal set of compatible serializa-
tions: (u→ v) : u ∈ set1, v ∈ set2.

As shown in Figure 2-d, serializations ({B,C,D} → {F,G}) contain 5 compatible
serializations: {B → F}, {C → F}, {D → G}, {C → G} and {B → G}. Seri-
alization {D → F} is not selected because it is not compatible with serializations
{D → G} and {C → G}. A detailed discussion regarding compatibility checking is
presented in Section 4.3. By applying these 5 compatible serializations, the max-
imum register requirement is reduced from 5 to 3, which is one register less than
the value achieved by greedy serialization. The new maximal set in the augmented
DDG is {B,C,D}, in which all variables are required by E.

In order to select and serialize multiple variables simultaneously for the best
reduction, we present a new reduction technique, called Tetris, in the next section.

4. TETRIS REDUCTION

4.1 Overview

Tetris reduction was first presented in [Xu and Tessier 2007]. The basic idea of
Tetris reduction originates from the popular computer puzzle game. In a Tetris

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

8 · W.Xu and R.Tessier

1st step: partitioning (E0,E1) 2nd step: serialization (E0 -> E1)

A

GF

E

DCB

A

GF

E

DCB

E0 = {B,C,D}, E1 = {F,G}

Max_reg = 5 Max_reg = 3

Partitioning Serialization
Excessive set

(from measure step) (to measure step)

Augmented DDG

Tetris reduction

Data flow edge Serial edge Excessive set

Fig. 3. Tetris: a heuristic reduction technique

game, players try to move and place given random blocks to fit into a fixed width
constraint. Similarly, Tetris reduction tries to identify blocks (subset of variables)
with suitable topologies and move them to reduce the size of the excessive set from
Max reg to Phy reg (fixed width). The similarity can be observed in Figure 3,
which uses the example in Figure 2-d.

As shown in Figure 3, Tetris reduction includes two steps, partitioning and seri-
alization.

(1) Partitioning: this step identifies candidates for serialization. Variables in the
excessive set are partitioned into two subsets, E0 and E1 based on two criteria.
The first criterion indicates whether variable serializations from E0 to E1 are
possible. The second criterion indicates how much register count reduction can
be achieved. A detailed description of the partitioning algorithm is presented
in Section 4.2.

(2) Serialization: this step is applied to serialize variables in E1 after variables
in E0 by inserting serial edges into the DDG. The ordering of variable seri-
alizations is decided such that a maximal set of variable serializations can be
applied. The detailed serialization algorithm is discussed in Section 4.3.

Each code block may be subjected to multiple iterations of the Tetris algorithm
until further improvement across all excessive sets is impossible.

4.2 Partitioning

4.2.1 Definitions. Before discussing partitioning in detail, additional definitions
are presented:

—NSE(u,v) is a directed non-serializable edge (NSE) from variable u to v. This
edge indicates that serialization (u→ v) cannot be applied due to a path from v
to at least one node which is a Use(u). To maintain correct computation, both

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 9

data and control dependencies are evaluated to generate NSEs. As shown in
Figure 6-a, serialization (B → C) is not possible since there is a path from C
to E and E is a Use(B). A detailed discussion of NSE checking is provided in
Section 4.2.3.

—Bidirectional NSE(u,v) indicates that there is a NSE in both directions, (u, v)
and (v, u). As shown in Figure 6-b, the live range of variable B and variable C
cannot be separated by any serialization due to a bidirectional NSE(B,C).

—An NSE clique includes a set of variables. Each pair of variables has a bidi-
rectional NSE so that all variables in the clique must be alive simultaneously.
Formally, this relationship can be stated as u, v ∈ ES : ∀u, v,∃ NSE(u, v) &
NSE(v, u). There are three NSE cliques, {B,C,D}, {F,G} and {I}, shown in
the example in Figure 6-c. A single variable is a degenerate case of an NSE
clique.

—Partition(E0,E1) represents a bi-partitioning of the excessive set ES such that
E0 ∩ E1 = ∅ and E0 ∪ E1 = ES. In Figure 6-d, the excessive set is partitioned
into E0 = {I}, E1 = {B,C,D, F,G}.

—Pred set(E1) is the set of nodes of Pred(u), where u is a variable in E1, that
are not in the excessive set. Formally, v ∈ Pred(u) : u ∈ E1 & v /∈ ES. In Figure
7-a, Pred set(E1)={A}.

—Succ set(E0) is the set of nodes of Succ(u), where u is a variable in E0, that
are not in the excessive set. Formally, v ∈ Succ(u): u ∈ E0 & v /∈ ES. In Figure
7-a, Succ set(E0)={J}.

To identify candidates for serialization, a two-step partitioning algorithm was
developed to search for a partition (E0, E1) which achieves the best reduction.
The first step is coarsening where variables are merged into two partitions. To
improve the partition quality, the second step, refinement, is applied to minimize
the partition cost by moving variables between the two partitions. The partition
cost is evaluated during these two phases by examining relevant cost metrics:

—Coarsening cost metric: This metric evaluates the number of possible variable
serializations from E0 to E1. To maximize serializations, non-serializable edges
(NSE) from E0 to E1 should be minimized and variables in a NSE clique should
stay in the same partition. Based on this metric, the partition in Figure 6-d is
feasible since there is no directed NSE from E0 to E1.

—Refinement cost metric: This metric evaluates whether the topology of a
partition (E0, E1) can lead to register reduction. Since variables in Succ set(E0)
can be simultaneously alive with E1 after serialization, preferably |Succ set(E0)|
< |E0|. Similarly, Pred set(E1) may be alive with E0 after serialization, so
preferably |Pred set(E1)| < |E1|. Based on this criterion, the partitioning in
Figure 7-a is not a good candidate since |Succ set(E0)| = |E0| = 1.

4.2.2 Pre-partitioning: NSE construction. Prior to the two partitioning steps,
non-serializable edges between variables must be identified. As shown in Figure
4, NSEs are created for variables which are code segment inputs (outputs), since
they cannot be serialized after (before) other ES variables. Additionally, a breadth
first search is performed to locate nodes which are successors of one variable in ES

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

10 · W.Xu and R.Tessier

Given
G(V, E): a DDG with directed edges.
ES: an excessive set.

Produce
Ense: a set of non-serializable edges

Procedure NSEConstruct

for each edge (u, v) ∈ E
Succ(u) ← Succ(u) ∪ v
Pred(v) ← Pred(v) ∪ u

endfor

for each node u ∈ ES
if |Pred(u)| = 0 /* If node is graph input */

Ense ← Ense ∪ NSE(v, u), ∀ v ∈ (ES − u)

else

From node u, apply breath first search in G
Desce(u) ← all discovered nodes ∈ V

for each node v ∈ (ES − u)
if |Succ(v)| = 0 /* If node is graph output */

Ense ← Ense ∪ NSE(v, u)
else if Desce(u) ∩ Succ(v) 6= ∅

Ense ← Ense ∪ NSE(v, u)
endif

endfor

endif

endfor

end Procedure

Fig. 4. NSE construction

and descendents of another variable in ES. These ES variables also require NSEs
because they cannot be serialized.

4.2.3 Partitioning: coarsening. The main goal of the coarsening step is to min-
imize the number of non-serializable edges (NSE) from E0 to E1 based on the
data dependencies of the DDG. All variable pairs in the excessive set are evalu-
ated to check whether NSE edges should be inserted. If variable u and variable v
have a bidirectional NSE between them, then they should be merged into the same
partition. Therefore, the first step of coarsening is to create NSE cliques.

In general, if a set of variables is used by an operation, the variables in the set
must be alive simultaneously, forming an NSE clique. Based on this rule, NSE
cliques can be generated by a backward graph traversal. As shown in Figure 6-
c, NSE clique {F,G} is created first because output variables in the excessive set
cannot be serialized. As a result of a backward traversal, four additional candidate
NSE cliques are generated ({B,C,D}, {C,D}, {D} and {I}). They are required
by operations E, F , G and J respectively. Subsequently, the two largest non-
overlapping NSE cliques, {B,C,D} and {I}, are selected from the candidates.
Detailed steps used for NSE clique generation are presented in Figure 5.

After NSE clique generation, the coarsening step merges two NSE cliques together

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 11

Given
G(V, E): a DDG with directed edges.
ES: an excessive set.

Produce
Cliquesel: a minimum-size set of NSE cliques that covers ES

Procedure CliqueGenerate

/* Intermediate values */
Cliquecand: a set of candidate NSE cliques
Q: Queue which holds u ∈ V during graph traversal

done[]: array which indicates node u ∈ V has been visited

/* Form clique from all graph outputs */
Clear Cliquecand, Q, done[]

for each node u ∈ ES,
if |Succ(u)| = 0

done[u] = YES; Q.push(u)

clique ← clique ∪ u
endif

endfor

Cliquecand ← Cliquecand ∪ clique

/* Find cliques to cover ES */
while Q 6= ∅

u ← Q.pop()

for each node v ∈ Pred(u) /* Backward graph traversal */
if v ∈ ES

clique ← clique ∪ v

endif if done[v] == NO
done[v] = YES; Q.push(v)

endif

endfor

Cliquecand ← Cliquecand ∪ clique
endwhile

Uncovered nodes: nodes in ES not covered by a clique

partition ind[]: clique indices for each node u in ES

/* Select minimum-sized set of cliques that covers ES */

Uncovered nodes ← ES, j = 0
while Uncovered nodes 6= ∅

loop over all cliques ∈ Cliquecand

clique ← clique i ∈ Cliquecand which maximizes |Cliquecand[i] ∩ Uncovered nodes|
endloop

for each node u ∈ clique
partition ind(u) = j

endfor

Uncovered nodes = Uncovered nodes - clique
Cliquesel[j] = clique; j++

endwhile

end Procedure

Fig. 5. NSE clique generation

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

12 · W.Xu and R.Tessier

A

GF

E

DCB

(a). Excessive set in original DDG

 (Max_reg = 6)

I

J

H

GF

DCB I

(b). NSEs in excessive set

(c). NSE clique generation

Data flow edge Non-serializable edge (NSE)Excessive set

GF

DCB I

GF

DCB I

(d). Partition coarsening

E0E1

Fig. 6. Partitioning: coarsening step

Data flow edge Non-serializable edge Excessive set

E1

E0

E

H

IGF

DCB

Succ_set(E0)

A
Pred_set(E1)

J

(c). Move {I} from E0 to E1

P_cost_new = 0, accepted

 (Creg = 0, Cnse = 0)

E1

E0

I

GFDCB J

A

(a). Initial partition after coarsening

P_cost_init = 2.24

(Creg = 2, Cnse = 0.24)

Pred_set(E1)

Succ_set(E0)

E

H

E1

E0

I

GF

DCB

JE

Succ_set(E0)

A H

(b). Move {B,C,D} from E1 to E0,

P_cost_new = 0, accepted

(Creg = 0, Cnse = 0)

Phy_reg = 4

Fig. 7. Partitioning: refinement step

based on the number of NSE edges between them. As shown in Figure 6-c, NSE
clique {B,C,D} and {F,G} are merged together since they have the most NSE
edges (6) between them. The coarsening step repetitively merges partitions until
it reaches two partitions. As shown in Figure 6-c, after coarsening, the initial
partition is E0 = {I} and E1 = {B,C,D, F,G}. Detailed steps used for coarsening
are presented in Figure 8.

4.2.4 Partitioning: refinement. To improve the partition quality, the refinement
step moves variables between two partitions. The partition quality is evaluated
based on the partition cost, P cost, which is defined below:

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 13

P cost = Creg + CNSE ; (1)

The Creg term represents the non-negative gap between the maximum register
requirement, Max reg and available physical registers, Phy reg.

Creg = Max((Max reg − Phy reg), 0); (2)

The expected Max reg after serialization from E0 to E1 is calculated based on
the topology of E0 and E1.

Max reg = Max((|E0|+ |Pred set(E1)|), (|E1|+ |Succ set(E0)|)); (3)

As shown in Figure 7-a, the example partition has the following topology: |E0|
= 1, |Pred set(E1)| = 1; |E1| = 5, |Succ set(E0)| = 1. Assuming Phy reg = 4,
then Creg = Max(2,6) - 4 = 2.

Term CNSE includes two parts as shown in Equation 4. The first part, NSE(E0, E1),
is the number of directed non-serializable edges (NSE) from E0 to E1. The smaller
the value of NSE(E0, E1), the more variable serializations can be achieved from
E0 to E1. To estimate the effect of non-serializable edges on the achievable register
reduction, a scalar factor α = 1/Max(|E0|, |E1|) is applied.

CNSE = α×NSE(E0, E1) + (β0 ×NSE(E0) + β1 ×NSE(E1)); (4)

The second part, which is based on NSE(E0) and NSE(E1), is the number of
directional NSE between NSE cliques in E0 and E1, respectively. This part is only
effective when Creg is positive, indicating another round of reduction is required to
avoid spills. To allow for further reduction, NSE(E0) and NSE(E1) should also
be minimized. To estimate the effect of NSE(E0) and NSE(E1), scalar factors β0

= (0.1 × Creg)/|E0| and β1 = (0.1 × Creg)/|E1| are applied. The denominators
in α, β0, and β1 indicate a bias towards unbalanced partition sizes. Large |E0| or
|E1| sets can be more easily reduced in later iterations of the Tetris algorithm. The
0.1 factor was determined via experimentation. The value indicates the relative
importance of inter-partition versus intra-partition NSEs.

For the initial partition shown in Figure 7-a, Creg = 6 - 4 = 2, CNSE =
β1 × NSE(E1) = 0.24 and the initial cost value P cost init = Creg + CNSE =
2.24. Note that NSE(E0) is 0 since there are no non-serializable edges in E0 and
NSE(E0,E1) is 0 since there are no non-serializable edges between E0 and E1. To
minimize the partition cost, a refinement step un-coarsens partitions and randomly
moves NSE cliques from E1 to E0, then E0 to E1. In general, if the new partition
cost, P cost new, is smaller than the initial partition cost, P cost init, then the
move is accepted. The partition snapshot with the smallest P cost is recorded and
chosen as the final partition. Detailed steps used for refinement are presented in
Figure 9.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

14 · W.Xu and R.Tessier

Given
G(V, E): a DDG with directed edges.
ES: an excessive set.
Cliquesel: a minimum-size set of NSE cliques that covers ES

Produce
E0, E1: Partitioning of ES
partition ind[]: Partition assignment indices for cliques

NSE(E0, E1), NSE(E0), NSE(E1): Sets of non-serializable edges between/within partitions

Procedure PartitionCoarsen

/* Intermediate values */
NSE count: two dimension array recording NSE count between/within partitions
Partition: Working set of clique groupings

/* Merge cliques until only two partitions are left */
Partition = Cliquesel

while |Partition| > 2

Initialize NSE count[][] to 0
for each NSE(u, v) ∈ Ense

NSE count[partition ind[u], partition ind[v]]++
endfor

Select i, j that maximizes (NSE count[i][j]+NSE count[j][i])
Partition[i] ← Partition[i] ∪ Partition[j]
for each node u in Partition[j]

partition ind[u] = i

endfor

endwhile

E0 ← Partition[0]; E1 ← Partition[1]
NSE(E0, E1) = NSE count[0][1]
NSE(E0) = NSE count[0][0]; NSE(E1) = NSE count[1][1]

end Procedure

Fig. 8. Partitioning coarsening

As shown in Figure 7-a, partition E1 contains two NSE cliques, {B,C,D} and
{F,G}. Partition E0 contains only one NSE clique, {I}. The refinement of this
example is described below:

(1) Move {B,C,D} from E1 to E0 as shown in Figure 7-b. This move reduces
C reg to 0 and C NSE to 0. Because P cost new (0) < P cost init (2.24),
this move is accepted.

(2) Move {I} from E0 to E1 as shown in Figure 7-c. Because this move does not
change Creg and CNSE , it is also accepted.

In this example, the partition in Figure 7-c has a minimum P cost of 0. Therefore,
the final partition is E0 = {B,C,D} and E1 = {F,G, I}.

4.2.5 Partitioning: complexity analysis. The complexity of each stage of par-
titioning can be characterized based on V , the number of variables (nodes) in
graph G(V,E). NSE construction requires nested loops. The outer loop requires

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 15

Given
G(V, E): a DDG with directed edges.
E0, E1: Partioning of ES

NSE(E0, E1), NSE(E0), NSE(E1): Non-serializable edges between/within partitions
partition ind[]: Partition assignment indices for nodes

Produce
updated E0, E1: Partitioning of ES

Procedure PartitionRefinement

/* Determine predecessor and successor sets for each clique */

for each node u ∈ ES
for each incoming edge (v, u) ∈ E

Pred set[partition ind[u]] ← Pred set[partition ind[u]] ∪ v

endfor

for each outgoing edge (u, v) ∈ E
Succ set[partition ind[u]] ← Succ set[partition ind[u]] ∪ v

endfor

endfor

/* Intermediate values */

Pred set: Set of nodes Pred(u), where u is a node in a partition
Succ set: Set of nodes Succ(u), where u is a node in a partition
P cost min: Minimum partition cost (P cost)

/* Consider successors or predecessors not in ES */
Pred set(E1) ← Pred set[1] - (Pred set[1] ∩ ES)
Succ set(E0) ← Succ set[0] - (Succ set[0] ∩ ES)
Calculate Max reg using Equation (3)

Calculate P cost(E0, E1) using Equation (1)
P cost min = P cost(E0, E1)

/* Swap cliques to find lower cost partitioning */
for each clique ∈ E0

E0′ ← E0 - clique
E1′ ← E1 + clique

Based on (E0′, E1′), update NSE count, Pred set[] and Succ set[]
Calculate P cost(E0′, E1′) using Equations(1-4)
if P cost(E0′, E1′) < P cost min

P cost min = P cost(E0′, E1′)

E0 ← E0′; E1 ← E1′

endif

endfor

Repeat above for loop for clique movement E1 to E0
end Procedure

Fig. 9. Partitioning refinement

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

16 · W.Xu and R.Tessier

O(|ES|) iterations since all nodes in the ES are considered. For each node, a breath
first search, which takes O(|V | + |E|), is applied. The inner-loop, which requires
O(|ES|) iterations, checks the intersection of two sets, which takes O(|V |). There-
fore, the complexity of NSE construction is O(|ES| * (|V | + |E| + |ES| * |V |)) =
O(|V |3).

The NSE clique generation step first creates a clique of graph output nodes,
O(|V |). A backward traversal of the DDG is then performed, which requires O(|V |
+ |E|) steps. The final loop applies a greedy minimum-size set covering algorithm
of O(|V |3) steps. Overall, the complexity of NSE clique generation is O(|V |3).

The coarsening step contains a loop with O(|ES|) iterations. In each iteration,
NSE count calculation takes O(|Ense|). Maximum NSE count selection therefore
requires O(|ES|2). Since partition merging requires O(|ES|), the complexity of the
coarsening step is O(|ES| * (|Ense| + |ES|2) = O(|V |3).

The refinement step first constructs Pred set and Succ set, which requires O(|ES|
+ |E|) steps. During clique swapping, two loops are used. The first loop requires
|E0| iterations. During the loop, a clique is moved to E1 and a new cost is cal-
culated. These actions require an update of NSE count, Pred set and Succ set
with a complexity of O(|Ense| + |ES| + |E|). Thus, the complexity of the first
loop is O(|E0| * (|Ense| + |ES| + |E|)). The second loop that moves cliques from
E1 to E0 has similar complexity as O(|E1| * (|Ense| + |ES| + |E|)). Overall, the
complexity of the refinement step is O(|ES| * (|Ense| + |ES| + |E|)) = O(|V |2).

4.3 Serialization

Serialization is applied after partitioning. The goal of this step is to select and apply
serialization (E0 → E1), forming a maximal set of compatible serializations
from E0 to E1.

As discussed in Section 3, compatible serializations represent a set of serializa-
tions that can be applied together without causing cycles which inhibit schedules.
Since serialization (D → F) (Figure 10-a) requires a serial edge (G to F) and serial-
ization (D → G) requires a serial edge (F to G), applying both serializations causes
a cycle between F and G. Therefore, serializations (D → F) and (D → G) are not
compatible and they cannot be applied simultaneously. Formally, serialization for
(u→ v) cannot be applied if one of following conditions is true:

(1) |Pred(v)| = 0. This expression indicates that node v is an input node of
the DDG. Because Lv(v) starts from the beginning of the DDG, v cannot be
serialized after other nodes. Therefore, NSE(u, v) is inserted.

(2) |Succ(u)| = 0. This expression indicates that node u is an output node of the
DDG. Because Lv(u) does not end in the DDG, no other nodes can be serialized
after u. Therefore, NSE(u, v) must be inserted.

(3) Succ(u) ∩ Desce(v) 6= ∅; Desce(v) is a set of nodes: w ∈ V , where ∃ a path
(v, w)

If the condition (3) is true, then (u → v) will create a cycle. A proof of this
condition appears in Appendix A in Lemma 1.

As discussed in Section 3, compatible serializations represent a set of seri-
alizations that can be applied together without causing cycles. Cycles caused by

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 17

A

GF

E

DCB

(a). E0 = {B,C,D}, E1 = {F,G,I}

I

J

H

(b). Serialization interference graph (SIG)

E0

E1

A

G
FE

DCB

I

J

H
E0

E1

(d). Augmented DDG after serializations

Data flow edge

Serial edge

(B->F)

(C->F)

(B->G)

(C->G)

(D->G)

(D->F)

Excessive set Serialization node (Crit_inc = 1)

(c). Maximal set of serializations

Selected serialization node

E2

(B->I)

(C->I)

(D->I)

(B->F)

(C->F)

(B->G)

(C->G)

(D->G)

(D->F)

(B->I)

(C->I)

(D->I)

Fig. 10. Serialization step

incompatible serializations can inhibit any possible schedule. In order to select a
maximal set of compatible serializations from E0 to E1, a two-step serialization
algorithm is used. The first step checks compatibility between serializations and
creates a serialization interference graph (SIG). The second step selects and
applies a maximal set of serializations based on the SIG.

4.3.1 SIG Construction. To represent serialization compatibility, this step cre-
ates a new graph called a serialization interference graph (SIG) based on the parti-
tioning result (E0, E1). SIG(SV, IE) contains a set of serialization nodes (snodes)
SV and a set of non-directed interference edges (iedges) IE. These terms are
formally defined as:

—A serialization node represents a potential serialization (u → v) if there is
no NSE(u, v). As shown in Figure 10-a, the partition, E0 = {B,C,D} and
E1 = {F,G, I}, has no NSE(E0, E1). Therefore, SV in Figure 10-b contains
all 9 potential serialization nodes from {B,C,D} to {F,G, I}. Formally, SV ←
(u→ v): u ∈ E0, v ∈ E1 & no NSE(u, v)).

—A serialization interference edge between two serialization nodes indicates
that the nodes are incompatible and they cannot be applied together. Figure
10-b shows that there is an interference edge between snode D → F and snode
D → G because they are not compatible.

A compatibility check evaluates all pairs of serialization nodes in a SIG. If two
serializations (u → v) and (s → t) are incompatible, then there must be a cycle
caused by serial edge (Use(u) to v) and (Use(s) to t), where Use(u) ∈ Succ(u) and
Use(s) ∈ Succ(s). Such cycles can only exist if there is a path from t to Use(u)

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

18 · W.Xu and R.Tessier

/* Construct a SIG based on partition (E0,E1) */
Given

G(V, E): a DDG with directed edges.
E0, E1: Partioning of ES

Ense: set of non-serializable edges
Produce

SV : set of serialization nodes (snodes) for graph G
IE: set of interference edges (iedges) for graph G

SIG(SV, IE): a graph with undirected edges

Procedure SIGConstruct

SV = ∅; IE = ∅;
for each node u ∈ E0

E1′ = E1; /* Make copy of E1 */
/* Remove nodes that already have a non-serialization edge */

for each edge NSE(u, v) ∈ Ense

E1′ = E1′ - v;
endfor

for each node v ∈ E1′

SV ← SV ∪ snode(u→ v)
endfor

endfor

for each pair (snode1, snode2) ∈ SV
/* Compatibility check involves check for two NSEs and two node comparisons loops */
if compatibility check in Section 4.3.1 for snode1, snode2 is not satisfied

IE = IE + iedge(snode1, snode2)
endif

endfor

end Procedure

Fig. 11. SIG construction

and another path from v to Use(s). A path from t to Use(u) indicates either there
is a NSE(u, t) or t is a Use(u). Similarly, a path from v to Use(s) indicates either
there is a NSE(s, v) or v is a Use(s). Therefore, serializations (u→ v) and (s→ t)
are incompatible if and only if at least one of following compatibility check
conditions is true

(1) v is a Use(s) and t is a Use(u).

(2) v is a Use(s) and there is a NSE(u, t).

(3) There is a NSE(s, v) and t is a Use(u).

(4) There is a NSE(s, v) and a NSE(u, t).

A proof of these conditions appears in Appendix A in Lemma 2. Detailed steps
used for SIG construction are presented in Figure 11.

4.3.2 Maximal Serializations. Since two compatible serialization nodes are not
connected (independent) in a SIG, determining the maximal set of compatible seri-
alizations for a SIG is equivalent to finding the SIG maximum independent set. This
maximum independent set problem has previously been shown to be NP-complete

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 19

[Cormen et al. 1990]. To address this issue, we have developed a heuristic to find
the maximal set of serializations. Our heuristic uses a serialization cost function
S cost that includes two terms, N deg and Crit inc.

S cost = γ ×N deg + Crit inc; (5)

The N deg term is the SIG node degree, the number of serialization interference
edges connected to the node. As shown in Figure 10-b, serialization node {D → F}
has a node degree of 2, which indicates that it is not compatible with two other
serializations.

Crit inc represents the non-negative critical path increase caused by serial edges.
A serial edge from a Use(u) to v increases the critical path by:

Crit inc(Use(u) to v) = Max((Etime(Use(u))− Ltime(v) + 1), 0); (6)

where Etime/Ltime represents the earliest/latest time a node can be scheduled
without increasing the DDG critical path. The earliest time (Etime) of an operation
is calculated by a forward graph traversal using the following equation:

Etime(v) = Max(Etime(w) + Delay(w)); (7)

where w are variables required to calculate v. Delay(w) represents the delay of
operation w. For demonstration purposes, all operations in example DDGs have the
same delay of once clock cycle. As shown in Figure 10-a, Etime of E depends on
Etime and Delay of three operations, B, C and D because {B,C,D} are required
to calculate E. Similarly, the latest time (Ltime) of an operation is calculated by
a backward graph traversal using the following equation:

Ltime(v) = Min(Ltime(Use(v))−Delay(v)); (8)

Etime and Ltime values can be determined using a graph slack analysis algorithm
[Marquardt et al. 2000], which requires a forward and backward graph traversal of
the DDG. For a serialization node (u → v) requiring multiple serial edges, the
critical path increase is decided as:

Crit inc(u→ v) = Max(Crit inc(Use(u) to v)); (9)

As shown in Figure 10-a, the critical path of the original DDG is A-B-E. Based
on Equation 7 and 8, A and H have (Etime, Ltime) of (1, 1). B, C, D and I have
(Etime, Ltime) of (2, 2). E, F , G and J have (Etime, Ltime) of (3, 3).

For a serialization node (B → F) shown in Figure 10-b, only one serial edge
(E to F) is required. Based on Equation 6, this serial edge increases the critical

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

20 · W.Xu and R.Tessier

path by Max((Etime(E) - Ltime(F) + 1), 0) = 1. The DDG critical path is
increased from A-B-E to A-B-E-F. Based on Equation 9, Crit inc for serialization
node (B → F) is equal to 1. Similarly, other serialization nodes in Figure 10-b can
be calculated using above equations. In this example, all serialization nodes have
the same Crit inc of 1.

To maximize the total number of compatible serializations, the scalar factor γ
is set to 1024 so that the serialization node selection is first biased towards N deg
values of 0, followed by N deg values of 1 with minimal Crit inc values. To control
the critical path increase caused by serial edges, a threshold is set to prevent certain
serializations. In our experiments, if the Crit inc of a serialization node is larger
than three times of the delay of a memory access operation, it is not applied,
regardless of N deg.

The SIG in Figure 10-c illustrates that our heuristic continuously selects the
serialization node with the smallest S cost until there are no more compatible
serialization nodes left in the SIG. When a serialization node (u → v) is selected,
serial edges (Use(u) to v) are inserted into the DDG. A detailed outline of this step
is presented as part of Figure 12.

For the example in Figure 10-c, all serialization nodes have the same Crit inc
of 1. The serialization node with the minimum N deg is selected and applied first.
The serialization process is shown below:

1. Select 7 serialization nodes with N deg of 0:

—{B → F} requires a serial edge (E to F).

—{B → I} requires a serial edge (E to I).

—{B → G} requires a serial edge (E to G).

—{C → F} requires a serial edge (E to F).

—{C → I} requires 2 serial edges, (E to I) and (F to I).

—{D → I} requires 3 serial edges, (E to I), (F to I) and (G to I).

2. Select 2 serialization nodes with N deg of 1:

—{D → G} requires 2 serial edges (E to G) and (F to G).

—{C → G} requires 2 serial edges (E to G) and (F to G).

After step 2, there is no compatible serialization node left in the SIG since {D →
F} interferes with both {D → G} and {C → G}.

As shown in Figure 10-d, after applying the above 8 serializations, the augmented
DDG contains 6 serial edges. Max reg of the augmented DDG is reduced from 6
to 4 with a critical path increase of 4. The new excessive set is {B,C,D, I} and
the new critical path is A-B-E-F-G-I-J.

A limitation of the Tetris heuristic is that it only focuses on reducing the max-
imum register requirement. As a consequence, Tetris may cause a significant in-
crease in the DDG critical path, which may limit the final performance. In the
above example, a register reduction of 2 is achieved at the cost of a large critical
path increase of 4. To address this limitation, we present an enhanced heuristic,
Tetris-XL, in Section 5. Details of serialization selection are included in Figure
12. In general, Tetris does not guarantee a reduction in Max reg. For example,
a collection of node pairs in an initial DDG, with each pair connected by a single

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 21

Given
G(V, E): a DDG with directed edges.
ES: an excessive set.
SV : serialization nodes (snodes)

IE: interference edges (iedges)
SIG(SV, IE): a graph with undirected edges

Produce

snode sel: subset of SIG(SV, IE) representing selected serializations
SE: set of serial edges to be added to DDG G

Procedure SnodeSelect
Determine etime(u) and ltime(u) values for each u ∈ ES

using slack analysis algorithm [Marquardt et al. 2000]
/* Calculate serialization cost */

S cost: cost of an snode in SV
/* Evaluate performance loss from serial edges. */
for each snode ∈ SV

u = From(snode); v = To(snode)
for each node w ∈ Succ(u)

Calculate Crit inc(w to v) using Equation 6
endfor

Crit inc(snode) = MAX(Crit inc(w to v))
Calculate S cost using Equation 5

endfor

/* Intermediate values */
S sort: List of serialization snodes sorted by S cost
Snode conflict: serializations which cannot be used due to conflicts

/* Select serializations and identify required serial edges. */
S sort ← Sort SV by S cost
while |S sort| 6= ∅

snode = Head(S sort)
if snode /∈ Snode conflict

snode sel ← snode sel ∪ snode

p ← From(snode); q ← To(snode)
for each node r ∈ (Succ(p) - q)

SE ← SE ∪ sedge(r to q)
endfor

for each iedge (snode, snode1) ∈ IE
Snode conflict ← Snode conflict ∪ snode1

endfor

endif

endwhile

end Procedure

Fig. 12. Serialization selection

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

22 · W.Xu and R.Tessier

directed edge, cannot be serialized if the edge sources are graph inputs and the
sinks are graph outputs.

4.3.3 Serialization: complexity analysis. In the SIG construction step, serializa-
tion node generation requires O(|Ense| + |E0|*|E1|) steps. The interference edge
generation evaluates O(|E0|2*|E1|2) snode pairs. For each snode pair, the compat-
ibility check takes O(|1|). Therefore, the complexity of the SIG construction step
is O(|E0|2*|E1|2) = O(|V |4), although in most cases the size of the excessive set is
much smaller than the total set of DDG nodes.

The S cost calculation step first applies a topological ordering of G, which takes
O(|V| + |E|) steps. The etime calculation applies a forward traversal of G, which
takes O(|V| + |E|) steps. Similarly, the ltime calculation applies a backward traver-
sal of G, which also takes O(|V| + |E|) steps. The S cost calculation takes O(|SV| +
|IE|) = O(|E0|*|E1| + |E0|2*|E1|2) steps. Therefore, the complexity of the S cost
calculation step is O(|E0|2*|E1|2) = O(|V |4) .

The serialization selection step first applies a sort, which requires O(|SV |ln|SV |)
steps. Then, the selection step takes O(|SV| + |IE|) = O(|E0|*|E1| + |E0|2*|E1|2)
steps. Therefore, the complexity of the serialization selection step is O(|E0|2*|E1|2)
= O(|V |4).

4.3.4 Serializations: Comparison to URSA. Although there are significant dif-
ferences, URSA provides a serialization approach which is somewhat similar to
Tetris. Like Tetris, URSA first determines the excessive set of a code block. To
reduce the excessive set, URSA moves an operation to a separate resource hole. If
an operation is the last operation in the live range of several variables, this action
may free up several registers. A limitation of the approach is that it only considers
moving an individual operation at each step. It is observed that in many situa-
tions, it could be more beneficial to apply serializations in groups rather than as
individual operations [Berson et al. 1998]. Compared with URSA, Tetris tries to
apply a group of serializations by moving a partition of nodes in the excessive set
to a position after other nodes. This approach may be especially beneficial when
two parts of the excessive set are relatively independent.

5. DELAY REDUCTION VIA TETRIS-XL

The main difference between Tetris and Tetris-XL is shown in Figure 13. As dis-
cussed in Section 4, the Tetris partitioning heuristic includes the following steps.
The first partitioning step is coarsening, which generates the initial partitions (E0,
E1) while minimizing the number of non-serializable edges (NSEs) from E0 to E1.
The second partitioning step is refinement, which moves variables between par-
titions E0 and E1 to reduce the maximum register requirement. Because Tetris
refinement only considers register reduction, subsequent serialization may signifi-
cantly increase the DDG critical path.

To address this limitation, Tetris-XL applies an alternate refinement step as
shown in Figure 13. The Tetris-XL refinement evaluates both the maximum register
requirement and the critical path increase. The coarsening and serialization steps
are the same for both Tetris and Tetris-XL.

To demonstrate the basic idea of Tetris-XL, a simple example is presented in

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 23

Partitioning:

refinement

(Tetris)

Serialization
Excessive set

(from measure step) (to measure step)

Augmented DDG

Reduction

Partitioning:

refinement

(Tetris-XL)

Partitioning:

coarsening

Tetris refinement -> register reduction

Tetris-XL refinement -> register reduction & critical path increase

Fig. 13. Tetris and Tetris-XL flow

Figure 14. The example DDG in Figure 14-a contains 7 operations. Assume all
operations have unit delay so that the original critical path is 3 (e.g. A-B-D).
As shown in Figure 14-b, when operations D and I are scheduled last, variables
{B,C,H, F} are alive simultaneously and the maximum register requirement is 4.
If only 3 physical registers are available, variables {B,C,H, F} form an excessive
set, which requires a reduction step.

As shown in Figure 14-c, Tetris bi-partitions the excessive set into E0 = {B,C}
and E1 = {F,H}. After serializing {F,H} after {B,C}, the maximum register
requirement is reduced from 4 to 3. For the example shown in Figure 14-c, the
augmented DDG has a maximum register requirement of 3 {D,F,H} and a crit-
ical path of 6 (A-B-D-F-H-I). Since Tetris-XL considers both register reduction
and critical path control, Tetris-XL removes variables from serializations if they
increase the critical path or do not contribute to register reduction. These removed
variables form a separate partition E2, which stays unchanged after serialization.
For example, Figure 14-d shows that variable H is removed from serialization, the
critical path is reduced and register reduction is maintained. If {F} is serialized
after {B,C}, the augmented DDG requires the same maximum register count of
3 {D,F,H} and exhibits a smaller critical path of 4 (A-B-D-F), leading to better
performance.

In the next section, the partition cost function used in the Tetris-XL refinement
is discussed. The cost function is then applied to the same refinement example used
to describe Tetris.

5.1 Tetris-XL Partition Cost

In Tetris refinement, variables are moved between partitions E0 and E1 to re-
duce the partition cost, P cost, which represents the maximum register require-
ment. Tetris-XL moves variables between E0 and E1 based on a new cost function,
P cost XL, which takes both critical path increase and the maximum register re-
quirement into account. If a variable in E0 or E1 does not contribute to register
reduction, Tetris-XL moves it to a separate partition, E2. The same action is per-
formed if a variable in E0 or E1 causes a large critical path increase. The Tetris-XL

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

24 · W.Xu and R.Tessier

Data flow edge Serial edge Excessive set

Succ_set(E0) E1

E0

(a). Original DDG

(Crit_path = (A-B-D) = 3)

A

I

F

D

HCB

A

I

F

D

H

CB

Pred_set(E1)

Succ_set(E0) E1

E0
A

I

F

D

H

CB

A

IFD

HCB

(b). Max_reg = {B,C,H,F} = 4

(c). Tetris refinement

(Max_reg = {D, F, H} = 3)

(Crit_path = (A-B-D-F-H-I) = 6)

(d). Tetris-XL refinement

(Max_reg = {D, F, H} = 3)

(Crit_path = (A-B-D-F) = 4)

Phy_reg = 3

E2

Fig. 14. Tetris refinement versus Tetris-XL refinement

cost function, P cost XL, is defined as:

P cost XL = Creg XL + CNSE + Ccrit XL; (10)

Compared with the Tetris cost function, P cost, shown in Equation 1, P cost XL
adds a new Ccrit XL term that evaluates the effects of critical path increase. To
consider the effect of the new partition E2 on the maximum register requirement,
Tetris-XL also applies a Creg XL term to replace the Creg term in the previous
Tetris cost function. The original CNSE term used in Tetris is kept unchanged in
Tetris-XL.

Figure 15 shows the calculation of the P cost XL for two partitions with CNSE

= 0. Both partitions are taken from the example in Figure 14. The Creg XL

term represents the non-negative gap between the maximum register requirement,
Max reg XL and available physical registers, Phy reg.

Creg XL = Max((Max reg XL− Phy reg), 0); (11)

In Tetris-XL, variables in partition E2 can be alive simultaneously with either
E0 or E1. Therefore, the Max reg XL term is calculated based on the topology
of E0, E1 and E2.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 25

Data flow edge Serial edge Excessive set

Succ_set(E0) E1

E0

A

I

F

D

H

CB

Pred_set(E1)

Succ_set(E0) E1

E0
A

I

F

D

H

CB

(a). P_cost_XL = 0 + 0 + 0.75 = 0.75

(Creg_XL = 3 – 3 = 0)

 (Cnse = 0)

(Ccrit_XL = (¼)*3 = 0.75)

Phy_reg = 3

E2

(b). P_cost_XL = 0 + 0 + 0.25 = 0.25

(Creg_XL = 3 – 3 = 0)

 (Cnse = 0)

(Ccrit_XL = (¼)*1 = 0.25)

Fig. 15. Tetris-XL partition cost

Max reg XL = Max((|E0|+ |Pred set(E1)|), (|E1|+ |Succ set(E0)|)) + |E2|;
(12)

As shown in Figure 15-b, the example partition has the following topology, |E0|
= 2, |Succ set(E0)| = 1, |E1| = 1, |Pred set(E1)| = 0 and |E2| = 1. Based on
Equation 12, Max reg XL = Max(2, 2) + 1 = 3. Similarly, the partition in Figure
15-a has Max reg XL = Max(3, 3) + 0 = 3. Because Phy reg = 3, both partitions
have the same Creg XL = 3 - 3 = 0.

The second new term, Ccrit XL estimates the DDG critical path increase caused
by all serializations and evaluates its adverse effect on final performance.

Ccrit XL = ρ× Tot crit inc; (13)

In Equation 13, Tot crit inc represents the critical path increase in terms of clock
cycles. As shown in Figure 15-b, the partition requires a serial edge (D to F), which
increases the critical path from A-B-D to A-B-D-F. Based on the assumption that
all operations in the DDG have one clock cycle delay, the critical path is increased
by one clock cycle. If a DDG contains operations with various delays, Equation 6
can be applied to calculate the critical path increase. When multiple serial edges
are required, the critical path increase of consecutive serial edges is accumulated.
Tot crit inc is decided by the maximum accumulated critical path increase. As
shown in Figure 15-a, the partition requires three serial edges. Serial edge (D to
F) increases the critical path by one clock cycle (from A-B-D to A-B-D-F). Serial
edge (D to H) increases the critical path by two clock cycles (from A-B-D to A-
B-D-H-I). Serial edge (F to H) also increases the critical path by two clock cycles
(from A-B-D to A-C-F-H-I). Finally, two consecutive serial edges, (D to F) and
(F to H) determine that Tot crit inc = 1 + 2 = 3 clock cycles (from A-B-D to

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

26 · W.Xu and R.Tessier

A-B-D-F-H-I).
To decide whether a serialization can improve performance, Tetris-XL considers

both the benefit of register reduction and the cost of critical path increase. For
example, the serialization in Figure 15-a reduces the maximum register requirement
by 1 but increases the critical path by 3 clock cycles. The register reduction of 1
saves one spill. As a consequence, it eliminates at least one memory store and one
memory load operation. Assuming that both store and load operations have the
same delay, Mem delay = 2 clock cycles, the register reduction of 1 may reduce the
critical path by 2 × Mem delay = 4 clock cycles. Because the benefit of register
reduction (4 clock cycles) overweighs the cost of critical path increase (3 clock
cycles), the serialization is likely to improve the performance.

To make a tradeoff between register reduction and critical path increase, Equation
13 applies a constant scalar factor ρ = 1/(2 × Mem delay). For the partition in
Figure 15-a, it has been shown that Tot crit inc = 3 so that Ccrit XL = 1/(2 × 2)
× Tot crit inc = 1/4 × 3 = 0.75. Based on Equation 10, the partition in Figure
15-a has P cost XL = Creg XL + CNSE + Ccrit XL = 0 + 0 + 0.75 = 0.75. For
the partition in Figure 15-b with Tot crit inc of 1, Ccrit XL = 1/4 × 1 = 0.25 and
P cost XL = 0 + 0 + 0.25 = 0.25. Therefore, Tetris-XL selects the partition in
Figure 15-b with the smaller P cost XL of 0.25.

5.2 Tetris-XL Refinement

Tetris-XL uses the cost metrics shown in Equations 10 through 13 and the algorithm
shown in Figure 9 to reduce the partition cost, P cost XL. In general, Tetris-XL
un-coarsens the initial partitions and randomly moves NSE cliques between E1, E0
and E2. If the partition cost after a move, P cost XL new is smaller than the initial
partition cost, P cost XL init, then the move is accepted. The partition snapshot
with the smallest P cost XL is recorded and chosen as the final partition.

Figure 16 shows the Tetris-XL refinement applied to the example illustrated in
Figure 7. Because Tetris-XL applies the same coarsening step as Tetris, the same
initial partition is generated, as shown in Figure 16-a. In the initial partition,
the maximum register requirement is 6 so that Creg XL = 6 - 4 = 2. Tetris-XL
uses the CNSE term defined in Equation 4 so the value remains 0.24. Serializing
{B,C,D, F,G} after {I} requires 5 serial edges from J , which causes a Tot crit inc
of 2 (from A-B-E to H-I-J-B-E). Assuming the memory access delay is 2 clock cycles,
Ccrit XL = 1/(2 × 2) × 2 = 0.5. Therefore, the initial partition cost P cost XL init
= 2 + 0.24 + 0.5 = 2.74. The Tetris-XL refinement of this initial partition is
described below.

(1) Move {B,C,D} from E1 to E0 as shown in Figure 16-b. After this move, the
maximum register requirement is reduced to 4 so that Creg XL = 4 - 4 = 0.
CNSE is reduced to 0 because there is no NSE from E0 to E1. Serializing
{B,C,D, I} after {F,G} increases the critical path by 2 (from A-B-E to A-B-
E-F-G) and Ccrit XL = 1/(2 × 2) × 2 = 0.5. Because P cost XL new (0.5) ≤
P cost XL init (2.74), this move is accepted.

(2) Move {I} from E0 to E1 as shown in Figure 16-c. After this move, Creg XL

remains as 0 but the critical path is increased by 4 (from A-B-E to A-B-E-F-G-
I-J) and Ccrit XL = 1/(2 × 2) × 4 = 1. Therefore, P cost XL new is increased

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 27

Data flow edge Non-serializable edge Excessive set

Succ_set(E0) E1

E0

E

H

I

G

F

DCB

A

J E2

(d). Move {I} from E1 to E2

P_cost_XL_new = 0.5, accepted

 (Creg_XL = 0, Cnse = 0, Ccrit_XL = 0.5)

E1

E0

E

H

I

G

F

DCB

Succ_set(E0)

A Pred_set(E1)

J

(c). Move {I} from E0 to E1

P_cost_XL_new = 1, accepted

 (Creg_XL = 0, Cnse = 0, Ccrit_XL = 1)

E1

E0

I

GFDCB

J

A

(a). Initial partition after coarsening

P_cost_XL_init = 2.74

(Creg_XL = 2, Cnse = 0.24, Ccrit_XL = 0.5)

Pred_set(E1)

Succ_set(E0)

E

H

E1

E0

I

F

G

DCB

JE

Succ_set(E0)

A H

(b). Move {B,C,D} from E1 to E0,

P_cost_XL_new = 0.5, accepted

(Creg_XL = 0, Cnse = 0, Ccrit_XL = 0.5)

Phy_reg = 4

Serial edge

Memory load latency = 2

Fig. 16. Partitioning: refinement step (Tetris-XL)

to 1. Because P cost XL new (1) is still smaller than P cost XL init (2.74),
this move is also accepted.

(3) Move {I} from E1 to E2 as shown in Figure 16-d. After this move, Creg XL

stays unchanged while the critical path increase drops to 2 (from A-B-E to A-
B-E-F-G). P cost XL new is reduced from 1 to 0.5 and the move is accepted.

In the above example , the partition in Figure 16-d is recorded as the final best
partition with a smallest P cost XL of 0.5. The final partition is E0 = {B,C,D},
E1 = {F,G} and E2 = {I}.

5.3 Tetris-XL Serialization

Tetris-XL applies the same serialization step as Tetris. First, a serialization in-
terference graph (SIG) is generated as shown in Figure 17-b. The SIG includes 6
serialization nodes with the same Crit inc of 1. The serialization node with the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

28 · W.Xu and R.Tessier

A

GF

E

DCB

(a). E0 = {B,C,D}, E1 = {F,G}, E2 = {I}

I

J

H

(b). Serialization interference graph (SIG)

E0

E1

A

G
FE

DCB

I

J

H
E0

E1

(d). Augmented DDG after serializations

Data flow edge

Serial edge

(B->F)

(C->F)

(B->G)

(C->G)

(D->G)

(D->F)

Excessive set Serialization node (Crit_inc = 1)

(c). Maximal set of serializations

Selected serialization node

E2

(B->F)

(C->F)

(B->G)

(C->G)

(D->G)

(D->F)

E2

Fig. 17. Serialization step (Tetris-XL)

minimum number of interference edges, N deg, is selected and applied first. The
serialization process proceeds as follows:

1. Select 3 serialization nodes with N deg of 0:

—{B → F} requires a serial edge (E to F).

—{B → G} requires a serial edge (E to G).

—{C → F} requires a serial edge (E to F).

2. Select 2 serialization nodes with N deg of 1:

—{D → G} requires 2 serial edges (E to G) and (F to G).

—{C → G} requires 2 serial edges (E to G) and (F to G).

After step 2, there is no compatible serialization node left in the SIG since {D →
F} interferes with both {D → G} and {C → G}.

As shown in Figure 17-d, after applying the above 5 compatible serializations,
the augmented DDG contains 3 serial edges. The maximum register requirement
of the augmented DDG is reduced from 6 to 4 with a critical path increase of
2. The new excessive set is {B,C,D, I} and the new critical path is A-B-E-F-G.
Compared with the Tetris result shown in Figure 10-d, Tetris-XL achieves the same
register reduction of 2 with a smaller critical path increase of 2, resulting in better
performance.

6. EXPERIMENTAL APPROACH AND RESULTS

To evaluate the effectiveness of Tetris and Tetris-XL reduction algorithms, a direct
comparison to previous spill reduction techniques was performed. These techniques

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 29

Tetris

reduction

Straightline code

Optimized code

 List scheduling

 (Trimaran)

Graph-based register allocation

(Trimaran)

Tetris-XL

reduction

1 2 5 (MRIS)

Lineage generation

and fusion

3

1 2 3 5

Modified

list scheduling

Greedy

reduction

4

Graph-based

allocation (FBS)

6

6

4

Fig. 18. Experimental flow in Trimaran framework

were implemented in an academic VLIW compiler, Trimaran, version 2.0 [Chakra-
pani et al. 2004]. Trimaran allows users to modify the number of target functional
units (FUs), registers and other resources to allow for examination of a broad range
of VLIW architectures. Benchmarks in our experiments include a set of programs
taken from the Trimaran framework [Chakrapani et al. 2004] and three applications
taken from the MediaBench suite [Lee et al. 1997]. Benchmarks unepic, g721dec and
mpeg2dec are applications for image, audio and video signal processing, respectively.

As shown in Figure 18, our experiments include 6 flows. Flow 1 is the baseline
Trimaran flow, which includes list scheduling followed by register allocation using
graph-coloring. To control register pressure, flows 2, 3 and 4 apply Tetris, Tetris-
XL and greedy serialization, respectively, before scheduling. Greedy serialization
[Touati 2005] was discussed at the end of Section 3. Flow 5 applies another spill
reduction technique, MRIS [Govindarajan et al. 2003], before the default graph-
coloring register allocator in Trimaran. MRIS includes lineage generation/fusion
and list scheduling as discussed in Section 2. MRIS was previously used [Govin-
darajan et al. 2003] to perform register allocation before instruction scheduling on
out-of-order issue superscalar processors. We consider MRIS to be a good candidate
for comparison to Tetris for VLIW processors since it has previously demonstrated
a strong ability to perform schedule-sensitive register reductions. To limit the im-
pact of false dependencies introduced by MRIS on performance, register reduction
is only performed if the register requirement exceeds the number of available reg-
isters. Tetris and Tetris-XL also follow this restriction. In flow 6, an enhanced
register allocator with FBS is applied after the default list scheduling in Trimaran.
FBS is a frequency-based live range splitting technique [Kim 2001] described in
Section 2.

All flows include dead code elimination, constant propagation, and loop unrolling
prior to the steps shown in Figure 18. The results reported by Trimaran do not

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

30 · W.Xu and R.Tessier

consider dynamic effects such as interrupts or cache interactions. Except where
noted, the commercial architectures modelled by our experiments do not include
caches, limiting the impact of this issue on the target architecture. Benchmark
cycle counts are determined by Trimaran following compilation by assessing the
schedule length of each code block, including cycles to handle spills, multiplied by
the number of times each code block is called. The reported execution cycle counts
are static cycle counts. In the experiments, multiply and memory load operations
require two clock cycles. Other functional unit operations require one clock cycle.

6.1 Experiments with high register pressure

The first VLIW architecture evaluated in our experiments is a 4-way VLIW ar-
chitecture with 16 registers, which can execute 4 operations (including 2 memory
operations) on every clock cycle. This resource configuration can be found in sev-
eral low-end commercial VLIW processors including the Freescale MSC8101 and
MSC8103 [Freescale Semiconductor, Inc. 2005]. These processors are often used in
resource-constrained embedded systems. Our experiment evaluates the benefit of
each individual technique for the 4-way architecture.

Table I compares spills, the total number of spill operations executed in each
benchmark, as reported by Trimaran. A spill operation is a memory store or load
operation inserted by the register allocation. Spills are shown in thousands of
values. For the baseline flow, spill ratio is also presented as the percentage of
spills to ops, the total number of operations (including spill operations) executed
in each benchmark. A high spill ratio indicates that a benchmark suffers from high
register pressure. At the bottom of the table, the geometric average (GEOMEAN)
of spills is provided along with the geometric average of the per-benchmark percent
changes versus the baseline Trimaran flow. Geometric average is used for averaging
the spill counts due to the presence of widely varying absolute spill values.

Table II compares cycles, the total number of clock cycles required to execute
each benchmark. Multiple operations are executed on each clock cycle. Cycles
are also shown in thousands of values. At the bottom of the table, the geometric
average of cycles is provided along with the geometric average of the per-benchmark
percent changes versus the baseline Trimaran flow. Geometric average is used for
averaging the cycle counts due to the presence of widely varying absolute cycle
values.

For the baseline (flow 1) in Table I, on average, spills take up 46% of total
executed operations, which indicates most benchmarks experience high register
pressure. Among the five spill reduction techniques, Tetris-XL (flow 2), Tetris
(flow 3) and MRIS (flow 4) are the three most efficient techniques in terms of
reducing spills and improving performance. Compared with the baseline, Tetris-
XL (flow 2), Tetris (flow 3) and MRIS (flow 4) reduce spills by 30%, 29% and
27%, respectively. As for the performance improvement, Table II shows that, on
average, Tetris-XL, Tetris and MRIS reduce execution cycles by 30%, 25% and
16%, respectively. The execution cycle reduction of a VLIW program is decided by
two factors, spill reduction and critical path increase. A large spill reduction with
a small critical path increase leads to a large reduction in execution cycles.

It is observed that Tetris-XL, Tetris and MRIS reduce the maximum register re-
quirement by reordering operations before instruction scheduling. Two additional

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 31

Tetris-XL Tetris Greedy MRIS FBS Baseline

(flow 2) (flow 3) (flow 4) (flow 5) (flow 6) (flow 1)

Benchmark Spills Spills Spills Spills Spills Spills Spill
(K) (K) (K) (K) (K) (K) ratio

bmm 132.2 195.7 195.7 190.3 189.4 195.7 59%

mm 146.2 143.1 178.0 175.0 182.6 175.0 56%

mm double 128.1 168.1 168.1 168.4 171.5 168.1 55%

mm dyn 161.8 123.9 238.3 207.4 252.5 252.9 66%

parms test 4.8 6.9 6.8 4.2 7.8 6.9 44%

sqrt 3.0 2.2 4.1 3.9 4.4 4.0 54%

strcpy 6.9 7.8 8.5 3.5 8.6 16.0 45%

switch test 2.5 2.6 2.6 2.6 2.6 2.6 14%

wave 20.6 19.3 29.8 13.5 29.8 35.5 58%

g721dec 111741.0 116112.0 143463.0 124823.0 135469.0 169149.0 30%

unepic 9253.0 7715.0 8892.0 10009.0 11153.0 11013.0 47%

mpeg2dec 201470.0 160276.0 244131.0 254589.0 244822.0 279593.0 58%

GEOMEAN 167.6 167.8 211.4 173.3 219.6 236.4 46%

% change -30% -29% -11% -27% -7%

Table I. Spills comparison on a VLIW with 16 registers and 4 FUs

Tetris-XL Tetris Greedy MRIS FBS Baseline
(flow 2) (flow 3) (flow 4) (flow 5) (flow 6) (flow 1)

Benchmark Cycles Cycles Cycles Cycles Cycles Cycles

(K) (K) (K) (K) (K) (K)

bmm 190.8 325.6 325.6 312.7 314.4 325.6

mm 200.5 215.9 292.3 295.7 330.6 300.6

mm double 195.3 290.7 290.7 287.6 319.6 290.7

mm dyn 237.7 190.5 332.8 287.1 358.3 348.7

parms test 9.2 12.4 12.4 9.6 13.3 12.4

sqrt 5.4 4.7 7.4 7.7 8.8 8.0

strcpy 24.3 25.5 26.5 21.0 27.1 33.1

switch test 13.0 13.0 13.0 13.5 13.0 13.0

wave 34.1 34.5 50.3 22.3 44.8 60.4

g721dec 236754.0 247411.0 270268.0 309737.0 227010.0 300607.0

unepic 15741.0 13715.0 14992.0 16639.0 18535.0 17944.0

mpeg2dec 159732.0 137828.0 216025.0 263829.0 313154.0 286892.0

GEOMEAN 302.1 321.3 391.0 360.8 418.6 429.4

% change -30% -25% -9% -16% -3%

Table II. Cycles comparison on a VLIW with 16 registers and 4 FUs

experiments illustrate the benefit of Tetris-XL over other approaches. Because
spills are closely related to the maximum register requirement, a first experiment
evaluates the maximum register requirement of each benchmark after spill reduc-
tion techniques are applied. For example, the first bar in Figure 19-a shows that
Tetris-XL reduces the maximum register requirement of benchmark bmm by 44%
versus the Trimaran baseline flow. Tetris-XL is able to reduce spills of benchmark
bmm by 33%, as shown by the first bar of Figure 19-b. The geometric average of
results in Figure 19-a shows that, on average, Tetris-XL, Tetris and MRIS reduces

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

32 · W.Xu and R.Tessier

(d). Comparison of execution cycles

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

2.1

b
m
m

m
m

m
m
_
d
o
u
b
le

m
m
_
d
y
n

p
a
rm

s
_
te
s
t

s
q
rt

s
tr
c
p
y

s
w
itc
h
_
te
s
t

w
a
v
e

g
2
7
1
d
e
c

u
n
e
p
ic

m
p
e
g
2
d
e
c

G
E
O
M
E
A
N

(c). Comparison of critical path

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

b
m
m

m
m

m
m
_
d
o
u
b
le

m
m
_
d
y
n

p
a
rm

s
_
te
s
t

s
q
rt

s
tr
c
p
y

s
w
itc
h
_
te
s
t

w
a
v
e

g
2
7
1
d
e
c

u
n
e
p
ic

m
p
e
g
2
d
e
c

G
E
O
M
E
A
N

(b). Comparison of spills

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
b
m
m

m
m

m
m
_
d
o
u
b
le

m
m
_
d
y
n

p
a
rm

s
_
te
s
t

s
q
rt

s
tr
c
p
y

s
w
itc
h
_
te
s
t

w
a
v
e

g
2
7
1
d
e
c

u
n
e
p
ic

m
p
e
g
2
d
e
c

G
E
O
M
E
A
N

(a). Comparison of register requirement

Tetris-XL/Baseline Tetris/Baseline MRIS/Baseline

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

b
m
m

m
m

m
m
_
d
o
u
b
le

m
m
_
d
y
n

p
a
rm

s
_
te
s
t

s
q
rt

s
tr
c
p
y

s
w
itc
h
_
te
s
t

w
a
v
e

g
2
7
1
d
e
c

u
n
e
p
ic

m
p
e
g
2
d
e
c

G
E
O
M
E
A
N

Fig. 19. Additional comparisons on a VLIW with 16 registers and 4 FUs

the maximum register requirement by 34%, 27% and 18%, respectively. These max-
imum register requirement reductions cause corresponding average spill reductions
of 30%, 29% and 27% as shown in Figure 19-b.

The critical path increase caused by serialization plays an important role in de-
ciding the final performance in terms of execution cycles. A second experiment
compares the critical path of each benchmark after applying Tetris-XL, Tetris and
MRIS. As shown in Figure 19-c, Tetris-XL, Tetris and MRIS increases the average
critical path of benchmarks by 10%, 17% and 29%, respectively, compared with the
baseline flow. Overall, Tetris-XL achieved a 30% reduction in execution cycles, out-
performing both Tetris (25%) and MRIS (16%). Therefore, the benefit of Tetris-XL
is a result of its ability to limit critical path increases during register reduction. In
contrast, Tetris and MRIS do not consider the potential adverse effects of critical
path increases caused by serial edges. The results in Figure 19 indicate that Tetris
and Tetris-XL are effective in improving performance for a range of applications,
including multimedia benchmarks. Applications with large data sets, such as sci-
entific applications, which typically use a sizable number of registers, are likely to
benefit more from our approach.

As currently structured, Tetris and Tetris-XL are optimized for application run-
time reduction rather than reduced compile time. As noted in Section 4, both

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 33

Tetris-XL Tetris Greedy MRIS FBS Baseline

no. lines (flow 2) (flow 3) (flow 4) (flow 5) (flow 6) (flow 1)

Benchmark (s) (s) (s) (s) (s) (s)

bmm 106 20.07 15.08 11.37 13.19 10.91 10.85

mm 48 16.36 10.52 9.51 11.30 8.23 8.18

mm double 70 16.43 10.76 9.87 11.65 8.38 8.36

mm dyn 49 19.85 11.39 10.57 13.02 9.95 9.87

parms test 850 35.52 27.31 25.22 27.05 19.52 19.50

sqrt 34 26.31 6.53 5.85 6.30 5.48 5.45

strcpy 29 8.68 7.40 5.79 5.56 5.16 5.14

switch test 357 9.54 9.27 9.10 10.50 8.44 8.41

wave 44 21.79 8.62 8.15 10.07 8.07 8.05

g721dec 1,490 231.10 221.77 94.61 109.53 46.27 45.04

unepic 2,697 2314.30 2152.12 582.84 612.87 449.98 419.74

mpeg2dec 8,680 1789.32 1540.07 288.61 377.28 142.38 141.38

GEOMEAN 211.50 48.58 32.72 21.78 24.92 17.52 17.31

Table III. Compile time statistics for VLIW with 16 registers and 4 FUs

Tetris-XL Tetris Greedy MRIS FBS Baseline
(flow 2) (flow 3) (flow 4) (flow 5) (flow 6) (flow 1)

Spills (K) (K) (K) (K) (K) (K)

g721dec 81,609 78,618 97,375 91,256 102,750 108,280

unepic 2,580 2,406 4,154 4,051 4,731 5,843

mpeg2dec 21,620 20,182 40,693 38,157 40,283 81,267

GEOMEAN 120.46 124.01 165.48 133.83 172.01 195.15

% change -38% -36% -15% -31% -12%

Cycles (K) (K) (K) (K) (K) (K)

g721dec 287,605 293,071 301,412 297,054 307,191 320,055

unepic 9,694 10,019 10,121 10,188 11,171 12,319

mpeg2dec 158,029 163,347 168,210 161,894 170,450 175,895

GEOMEAN 294.10 322.05 374.10 331.29 391.24 401.86

% change -27% -20% -7% -18% -3%

Compile time (s) (s) (s) (s) (s) (s)

g721dec 81.54 79.73 65.57 71.34 29.31 26.48

unepic 128.80 125.90 109.75 120.75 71.00 66.50

mpeg2dec 414.09 397.71 260.93 298.03 113.90 105.21

GEOMEAN 30.99 21.19 18.22 20.31 14.19 13.86

Table IV. Statistics for VLIW with 16 registers and 4 FUs for restructured benchmarks

Tetris and Tetris-XL examine all possible serializations of variables in the excessive
set. Multiple iterations of the algorithm are performed until no further Max reg
minimization can be achieved. This evaluation can lead to a compile time increase
for designs with large code blocks. As shown in Table III, the large code blocks
in the MediaBench benchmarks g721dec, unepic, and mpeg2dec lead to significant
compile time increases versus baseline Trimaran compilation. The average code
block size (about 75 lines) for these three benchmarks is two to three times the size

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

34 · W.Xu and R.Tessier

Tetris-XL Tetris Greedy MRIS FBS Baseline

(flow 2) (flow 3) (flow 4) (flow 5) (flow 6) (flow 1)

Benchmark Spills Spills Spills Spills Spills Spills Spill

(K) (K) (K) (K) (K) (K) ratio

bmm 20.0 28.8 28.8 28.3 27.8 28.8 18%

mm 21.3 20.6 44.0 40.6 40.8 40.9 23%

mm double 19.3 26.3 26.3 26.2 26.3 26.3 16%

mm dyn 39.7 30.3 77.1 65.3 57.7 81.1 38%

parms test 2.1 2.3 2.3 2.1 2.3 2.3 21%

sqrt 0.3 0.2 0.7 1.0 0.7 1.0 23%

strcpy 0.0 0.0 0.1 0.0 0.1 0.1 1%

switch test 2.5 2.6 2.6 2.6 2.6 2.6 14%

wave 2.3 1.4 11.1 0.4 12.3 21.4 46%

g721dec 35278.0 32610.0 39313.0 44484.0 43018.0 47487.0 26%

unepic 2592.0 2016.0 3362.0 3975.0 370.0 4168.0 11%

mpeg2dec 30563.0 5367.0 34726.0 70785.0 27178.0 72519.0 27%

GEOMEAN 27.5 21.9 41.9 34.0 41.1 50.9 15%

% change -45% -56% -18% -34% -19%

Table V. Spills comparison on a VLIW with 32 registers and 8 FUs

of the other benchmarks. For the three multimedia benchmarks, nearly half of this
compile time increase is due to the measure step [Touati 2005; Berson et al. 1993]
used to determine Max reg after each Tetris iteration, not the Tetris algorithm
itself. This compile time issue may be alleviated somewhat by limiting the use of
Tetris and Tetris-XL to final pass compilation after code testing and optimization
has been completed. In an additional experiment, the three large designs were
restructured to achieve the same functionality, but with code block sizes reduced
by about a factor of three. The results in Table IV demonstrate that the compile
time can be reduced with continued runtime performance improvement versus the
baseline flow. For the unepic and mpeg2dec designs, the baseline cycle count after
restructuring improved on the initial coding. Baseline cycle count is slightly worse
after recoding for g721dec. Geomean values in Table IV reflect averages across all
designs, including those which have not been restructured.

6.2 Experiments with low register pressure

The second VLIW architecture evaluated in our experiments is an 8-way archi-
tecture with 32 registers. This architecture can execute 8 operations (including 2
memory operations) on every clock cycle. This configuration is similar to the VLIW
processors found in the C62x and C67x families offered by Texas Instruments [Texas
Instruments, Inc. 2000].

For a register size of 32, the baseline (flow 1) in Table V has a spill ratio of 15%.
This value indicates a relatively low but non-trivial register pressure. Among the
five spill reduction techniques, Tetris-XL (flow 2), Tetris (flow 3) and MRIS (flow
4) are still the most efficient techniques in terms of spill reduction. Compared with
the baseline, Tetris-XL (flow 2), Tetris (flow 3) and MRIS (flow 4) reduce spills by
45%, 56% and 34%, respectively. As for performance improvement, Table VI shows
that, on average, Tetris-XL, Tetris and MRIS reduce execution cycles by 19%, 15%

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 35

Tetris-XL Tetris Greedy MRIS FBS Baseline

(flow 2) (flow 3) (flow 4) (flow 5) (flow 6) (flow 1)

Benchmark Cycles Cycles Cycles Cycles Cycles Cycles

(K) (K) (K) (K) (K) (K)

bmm 99.8 104.5 104.5 107.4 101.8 104.5

mm 108.0 108.2 114.9 115.8 114.5 114.6

mm double 100.8 101.5 101.5 104.8 101.4 101.5

mm dyn 75.8 103.0 197.3 96.3 98.8 125.9

parms test 6.1 6.1 6.1 7.1 6.1 6.1

sqrt 3.8 4.0 4.2 4.0 4.2 4.2

strcpy 18.2 18.8 18.3 20.6 18.3 18.3

switch test 13.0 13.0 13.0 13.0 13.0 13.0

wave 12.8 13.7 21.8 14.6 21.6 42.5

g721dec 160806.0 175845.0 175596.0 197398.0 162451.0 176087.0

unepic 7881.0 7553.0 8871.0 9640.0 8784.0 9543.0

mpeg2dec 82568.0 77626.0 82948.0 113452.0 97939.0 108624.0

GEOMEAN 170.7 177.7 200.1 194.3 189.2 209.8

% change -19% -15% -5% -7% -9%

Table VI. Cycles comparison on a VLIW with 32 registers and 8 FUs

(d). Comparison of execution cycles(c). Comparison of critical path

(b). Comparison of spills(a). Comparison of register requirement

Tetris-XL/Baseline Tetris/Baseline MRIS/Baseline

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

b
m
m

m
m

m
m
_
d
o
u
b
le

m
m
_
d
y
n

p
a
rm
s
_
te
s
t

s
q
rt

s
tr
c
p
y

s
w
itc
h
_
te
s
t

w
a
v
e

g
2
7
1
d
e
c

u
n
e
p
ic

m
p
e
g
2
d
e
c

G
E
O
M
E
A
N

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

2.1
2.2

b
m
m

m
m

m
m
_
d
o
u
b
le

m
m
_
d
y
n

p
a
rm
s
_
te
s
t

s
q
rt

s
tr
c
p
y

s
w
itc
h
_
te
s
t

w
a
v
e

g
2
7
1
d
e
c

u
n
e
p
ic

m
p
e
g
2
d
e
c

G
E
O
M
E
A
N

0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1
1.1

b
m
m

m
m

m
m
_
d
o
u
b
le

m
m
_
d
y
n

p
a
rm
s
_
te
s
t

s
q
rt

s
tr
c
p
y

s
w
itc
h
_
te
s
t

w
a
v
e

g
2
7
1
d
e
c

u
n
e
p
ic

m
p
e
g
2
d
e
c

G
E
O
M
E
A
N

0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1
1.1

b
m
m

m
m

m
m
_
d
o
u
b
le

m
m
_
d
y
n

p
a
rm
s
_
te
s
t

s
q
rt

s
tr
c
p
y

s
w
itc
h
_
te
s
t

w
a
v
e

g
2
7
1
d
e
c

u
n
e
p
ic

m
p
e
g
2
d
e
c

G
E
O
M
E
A
N

Fig. 20. Additional comparisons on a VLIW with 32 registers and 8 FUs

and 7%, respectively.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

36 · W.Xu and R.Tessier

Tetris-XL Tetris Greedy MRIS FBS Baseline

(flow 2) (flow 3) (flow 4) (flow 5) (flow 6) (flow 1)

Benchmark Spills Spills Spills Spills Spills Spills Spill

(K) (K) (K) (K) (K) (K) ratio

bmm 0.3 0.3 0.3 0.3 0.3 0.3 1%

mm 1.7 1.7 1.8 1.7 1.8 1.8 1%

mm double 1.7 1.7 1.7 1.7 1.7 1.7 1%

mm dyn 1.7 1.7 1.7 1.7 1.7 1.7 1%

parms test 1.7 1.8 1.8 1.8 1.7 1.8 16%

sqrt 0.1 0.1 0.2 0.2 0.2 0.2 5%

strcpy 0.0 0.0 0.1 0.0 0.1 0.1 1%

switch test 2.5 2.6 2.6 2.6 2.6 2.6 14%

wave 0.1 0.1 0.1 0.1 0.1 0.1 1%

g721dec 43191.0 30840.0 40920.0 42896.0 41717.0 42896.0 10%

unepic 369.0 55.0 1632.0 1751.0 1443.0 1737.0 13%

mpeg2dec 5511.0 4043.0 5154.0 5691.0 5559.0 5680.0 3%

GEOMEAN 5.2 3.9 5.9 6.0 6.1 6.2 2%

% change -16% -37% -6% -3% -2%

Table VII. Spills comparison on a VLIW with 64 registers and 8 FUs

It is observed from Table V that Tetris achieves 11% more spill reduction on
average than Tetris-XL. Tetris-XL is more conservative when register pressure is low
because it evaluates both spill reduction and potential critical path increases. The
aggressive spill reduction of Tetris comes at the cost of large critical path increase.
As shown in Figure 20-c, the average critical path increases caused by Tetris-XL,
Tetris and MRIS are 9%, 17% and 28%, respectively. Therefore, although Tetris-
XL achieves less spill reduction compared with Tetris, it still outperforms Tetris
and other techniques in terms of performance improvement.

Benchmark wave demonstrates the benefit of Tetris-XL. As shown in Figure 20-
b,c, Tetris reduces spills of wave by 94% at the cost of a 11% increase in critical
path length. Tetris-XL makes a tradeoff between spill reduction and critical path
increase so that a smaller spill reduction of 89% is achieved with a smaller critical
path increase of 5%. As a result of this tradeoff, Tetris-XL achieves an additional
execution cycle reduction of 4% compared with Tetris, which is shown in Figure
20-d.

6.3 Experiments with trivial register pressure

An 8-way VLIW machine with 64 registers was used for a final experiment. This
architecture has the same basic FU and register configuration as the Transmeta
Efficeon VLIW processor [Transmeta, Inc. 2005] and the Texas Instruments C64x
processor [Texas Instruments, Inc. 2000]. On average, spills only take up 2% of
the total operations in the baseline flow in Table VII. Due to this trivial register
pressure, Table VIII shows that Tetris-XL, Tetris and MRIS provides an average
performance improvement of 2%, 1% and 1%, respectively. As expected, the benefit
of register pressure control becomes marginal when register pressure is very low.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 37

Tetris-XL Tetris Greedy MRIS FBS Baseline

(flow 2) (flow 3) (flow 4) (flow 5) (flow 6) (flow 1)

Benchmark Cycles Cycles Cycles Cycles Cycles Cycles

(K) (K) (K) (K) (K) (K)

bmm 87.5 87.5 87.5 87.5 87.5 87.5

mm 92.6 93.7 92.6 92.6 92.6 92.6

mm double 89.4 89.3 89.3 89.3 89.3 89.3

mm dyn 29.9 29.2 29.9 32.0 29.9 29.9

parms test 5.6 5.6 5.6 5.6 5.6 5.6

sqrt 3.8 3.8 3.8 3.8 3.8 3.8

strcpy 18.3 19.0 18.3 18.3 18.3 18.3

switch test 13.0 13.0 13.0 13.0 13.0 13.0

wave 12.1 12.9 12.1 12.3 12.1 12.1

g721dec 162842.0 162225.0 165303.0 163373.0 162189.0 162785.0

unepic 5575.0 5880.0 7236.0 7151.0 6613.0 7125.0

mpeg2dec 74581.0 75318.0 74577.0 74773.0 74590.0 74673.0

GEOMEAN 145.3 147.5 148.7 149.6 147.6 148.4

% change -2% -1% 0% 0% -1%

Table VIII. Cycles comparison on a VLIW with 64 registers and 8 FUs

7. SUMMARY AND FUTURE WORK

In this paper, we present new spill reduction techniques to improve the performance
of VLIW processors with limited registers. By modifying the relative ordering
of operations, this technique serializes multiple variables simultaneously so that
the register requirement can be reduced with a limited critical path increase. For
VLIW programs that experience high register pressure, this technique reduces spills
and improves execution time by identifying operations that are likely to create
spills. For a 4-way VLIW architecture with 16 registers, our heuristic reduces the
average execution time by an additional 14% compared with previous spill reduction
techniques by simultaneously considering numerous variable serializations. For a 8-
way VLIW architecture with 32 registers, the additional execution time reduction is
10%. For architectures with 64 registers, little additional execution time reduction
is achieved.

Several areas of future work are apparent from this research. The effect of cache
sizes and protocols, as well as other dynamic microarchitectural features, could be
considered in the context of high register pressure. Additionally, more tradeoffs
could be considered in Tetris to reduce compile time. Unlikely serializations could
be pruned earlier in partitioning to reduce serialization search time. The num-
ber and type of functional units could be considered by an expanded version of
Tetris-XL in an effort to avoid the optimization of infeasible schedules. Finally, a
theoretical treatment of the conditions that lead to Max reg reduction could be
explored.

ACKNOWLEDGMENTS

The authors wish to acknowledge the efforts of Premachandran R. Menon and
David Howland in the completion of this work.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

38 · W.Xu and R.Tessier

REFERENCES

Berson, D. A., Gupta, R., and Soffa, M. L. 1993. URSA: A Unified ReSource Allocator

for Registers and Functional Units in VLIW Architectures. In IFIP Working Conference on
Architectures and Compilation Techniques for Fine and Medium Grain Parallelism. 243–254.

Berson, D. A., Gupta, R., and Soffa, M. L. 1998. Integrated Instruction Scheduling and

Register Allocation Techniques. In International Workshop on Languages and Compilers for
Parallel Computing. 247–262.

Bouchez, F., Darte, A., and Rastello, F. 2007. On the Complexity of Spill Everywhere under

SSA Form. In ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems. 103–112.

Briggs, P. 1992. Register Allocation via Graph Coloring. Ph.D. thesis, Department of Computer

Science, Rice University.

Briggs, P., Cooper, K., Kennedy, K., and Torczon, L. 1989. Coloring Heuristics for Register
Allocation. In ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation. 275–284.

Chaitin, G. 1982. Register Allocation and Spilling via Graph Coloring. In ACM SIGPLAN
Symposium on Compiler Construction. 98–105.

Chakrapani, L. N., Gyllenhaal, J., Hwu, W. W., Mahlke, S. A., Palem, K. V., and Rabbah,

R. M. 2004. Trimaran, An Infrastructure for Research in Instruction Level Parallelism. In

International Workshop on Languages and Compilers for High Performance Computing. 32–
41.

Cilio, A. and Corporaal, H. 1999. Global Program Optimization: Register Allocation of Static

Scalar Objects. In Conference of the Advanced School for Computing and Imaging. 52–57.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. McGraw-
Hill Book Company.

Dilworth, R. P. 1950. A Decomposition Theorem for Partially Ordered Sets. Annals of Mathe-
matics 51, 1 (Jan.), 161–166.

Faraboschi, P., Brown, G., Fisher, J. A., Desoli, G., and Homewood, F. 2000. Lx: A Tech-
nology Platform for Customizable VLIW Embedded Processing. In International Symposium
on Microarchitecture. 203–213.

Freescale Semiconductor, Inc. 2005. MSC8101 Reference Manual. Freescale Semiconductor, Inc.

Freudenberger, S. M. and Ruttenberg, J. C. 1991. Phase Ordering of Register Allocation
and Instruction Scheduling. In International Workshop on Code Generation. 146–172.

Goodman, J. R. and Hsu, W.-C. 1988. Code scheduling and register allocation in large basic
blocks. In ACM Supercomputing Conference. 442–452.

Goossens, G., Praet, J. V., Lanneer, D., and Geurts, W. 1997. Embedded Software in Real-
Time Signal Processing Systems: Design Technologies. Proceedings of the IEEE 85, 3 (Mar.),
436–454.

Govindarajan, R., Yang, H., Amaral, J. N., Zhang, C., and Gao, G. R. 2003. Minimum
Register Instruction Sequencing to Reduce Register Spills in Out-of-Order Issue Superscalar
Architectures. IEEE Transactions on Computers 52, 1 (Jan.), 4–20.

Hennessy, J. L. and Patterson, D. A. 1996. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publisher.

Kim, H. 2001. Region-based Register Allocation for EPIC Architectures. Ph.D. thesis, Department

of Computer Science, New York University.

Lee, C., Potkonjak, M., and Mangione-Smith, W. H. 1997. MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communicatons Systems. In International Symposium on

Microarchitecture. 330–335.

Marquardt, A., Betz, V., and Rose, J. 2000. Timing-driven placement for FPGAs. In ACM
International Symposium on Field Programmable Gate Arrays. 203–213.

Norris, C. and Pollock, L. L. 1993. A Scheduler-Sensitive Global Register Allocator. In ACM
Supercomputing Conference. 804–813.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

Tetris-XL: A Performance-Driven Spill Reduction Technique for VLIW Processors · 39

Pinter, S. S. 1993. Register Allocation with Instruction Scheduling: A New Approach. In ACM
SIGPLAN Conference on Programming Language Design and Implementation. 248–257.

Texas Instruments, Inc. 2000. TMS320C6000 CPU and Instruction Set Reference Guide. Texas
Instruments, Inc.

Touati, S.-A.-A. 2001. Register Saturation in Superscalar and VLIW Codes. In International
Conference on Compiler Construction. 213–228.

Touati, S.-A.-A. 2005. Register Saturation in Instruction Level Parallelism. International Jour-
nal of Parallel Programming 33, 4 (Aug.), 393–449.

Transmeta, Inc. 2005. Transmeta Efficeon TM8820 Processor. Transmeta, Inc.

Xu, W. and Tessier, R. 2007. Tetris: A New Register Pressure Control Technique for VLIW

Processors. In ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded
Systems.

Zeitlhofer, T. and Wess, B. 2003. List-coloring of interval graphs with application to register
assignment for heterogeneous register-set architectures. Signal Processing 83, 7 (July), 1411–
1425.

A. APPENDIX

Lemma 1. Succ(u) ∩Desce(v) 6= ∅ ⇔ Serialization (u→ v) creates a cycle.

Sufficiency proof: Succ(u) ∩ Desce(v) 6= ∅ ⇒ ∃ a path (v to w), where w ∈
(Succ(u) − v). Serialization (u → v) ⇒ set of serial edges: (p to v), where p ∈
(Succ(u) − v) ⇒ ∃ a serial edge (w to v). Therefore, a path (v to w) and a serial
edge (w to v) create a cycle between w and v.
Necessity proof: Serialization (u → v) creates a cycle ⇒ the cycle must include at
least one serial edge (w to v), where w ∈ (Succ(u)− v) ⇒ ∃ a path (v to w), where
w ∈ Succ(u)− v. Therefore, Succ(u) ∩Desce(v) ⊇ {w} 6= ∅.

Lemma 2. Serializations (u → v) & (s → t) create a cycle ⇔ (v ∈ Succ(s) or
Succ(s) ∩Desce(v) 6= ∅) & (t ∈ Succ(u) or Succ(u) ∩Desce(t) 6= ∅).

Sufficiency proof. If (u→ v) & (s→ t) create a cycle, the cycle must include a serial
edge (w to v), where w ∈ Succ(u) and a serial edge (x to t), where x ∈ Succ(s)
⇒ the cycle can be represented as (w to v) to (x to t) to w ⇒ there must be a
connection A = (v to x) & a connection B = (t to w).

Connection A = (v to x)⇒ v = x or ∃ path (v to x)⇒ v ∈ Succ(s) or Succ(s)∩
Desce(v) ⊇ {x} 6= ∅.

Connection B = (t to w)⇒ t = w or ∃ path (t to w)⇒ t ∈ Succ(u) or Succ(u)∩
Desce(t) ⊇ {w} 6= ∅.

Therefore, (u → v) & (s → t) create a cycle ⇒ (v ∈ Succ(s) or Succ(s) ∩
Desce(v) 6= ∅) & (t ∈ Succ(u) or Succ(u) ∩Desce(t) 6= ∅).

Necessity proof. (v ∈ Succ(s) or Succ(s) ∩ Desce(v) 6= ∅) & (t ∈ Succ(u) or
Succ(u) ∩Desce(t) 6= ∅) ⇒

(a) v ∈ Succ(s). Serialization (s → t) ⇒ set of serial edges:{(p to t), where
p ∈ (Succ(s)− t)} ⇒ ∃ a serial edge (v to t).

(b) Succ(s)∩Desce(v) 6= ∅) ⇒ ∃ path (v to x), where x ∈ Succ(s). Serialization
(s→ t) ⇒ set of serial edges:{(p to t), where p ∈ (Succ(s)− t)} ⇒ ∃ a path (v to
t) = path (v to x) + serial edge (x to t), where x 6= t or ∃ a path (v to t) = path

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

40 · W.Xu and R.Tessier

(v to x), where x = t;
(c) t ∈ Succ(u). Serialization (u → v) ⇒ set of serial edges:(q to v), where

q ∈ (Succ(u)− v) ⇒ ∃ a serial edge (t to v).
(d) Succ(u)∩Desce(t) 6= ∅ ⇒ ∃ path (t to w), where w ∈ Succ(s). Serialization

(u→ v) ⇒ set of serial edges:(q to v), where q ∈ (Succ(u)− v) ⇒ ∃ a path (t to v)
= path (t to w) + serial edge (w to v), where w 6= v or ∃ a path (t to v) = path (t
to w), where w = v.

Therefore, with (a) or (b), (s→ t) ⇒ ∃ a serial edge (v to t) or ∃ a path (v to t);
with (c) or (d), (u→ v) ⇒ a serial edge (t to v) or ∃ a path (t to v); Finally, ((a)
or (b)) & ((c) or (d)) = (v ∈ Succ(s) or Succ(s) ∩Desce(v) 6= ∅) & (t ∈ Succ(u)
or Succ(u)∩Desce(t) 6= ∅)⇒ Serializations (s→ t) and (u→ v) create a cycle (v, t).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, September 2009.

