Tetris: A New Register Pressure Control Technique for VLIW
Processors

Weifeng Xu and Russell Tessier

Department of Electrical and Computer Engineering
University of Massachusetts
Amherst, MA 01003

{wxu,tessier} @ecs.umass.edu

Abstract

The run-time performance of VLIW (very long instruction wr
microprocessors depends heavily on the effectiveness aégoci-
ated optimizing compiler. Typical VLIW compiler phases lunte
instruction scheduling, which maximizes instruction leparal-
lelism (ILP), and register allocation, which minimizes aatpills
to external memory. If ILP is maximized without consideriregy-
ister constraints, high register pressure may result,rgatd in-
creased spill code and reduced run-time performance.dmptper,
a new register pressure reduction technique for embeddéd/VL
processors is presented to control register pressuretpriostruc-
tion scheduling and register allocation. By modifying tleéative
ordering of operations, this technique restructures codeetter
reduce spills. Our technique has been implemented in Tamam
academic VLIW compiler, and evaluated using a series of VLIW
benchmarks. Experimental results show that, on averagea|go-
rithm reduces dynamic spills and improves overall cyclenteby
6% for a VLIW architecture with 8 functional units and 32 r&girs
versus previous spill code reduction techniques.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors - compilers, optimization

General Terms Algorithms, Performance

Keywords Register Pressure, Instruction Level Parallelism, Very
Long Instruction Word (VLIW) Processor.

1. Introduction

VLIW architectures exploit instruction level parallelisby per-
forming multiple operations per clock cycle based on a fixdued-
ule generated by a compiler. To simplify hardware requiretse
VLIW processors do not provide specialized hardware to supp
dynamic scheduling or out of order execution. This optirira
increases the importance of accurate and efficient apiplicatap-
ping.

The compilation process for VLIW processors is divided into
several phases including instruction scheduling and texgigloca-
tion [10]. Instruction scheduling tries to maximize ILP byhedul-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES'07 June 13-16, 2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

Straightline

code Register pressure control

.
2
’

0

d A
Max_reg
measurement

Yes
Reduction

Max_reg > Phy_re

. No L
Instruction Max_reg: maximum register requirement
schedulin . . .
9 Phy_reg: available physical registers
Register
allocation

Optimized
code

Figure 1. VLIW compilation flow with register pressure control

ing as many instructions as possible in parallel, which neayire
a large number of registers to hold variables generateciathed-
ule. Register allocation assigns a physical register th gadable.
If a given schedule requires more registers than availatysipal
registers, variables must be spilled to memory, regardigtbe reg-
ister allocation algorithm. Since each spill requires ripiéttime-
consuming memory store/load operations, large amountgithf s
code can significantly degrade performance. As a resulistezg
pressure must be evaluated and controlled for VLIW proassso

A number of spill reduction techniques [11, 15, 2], includ-
ing register pressure control [2], have been developed.haw/s
in Figure 1, register pressure control is based on a measure-
and-reduce methodology, which can be applied before instru
tion scheduling and register allocation. Using data depeciés,
the measure step estimates the maximum register requitemen
(M azx_reg) of all possible straightline code schedulesVifiz_reg
exceeds the number of available physical regist&tsy_reg, a
reduction step is used to redudéax_reg to Phy_reg. The re-
duction step allows subsequent instruction schedulingt¢od on
improving parallelism.

In this paper, we present a new register pressure controt alg
rithm based on the reordering of operations. Our techniguesé

multaneously serialize multiple variables to redudex_reg and
the number of corresponding spills. To demonstrate its fitene
have integrated the algorithm into an academic VLIW conmpile
Trimaran [6]. As shown in Section 5, our technique can a@hieev
38% reduction in spills and 6% improvement in performance{e
cution cycles of benchmarks) for a VLIW architecture withu@é-
tional units and 32 registers compared with previous amhres
[13,19].

The remainder of this paper is organized as follows. In $acti
2, a brief discussion of previous work is presented. Sec8on
provides background information and discusses the lifitatof
previous techniques. Our new algorithm is discussed ini@edt
Our experimental approach and results are presented ilo8é&ct
Section 6 provides a summary of our findings and offer dioesti
for future research.

2. Related Work

Previous work in spill code reduction can be put into sevesal
egories, general register allocation, schedule-seasitigister al-
location, register-sensitive instruction scheduling eegister pres-
sure control.

General register allocation aims to minimize the number of

spills based on a given schedule. Graph coloring-basedteegil-
location [3, 4, 5] is one of the most effective register aditbon
approaches. Graph-based algorithms build an interfergragh
based on a given schedule, in which each node representsblear
and an edge between two nodes indicates that two variablesta
share the same physical register. If there are not enougsiqaty
registers to hold all variables in the interference grapii| sode
must be inserted to transfer some variable storage to meimbey
frequency-based live-range splitting (FBS) techniquég t&mpts
to isolate spill code reduction to frequently executed)bodgram
regions to improve program performance. FBS uses execfréen
quency information to guide the splitting of variable livenges
(lifetimes) during coloring. By splitting variable live mges in re-
gions with lower frequency first, the overall number of spdan be
reduced.

Schedule-sensitive register allocation techniques [B3,ate
applied to straightline code before instruction schedulin these
approaches, a parallel interference graph (PIG) is creaatespre-
sent all possible live range interference. To reduce thathegim-
pact on achievable schedule length during subsequentdtisin
scheduling, schedule-sensitive heuristics insert a mimimumber
of false dependencies between variables to reduce vaiitele
ference. Govindarajan presented another early regidtsrasion
technique, the minimum register instruction sequence @JR12].
MRIS applies a special interference graph, where each reqte+
sents an instruction lineage, a series of variables thasleare the
same physical register.

Register-sensitive instruction scheduling controls stsgi re-
quirements during instruction scheduling, which is perfed be-
fore register allocation. Goodman and Hsu [11] presenteiiten
grated pre-pass scheduling (IPS) approach, where two slthgd
heuristics are combined. During scheduling, registerirequents
are dynamically evaluated. Based on the analysis, the algvezhn
switch scheduling heuristics. One heuristic improves Il the
other heuristic reduces register usage.

Unlike the above approaches, register pressure controbean
applied before both instruction scheduling and registexcation.
Berson presented a technique called unified resource tilaca
(URSA) to reduce register pressure so that the scheduleaede
in subsequent instruction scheduling does not overusestezgi

[1, 2]. This measure-and-reduce methodology is shown in Fig

ure 1. Experimental results [2] show that register pressargrol
outperforms both schedule-sensitive register allocaiRi®) and

(a). Original DDG (b). Excessive set
(Phy_reg =3) (Max_reg = 5)

(c). Serialization (D->F) (d). Serialization ({B,C,D} -> {F,G})
(Max_reg = 4) (Max_reg = 3)

—» Dataflowedge -> Serial edge O Excessive set
Figure 2. Register pressure reduction via variable serializations

register-sensitive instruction scheduling (IPS). Toyasented
several new heuristics based on Berson’'s measure-andereqghi
proach to further improve register pressure control [1§, TBese
extensions are discussed in Section 3.

3. Background

In this section, we first present several basic definitionfierA
discussing the limitations of several previous technidui8s 19],
our performance-enhancement algorithm is presented.

As shown in Figure 2-a, data dependencies of the input catle ca
be represented in a data dependency graph (DOGY, W, E).
In a DDG, a nodev represents an operation that defines variable
v and a directed edge(vs, v¢) represents a data flow from node
vs to nodew;. The weightw of edgee(vs,v:) represents the
latency of nodevs. For demonstration purposes, all edge weights
in subsequent examples are set to one. Additionally, thevioig
notation is used.

o Def(Var) represents aoperation that defines variablé ar.
For example,Def(B) in Figure 2-a represents an operation
that defines variable B.

Use(Var) represents anperation that uses variabl& ar. For
example, Figure 2-a has thréee(A), Def(B), Def(C) and
Def(D).

Lv(Var) represents théve range of variable Var. Lv(Var)

is the distance fronDef(Var) to the lastUse(Var), where
variableVar is alive. As shown in Figure 2-a, the live range
of variable B,Lv(B), is from Def(B) to Def(E), the only
Use(B).

e Pred(Var) represents gredecessor variable which is re-
quired to generate variabléar. For example, Figure 2-a shows
that there are thre®red(F), variable B, variable C and vari-
able D.

e Succ(Var) represents auccessor variablewhich is generated
using variableV ar. For example, Figure 2-a shows that there
are threeSucc(A), variable B, variable C and variable D.

As discussed in Section 1, register pressure control ishasa
measure-and-reduce methodology. The maximum registaireeq
ment is measured first. If it exceeds the number of availalysip
cal registers, a reduction step is applied.

For a given DDG, the maximum register requirement is the
largest number of variables alive simultaneously. Sinedribtruc-
tion schedule is not fixed until the instruction schedulihgge, the
maximum register requirement is estimated using the dgiarde
dencies of straightline code. In [1], it was shown that theimam
register requirement of a given DDG can be estimated by amply
a minimum chain decomposition based on the Dilworth alfarit
[8]. In this paper, we use an improved estimation techniclied
register saturation [19]. Previous results show that thinesed
result is within one register of the measured maximum regist-
quirement [19].

Using register saturation [19], the maximum register regui
ment of the DDG in Figure 2-a is 5. As shown in Figure 2-b, if
Def(E)isscheduled last, 5 variabl¢®, C, D, F, G} are alive si-
multaneously since variabld$3, C, D} are required byDe f(E)
and{F, G} are output variables. If there are less than 5 physical
registers{ B, C, D, F, G} becomes an excessive set, which is de-
fined below:

¢ An excessive sds a maximum set of variables in a DDG which
can be alive simultaneously. The size of the Sefafr_reg)
exceeds the number of available physical registBrisy reg).

To reduce the size of the excessive set, live ranges of Vasiéb
the excessive set must be separated. In general, sepatsitige
ranges of two variables andv can be achieved by serialization
(u — v) or serializationlv — w), which is defined below:

¢ Serial edge (Use(u) to Def(v)) represents a directed edge
from operationU se(u) to operationDe f(v), which forces an
ordering such thaDef(v) cannot be scheduled earlier than
Use(u).

e Serialization (v — v) represents that variables created after
the live range of variable ends. This can be accomplished by
adding serial edges (dll se(u) to Def(v)).

It has been proven [18] that the problem of achieving a max-
imum reduction using serializations is NP-hard. To addtbss
problem, Touati [18] presented a greedy serialization riegle,
which evaluates all possible serializations between aimyopsari-
ables and selects the one which can best reduce the regigtem-
ment while increasing the critical path the least.

To reduce the excessive s€B,C, D, F,G} in Figure 2-b,
greedy serialization selects serializat{dh — F') as shown in Fig-
ure 2-c. To force an ordering so th@k f (F') cannot be scheduled
earlier than any/se(D), two serial edgesQef(E) to Def(F))
and Def(G) to Def(F)) are inserted into the original DDG. Af-
ter applying serializatiofD — F'), Max_reg of the augmented
DDG in Figure 2-c is reduced from 5 to 4. The new excessivesset i
{E,C, D, G}, where{C, D} are required byDe f (F') and{E, G}
are output variables. Due to serial edgBe ((E) to De f(F')) and
(Def(G) to Def(F)), the critical path changes from A-B-E to A-
B-E-F.

A limitation of greedy serialization is that only a singlesbe
cost serialization can be selected at one time, which oftadd
to poor performance. As shown in Figure 2-c, the excessive se
{E,C, D,G} in the augmented DDG can no longer be reduced
because serializatiofD — F'} prevents other serializations.

To address this problem, a better reduction can be achigved b
considering multiple variable serializations simultangy, serial-
izations(set1 — set2), which is defined below:

Tetris reduction

Excessive set (Augmented DDG
Partitioning »| Serialization
(from measure step) K (to measure step)
}% Max_reg=5 < }% Max_reg = 3 e{
> 9[|e &
E0={B,C,D}, E1={FG}
E

1% step: partitioning (E0,E1) 2" step: serialization (EO -> E1)

— Data flow edge -——> © Excessive set

Figure 3. Tetris reduction technique

Serial edge

e Compatible serializationsrepresent a set of serializations that
can be applied together without creating cycles. A cyclesedu
by serial edges can make scheduling impossible.

e Serialization (setl — set2) represents the maximum set of
compatible serializationéu — v), whereu/v is a variable in
setl/set2.

As shown in Figure 2-d, serializatioi$B, C, D} — {F,G})
contain 5 compatible serializationsB — F'}, {C — F}, {D —
G}, {C — G} and{B — G}. Serialization{ D — F'} is not
selected because it is not compatible with serializatidds— G}
and {C — G}. A detailed discussion regarding compatibility
checking is presented in Section 4.3. By applying these Sabm
ible serializations, the maximum register requirementeguced
from 5 to 3, which is one register less than the value achiéyed
greedy serialization. The new maximum set in the augmenz@ D
is {B, C, D}, in which all variables are required tye f(E).

In order to select and serialize multiple variables simmétausly
for the best reduction, we present a new reduction technaplied
Tetris, in the next section.

4. Tetris Reduction
4.1 Overview

The basic idea of Tetris reduction originates from the papabm-
puter puzzle game. In a Tetris game, players try to move aackpl
given random blocks to fit into a fixed width constraint. Samiy,
Tetris reduction tries to identify blocks (subset of valés) with
suitable topologies and move them to reduce the size of tbesex
sive set fromMaz_reg to Phy_reg (fixed width). The similarity
can be observed in Figure 3, which uses the example in Figdre 2

As shown in Figure 3, Tetris reduction includes two steps,
partitioning and serialization.

1. Partitioning : this step identifies candidates for serialization.
Variables in the excessive set are partitioned into two etshs
FE0 and E'1 based on two criteria. The first criterion indicates
whether variable serializations froB0 to E'1 are possible. The
second criterion indicates how much register count rednocti
can be achieved. A detailed description of the partitiormilygp-
rithm is presented in Section 4.2.

2. Serialization: this step is applied to serialize variables il
after variables in£0 by inserting serial edges into the DDG.

The ordering of variable serializations is decided suclt tha
a maximal set of variable serializations can be applied. The
detailed serialization algorithm is discussed in Sectién 4

4.2 Partitioning
4.2.1 Definitions

Before discussing partitioning in detail, additional difoms are
presented:

e NSE(u,v)is a directed non-serializable edge (NSE) from vari-
ablewu to v. The edge indicates that variahleannot be serial-
ized after variable: due to a path fronDe f(v) to at least one
Use(u). To maintain correct computation, both data and con-
trol dependencies are evaluated to generate NSEs. As shown i
Figure 4-a, serialization from B to C is not possible sinaré¢h
is a path fromDe f(C) to Def(E), which is aUse(B).

Bidirectional NSE(u,v) indicates that there is a NSE in both
directions,(u, v) and (v, u). As shown in Figure 4-b, the live

range of variable B and variable C cannot be separated by any

serialization due to a bidirectionAlSE (B, C).

e An NSE cliqueincludes a set of variables. Each pair of vari-
ables in an NSE clique has a bidirectional NSE so that alt vari
ables in the cligue must be alive simultaneously. Thereraeet
NSE cliques{ B, C, D}, {F,G} and{I, J}, shown in the ex-
ample in Figure 4-c. A single variable is a degenerate case of
an NSE clique.

Partition (EO,E1) represents a bi-partitioning of the excessive
set. As shown in Figure 4-c, the excessive set is partitiamted
E0={I,J}, F1={B,C,D, F,G}.

Pred_set(E1) represents a set dPred(Var) that are not in
the excessive set, whefiéar is a variable inE1. As shown
in Figure 5-a,Pred_set(E1)={A}.

Succset(EO) represents a set ucc(Var) that are not in
the excessive set, whefiéar is a variable in£0. As shown
in Figure 5-a,Succ_set(E0)={ K }.

To identify candidates for serialization, a two-step paning
algorithm was developed to search for a partiti@0, £1) which
achieves the best reduction. The first stegasrsening where
variables are merged into two partitions. To improve theiian
quality, the second stepefinement, is applied to minimize the
partition cost by moving variables between the two parigiol he
partition cost is evaluated during these two phases by exaqi
relevant cost metrics:

e Coarsening cost metric This metric evaluates the number of
possible variable serializations frofi0 to £1. To maximize
serializations, non-serializable edges (NSE) fréra to F1
should be minimized and variables in a NSE clique should
stay in the same partition. Based on this metric, the pantiti
in Figure 4-c is feasible since there is no directed NSE ffin
to 1.

Refinement cost metric This metric evaluates whether the
topology of a partition £0, E1) can lead to register reduction.
Since variables irfucc_set(E0) can be simultaneously alive
with E1 after serialization, preferabhsucc_set(E0)| < |EOQ|.
Similarly, Pred_set(E1) may be alive withE0 after serializa-
tion, so preferablyPred_set(E1)| < |E1|. Based on this cri-
terion, the partitioning in Figure 5-a is a good candidatesi
|Pred_set(E1)| = 1;|E1| = 5; |Succ-set(E0)| = 1; |EO| = 2.

4.2.2 Partitioning: coarsening

The main goal of the coarsening step is to minimize the number
of non-serializable edges (NSE) froBD to E'1 based on the data

H Phy_reg=4 H

®
ee’e
& /@

B 5

(a). Excessive set in original DDG
(Max_reg = 7, Phy_reg = 4)

e

-

(c). Coarsening

(b). NSE added in excessive set

X

EO

(e 9 9

@& &

El

—» Data flow edge
Figure 4. Partitioning: coarsening step

—> Non-serializable edge (NSE) (© Excessive set

dependencies of the DDG. All variable pairs in the excesseate
are evaluated to check whether NSE edges should be insérted.
variableu and variablev have a bidirectional NSE between them,
then they should be merged into the same partition. Thexetoe
first step of coarsening is to create NSE cliques.

In general, if a set of variables is used by an operation, the
variables in the set must be alive simultaneously, formimiN&E
clique. Based on this rule, NSE cliques can be generated agla b
ward graph traversal. As shown in Figure 4-c, NSE cligée G}
is created first because output variables in the excessivasrot
be serialized. As a result of a backward traversal, four tamdil
candidate NSE cliques are generat¢d®(C, D}, {C, D}, {D}
and{I, J}). They are required by operatioi3e f (E), Def(F),
Def(G) and Def(K) respectively. Subsequently, two maximal
NSE cliques{B, C, D} and{I, J}, are selected from the candi-
dates. The pseudo code used for NSE clique generation erpees
as part of Figure 6.

After NSE clique generation, the coarsening step merges two
NSE cliques together based on the number of NSE edges between
them. As shown in Figure 4-c, NSE clig¥®3, C, D} and{F, G}
are merged together since they have the most NSE edges (6) be-
tween them. The coarsening step repetitively merges jpagitintil
it reaches two partitions. As shown in Figure 4-c, after seaing,
the initial partition isE0={1, J} andE1={B,C, D, F,G}. The
pseudo code of the coarsening step is presented as partuoéfeg

4.2.3 Partitioning: refinement

To improve the partition quality, the refinement step movas-v
ables between two partitions. The partition quality is estéd
based on the partition cod®_cost, which is defined below:

P_cost = Creg + CNsE; ()]

The G.., term represents the non-negative gap between the
maximum register requirement/ax_reg and available physical
registers,Phy_reg.

Creg = Maxz((Max_reg — Phy_reg), 0); 2)

The Max_reg after serialization fromF0 to E1 is calculated
based on the topology @0 and E'1.

}% Phy reg =4 e{

Pred_set(E1)

H
EO Pred_set(E1) EO
@ < 3

CRE)
E

(b). Move {F,G} to EO is rejected
P_cost_new = 2.6, (Creg = 1, Cnse = 1.6)

DIOIN R

ARk
Suce._sel(E0) \é@

(d). Move {I,J} to E1 is accepted
P_cost_new = 1.1, (Creg = 1, Cnse = 0.1)

Succ_set(E0) E1l Succ_set(E0)

(a). Initial partition after coarsening
P_cost_init = 2.24, (Creg = 2, Cnse = 0.24)

?\
@®

E1

Succ_set(E0)
(c). Move {B,C,D} to EO is accepted
P_cost_new =1, (Creg = 1, Cnse = 0)

— Data flow edge —> Non-serializable edge (NSE) © Excessive set

Figure 5. Partitioning: refinement step

Mazx_reg = Max((|EO| 4 |Pred_set(E1)|), (|E1| + |Succ_set(E0)|));
3

As shown in Figure 5-a, the example partition has the fol-
lowing topology: |EO| = 2, |Pred_set(E1l)| = 1; |E1] =
|Succ_set(E0)| = 1. AssumingPhy_reg = 4, then G., = Max(3,6)

Term Cy sk includes two parts as shown in Equation 4. The first
part, NSE(EO0, E1), is the number of directed non-serializable
edges (NSE) fron0 to E'1. The smaller the value 6¥ SE(EO, E1),
the more variable serializations can be achieved fiointo E'1.

To estimate the effect of non-serializable edges on theeaghie
register reduction, a scalar facter 1/Max(E0|, |E1]|) is applied.

Cnse = a x NSE(EO, E1) + 8o x NSE(EO) + 81 x NSE(E1); (4)

The second party SE(E0) and NSE(E1), is the number of
directional NSE between NSE cliquesfio and E'1, respectively.
This part is only effective when there is a positive.& which in-
dicates another round of reduction is required to avoidssgib al-
low for further reduction in the futuréy SE(E0) and NSE(E1)
should also be minimized. To estimate the effecNaf E(E0) and
NSE(E1), scalar factordy = (0.1 x Creg)/|E0| and g1 = (0.1 x
Creg)l|E'1| are applied.

For the initial partition shown in Figure 5-a,,G = 6 - 4 =
2, Cnse = /1 X NSE(FE1) = 0.24 andP_cost_init = Creg +
Cnsk = 2.24. To minimize the partition cost, a refinement step un-
coarsens partitions and moves NSE cliques betw&gandE1. In
general, if the new partition cosE_cost_new, is smaller than the
initial partition cost,P_cost_init, then the movement is accepted.
The partition snapshot with the smalleBtcost is recorded and
chosen as the final partition.

As shown in Figure 5-a, partitioR'1 contains two NSE cliques,
{B, C, D} and{F, G}. PartitionE0 contains only one NSE clique,
{I, J}. The refinement of this example is described below:

ES: Excessive set

Partition(£0,E1): A bi-partitioning of the excessive set

NSE: Non-serializable edge

NSE clique: Variables that cannot be serialized respect to each other
P_cost: The cost of a partitiof £0, £'1)

Construct excessive set (ES)
Add non-serializable edges (NSE) between variables in exaesst

*kx NSE clique generation
Label all variables in the excessive set as uncovered and othevased
Put all uncovered output variables into a NSE clique, labelakzds as covered
Apply a backward topological traversal of the DDG
Put uncovered variables required by an operation into a newidateINSE clique
While there are uncovered variables
Selectthe largest candidate NSE clique, label variables as cdvere
Update other candidate NSE cliques and continue
EndWhile

*hkk Partitioning: coarsening step. NSE cliques serve astial partitions
While there are more than 2 partitions
If partitions are connected by an NSE
Merge the two partitions connected by the most NSEs
Else
Merge two partitions arbitrarily
EndIf
EndWhile
Generatea 2-way partition £0,E1)

*hkkk Partitioning: refinement step

While partitions contain more than one NSE clique
Un-coarsenpartitions and calculate initial cosk_cost_init
Evaluate NSE clique moves fron&0 to E'1, thenE1 to EO

Acceptmove if P_cost-new < P_cost_init

Recordthe partition snapshot with the smalld3tcost

EndWhile

Choosethe final partition £0, E£1) with the smallesP_cost

Figure 6. Tetris reduction: partitioning

1. Move{F, G} from E1to EO0 as shown in Figure 5-b. After this
movement, C., =1 and Gysg =a x NSE(EOQ, E1) + By %
NSE(E0) = 1.6. Becauseé’_cost_new (2.6) > P_cost_init
(2.24), this movement is rejected.

2. Move {B,C, D} from E1 to EO0 as shown in Figure 5-c.
This movement reduces,(, to 1 and Gysg to 0. Because
P _cost_new (1) < P_cost_init (2.24), this movement is ac-
cepted.

3. After step 2,{I,J} is moved from EO to E1 as shown in
Figure 5-d. After this movement,,, = 1 and Gysg = (1 %
NSE(E1) = 0.1. Because’_cost_new (1.1) < P_cost_init
(2.24), this movement is also accepted.

In this example, the partition in Figure 5-c has a minimum
P_cost of 1. Therefore, the final partition 80 ={B,C, D, I, J}
andE1 = {F, G}. Pseudo code for the refinement step is presented
at the bottom of Figure 6.

4.3 Serialization

Serialization is applied after partitioning. The goal dtktep is to
select and apply serializatidiZ0 — E1), forming a maximal set
of compatible serializationsfrom EO to E1.

(B->F)

(C->F)O O O (I->F)
(O->F) O (3->F)

O(J->G)
O (->G)

EO

®
XX

¢ @

El

@
i

(C->G) O

(B->G)

(a). Partition: EO = {B,C,D,1,J}, E1 = {F,G} (b). Serialization interference graph (SIG)

—>» Dataflow edge (O Excessive set - Serialization interference edge

© Serialization node (Crit_inc = 1)

(B->F)

@)

O (I->F)
O 3->F)

Ove ~re—t
O M

(C->F)O

(D->F)

(D->G)

(C->G)

O

(B->G)
(c). Maximal set of serializations

(d). Augmented DDG after serializations (EO,E1)
Q© Selected serialization node —_—>

Figure 7. An example of serialization

Serial edge

As discussed in Section ompatible serializations repre-
sent a set of serializations that can be applied togethdrowit
causing cycles. Cycles caused by incompatible seriadizatcan
inhibit any possible schedule. Figure 7 shows that sedtitin
(D — F) requires a serial edgde f(G) to De f(F)) while seri-
alization(D — G) requires a serial edgéef(F) to Def(G)).
Applying both serializations causes a cycle betwégry (F') and
Def(G), which makes scheduling impossible. Therefore, serial-
izations (D — F) and (D — @) are not compatible and they
cannot be applied simultaneously.

In order to select a maximum set of compatible serialization
from EO to E1, a two-step serialization algorithm is usede Th
first step checks compatibility between serializations arehtes
aserialization interference graph (SIG). The second step selects
and applies a maximal set of serializations based on the SIG.

4.3.1 SIG construction

To represent serialization compatibility, this step oesah new
graph called a serialization interference graph (SIG) dasethe
partitioning result(E0, E1). In a SIG, each node is called a se-
rialization node and each undirected edge is called a Ezii@n
interference edge. These terms are formally defined below:

¢ A serialization noderepresents a potential serialization —
v) when there is naVSE (u, v). Variableu/v is a variable in
E0/E1 respectively. As shown in Figure 7-a, the partitid)
={B,C,D,I,J} andE1 = {F,G}, has noNSE(E0, E1).
Therefore, the corresponding SIG in Figure 7-b containgll
potential serialization nodes frofB, C, D, I, J} to {F, G}.

e A serialization interference edgebetween two serialization

if there is a path fromDef(¢) to Use(u) and another path from
Def(v) to Use(s). A path fromDef(t) to Use(u) indicates ei-
ther there is aNSE(u,t) or Def(t) is a Use(u). Similarly, a
path fromDe f(v) to Use(s) indicates either there iSEBSE(s, v)
or Def(v) is aUse(s). Therefore, serializationtu — v) and
(s — t) areincompatible if and only if at least one of following
conditions is true:

1. Def(v)isaUse(s) andDef(t)isaUse(u).

2. Def(v)isaUse(s) andthereisavVSE(u,t).
3. ThereisaVSE(s,v) andDef(t) isaUse(u).
4. ThereisaVSE(s,v)and aNSE(u,t).

The pseudo code of SIG construction is presented as part of
Figure 8.

4.3.2 Maximal serializations

Since two compatible serialization nodes are not conngatele-
pendent) in a SIG, determining the maximum set of compatible
serializations for a SIG is equivalent to finding the SIG maxin
independent set. This maximum independent set problemreas p
viously been shown to be NP-complete [7]. To address thigiss
we have developed a heuristic to find the maximal set of semial
tions. Our heuristic uses a serialization cost functthnost that
includes two termsN _deg andC'rit_inc.

S_cost = v X N_deg + Crit_inc; (5)

The N _deg term is the SIG node degree, the number of serial-
ization interference edges connected to the node. As showiy+
ure 7-b, serialization nodgD — F'} has a node degree of 2, which
indicates that it is not compatible with two other seridiiaas.
Crit_inc represents the estimated increase of the critical path.
Crit_inc caused by a serializatiq — v) is defined as:

Critiinc = Max((ltime(Use(u)) — ltime(Def(v))), 0); (6)

whereltime represents the latest time a node can be scheduled
without increasing the DDG critical path. The latest timeaof
operation can be calculated by a backward graph travergal us
the following equation:

ltime(Def(v)) = Min(ltime(Use(v)) — Delay(Def(v))); (7)

As shown in Figure 7-a, the critical path of the DDG is A-B-E.
Def(A) and Def(H) have anitime of 1. Def(B), Def(C),
Def(D), Def(I) and Def(J) have anitime of 2. Def(E),
Def(F), Def(G) and Def(K) have anltime of 3. For serial-
ization(B — F), a serial edgelQef(E) to Def(F')) is required,
which increases the critical path by 1, from A-B-E to A-B-EFer
the SIG shown in Figure 7-b, all serialization nodes havestae
Crit_inc of 1.

To maximize the total number of compatible serializatidghs,
scalar factory is set to 1024 so that the serialization node with the

nodes indicates that the nodes are incompatib|e and they can smallestN_deg is alWayS selected first. To control the critical path

not be applied together. As shown in Figure 7-b, serialirati
{D — F} is connected to serializationsD — G} and
{C — G}.

A compatibility check evaluates all pairs of serialization nodes
in a SIG. If two serializationéu — v) and(s — t) areincompati-
ble, then there must be a cycle caused by both serial edges()
to Def(v)) and Use(s) to Def(t)). Such cycles can only exist

increase caused by serial edges, a threshold is set to prmregin
serializations. In our experiments, if tli&-it_inc of a serialization
node is larger than 3 times of the latency of a load operatias,
not applied.

The SIG in Figure 7-c illustrates that our heuristic continsly
selects the serialization node with the small€stost until there
are no more compatible serialization nodes left in the SIGekV
a serialization nod¢u — v) is selected, serial edge& {e(u) to

Partition(£0,E1): A bi-partitioning of the excessive set

SIG: Serialization interference graph

MCS: Maximal set of compatible serialization nodes in a SIG
S_cost: Cost of a serialization node

N_deg: Node degree of a serialization node

Crit _inc: Estimated critical path increase caused by a serialization

*xxk Construct a SIG based on partitionf 0, E£'1)
For each serializatioffu — v), whereu/v is a variable in£0/E1
Apply NSE check
Add a serialization node in the SIG if there is no N&k()
EndFor
For each pair of serialization nodes in the SIG
Apply compatibility check
Add an edge between two nodes if they are incompatible
EndFor
For each serialization node in the SIG
Calculate N_deg andC'rit_inc
Assigna S_cost based onV_deg andC'rit_inc
EndFor

*kk Select a maximal set of compatible serialization nade

Initialize an empty MCS

While there are serialization nodes that are independent of MCS
Add a serialization(uv. — v) with the minimumS_cost into MCS
Add serial edgesl{se(u) to De f(v)) to the DDG

EndWhile

Figure 8. Tetris reduction: serialization

Def(v)) are inserted into the DDG. The pseudo code of this step
is presented as part of Figure 8.

For the example in Figure 7-c, all serialization nodes haee t
sameCrit_inc of 1. The serialization node with the minimum
N _deg is selected and applied first. The serialization process is
shown below:

1. Select 7 serialization nodes with_deg of 0:

® {C — F}requires aserial edgde f(E) to Def(F)).
® {B — F'} requires a serial edgé)e f (E) to De f (F)).
® {J — G} requires a serial edgdXe f (K) to Def(G)).
® {J — G} requires a serial edgéle f (K) to Def(Q)).
® {I — F}requires a serial edgé)e f(K) to Def(F)).
® {J — F}requires a serial edgée f (K) to Def(F)).
® {B — G} requires a serial edgéXe f(F) to Def(G)).

2. Select 2 serialization nodes with_deg of 1:

® {D — G} requires 2 serial edgedle f(E) to Def(G)) and Def(F) to
Def(G)).

® {C — G} requires 2 serial edgedlef(FE) to Def(G)) and Def(F) to
Def(Q)).

After step 2, there is no compatible serialization node ileft
the SIG since{D — F} interferes with both{ D — G} and
{C — G}.

As shown in Figure 7-d, after applying the above 9 serial-
izations, the augmented DDG contains 5 serial edgPs,f(F)
to Def(F)), (Def(K) to Def(G)), (Def(K) to Def(F)),
(Def(FE) to Def(G)) and Def(F) to Def(G)). Max_reg of

Straightline code

3i i4

1 2i is 6
Greedy Tetris

serialization reduction

Register
pressure control

|

List
scheduling

v v)& A 4

Graph-based allocation Graph-based allocation
(FBS off) (FBS on)

I I]]
2y v3

Instruction scheduling

Register allocation

\
4y
Optimized code

Figure 9. Experimental flow in Trimaran framework

I
Ly

5. Experimental approach and results

To evaluate the effectiveness of our new reduction algarith
a direct comparison to several pre-existing spill code cadn
techniques was performed. These reduction techniquelsiding
Tetris) were implemented in an academic VLIW compiler, Tri-
maran [6], which includes a front-end, a backend and a sitmula
Tetris reduction is integrated into the backend, ELCORmaran
allows users to modify the number of target functional u¢igs),
registers and other resources to allow for examination afoad
range of VLIW architectures. Benchmarks in our experimémts
clude several programs taken from the Trimaran framewdr&rjé
three applications taken from the MediaBench suite [14hdBe
marksunepi¢ g721decand mpeg2deare applications for image,
audio and video signal processing, respectively.

As shown in Figure 9, our experimental flow includes a regis-
ter pressure control step, a scheduling step and a regikteation
step. An existing register pressure control algorithm gifeedy se-
rialization technique [19] discussed in Section 3, was engnted
for comparison with our new algorithm. After register pragscon-
trol, the default list scheduling algorithm in the Trimarliame-
work is applied, followed by graph-based register allamativith
FBS turned on or off. FBS is the frequency-based live randje sp
ting technique [13] described in Section 2.

To evaluate the performance of each individual techniqe& i@
reduction, greedy serialization and FBS), we first compaw fl
to flows 2, 4, and 6. Flow 1 is the baseline Trimaran flow without
register pressure control or FBS. Flow 2 and flow 4 apply greed
serialization and Tetris reduction, respectively, withS-&ff. Flow
6 applies FBS with no register pressure control.

The first VLIW architecture evaluated in our experiments is a
4-way VLIW architecture with 16 registers, which can execdt
operations (including 2 memory operations) on every clogk c
cle. This resource configuration can be found in severaldad-
commercial VLIW processors including the Freescale MS@810
and MSCB8103 [9]. These processors are often used in resource
constrained embedded systems. Our first experiment eealtia
benefit of each individual technique (Tetris reduction,eghe se-
rialization and FBS) for the 4-way architecture. Resultsdach
flow are shown in 3 separate columns in Table 1. In the firstoolu
benchmark clock cycles indicate application performafibe. sec-
ond column shows the number of dynamic spill operationsdche
benchmark. Both clock cycles and dynamic spill operatiores a
shown in thousands of values. In the third column, spillogattie

the augmented DDG is reduced from 7 to 5. The new excessive setpercentage of dynamic spill operations to the total numibepe

is{B,C,D,I,J}.

erations, is presented. A high spill ratio indicates thagadhmark

Benchmarks Tetris (flow 4) Greedy (flow 2) FBS (flow 6) Base (flow 1)
Cycles| Spills | Spill% | Cycles| Spills | Spill% | Cycles| Spills | Spill% | Cycles| Spills | Spill%
(K) (K) (K) (K) (K) (K) (K) (K)
bmm 325.64| 195.74| 0.594| 325.64| 195.74| 0.594| 314.36| 189.44| 0.586| 325.64| 195.74| 0.594
mm 215.86| 143.09| 0.531] 292.26| 178.04| 0.568| 330.54| 182.58| 0.609| 300.61| 174.99| 0.562
mm.double | 290.66| 168.07| 0.553| 290.65| 168.07| 0.553| 319.55| 171.53| 0.585| 290.65| 168.07| 0.553
mm.dyn 190.50| 123.88| 0.494| 332.79| 238.32| 0.648| 358.34| 252.53| 0.655| 348.68| 252.88| 0.656
parmstest 12.37 6.84 | 0.435 12.37 6.84| 0.434 13.28 7.84 | 0.468 12.37 6.84 | 0.435
sqrt 4.68 224 0411 7.39 409 | 0.546 8.79 4.38| 0.562 7.96 4.00| 0.540
strcpy 25.47 7.77| 0.283 26.49 8.54 | 0.302 27.14 8.62| 0.371 33.06 16.01| 0.448
switch test 13.01 258 0.141 13.01 258 | 0.141 13.01 258 | 0.141 13.01 258 0.141
wave 3451 19.30| 0.441 50.27 29.78 | 0.541 44.84 29.79 | 0.539 60.43 35.49 | 0.582
unepic 13715 7715] 0.400| 14992 8892 | 0.434| 18535| 11153 0.478| 17944| 11013| 0.474
g721dec 247411] 116112| 0.235| 270268 | 143463 0.270| 227010 135469 | 0.255| 300607 | 169149 0.298
mpeg2dec | 137828| 160276| 0.463 | 216025| 244131 | 0.559 | 313154 | 244822 | 0.549| 286892 | 279593 0.583
Geomean 321.19| 167.77 38% | 390.98| 211.44 43% | 418.63| 219.64 45% | 429.37| 236.41 46%
% change -25% -30% -9% -11% -3% -7%
Table 1. Comparison of spill reduction techniques for architectuitd 16 registers and 4 functional units
Benchmarks Tetris (flow 4) Greedy (flow 2) FBS (flow 6) Base (flow 1)
Cycles| Spills | Spill% | Cycles| Spills | Spill% | Cycles| Spills | Spill% | Cycles| Spills | Spill%
(K) (K) (K) (K) (K) (K) (K) (K)
bmm 104.49| 28.78| 0.177| 104.49] 28.79| 0.177] 101.76| 27.83| 0.172] 104.49| 28.79| 0.177
mm 108.19| 20.61| 0.135| 114.84| 44.04| 0.245]| 114.48| 40.83| 0.231| 114.64| 40.85| 0.231
mm.double | 101.53| 26.26 | 0.162| 101.53| 26.27| 0.162| 101.42| 26.27| 0.162] 101.53| 26.27| 0.162
mm.dyn 103.02| 30.28| 0.192| 107.25| 77.11| 0.371 98.81| 57.67| 0.303| 125.93| 81.10| 0.379
parmstest 6.12 231 0.207 6.12 2.31| 0.206 6.07 228 | 0.204 6.12 2.32| 0.207
sqrt 3.99 0.22| 0.065 4.17 0.73| 0.177 4.17 0.67| 0.163 4.20 1.01| 0.229
strcpy 18.78 0.04| 0.002 18.27 0.05| 0.003 18.28 0.06 | 0.003 18.28 0.07| 0.003
switch test 12.99 257 0.140 12.99 258 | 0.140 12.99 2.58 | 0.140 12.99 2.58 | 0.140
wave 13.67 1.39] 0.053 21.79] 11.06| 0.304 2159 12.30| 0.326 4254 21.43| 0.457
unepic 7553 | 2016 | 0.148 8871] 3362 | 0.224 8784 370 | 0.233 9544 417 | 0.255
g721dec 175845 | 32610 | 0.080 | 175596 | 39313 | 0.224 | 162451 | 43018 | 0.098 | 176087 | 47488 | 0.107
mpeg2dec 77626 | 5367 | 0.027 | 82948 | 34726 | 0.149] 97939 | 27178| 0.120 | 108624 | 72519 | 0.265
Geomean 177.70| 21.94 8% | 190.11| 41.92 14% | 189.15] 41.06 13% | 209.78| 50.85 15%
% change -15% | -57% -9% | -18% -9% | -19%

Table 2. Comparison of spill reduction techniques for architectuitl 32 registers and 8 functional units

Benchmarks Tetris+FBS (flow 5) Greedy+FBS (flow 3)
Cycles| Spills | Spill% | Cycles| Spills | Spill%
(K) (K) (K) (K)
bmm 101.75| 27.83| 0.172] 101.757| 27.83| 0.172
mm 108.32| 20.61| 0.134| 112.602| 37.14| 0.215
mm.double | 101.41| 26.26 | 0.162| 101.416| 26.27| 0.162
mm.dyn 97.65| 19.87| 0.135| 90.708| 56.22| 0.300
parmstest 6.07 227 0.204 6.070 2.27| 0.204
sqrt 3.97 0.16 | 0.049 4080 0.71] 0.174
strcpy 18.64| 0.04]| 0.002| 18.270| 0.05| 0.003
switch test 12.99 257 0.140| 12.998| 2.58| 0.140
wave 13.01 1.34] 0.052| 19.881| 11.13| 0.306
unepic 8710 | 2907 | 0.200 9093 | 3402| 0.226
g721dec 171727| 28719 | 0.071| 174243]| 38523 | 0.092
mpeg2dec 77226 | 4892 0.025| 96919| 19952 | 0.092
Geomean 177.22| 20.76 7% | 187.54| 38.20 13%
% change -15% | -59% -10% | -25%

Table 3. Comparison of combined spill reduction techniques for ickure with 32 registers and 8 functional units

Benchmarks Tetris (flow 4) Greedy (flow 2) FBS (flow 6) Base (flow 1)
Cycles| Spills | Spill% | Cycles| Spills | Spill% | Cycles| Spills | Spill% | Cycles| Spills | Spill%
(K) (K) (K) (K) (K) (K) (K) (K)
bmm 8750 0.28] 0.002| 87.51| 0.28] 0.002| 87.56| 0.28| 0.002] 87.51| 0.28| 0.002
mm 93.72 167| 0.013] 9263 1.75| 0.013| 9259| 1.75| 0.013| 92.59 1.75| 0.013
mm_double 89.34| 1.70| 0.012| 89.34| 1.71| 0.012| 89.34| 1.71| 0.012] 89.34| 1.71| 0.012
mm.dyn 29.22 168| 0.013] 29.93| 1.72| 0.013| 29.88| 1.73| 0.013| 29.89 1.73| 0.013
parmstest 5.61 1.76 | 0.165 5.62 1.76 | 0.165 5.62 1.74| 0.164 5.62 1.76 | 0.165
sqrt 3.84] 0.13] 0.038 3.75 0.15] 0.041 3.77] 0.19| 0.052 3.77 0.17] 0.052
strcpy 19.03| 0.04| 0.002| 18.27| 0.05| 0.002| 18.27| 0.05| 0.002 18.27| 0.05| 0.002
switch. test 1299 257| 0.140| 1299 258 0.140| 1299| 258]| 0.140| 12.99| 258]| 0.140
wave 1294| 0.05| 0.002| 12.14| 0.10| 0.004| 12.09| 0.13]| 0.005| 12.09| 0.13] 0.005
unepic 5880 55 | 0.005 7236 | 1632 | 0.122 6613 | 1443 | 0.106 7126 | 1737 | 0.125
g721dec 162225| 30840 | 0.076 | 165303 | 40920 | 0.097 | 162189 41717 | 0.095| 162786 | 42896 | 0.098
mpeg2dec 75318 | 4043 | 0.021| 74557| 5145| 0.025| 74590| 5559| 0.027| 74673| 5680| 0.028
Geomean 14752| 3.87] 14% | 148.76| 586 | 21% | 147.61] 6.07| 2.2% | 14839 6.20] 2.3%
% change -1% | -37% 0 -6% -1% -2%

Table 4. Comparison of spill reduction techniques for architectuitd 64 registers and 8 functional units

suffers from high register pressure. At the bottom of théetathe
geometric average of values is provided along with the peace
change versus the baseline Trimaran flow.

For the baseline (flow 1) in Table 1, on average, spills take up
46% of total executed operations. As shown in Table 1, Tetris
duction (flow 4), greedy serialization (flow 2) and FBS (flow 6)
reduce spills by 30%, 11% and 7%, respectively. Due to thgidle s
reductions, the average execution cycles of benchmarkedueed
by 25%, 9% and 3%. For this 4-way VLIW architecture, Tetris re
duction outperforms both greedy serialization and FBS rimseof
spill reduction and performance improvement. The benefietris
reduction is a result of its ability to reduce register pveesCom-
pared with FBS, Tetris reduction reduces the maximum regist
quirement by 18%, which helps register allocation redueentim-
ber of spills. Greedy serialization also reduces registessure.
However, unlike Tetris reduction, which selects and sizealmul-
tiple variables simultaneously, greedy serializatiorygdrforms a
single variable serialization at a time. The greedy apgr@aevents
simultaneous variable serializations and limits the tetgializa-
tion benefit. Compared with greedy serialization, Tetruion
allows 75% more serial edges to be inserted into a DDG on aver-
age versus Greedy, which provides an additional 9% reduatio
the maximum register requirement. Reduced register presslps
register allocation reduce spills by an additional 19% amproves
performance by 16% for Tetris versus the greedy approach.

The second VLIW architecture evaluated in our experimets i
an 8-way architecture with 32 registers. This architectame exe-
cute 8 operations (including 2 memory operations) on eviagkc
cycle. This configuration is similar to the VLIW processoosifid
in the C62x and C67x families offered by Texas Instrumeni3.[1
For a register size of 32, the baseline (flow 1) in Table 2 haslla s
ratio of 15%. Compared with the baseline flow, the averadérspi
duction achieved by Tetris reduction (flow 4), greedy siedion
(flow 2) and FBS (flow 6) is 57%, 18% and 19%, respectively. This
reduction improves performance by 15%, 9% and 9%. Compared
with greedy serialization, Tetris reduction achieves aditamhal
spill reduction of 39% because it provides an additional 8¥ic-
tion in the maximum register requirement.

For some designs, Tetris achieves slightly reduced pegoa
versus other approaches. For example, as shown in Tableéh-be
mark strcpy, is adversely affected by the use of Tetris reduction.
Although Tetris reduces the baseline case spill ratio fraB%90
to 0.2%, the benefit of spill reduction is outweighed by thiéi-cr

cal path increase caused by serial edges. As a result, perfice
achieved by Tetris versus the baseline case is degradedWy th
future work, it may be possible to modify the serializatimsitso
that fewer serial edges are inserted when the spill rations |

As an additional experiment, we evaluate the use of register
pressure control and FBS together in the same flow. TablevBssho
the performance of Tetris reduction with FBS (flow 5) and dgsee
serialization with FBS (flow 3). On average, Tetris with FBS r
duces spills by 59%, and improves performance by 15% vehgus t
baseline. This result is 5% better than the performancedsypeaf-
fered by greedy serialization with FBS.

In summary, when register pressure is relatively high @yer
spill ratio of 15%), Tetris reduction outperforms otherheigjues
by at least 6% in terms of cycle count.

An 8-way VLIW machine with 64 registers was used for a final
experiment. This architecture has the same basic FU ansiteegi
configuration as the Transmeta Efficeon VLIW processor [2@] a
the Texas Instruments C64x processor [17]. On averagés ik
up 2.3% of the total operations in the baseline flow in Tableue
to this low register pressure, Tetris reduction (flow 4) jdeg a
performance speedup of 1% and spills are reduced by 37%. As
expected, the benefit of Tetris reduction becomes margihahw
register pressure is very low.

6. Summary

In this paper, we present a new technique to improve the perfo
mance for VLIW processors by reducing register pressura. Ou
Tetris reduction modifies the relative ordering of openagito seri-
alize multiple variables simultaneously so that the maxmmagis-

ter requirement is reduced. This technique reduces spildsima-
proves execution time for VLIW programs that experiencehhig
register pressure. Compared with previous work, the ei@ttitne

is reduced on average by 16% for a 4-way VLIW architecturé wit
16 registers and 6% for a 8-way VLIW architecture with 32 segi
ters. A limitation of the current Tetris technique is thahity cause
performance degradation when the register pressure of@itap
tion is very low. This issue will be further evaluated in frework.

Acknowledgments

This work was sponsored by National Science Foundationtgran
CCR-9988238. The authors wish to acknowledge the efforts of
Premachandran R. Menon in the completion of this work.

References

[1] D. A. Berson, R. Gupta, and M. L. Soffa. URSA: A Unified Refsce
Allocator for Registers and Functional Units in VLIW Archkdtures.
In IFIP Working Conference on Architectures and Compilation
Techniques for Fine and Medium Grain Parallelispages 243-254,
Jan. 1993.

[2] D. A. Berson, R. Gupta, and M. L. Soffa. Integrated Instion
Scheduling and Register Allocation Techniques. Idternational
Workshop on Languages and Compilers for Parallel Computing
pages 247-262, Aug. 1998.

P. Briggs. Register Allocation via Graph Coloring PhD thesis,
Department of Computer Science, Rice University, Apr. 1992

P. Briggs, K. Cooper, K. Kennedy, and L. Torczon. Colgrin
Heuristics for Register Allocation. IACM SIGPLAN Conference
on Programming Language Design and Implementatfmages 275—
284, June 1989.

G. Chaitin. Register Allocation and Spilling via GraplolGring.
In ACM SIGPLAN Symposium on Compiler Constructipages
98-105, June 1982.

L. N. Chakrapani, J. Gyllenhaal, W. W. Hwu, S. A. Mahlke, ¥
Palem, and R. M. Rabbah. Trimaran, An Infrastructure foreaesh
in Instruction Level Parallelism. Iinternational Workshop on
Languages and Compilers for High Performance Computpages
32-41, Sept. 2004.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivesnhtroduction to
Algorithms McGraw-Hill Book Company, 1990.

[8] R. P. Dilworth. A Decomposition Theorem for Partially d@red Sets.
Annals of Mathematic$1(1):161-166, Jan. 1950.

[9] Freescale Semiconductor, INelSC8101 Reference Many&i005.

[10] S. M. Freudenberger and J. C. Ruttenberg. Phase OgigiriRegister
Allocation and Instruction Scheduling. International Workshop on
Code Generationpages 146-172, May 1991.

3

—

[4

fla.aer

[5

—

[6

—

[11] J. R. Goodman and W.-C. Hsu. Code scheduling and registe
allocation in large basic blocks. RCM Supercomputing Conference
pages 442-452, July 1988.

[12] R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and GGRo.
Minimum Register Instruction Sequencing to Reduce Reg&dls
in Out-of-Order Issue Superscalar ArchitecturdSEE Transactions
on Computers52(1):4—20, Jan. 2003.

[13] H. Kim. Region-based Register Allocation for EPIC Architectures
PhD thesis, Department of Computer Science, New York Usiger
Jan. 2001.

[14] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBle:
A Tool for Evaluating and Synthesizing Multimedia and Conmiau
catons Systems. Imternational Symposium on Microarchitectyre
pages 330-335, June 1997.

[15] C. Norris and L. L. Pollock. A Scheduler-Sensitive GbiRegister
Allocator. InACM Supercomputing Conferengeges 804-813, July
1993.

[16] S. S. Pinter. Register Allocation with Instruction &dualing: A New
Approach. IPACM SIGPLAN Conference on Programming Language
Design and Implementatippages 248-257, June 1993.

[17] Texas Instruments, IncTMS320C6000 CPU and Instruction Set
Reference Guide000.

[18] S.-A.-A. Touati. Register Saturation in Superscalzt ¥LIW Codes.
In International Conference on Compiler Constructigages 213—
228, Apr. 2001.

[19] S.-A.-A. Touati. Register Saturation in Instructioevel Parallelism.
International Journal of Parallel Programmin@3(4):393-449, Aug.
2005.

[20] Transmeta, IncTransmeta Efficeon TM8820 Process2005.

