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Abstract
The run-time performance of VLIW (very long instruction word)
microprocessors depends heavily on the effectiveness of its associ-
ated optimizing compiler. Typical VLIW compiler phases include
instruction scheduling, which maximizes instruction level paral-
lelism (ILP), and register allocation, which minimizes data spills
to external memory. If ILP is maximized without consideringreg-
ister constraints, high register pressure may result, leading to in-
creased spill code and reduced run-time performance. In this paper,
a new register pressure reduction technique for embedded VLIW
processors is presented to control register pressure priorto instruc-
tion scheduling and register allocation. By modifying the relative
ordering of operations, this technique restructures code to better
reduce spills. Our technique has been implemented in Trimaran, an
academic VLIW compiler, and evaluated using a series of VLIW
benchmarks. Experimental results show that, on average, our algo-
rithm reduces dynamic spills and improves overall cycle counts by
6% for a VLIW architecture with 8 functional units and 32 registers
versus previous spill code reduction techniques.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - compilers, optimization

General Terms Algorithms, Performance

Keywords Register Pressure, Instruction Level Parallelism, Very
Long Instruction Word (VLIW) Processor.

1. Introduction
VLIW architectures exploit instruction level parallelismby per-
forming multiple operations per clock cycle based on a fixed sched-
ule generated by a compiler. To simplify hardware requirements,
VLIW processors do not provide specialized hardware to support
dynamic scheduling or out of order execution. This optimization
increases the importance of accurate and efficient application map-
ping.

The compilation process for VLIW processors is divided into
several phases including instruction scheduling and register alloca-
tion [10]. Instruction scheduling tries to maximize ILP by schedul-
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Figure 1. VLIW compilation flow with register pressure control

ing as many instructions as possible in parallel, which may require
a large number of registers to hold variables generated in the sched-
ule. Register allocation assigns a physical register to each variable.
If a given schedule requires more registers than available physical
registers, variables must be spilled to memory, regardlessof the reg-
ister allocation algorithm. Since each spill requires multiple time-
consuming memory store/load operations, large amounts of spill
code can significantly degrade performance. As a result, register
pressure must be evaluated and controlled for VLIW processors.

A number of spill reduction techniques [11, 15, 2], includ-
ing register pressure control [2], have been developed. As shown
in Figure 1, register pressure control is based on a measure-
and-reduce methodology, which can be applied before instruc-
tion scheduling and register allocation. Using data dependencies,
the measure step estimates the maximum register requirement
(Max reg) of all possible straightline code schedules. IfMax reg
exceeds the number of available physical registers,Phy reg, a
reduction step is used to reduceMax reg to Phy reg. The re-
duction step allows subsequent instruction scheduling to focus on
improving parallelism.

In this paper, we present a new register pressure control algo-
rithm based on the reordering of operations. Our technique can si-



multaneously serialize multiple variables to reduceMax reg and
the number of corresponding spills. To demonstrate its benefit, we
have integrated the algorithm into an academic VLIW compiler,
Trimaran [6]. As shown in Section 5, our technique can achieve a
38% reduction in spills and 6% improvement in performance (exe-
cution cycles of benchmarks) for a VLIW architecture with 8 func-
tional units and 32 registers compared with previous approaches
[13, 19].

The remainder of this paper is organized as follows. In Section
2, a brief discussion of previous work is presented. Section3
provides background information and discusses the limitations of
previous techniques. Our new algorithm is discussed in Section 4.
Our experimental approach and results are presented in Section 5.
Section 6 provides a summary of our findings and offer directions
for future research.

2. Related Work
Previous work in spill code reduction can be put into severalcat-
egories, general register allocation, schedule-sensitive register al-
location, register-sensitive instruction scheduling andregister pres-
sure control.

General register allocation aims to minimize the number of
spills based on a given schedule. Graph coloring-based register al-
location [3, 4, 5] is one of the most effective register allocation
approaches. Graph-based algorithms build an interferencegraph
based on a given schedule, in which each node represents a variable
and an edge between two nodes indicates that two variables cannot
share the same physical register. If there are not enough physical
registers to hold all variables in the interference graph, spill code
must be inserted to transfer some variable storage to memory. The
frequency-based live-range splitting (FBS) technique [13] attempts
to isolate spill code reduction to frequently executed (hot) program
regions to improve program performance. FBS uses executionfre-
quency information to guide the splitting of variable live ranges
(lifetimes) during coloring. By splitting variable live ranges in re-
gions with lower frequency first, the overall number of spills can be
reduced.

Schedule-sensitive register allocation techniques [15, 16] are
applied to straightline code before instruction scheduling. In these
approaches, a parallel interference graph (PIG) is createdto repre-
sent all possible live range interference. To reduce the negative im-
pact on achievable schedule length during subsequent instruction
scheduling, schedule-sensitive heuristics insert a minimum number
of false dependencies between variables to reduce variableinter-
ference. Govindarajan presented another early register allocation
technique, the minimum register instruction sequence (MRIS) [12].
MRIS applies a special interference graph, where each node repre-
sents an instruction lineage, a series of variables that canshare the
same physical register.

Register-sensitive instruction scheduling controls register re-
quirements during instruction scheduling, which is performed be-
fore register allocation. Goodman and Hsu [11] presented aninte-
grated pre-pass scheduling (IPS) approach, where two scheduling
heuristics are combined. During scheduling, register requirements
are dynamically evaluated. Based on the analysis, the scheduler can
switch scheduling heuristics. One heuristic improves ILP and the
other heuristic reduces register usage.

Unlike the above approaches, register pressure control canbe
applied before both instruction scheduling and register allocation.
Berson presented a technique called unified resource allocation
(URSA) to reduce register pressure so that the schedule generated
in subsequent instruction scheduling does not overuse registers
[1, 2]. This measure-and-reduce methodology is shown in Fig-
ure 1. Experimental results [2] show that register pressurecontrol
outperforms both schedule-sensitive register allocation(PIG) and

A

GFE

DCB

(a). Original DDG
(Phy_reg = 3)

A

G

F

E

DCB

(c). Serialization (D -> F)
(Max_reg = 4)

A

GF

E

DCB

Data flow edge Serial edge

(b). Excessive set
(Max_reg = 5)

(d). Serialization ( {B,C,D} -> {F,G} )
(Max_reg = 3)

Excessive set

A

GF

E

DCB

Figure 2. Register pressure reduction via variable serializations

register-sensitive instruction scheduling (IPS). Touatipresented
several new heuristics based on Berson’s measure-and-reduce ap-
proach to further improve register pressure control [18, 19]. These
extensions are discussed in Section 3.

3. Background
In this section, we first present several basic definitions. After
discussing the limitations of several previous techniques[18, 19],
our performance-enhancement algorithm is presented.

As shown in Figure 2-a, data dependencies of the input code can
be represented in a data dependency graph (DDG),G(V, W, E).
In a DDG, a nodev represents an operation that defines variable
v and a directed edgee(vs, vt) represents a data flow from node
vs to node vt. The weightw of edge e(vs, vt) represents the
latency of nodevs. For demonstration purposes, all edge weights
in subsequent examples are set to one. Additionally, the following
notation is used.

• Def(Var) represents anoperation that defines variableV ar.
For example,Def(B) in Figure 2-a represents an operation
that defines variable B.

• Use(Var) represents anoperation that uses variableV ar. For
example, Figure 2-a has threeUse(A), Def(B), Def(C) and
Def(D).

• Lv(Var) represents thelive range of variableV ar. Lv(V ar)
is the distance fromDef(V ar) to the lastUse(V ar), where
variableV ar is alive. As shown in Figure 2-a, the live range
of variable B,Lv(B), is from Def(B) to Def(E), the only
Use(B).

• Pred(Var) represents apredecessor variable, which is re-
quired to generate variableV ar. For example, Figure 2-a shows
that there are threePred(E), variable B, variable C and vari-
able D.

• Succ(Var) represents asuccessor variable, which is generated
using variableV ar. For example, Figure 2-a shows that there
are threeSucc(A), variable B, variable C and variable D.



As discussed in Section 1, register pressure control is based on a
measure-and-reduce methodology. The maximum register require-
ment is measured first. If it exceeds the number of available physi-
cal registers, a reduction step is applied.

For a given DDG, the maximum register requirement is the
largest number of variables alive simultaneously. Since the instruc-
tion schedule is not fixed until the instruction scheduling phase, the
maximum register requirement is estimated using the data depen-
dencies of straightline code. In [1], it was shown that the maximum
register requirement of a given DDG can be estimated by applying
a minimum chain decomposition based on the Dilworth algorithm
[8]. In this paper, we use an improved estimation technique called
register saturation [19]. Previous results show that the estimated
result is within one register of the measured maximum register re-
quirement [19].

Using register saturation [19], the maximum register require-
ment of the DDG in Figure 2-a is 5. As shown in Figure 2-b, if
Def(E) is scheduled last, 5 variables{B, C, D, F, G} are alive si-
multaneously since variables{B, C, D} are required byDef(E)
and{F, G} are output variables. If there are less than 5 physical
registers,{B, C, D, F, G} becomes an excessive set, which is de-
fined below:

• An excessive setis a maximum set of variables in a DDG which
can be alive simultaneously. The size of the set (Max reg)
exceeds the number of available physical registers (Phy reg).

To reduce the size of the excessive set, live ranges of variables in
the excessive set must be separated. In general, separatingthe live
ranges of two variablesu andv can be achieved by serialization
(u → v) or serialization(v → u), which is defined below:

• Serial edge (Use(u) to Def(v)) represents a directed edge
from operationUse(u) to operationDef(v), which forces an
ordering such thatDef(v) cannot be scheduled earlier than
Use(u).

• Serialization (u → v) represents that variablev is created after
the live range of variableu ends. This can be accomplished by
adding serial edges (allUse(u) to Def(v)).

It has been proven [18] that the problem of achieving a max-
imum reduction using serializations is NP-hard. To addressthis
problem, Touati [18] presented a greedy serialization technique,
which evaluates all possible serializations between any pair of vari-
ables and selects the one which can best reduce the register require-
ment while increasing the critical path the least.

To reduce the excessive set{B, C, D, F, G} in Figure 2-b,
greedy serialization selects serialization(D → F ) as shown in Fig-
ure 2-c. To force an ordering so thatDef(F ) cannot be scheduled
earlier than anyUse(D), two serial edges (Def(E) to Def(F ))
and (Def(G) to Def(F )) are inserted into the original DDG. Af-
ter applying serialization(D → F ), Max reg of the augmented
DDG in Figure 2-c is reduced from 5 to 4. The new excessive set is
{E, C, D, G}, where{C, D} are required byDef(F ) and{E, G}
are output variables. Due to serial edges (Def(E) to Def(F )) and
(Def(G) to Def(F )), the critical path changes from A-B-E to A-
B-E-F.

A limitation of greedy serialization is that only a single best-
cost serialization can be selected at one time, which often leads
to poor performance. As shown in Figure 2-c, the excessive set
{E, C, D, G} in the augmented DDG can no longer be reduced
because serialization{D → F} prevents other serializations.

To address this problem, a better reduction can be achieved by
considering multiple variable serializations simultaneously, serial-
izations(set1 → set2), which is defined below:

1st step: partitioning (E0,E1) 2nd  step: serialization (E0 -> E1)
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• Compatible serializationsrepresent a set of serializations that
can be applied together without creating cycles. A cycle caused
by serial edges can make scheduling impossible.

• Serialization (set1 → set2) represents the maximum set of
compatible serializations(u → v), whereu/v is a variable in
set1/set2.

As shown in Figure 2-d, serializations({B, C, D} → {F, G})
contain 5 compatible serializations:{B → F}, {C → F}, {D →
G}, {C → G} and{B → G}. Serialization{D → F} is not
selected because it is not compatible with serializations{D → G}
and {C → G}. A detailed discussion regarding compatibility
checking is presented in Section 4.3. By applying these 5 compat-
ible serializations, the maximum register requirement is reduced
from 5 to 3, which is one register less than the value achievedby
greedy serialization. The new maximum set in the augmented DDG
is {B, C, D}, in which all variables are required byDef(E).

In order to select and serialize multiple variables simultaneously
for the best reduction, we present a new reduction technique, called
Tetris, in the next section.

4. Tetris Reduction
4.1 Overview

The basic idea of Tetris reduction originates from the popular com-
puter puzzle game. In a Tetris game, players try to move and place
given random blocks to fit into a fixed width constraint. Similarly,
Tetris reduction tries to identify blocks (subset of variables) with
suitable topologies and move them to reduce the size of the exces-
sive set fromMax reg to Phy reg (fixed width). The similarity
can be observed in Figure 3, which uses the example in Figure 2-d.

As shown in Figure 3, Tetris reduction includes two steps,
partitioning and serialization.

1. Partitioning : this step identifies candidates for serialization.
Variables in the excessive set are partitioned into two subsets,
E0 andE1 based on two criteria. The first criterion indicates
whether variable serializations fromE0 toE1 are possible. The
second criterion indicates how much register count reduction
can be achieved. A detailed description of the partitioningalgo-
rithm is presented in Section 4.2.

2. Serialization: this step is applied to serialize variables inE1
after variables inE0 by inserting serial edges into the DDG.



The ordering of variable serializations is decided such that
a maximal set of variable serializations can be applied. The
detailed serialization algorithm is discussed in Section 4.3.

4.2 Partitioning

4.2.1 Definitions

Before discussing partitioning in detail, additional definitions are
presented:

• NSE(u,v) is a directed non-serializable edge (NSE) from vari-
ableu to v. The edge indicates that variablev cannot be serial-
ized after variableu due to a path fromDef(v) to at least one
Use(u). To maintain correct computation, both data and con-
trol dependencies are evaluated to generate NSEs. As shown in
Figure 4-a, serialization from B to C is not possible since there
is a path fromDef(C) to Def(E), which is aUse(B).

• Bidirectional NSE(u,v) indicates that there is a NSE in both
directions,(u, v) and(v, u). As shown in Figure 4-b, the live
range of variable B and variable C cannot be separated by any
serialization due to a bidirectionalNSE(B, C).

• An NSE clique includes a set of variables. Each pair of vari-
ables in an NSE clique has a bidirectional NSE so that all vari-
ables in the clique must be alive simultaneously. There are three
NSE cliques,{B, C, D}, {F, G} and{I, J}, shown in the ex-
ample in Figure 4-c. A single variable is a degenerate case of
an NSE clique.

• Partition (E0,E1) represents a bi-partitioning of the excessive
set. As shown in Figure 4-c, the excessive set is partitionedinto
E0 = {I, J}, E1 = {B, C, D, F, G}.

• Pred set(E1) represents a set ofPred(V ar) that are not in
the excessive set, whereV ar is a variable inE1. As shown
in Figure 5-a,Pred set(E1)={A}.

• Succset(E0) represents a set ofSucc(V ar) that are not in
the excessive set, whereV ar is a variable inE0. As shown
in Figure 5-a,Succ set(E0)={K}.

To identify candidates for serialization, a two-step partitioning
algorithm was developed to search for a partition(E0, E1) which
achieves the best reduction. The first step iscoarsening where
variables are merged into two partitions. To improve the partition
quality, the second step,refinement, is applied to minimize the
partition cost by moving variables between the two partitions. The
partition cost is evaluated during these two phases by examining
relevant cost metrics:

• Coarsening cost metric: This metric evaluates the number of
possible variable serializations fromE0 to E1. To maximize
serializations, non-serializable edges (NSE) fromE0 to E1
should be minimized and variables in a NSE clique should
stay in the same partition. Based on this metric, the partition
in Figure 4-c is feasible since there is no directed NSE fromE0
to E1.

• Refinement cost metric: This metric evaluates whether the
topology of a partition(E0, E1) can lead to register reduction.
Since variables inSucc set(E0) can be simultaneously alive
with E1 after serialization, preferably|Succ set(E0)| < |E0|.
Similarly, Pred set(E1) may be alive withE0 after serializa-
tion, so preferably|Pred set(E1)| < |E1|. Based on this cri-
terion, the partitioning in Figure 5-a is a good candidate since
|Pred set(E1)| = 1; |E1| = 5; |Succ set(E0)| = 1; |E0| = 2.

4.2.2 Partitioning: coarsening

The main goal of the coarsening step is to minimize the number
of non-serializable edges (NSE) fromE0 to E1 based on the data
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Figure 4. Partitioning: coarsening step

dependencies of the DDG. All variable pairs in the excessiveset
are evaluated to check whether NSE edges should be inserted.If
variableu and variablev have a bidirectional NSE between them,
then they should be merged into the same partition. Therefore, the
first step of coarsening is to create NSE cliques.

In general, if a set of variables is used by an operation, the
variables in the set must be alive simultaneously, forming an NSE
clique. Based on this rule, NSE cliques can be generated by a back-
ward graph traversal. As shown in Figure 4-c, NSE clique{F, G}
is created first because output variables in the excessive set cannot
be serialized. As a result of a backward traversal, four additional
candidate NSE cliques are generated ({B, C, D}, {C, D}, {D}
and{I, J}). They are required by operationsDef(E), Def(F ),
Def(G) and Def(K) respectively. Subsequently, two maximal
NSE cliques,{B, C, D} and{I, J}, are selected from the candi-
dates. The pseudo code used for NSE clique generation is presented
as part of Figure 6.

After NSE clique generation, the coarsening step merges two
NSE cliques together based on the number of NSE edges between
them. As shown in Figure 4-c, NSE clique{B, C, D} and{F, G}
are merged together since they have the most NSE edges (6) be-
tween them. The coarsening step repetitively merges partitions until
it reaches two partitions. As shown in Figure 4-c, after coarsening,
the initial partition isE0 = {I, J} andE1 = {B, C, D, F, G}. The
pseudo code of the coarsening step is presented as part of Figure 6.

4.2.3 Partitioning: refinement

To improve the partition quality, the refinement step moves vari-
ables between two partitions. The partition quality is evaluated
based on the partition cost,P cost, which is defined below:

P cost = Creg + CNSE; (1)

The Creg term represents the non-negative gap between the
maximum register requirement,Max reg and available physical
registers,Phy reg.

Creg = Max((Max reg − Phy reg), 0); (2)

TheMax reg after serialization fromE0 to E1 is calculated
based on the topology ofE0 andE1.
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Figure 5. Partitioning: refinement step

Max reg = Max((|E0| + |Pred set(E1)|), (|E1| + |Succ set(E0)|));
(3)

As shown in Figure 5-a, the example partition has the fol-
lowing topology: |E0| = 2, |Pred set(E1)| = 1; |E1| = 5,
|Succ set(E0)| = 1. AssumingPhy reg = 4, then Creg = Max(3,6)
- 4 = 2.

Term CNSE includes two parts as shown in Equation 4. The first
part, NSE(E0, E1), is the number of directed non-serializable
edges (NSE) fromE0 toE1. The smaller the value ofNSE(E0, E1),
the more variable serializations can be achieved fromE0 to E1.
To estimate the effect of non-serializable edges on the achievable
register reduction, a scalar factorα = 1/Max(|E0|, |E1|) is applied.

CNSE = α × NSE(E0, E1) + β0 × NSE(E0) + β1 × NSE(E1); (4)

The second part,NSE(E0) andNSE(E1), is the number of
directional NSE between NSE cliques inE0 andE1, respectively.
This part is only effective when there is a positive Creg, which in-
dicates another round of reduction is required to avoid spills. To al-
low for further reduction in the future,NSE(E0) andNSE(E1)
should also be minimized. To estimate the effect ofNSE(E0) and
NSE(E1), scalar factorβ0 = (0.1× Creg)/|E0| andβ1 = (0.1×
Creg)/|E1| are applied.

For the initial partition shown in Figure 5-a, Creg = 6 - 4 =
2, CNSE = β1 × NSE(E1) = 0.24 andP cost init = Creg +
CNSE = 2.24. To minimize the partition cost, a refinement step un-
coarsens partitions and moves NSE cliques betweenE0 andE1. In
general, if the new partition cost,P cost new, is smaller than the
initial partition cost,P cost init, then the movement is accepted.
The partition snapshot with the smallestP cost is recorded and
chosen as the final partition.

As shown in Figure 5-a, partitionE1 contains two NSE cliques,
{B, C, D} and{F, G}. PartitionE0 contains only one NSE clique,
{I, J}. The refinement of this example is described below:

ES: Excessive set

Partition( E0,E1): A bi-partitioning of the excessive set

NSE: Non-serializable edge

NSE clique: Variables that cannot be serialized respect to each other

P cost: The cost of a partition(E0, E1)

Construct excessive set (ES)

Add non-serializable edges (NSE) between variables in excessive set

***** NSE clique generation

Label all variables in the excessive set as uncovered and others ascovered

Put all uncovered output variables into a NSE clique, label variables as covered

Apply a backward topological traversal of the DDG

Put uncovered variables required by an operation into a new candidate NSE clique

While there are uncovered variables

Selectthe largest candidate NSE clique, label variables as covered

Update other candidate NSE cliques and continue

EndWhile

***** Partitioning: coarsening step. NSE cliques serve as initial partitions

While there are more than 2 partitions

If partitions are connected by an NSE

Merge the two partitions connected by the most NSEs

Else
Merge two partitions arbitrarily

EndIf
EndWhile
Generatea 2-way partition (E0,E1)

***** Partitioning: refinement step

While partitions contain more than one NSE clique

Un-coarsenpartitions and calculate initial cost,P cost init

Evaluate NSE clique moves fromE0 to E1, thenE1 to E0

Acceptmove ifP cost new < P cost init

Record the partition snapshot with the smallestP cost

EndWhile
Choosethe final partition (E0,E1) with the smallestP cost

Figure 6. Tetris reduction: partitioning

1. Move{F, G} from E1 to E0 as shown in Figure 5-b. After this
movement, Creg = 1 and CNSE = α ×NSE(E0, E1) + β0 ×
NSE(E0) = 1.6. BecauseP cost new (2.6) ≥ P cost init
(2.24), this movement is rejected.

2. Move {B, C, D} from E1 to E0 as shown in Figure 5-c.
This movement reduces Creg to 1 and CNSE to 0. Because
P cost new (1) < P cost init (2.24), this movement is ac-
cepted.

3. After step 2,{I, J} is moved from E0 to E1 as shown in
Figure 5-d. After this movement, Creg = 1 and CNSE = β1 ×
NSE(E1) = 0.1. BecauseP cost new (1.1) < P cost init
(2.24), this movement is also accepted.

In this example, the partition in Figure 5-c has a minimum
P cost of 1. Therefore, the final partition isE0 = {B, C, D, I, J}
andE1 = {F, G}. Pseudo code for the refinement step is presented
at the bottom of Figure 6.

4.3 Serialization

Serialization is applied after partitioning. The goal of this step is to
select and apply serialization(E0 → E1), forming a maximal set
of compatible serializationsfrom E0 to E1.
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As discussed in Section 3,compatible serializations repre-
sent a set of serializations that can be applied together without
causing cycles. Cycles caused by incompatible serializations can
inhibit any possible schedule. Figure 7 shows that serialization
(D → F ) requires a serial edge (Def(G) to Def(F )) while seri-
alization(D → G) requires a serial edge (Def(F ) to Def(G)).
Applying both serializations causes a cycle betweenDef(F ) and
Def(G), which makes scheduling impossible. Therefore, serial-
izations(D → F ) and (D → G) are not compatible and they
cannot be applied simultaneously.

In order to select a maximum set of compatible serializations
from E0 to E1, a two-step serialization algorithm is used. The
first step checks compatibility between serializations andcreates
aserialization interference graph (SIG). The second step selects
and applies a maximal set of serializations based on the SIG.

4.3.1 SIG construction

To represent serialization compatibility, this step creates a new
graph called a serialization interference graph (SIG) based on the
partitioning result(E0, E1). In a SIG, each node is called a se-
rialization node and each undirected edge is called a serialization
interference edge. These terms are formally defined below:

• A serialization noderepresents a potential serialization(u →
v) when there is noNSE(u, v). Variableu/v is a variable in
E0/E1 respectively. As shown in Figure 7-a, the partition,E0
= {B, C, D, I, J} andE1 = {F, G}, has noNSE(E0, E1).
Therefore, the corresponding SIG in Figure 7-b contains all10
potential serialization nodes from{B, C, D, I, J} to {F, G}.

• A serialization interference edgebetween two serialization
nodes indicates that the nodes are incompatible and they can-
not be applied together. As shown in Figure 7-b, serialization
{D → F} is connected to serializations{D → G} and
{C → G}.

A compatibility check evaluates all pairs of serialization nodes
in a SIG. If two serializations(u → v) and(s → t) areincompati-
ble, then there must be a cycle caused by both serial edges (Use(u)
to Def(v)) and (Use(s) to Def(t)). Such cycles can only exist

if there is a path fromDef(t) to Use(u) and another path from
Def(v) to Use(s). A path fromDef(t) to Use(u) indicates ei-
ther there is aNSE(u, t) or Def(t) is a Use(u). Similarly, a
path fromDef(v) to Use(s) indicates either there is aNSE(s, v)
or Def(v) is a Use(s). Therefore, serializations(u → v) and
(s → t) are incompatible if and only if at least one of following
conditions is true:

1. Def(v) is aUse(s) andDef(t) is aUse(u).

2. Def(v) is aUse(s) and there is aNSE(u, t).

3. There is aNSE(s, v) andDef(t) is aUse(u).

4. There is aNSE(s, v) and aNSE(u, t).

The pseudo code of SIG construction is presented as part of
Figure 8.

4.3.2 Maximal serializations

Since two compatible serialization nodes are not connected(inde-
pendent) in a SIG, determining the maximum set of compatible
serializations for a SIG is equivalent to finding the SIG maximum
independent set. This maximum independent set problem has pre-
viously been shown to be NP-complete [7]. To address this issue,
we have developed a heuristic to find the maximal set of serializa-
tions. Our heuristic uses a serialization cost functionS cost that
includes two terms,N deg andCrit inc.

S cost = γ × N deg + Crit inc; (5)

TheN deg term is the SIG node degree, the number of serial-
ization interference edges connected to the node. As shown in Fig-
ure 7-b, serialization node{D → F} has a node degree of 2, which
indicates that it is not compatible with two other serializations.

Crit inc represents the estimated increase of the critical path.
Crit inc caused by a serialization(u → v) is defined as:

Crit inc = Max((ltime(Use(u)) − ltime(Def(v))), 0); (6)

whereltime represents the latest time a node can be scheduled
without increasing the DDG critical path. The latest time ofan
operation can be calculated by a backward graph traversal using
the following equation:

ltime(Def(v)) = Min(ltime(Use(v)) − Delay(Def(v))); (7)

As shown in Figure 7-a, the critical path of the DDG is A-B-E.
Def(A) and Def(H) have anltime of 1. Def(B), Def(C),
Def(D), Def(I) and Def(J) have anltime of 2. Def(E),
Def(F ), Def(G) andDef(K) have anltime of 3. For serial-
ization(B → F ), a serial edge (Def(E) to Def(F )) is required,
which increases the critical path by 1, from A-B-E to A-B-E-F. For
the SIG shown in Figure 7-b, all serialization nodes have thesame
Crit inc of 1.

To maximize the total number of compatible serializations,the
scalar factorγ is set to 1024 so that the serialization node with the
smallestN deg is always selected first. To control the critical path
increase caused by serial edges, a threshold is set to prevent certain
serializations. In our experiments, if theCrit inc of a serialization
node is larger than 3 times of the latency of a load operation,it is
not applied.

The SIG in Figure 7-c illustrates that our heuristic continuously
selects the serialization node with the smallestS cost until there
are no more compatible serialization nodes left in the SIG. When
a serialization node(u → v) is selected, serial edges (Use(u) to



Partition( E0,E1): A bi-partitioning of the excessive set

SIG: Serialization interference graph

MCS: Maximal set of compatible serialization nodes in a SIG

S cost: Cost of a serialization node

N deg:Node degree of a serialization node

Crit inc: Estimated critical path increase caused by a serialization

***** Construct a SIG based on partition(E0,E1)

For each serialization(u → v), whereu/v is a variable inE0/E1

Apply NSE check

Add a serialization node in the SIG if there is no NSE(u,v)

EndFor
For each pair of serialization nodes in the SIG

Apply compatibility check

Add an edge between two nodes if they are incompatible

EndFor
For each serialization node in the SIG

CalculateN deg andCrit inc

AssignaS cost based onN deg andCrit inc

EndFor

***** Select a maximal set of compatible serialization nodes

Initialize an empty MCS

While there are serialization nodes that are independent of MCS

Add a serialization(u → v) with the minimumS cost into MCS

Add serial edges (Use(u) to Def(v)) to the DDG

EndWhile

Figure 8. Tetris reduction: serialization

Def(v)) are inserted into the DDG. The pseudo code of this step
is presented as part of Figure 8.

For the example in Figure 7-c, all serialization nodes have the
sameCrit inc of 1. The serialization node with the minimum
N deg is selected and applied first. The serialization process is
shown below:

1. Select 7 serialization nodes withN deg of 0:

• {C → F} requires a serial edge (Def(E) to Def(F )).

• {B → F} requires a serial edge (Def(E) to Def(F )).

• {I → G} requires a serial edge (Def(K) to Def(G)).

• {J → G} requires a serial edge (Def(K) to Def(G)).

• {I → F} requires a serial edge (Def(K) to Def(F )).

• {J → F} requires a serial edge (Def(K) to Def(F )).

• {B → G} requires a serial edge (Def(E) to Def(G)).

2. Select 2 serialization nodes withN deg of 1:

• {D → G} requires 2 serial edges (Def(E) to Def(G)) and (Def(F ) to
Def(G)).

• {C → G} requires 2 serial edges (Def(E) to Def(G)) and (Def(F ) to

Def(G)).

After step 2, there is no compatible serialization node leftin
the SIG since{D → F} interferes with both{D → G} and
{C → G}.

As shown in Figure 7-d, after applying the above 9 serial-
izations, the augmented DDG contains 5 serial edges, (Def(E)
to Def(F )), (Def(K) to Def(G)), (Def(K) to Def(F )),
(Def(E) to Def(G)) and (Def(F ) to Def(G)). Max reg of
the augmented DDG is reduced from 7 to 5. The new excessive set
is {B, C, D, I, J}.

Tetris 
reduction

Straightline code

Optimized code

List 
scheduling

Graph-based allocation
(FBS off)

Greedy
serialization

Graph-based allocation
(FBS on)

Register
pressure control

Instruction scheduling

Register allocation

1 2 3 654

621 3 54

Figure 9. Experimental flow in Trimaran framework

5. Experimental approach and results
To evaluate the effectiveness of our new reduction algorithm,
a direct comparison to several pre-existing spill code reduction
techniques was performed. These reduction techniques (including
Tetris) were implemented in an academic VLIW compiler, Tri-
maran [6], which includes a front-end, a backend and a simulator.
Tetris reduction is integrated into the backend, ELCOR. Trimaran
allows users to modify the number of target functional units(FUs),
registers and other resources to allow for examination of a broad
range of VLIW architectures. Benchmarks in our experimentsin-
clude several programs taken from the Trimaran framework [6] and
three applications taken from the MediaBench suite [14]. Bench-
marksunepic, g721decandmpeg2decare applications for image,
audio and video signal processing, respectively.

As shown in Figure 9, our experimental flow includes a regis-
ter pressure control step, a scheduling step and a register allocation
step. An existing register pressure control algorithm, thegreedy se-
rialization technique [19] discussed in Section 3, was implemented
for comparison with our new algorithm. After register pressure con-
trol, the default list scheduling algorithm in the Trimaranframe-
work is applied, followed by graph-based register allocation with
FBS turned on or off. FBS is the frequency-based live range split-
ting technique [13] described in Section 2.

To evaluate the performance of each individual technique (Tetris
reduction, greedy serialization and FBS), we first compare flow 1
to flows 2, 4, and 6. Flow 1 is the baseline Trimaran flow without
register pressure control or FBS. Flow 2 and flow 4 apply greedy
serialization and Tetris reduction, respectively, with FBS off. Flow
6 applies FBS with no register pressure control.

The first VLIW architecture evaluated in our experiments is a
4-way VLIW architecture with 16 registers, which can execute 4
operations (including 2 memory operations) on every clock cy-
cle. This resource configuration can be found in several low-end
commercial VLIW processors including the Freescale MSC8101
and MSC8103 [9]. These processors are often used in resource-
constrained embedded systems. Our first experiment evaluates the
benefit of each individual technique (Tetris reduction, greedy se-
rialization and FBS) for the 4-way architecture. Results for each
flow are shown in 3 separate columns in Table 1. In the first column,
benchmark clock cycles indicate application performance.The sec-
ond column shows the number of dynamic spill operations for each
benchmark. Both clock cycles and dynamic spill operations are
shown in thousands of values. In the third column, spill ratio, the
percentage of dynamic spill operations to the total number of op-
erations, is presented. A high spill ratio indicates that a benchmark



Benchmarks Tetris (flow 4) Greedy (flow 2) FBS (flow 6) Base (flow 1)
Cycles Spills Spill% Cycles Spills Spill% Cycles Spills Spill% Cycles Spills Spill%

(K) (K) (K) (K) (K) (K) (K) (K)
bmm 325.64 195.74 0.594 325.64 195.74 0.594 314.36 189.44 0.586 325.64 195.74 0.594
mm 215.86 143.09 0.531 292.26 178.04 0.568 330.54 182.58 0.609 300.61 174.99 0.562
mm double 290.66 168.07 0.553 290.65 168.07 0.553 319.55 171.53 0.585 290.65 168.07 0.553
mm dyn 190.50 123.88 0.494 332.79 238.32 0.648 358.34 252.53 0.655 348.68 252.88 0.656
parmstest 12.37 6.84 0.435 12.37 6.84 0.434 13.28 7.84 0.468 12.37 6.84 0.435
sqrt 4.68 2.24 0.411 7.39 4.09 0.546 8.79 4.38 0.562 7.96 4.00 0.540
strcpy 25.47 7.77 0.283 26.49 8.54 0.302 27.14 8.62 0.371 33.06 16.01 0.448
switch test 13.01 2.58 0.141 13.01 2.58 0.141 13.01 2.58 0.141 13.01 2.58 0.141
wave 34.51 19.30 0.441 50.27 29.78 0.541 44.84 29.79 0.539 60.43 35.49 0.582
unepic 13715 7715 0.400 14992 8892 0.434 18535 11153 0.478 17944 11013 0.474
g721dec 247411 116112 0.235 270268 143463 0.270 227010 135469 0.255 300607 169149 0.298
mpeg2dec 137828 160276 0.463 216025 244131 0.559 313154 244822 0.549 286892 279593 0.583
Geomean 321.19 167.77 38% 390.98 211.44 43% 418.63 219.64 45% 429.37 236.41 46%
% change -25% -30% -9% -11% -3% -7%

Table 1. Comparison of spill reduction techniques for architecturewith 16 registers and 4 functional units

Benchmarks Tetris (flow 4) Greedy (flow 2) FBS (flow 6) Base (flow 1)
Cycles Spills Spill% Cycles Spills Spill% Cycles Spills Spill% Cycles Spills Spill%

(K) (K) (K) (K) (K) (K) (K) (K)
bmm 104.49 28.78 0.177 104.49 28.79 0.177 101.76 27.83 0.172 104.49 28.79 0.177
mm 108.19 20.61 0.135 114.84 44.04 0.245 114.48 40.83 0.231 114.64 40.85 0.231
mm double 101.53 26.26 0.162 101.53 26.27 0.162 101.42 26.27 0.162 101.53 26.27 0.162
mm dyn 103.02 30.28 0.192 107.25 77.11 0.371 98.81 57.67 0.303 125.93 81.10 0.379
parmstest 6.12 2.31 0.207 6.12 2.31 0.206 6.07 2.28 0.204 6.12 2.32 0.207
sqrt 3.99 0.22 0.065 4.17 0.73 0.177 4.17 0.67 0.163 4.20 1.01 0.229
strcpy 18.78 0.04 0.002 18.27 0.05 0.003 18.28 0.06 0.003 18.28 0.07 0.003
switch test 12.99 2.57 0.140 12.99 2.58 0.140 12.99 2.58 0.140 12.99 2.58 0.140
wave 13.67 1.39 0.053 21.79 11.06 0.304 21.59 12.30 0.326 42.54 21.43 0.457
unepic 7553 2016 0.148 8871 3362 0.224 8784 370 0.233 9544 417 0.255
g721dec 175845 32610 0.080 175596 39313 0.224 162451 43018 0.098 176087 47488 0.107
mpeg2dec 77626 5367 0.027 82948 34726 0.149 97939 27178 0.120 108624 72519 0.265
Geomean 177.70 21.94 8% 190.11 41.92 14% 189.15 41.06 13% 209.78 50.85 15%
% change -15% -57% -9% -18% -9% -19%

Table 2. Comparison of spill reduction techniques for architecturewith 32 registers and 8 functional units

Benchmarks Tetris+FBS (flow 5) Greedy+FBS (flow 3)
Cycles Spills Spill% Cycles Spills Spill%

(K) (K) (K) (K)
bmm 101.75 27.83 0.172 101.757 27.83 0.172
mm 108.32 20.61 0.134 112.602 37.14 0.215
mm double 101.41 26.26 0.162 101.416 26.27 0.162
mm dyn 97.65 19.87 0.135 90.708 56.22 0.300
parmstest 6.07 2.27 0.204 6.070 2.27 0.204
sqrt 3.97 0.16 0.049 4.080 0.71 0.174
strcpy 18.64 0.04 0.002 18.270 0.05 0.003
switch test 12.99 2.57 0.140 12.998 2.58 0.140
wave 13.01 1.34 0.052 19.881 11.13 0.306
unepic 8710 2907 0.200 9093 3402 0.226
g721dec 171727 28719 0.071 174243 38523 0.092
mpeg2dec 77226 4892 0.025 96919 19952 0.092
Geomean 177.22 20.76 7% 187.54 38.20 13%
% change -15% -59% -10% -25%

Table 3. Comparison of combined spill reduction techniques for architecture with 32 registers and 8 functional units



Benchmarks Tetris (flow 4) Greedy (flow 2) FBS (flow 6) Base (flow 1)
Cycles Spills Spill% Cycles Spills Spill% Cycles Spills Spill% Cycles Spills Spill%

(K) (K) (K) (K) (K) (K) (K) (K)
bmm 87.50 0.28 0.002 87.51 0.28 0.002 87.56 0.28 0.002 87.51 0.28 0.002
mm 93.72 1.67 0.013 92.63 1.75 0.013 92.59 1.75 0.013 92.59 1.75 0.013
mm double 89.34 1.70 0.012 89.34 1.71 0.012 89.34 1.71 0.012 89.34 1.71 0.012
mm dyn 29.22 1.68 0.013 29.93 1.72 0.013 29.88 1.73 0.013 29.89 1.73 0.013
parmstest 5.61 1.76 0.165 5.62 1.76 0.165 5.62 1.74 0.164 5.62 1.76 0.165
sqrt 3.84 0.13 0.038 3.75 0.15 0.041 3.77 0.19 0.052 3.77 0.17 0.052
strcpy 19.03 0.04 0.002 18.27 0.05 0.002 18.27 0.05 0.002 18.27 0.05 0.002
switch test 12.99 2.57 0.140 12.99 2.58 0.140 12.99 2.58 0.140 12.99 2.58 0.140
wave 12.94 0.05 0.002 12.14 0.10 0.004 12.09 0.13 0.005 12.09 0.13 0.005
unepic 5880 55 0.005 7236 1632 0.122 6613 1443 0.106 7126 1737 0.125
g721dec 162225 30840 0.076 165303 40920 0.097 162189 41717 0.095 162786 42896 0.098
mpeg2dec 75318 4043 0.021 74557 5145 0.025 74590 5559 0.027 74673 5680 0.028
Geomean 147.52 3.87 1.4% 148.76 5.86 2.1% 147.61 6.07 2.2% 148.39 6.20 2.3%
% change -1% -37% 0 -6% -1% -2%

Table 4. Comparison of spill reduction techniques for architecturewith 64 registers and 8 functional units

suffers from high register pressure. At the bottom of the table, the
geometric average of values is provided along with the percentage
change versus the baseline Trimaran flow.

For the baseline (flow 1) in Table 1, on average, spills take up
46% of total executed operations. As shown in Table 1, Tetrisre-
duction (flow 4), greedy serialization (flow 2) and FBS (flow 6)
reduce spills by 30%, 11% and 7%, respectively. Due to these spill
reductions, the average execution cycles of benchmarks arereduced
by 25%, 9% and 3%. For this 4-way VLIW architecture, Tetris re-
duction outperforms both greedy serialization and FBS in terms of
spill reduction and performance improvement. The benefit ofTetris
reduction is a result of its ability to reduce register pressure. Com-
pared with FBS, Tetris reduction reduces the maximum register re-
quirement by 18%, which helps register allocation reduce the num-
ber of spills. Greedy serialization also reduces register pressure.
However, unlike Tetris reduction, which selects and serializes mul-
tiple variables simultaneously, greedy serialization only performs a
single variable serialization at a time. The greedy approach prevents
simultaneous variable serializations and limits the totalserializa-
tion benefit. Compared with greedy serialization, Tetris reduction
allows 75% more serial edges to be inserted into a DDG on aver-
age versus Greedy, which provides an additional 9% reduction in
the maximum register requirement. Reduced register pressure helps
register allocation reduce spills by an additional 19% and improves
performance by 16% for Tetris versus the greedy approach.

The second VLIW architecture evaluated in our experiments is
an 8-way architecture with 32 registers. This architecturecan exe-
cute 8 operations (including 2 memory operations) on every clock
cycle. This configuration is similar to the VLIW processors found
in the C62x and C67x families offered by Texas Instruments [17].
For a register size of 32, the baseline (flow 1) in Table 2 has a spill
ratio of 15%. Compared with the baseline flow, the average spill re-
duction achieved by Tetris reduction (flow 4), greedy serialization
(flow 2) and FBS (flow 6) is 57%, 18% and 19%, respectively. This
reduction improves performance by 15%, 9% and 9%. Compared
with greedy serialization, Tetris reduction achieves an additional
spill reduction of 39% because it provides an additional 8% reduc-
tion in the maximum register requirement.

For some designs, Tetris achieves slightly reduced performance
versus other approaches. For example, as shown in Table 2, bench-
mark strcpy, is adversely affected by the use of Tetris reduction.
Although Tetris reduces the baseline case spill ratio from 0.3%
to 0.2%, the benefit of spill reduction is outweighed by the criti-

cal path increase caused by serial edges. As a result, performance
achieved by Tetris versus the baseline case is degraded by 2.7%. In
future work, it may be possible to modify the serialization cost so
that fewer serial edges are inserted when the spill ratio is low.

As an additional experiment, we evaluate the use of register
pressure control and FBS together in the same flow. Table 3 shows
the performance of Tetris reduction with FBS (flow 5) and greedy
serialization with FBS (flow 3). On average, Tetris with FBS re-
duces spills by 59%, and improves performance by 15% versus the
baseline. This result is 5% better than the performance speedup of-
fered by greedy serialization with FBS.

In summary, when register pressure is relatively high (average
spill ratio of 15%), Tetris reduction outperforms other techniques
by at least 6% in terms of cycle count.

An 8-way VLIW machine with 64 registers was used for a final
experiment. This architecture has the same basic FU and register
configuration as the Transmeta Efficeon VLIW processor [20] and
the Texas Instruments C64x processor [17]. On average, spills take
up 2.3% of the total operations in the baseline flow in Table 4.Due
to this low register pressure, Tetris reduction (flow 4) provides a
performance speedup of 1% and spills are reduced by 37%. As
expected, the benefit of Tetris reduction becomes marginal when
register pressure is very low.

6. Summary
In this paper, we present a new technique to improve the perfor-
mance for VLIW processors by reducing register pressure. Our
Tetris reduction modifies the relative ordering of operations to seri-
alize multiple variables simultaneously so that the maximum regis-
ter requirement is reduced. This technique reduces spills and im-
proves execution time for VLIW programs that experience high
register pressure. Compared with previous work, the execution time
is reduced on average by 16% for a 4-way VLIW architecture with
16 registers and 6% for a 8-way VLIW architecture with 32 regis-
ters. A limitation of the current Tetris technique is that itmay cause
performance degradation when the register pressure of an applica-
tion is very low. This issue will be further evaluated in future work.
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