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Abstract

The device-level size and complexity of reconfigurable
architectures makes fault tolerance an important concern in
system design. In this paper, we introduce a fully-automated
fault recovery system for networked systems which contain
FPGAs. If a fault is detected that can not be addressed lo-
cally, fault information is transferred to a reconfiguration
server. Following design recompilation to avoid the fault,
a new FPGA configuration is returned to the remote sys-
tem and computation is reinitiated. To illustrate the benefit
of this approach, we have implemented a complete fault re-
covery system which requires no manual intervention. An
important part of the system is a timing-driven incremental
router for Xilinx Virtex devices. This router is directly inter-
faced to Xilinx JBits and uses no CAD tools from the stan-
dard Xilinx Alliance tool flow. Our completed system has
been applied to three benchmark designs and exhibits com-
plete fault recovery in up to 12× less time than the standard
incremental Xilinx PAR flow.

1. Introduction

As the application space of digital systems has grown
over the past decade to include a spectrum of applications
across science and engineering, a strong desire for oper-
ational fault tolerance has developed. Although mission-
critical systems frequently contain device-level redundancy
to allow for continued operation in the presence of oper-
ational faults, other systems, with limited space for redun-
dant devices, require on-line fault recovery to return compo-
nents to functionality quickly and efficiently. Even though
digital components, such as FPGAs, contain internal data
path redundancy that could be harnessed to limit the effects
of a single or small number of transient or permanent hard-
ware faults, to date few system-level approaches that follow
this model have been developed. For embedded systems,
the development of an automated FPGA fault diagnosis and

recovery system has been hampered by a limited amount
of local computational resources. The recent availability of
network access to computationally-superior resources has,
in general, not been effectively leveraged for FPGA fault
recovery.

To recover from detected faults, FPGA logic and routing
configurations can be dynamically restructured to perform
the same functional operations while avoiding faulty subcir-
cuits [19]. The plentiful logic and routing resources found
in contemporary FPGAs allow for reconfiguration around
faulty lookup tables (LUTs), tracks, and connection points.
Often, individual LUTs in a logic cluster are left unused
during initial logic packing due to routing constraints. An
unused LUT can be used in place of a faulty LUT by swap-
ping intra-cluster functionality [19]. For routing resources,
a faulty track or connection point can be avoided by rerout-
ing the connection using previously unused resources. This
process may involve ripping up and rerouting nets unaf-
fected by the fault to create a feasible-route path. From a
practical standpoint, logic and routing fault recovery must
be timing-driven to preserve initial mapping performance.
Additionally, FPGA recompilation for embedded systems
must be performed quickly (e.g. seconds) to minimize sys-
tem down time. Although current commercial FPGA CAD
tools allow for incremental design placement and routing,
the time required to perform these operations and to per-
form subsequent bitstream generation is often prohibitive
(e.g. minutes).

In this paper, a fully-automated fault recovery system for
networked FPGA systems is described. Our integrated re-
covery system harnesses the power of networked comput-
ing, including the Internet, to allow faulty systems (fault tol-
erant clients) access to computationally-superior processing
resources (reconfiguration servers). These servers aid in the
recovery effort of rebuilding a configuration bitstream. Fol-
lowing reconstruction of programming data, a new config-
uration is passed to a fault tolerant client via the network
environment and remote computation is restarted. We have
implemented this complete system using an FPGA-based
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Figure 1. Networked Fault Tolerant System

card in a Windows NT-based PC (fault tolerant client) and a
Sun Solaris-based workstation (reconfiguration server). To
speed the recompilation effort, a self-contained CAD map-
ping system targeting commercial Xilinx Virtex devices has
been developed. This system uses FlowMap [6] for tech-
nology mapping, a modified version of VPR [2] for place
and route, and the JBits bitstream generator [11]. A timing-
driven incremental FPGA router has been developed and
integrated into VPR to overcome permanent faults in the
FPGA routing fabric. Our approach is shown to allow for
complete recompilation in less than 15 seconds for three
benchmark applications. Our custom Virtex recompilation
flow is shown to be nearly an order of magnitude faster on
average than the standard Virtex place, route, and bitstream
generation flow.

The remainder of this paper is organized as follows. In
Section 2, previous work related to fault recovery in recon-
figurable systems is described. In Section 3, an overview of
our experimental approach and system philosophy is pro-
vided. A complete, detailed description of our automated
fault recovery system is given in Section 4. In Section 5,
the incremental CAD environment used to support fault re-
covery is described. In Section 6, limitations of our current
system are described. Experimental results validating our
approach are show in Section 7. The paper concludes in
Section 8 with a summary of conclusions and an overview
of future work.

2. Related Work

Although a number of individual FPGA fault recovery
tools involving incremental placement [8] [13] and incre-
mental routing [9] [19] have been developed, little work
has been performed to integrate them into a complete, au-
tomated fault recovery system. In Yu et al. [31], a fault re-
covery approach for single faults in a triple modular redun-
dancy (TMR) system is detailed. State information from
replicated hardware is transferred to the faulty component
to continue operation. A similar approach, described in
[32], trades area for fault coverage by reducing a TMR sys-

tem to a dual modular redundancy system upon fault dis-
covery. In Huang and McCluskey [17], an embedded, dual
FPGA system is described. If one FPGA is determined to be
faulty, the remaining FPGA attempts to return it to full func-
tionality by shifting a column of logic blocks away from the
faulty area. In Sinha et al. [23], performance is traded for
fault tolerance in the PipeRench reconfigurable architecture
by including built-in self test (BIST) circuitry in the archi-
tecture control circuitry. Unlike our approach, these pre-
vious efforts require additional system hardware to support
fault tolerance. In Saxena et al. [21], a full fault recovery
system is described including a multi-threaded processor,
FPGA, memory and an I/O interface. Although the archi-
tecture appears to have the capability to automatically de-
tect and recover from faults, a physical implementation of
the system was not developed.

Network-based FPGA reconfiguration has been at-
tempted in a number of recent projects. In Guccione et al.
[12], an FPGA in a remote system takes the place of a stan-
dard network interface. The FPGA is capable of download-
ing new services and upgrades from the network. In Staicu
et al. [24], a centralized job management system for recon-
figurable computing systems is described. These systems
are reconfigured over a network using job scheduling. A se-
ries of standard job management systems are analyzed. In
Fallside and Smith [10], an FPGA-based system is directly
connected to the Internet. Both FPGA configuration and ap-
plication data are transfered to the FPGA via the network.
None of these networked systems explicitly examines fault
tolerance as a reconfiguration goal.

3. System Overview

A key to the successful implementation of an operational
fault recovery system is access to computational resources
that are sufficient to implement the recovery approach. A
high-level model of a networked fault recovery system ap-
pears in Figure 1. The characteristics of each resource in
the system can be described as follows:
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Figure 2. Fault Diagnosis and Recovery Steps

Fault tolerant client: This platform has a need for either
uninterrupted system operation or minimized down-time if
a hardware fault is detected. For fault tolerant systems with
hard real-time constraints, hardware redundancy allows for
periodic functional hardware test and fault recovery of sys-
tem components with no system down-time. This constraint
often means complete hardware redundancy of critical sub-
systems such as FPGAs and associated microprocessors and
memories that might be used to configure them. For systems
that can tolerate some system down-time, hardware redun-
dancy is not needed to recover a faulty FPGA if the micro-
processor and memories can continue functioning normally
during the recovery effort and down time can be minimized.
For FPGA-based systems, previously described techniques
[15] [16] can be used to periodically diagnose permanent
FPGA logic and interconnect faults. FPGA configuration
SRAM bit transient faults (e.g. single SRAM configuration
bit inversion) are successfully addressed by locally reload-
ing the entire configuration bitstream into the FPGA. Due to
a lack of local compute power, permanent logic and inter-
connect faults require the automatic transfer of the fault lo-
cation to a computationally-superior reconfiguration server
for fault recovery.

Reconfiguration server: This platform has the capa-
bility to perform recompilation of FPGA circuit designs.
Information related to a detected fault is transferred over
the network to this host system via standard communica-
tion protocols. For FPGA devices, incremental compilation
approaches based on logic cluster LUT-swapping and incre-
mental routing are used to generate replacement bitstreams.
If incremental compilation fails, complete device re-place
and re-route is required.

Communication network: Communication between
the fault tolerant client and the reconfiguration server is per-
formed using standard TCP/IP protocols. Transport level
processes on both systems provide the underlying commu-
nication mechanisms needed for status and configuration
transfer.

A detailed flow of client-server interactions appears in

Figure 2. For many computing platforms, and especially
for time-critical systems, it is highly desirable to perform
fault recovery in seconds rather than minutes or hours. As
a result, complete device re-place and re-route is only con-
sidered as an absolute last option. The diagnosis and re-
covery effort for FPGA faults at the fault tolerant client is
broken into three main parts: the diagnosis of the fault at
the fault tolerant client and the transfer of fault information
to the host workstation, the recompilation of the embedded
program at the reconfiguration server to avoid the detected
fault, and the transfer of the updated configuration bitstream
information back to the fault tolerant client. Total roundtrip
time for this fault recovery process should be a few sec-
onds in most cases to minimize system down time. Tran-
sient faults are handled locally by reloading the bitstream
into the FPGA.

4. Fault Diagnosis and Recovery System

Although our remote-processing approach could be im-
plemented using dedicated inter-system network links, a
shared-network based approach provides for needed system
flexibility and scalability. To enable networked communi-
cation, a TCP/IP interface is used to allow for communica-
tion between a single host workstation server and the fault
tolerant client. Although not included in experimentation,
additional fault tolerant clients could be added to the sys-
tem.

The hardware used to implement our fault recovery sys-
tem includes:

• Fault-tolerant client - A TransTech DM11 signal
processing board [27] containing a Xilinx XCV100-
5 FPGA, a 200 MHz TMS320C6201, 32 Mbytes
SDRAM, and 1 MB SRAM serves as the fault-tolerant
client for this project. Although it is envisioned that
some deployed fault tolerant systems would have a di-
rect connection to the Internet, for this project the PCI-
based DM11 was situated in a Windows NT-based PC.



Only the networking capabilities of the PC were used
in the implementation of the networked fault tolerant
system since the PC did not have sufficient process-
ing or memory resources to perform FPGA incremen-
tal compilation.

• Reconfiguration server - A 440 MHz Solaris-based
Ultra-10 Sun workstation with 768 MB main memory
serves as the reconfiguration server. This server imple-
ments all initial and incremental CAD algorithms on
the FPGA design and supports Internet based commu-
nication with the fault tolerant client

• Communication network - A 100 Mbit/s Ethernet
connection between the fault tolerant client and the re-
configuration server is used to transport network data.
During experimentation this shared connection was si-
multaneously loaded with normal laboratory data traf-
fic.

4.1. System Initiation

Prior to normal system operation, a series of boot-up op-
erations are required at both the reconfiguration server and
the fault tolerant client. Upon server boot-up, a fault recov-
ery process is initiated to continually evaluate client operat-
ing status. This server process communicates with the fault
tolerant clients via a socket-based interface. In our imple-
mentation, a socket constructor from the ActivePerl 5.8.0
INET library [5] is used to set the socket and associated
port. The reconfiguration server swaps processes to service
alternate jobs until receiving a request from a remote fault
tolerant client.

Upon fault tolerant client boot up, an initial FPGA con-
figuration is loaded into the local FPGA and the WinNT Ac-
tivePerl 5.8.0 INET library [5] is used to form a socket con-
nection from the client to the reconfiguration server. After
bootup, a client process can provide periodic fault tests on
the FPGA [16]. Since full FPGA fault diagnosis has not yet
been implemented in our system, random FPGA fault loca-
tions generated by the local processor were used for system
testing purposes.

4.2. Client-Server Interaction

Following client and server initiation, the fault recovery
network connection remains dormant until the discovery of
a permanent FPGA fault at the client. Upon fault detection,
a series of steps are performed to promote fault recovery.

1. The location of the fault is transferred to the reconfig-
uration server via the pre-constructed TCP/IP client-
server socket interface. This information includes

the X,Y channel position and track number for rout-
ing channel faults and the position of the internal
wire/transistor for logic cluster faults. The client-based
data transfer utility enables this transfer using the local
TCP/IP transport utility with the preassigned network
socket.

2. Upon receipt of fault information from the fault tol-
erant client, the appropriate FPGA fault recovery tool
(logic cluster LUT swapper or timing-driven incre-
mental router) is initiated by the reconfiguration server.
When a suitable replacement configuration bitstream
has been generated, it is transferred to the fault tolerant
client. Specific FPGA incremental routing techniques
are detailed in Section 5.

3. The configuration manager process of the fault toler-
ant client receives the replacement configuration in-
formation and reprograms the FPGA configuration bit-
stream.

4. As a final step, FPGA execution in the fault tolerant
client is reinitiated.

In some cases, due to the need to avoid faults, the fault-
recovered FPGA configuration may not allow for design
operation at the same clock speed as the original configu-
ration. As a result, additional hardware requirements on the
fault tolerant client, such as the presence of programmable
system clock circuitry, may be needed. This latter feature
has not yet been implemented in our system.

The fault recovery system operates without manual in-
tervention. A system operator may be notified of a recovery
effort via email or some other notification process. In cases
of client performance reduction, it may be desirable to re-
place client hardware, if possible. Note that our automated
fault response approach is similar in nature to the approach
taken by fault tolerant computer manufacturers years ago
[29]. For these systems, malfunctioning fault tolerant hard-
ware would directly contact the manufacturer via a modem
to report a specific problem. Replacement hardware was
then shipped to the customer without their prior knowledge
of a computing problem.

5. Reconfiguration Server
CAD Infrastructure

To facilitate high-speed FPGA fault recovery, a cus-
tomized incremental FPGA CAD approach was deployed
at the reconfiguration server. For many fault tolerant sys-
tems, fault recovery should occur as quickly as possible,
preferably in a matter of seconds. Although network-based
data transport generally meets this requirement, incremen-
tal FPGA placement and routing using commercial FPGA
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Figure 3. Academic FPGA Design Mapping Flow to Xilinx Virtex Devices

tools may take several minutes in the best case due to sev-
eral factors including:

• A substantial portion of commercial FPGA tool start-
up time is spent in the creation of a meticulously-
detailed logic and routing graph. This graph must be
sufficiently detailed to support all the technology map-
ping, placement, and routing features of the tool (e.g.
block memory interfacing, phase-locked loop support,
several levels of timing analysis) even if they are not
used for a specific function, such as incremental place-
ment and routing.

• Commercial FPGA tools provide very detailed error-
checking mechanisms and hooks for a variety of user-
accessible options. These features can delay the start-
up time of the tool.

• Most commercial FPGA tools utilize an intermediate
format (e.g. Xilinx NCD format) in performing inter-
mediate CAD steps. The conversion from this format
to the configuration bitstream is often lengthened by
additional formatting and error-checking steps.

Additionally, commercial tools generally do not provide
a time-efficient interface for users to feed results of non-
commercial CAD tools into the error-checking and bit gen-
eration process.

To overcome these limitations, we have developed a
complete incremental gate-level design mapping flow for
Xilinx Virtex that is made solely from academic FPGA
tools and the Xilinx JBits bitstream generator [11]. Since
we found through experimentation that information from
the initial design compilation is helpful in performing in-
cremental compilation, we have also developed a complete
initial design mapping flow that only uses academic tools
and Xilinx JBits. A diagram of the flow for both initial and
incremental compilation is shown in Figure 3. For designs
originating at the RTL level, Altera MaxPlus2 [1] was used
to convert designs to the gate level.

The tools listed for the two flows in Figure 3 include:

• EDIF2BLIF - This netlist tool converts a netlist in
EDIF netlist format to BLIF netlist format [20].

• SIS - This well-known logic optimization tool [22] is
used to convert arbitrary gate representations into min-
imized sum-of-product form.

• FlowMap - This academic technology mapping tool
[6] packs logic gates into four-input lookup tables us-
ing a timing-driven cut-based mapping approach.

• VPR - The Versatile Place and Route (T-
VPACK/VPR) tool suite [2] provides LUT packing
into logic clusters, cluster placement, and inter-cluster
routing for island-style FPGA architectures. As de-
scribed in Section 5.1, significant effort was required
to modify VPR to target a specific Virtex device.

• VPR-to-JBits interface - This Java-based interface
parses logic, placement and routing information from
FlowMap and VPR and converts the information into
a series of Java calls for the JBits bitstream generator.

• JBits - This Java-based tool from Xilinx [11] creates
a new Virtex bitstream or modifies an existing Virtex
bitstream.

5.1. VPR Modifications to Support Xilinx Virtex

As shown in Figure 4, the VPR place and route tool flow
targets FPGAs which represent a generalized FPGA model
[3]. The relative run-time speedup of the tool compared
to commercial FPGA place and route tools is largely at-
tributable to the high-level definition of a specific FPGA
logic and routing tile which is replicated in two dimensions
to form a two dimensional grid [3]. Although it was possi-
ble to retain the VPR model and its associated speed advan-
tage for our Virtex-based work, it was necessary to integrate
several Virtex-specific features into VPR:
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1. The standard VPR model assumes a basic switch
box/connection box model [4] that has been used in
FPGA research for the past decade. As shown in Fig-
ure 5, for Virtex, these blocks are combined into a sin-
gle structure with irregular connection patterns, mak-
ing it more difficult to define wire-to-wire connections
succinctly. VPR was modified to include the more re-
cent interconnection model.

2. The VPR model assumes that internal logic cluster
connectivity is very regular (e.g. all cluster inputs drive
all LUT inputs and all LUT/FF outputs feed back to all
LUT inputs). These connections are sparsely popu-
lated inside Virtex clusters (CLBs) requiring an exten-
sion of the VPR routing graph into each cluster.

3. Virtex routing tracks that span multiple clusters change
their relative track position (e.g. they shift up one track
in the channel) after passing each cluster to facilitate
layout and to provide a breadth of connectivity to clus-
ters and other routing tracks. This (X , Y ) position-
dependent connectivity for tracks was added to VPR.

Although not shown in Figure 3, to validate the accuracy
of our modified VPR for Virtex, an interface was created
between the generated design logic, placement, and routing
files and Xilinx PAR using the Xilinx XDL interface. This
interface allows users to generate Xilinx Alliance internal
format files (NCD) for error-checking purposes. Each con-
figuration that was read into PAR was shown to meet all

error-checking and simulation requirements. Note that the
XDL interface was used only for checking; JBits was used
for system bitstream generation.1

5.2. Timing-Driven Incremental Routing

While previously-described LUT-swapping approaches
[19] can be used to recover from intra-cluster logic faults,
a new timing-driven incremental router was needed to over-
come permanent routing track and interconnect transistor
faults in the interconnection fabric. To date, few effective
incremental routing techniques have been developed. In
Dutt and Verma [28], a channel-based refit algorithm based
on incremental global, then detailed, routing is described.
In Emmert and Bhatia [9], a re-route approach for FP-
GAs is described that re-routes nets following logic block
movement. This approach does not consider the removal
of previously-routed nets that block fault recovery. The
JRoute router [18] is also limited by this issue. Although
JRoute allows for individual net routing that could be used
to overcome single interconnect faults, the lack of a net rip-
up mechanism makes its use impractical for densely-routed
designs. In Lakamraju and Tessier [19], a routability-based
version of the PathFinder algorithm [7] was implemented
to overcome faults in an island-style architecture. None of
these approaches offer timing-driven incremental routing.

In the event of interconnect segment failure or if logic
cluster exchange approaches are ineffective, incremental
routing techniques are needed to re-connect nets affected
by faults. To maximize net routability, we have based our
timing-driven incremental router on a timing-driven ver-
sion of the PathFinder negotiated congestion algorithm, a
widely-used maze-routing algorithm. PathFinder is a multi-
iteration maze router that re-routes each net in sequence for
each iteration. The routing search for each net evaluates
a series of routing nodes (cluster pins and intra- and inter-
cluster wire segments) each of which has been assigned a
node cost value, cn, based on the following equation [4, 7]:

cn = Crit(i, j)×delay(n)+[1−Crit(i, j)]×(1+Hn)∗(1+Pn)
(1)

where delay(n) is the delay of the node, Pn is the
present cost of the node, based on the number of nets
currently assigned to the node, and Hn is a history cost
value indicating that a node, while perhaps uncongested
presently, was overused during one or more previous iter-
ations. Crit(i, j) is the criticality of a net segment (i, j)
targeted to a node defined as:

Crit(i, j) = 1 − slack(i, j)

Dmax
(2)

1All VPR for Virtex and associated files are available for free on-line
at: http://www-unix.ecs.umass.edu/˜wxu/jbits/ .
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where Dmax is the critical path delay and slack(i, j) is
the delay slack of the critical path net segment (i, j) [4]. By
performing multiple iterations with a non-decreasing his-
tory value, shortest-path net routes can be guided away from
congested device areas to areas with available routing re-
sources.

Our timing-driven incremental router extends the orig-
inal PathFinder approach by using history and criticality
values from the initial route to guide incremental re-route.
Additionally, nets unaffected by operational faults may be
ripped up to remove blockages that may inhibit routing for
fault-affected nets. Given the small number of reroutes re-
quired, we found that the periodic run-time update of criti-
cality Crit(i, j) values during incremental re-route was un-
necessary.

The outer-loop of the routing algorithm used to re-route
nets over multiple iterations is shown in Figure 6. Unlike
traditional PathFinder formulations, in our formulation only
a subset of nets are re-routed in each iteration. Following
each iteration, nets associated with overused nodes are des-
ignated for rip-up, history values are updated, and ripped-up
nets are re-routed in the following iteration. We have found
a maximum iteration count of about 30 to be appropriate in
determining success or failure of re-routing. To achieve ac-
celerated routing speed, an A* search parameter was added
to the PathFinder cost function, as in [19] [25] and [26],
to promote depth-first search behavior without the loss of

routing quality. The route sequence for sources and sinks
of individual nets, indicated as Maze-route in Figure 6, is
described in detail in [26].

6. System Limitations

The effectiveness of our fault recovery approach is lim-
ited by the ability of our system to locate specific permanent
interconnect and logic faults in an FPGA device. Although
a fully-functional fault diagnosis system has not yet been
implemented for Virtex XCV100-5 devices, initial results
indicate the approximate amount of time required to fully
diagnose faults in the device.

In previous work [15] [16], it was shown that the pres-
ence of an interconnect fault can be detected (fault testing)
and the specific location of a fault can be determined (fault
diagnosis) for generic cluster-based architectures. Both test
and diagnosis procedures are performed using a similar ap-
proach. A portion of the FPGA device that is known to be
working is configured to generate test patterns and to collect
results for a specific FPGA tile under test. FPGA reconfigu-
ration is used to generate multiple test patterns for each tile
and to evaluate multiple tiles. In general, it was shown that
fault diagnosis time is about three times longer than fault
test time for a given FPGA device.

Recently, the fault test approach outlined in [16] was
modified [14] to target commercial Virtex devices. Through
experimentation using a Virtex-based board, it has been de-
termined that a full fault test of all FPGA single-length in-
terconnect tracks, including required reconfigurations, takes
about 1.5 seconds. Based on our previous work [16] and
these initial results, we estimate that a full fault test of all
FPGA logic and interconnect in a Virtex XCV100-5 will re-
quire about 2 seconds and a full fault diagnosis will require
about 6 seconds. Note that fault diagnosis is only necessary
if the fault test fails.

7. Results

To judge the performance of our fault recovery sys-
tem, three benchmark circuits, listed in Table 1, were used.
These designs were synthesized from RTL to gate-level
form using Altera MaxPlus2 and then mapped using the
flow shown in Figure 3. All designs were successfully
mapped to the Virtex XCV100-5 on the TransTech DM11
board using our new initial and incremental design flow.
FIR16 is a 16-tap, 16-bit FIR filter. TEA is an imple-
mentation of the Tiny Encryption Algorithm [30], a low-
overhead encryption approach. FMUL contains two 8-bit
IEEE floating point multipliers. Each Virtex CLB contains
four LUT/FF pairs. The XCV100-5 contains a total of 600
CLBs. The minimum cycle times (Tmin) in Table 1 indicate



Design CLBs LUTs FFs I/Os Tmin

FIR16 465 1859 256 32 127 ns
TEA 109 433 72 32 39 ns
FMUL 227 902 126 32 96 ns

Table 1. Benchmark Statistics

Task Time (s)
FIR16 TEA FMUL

Client-to-server transfer 0.001 0.001 0.001
Server preprocessing 0.001 0.001 0.001
Incremental CAD 13 12 12
Server-to-client transfer 0.03 0.03 0.03
Client reconfiguration 0.47 0.47 0.47

Total 14 13 13

Table 2. Total time to perform networked fault
recovery

the best-possible performance achieved during initial-pass
mapping with our VPR-based flow.

The total time for system recovery from single-error
faults is shown in Table 2. Incremental CAD was performed
on a 440 MHz Ultra 10 Sun Workstation with 768 MB
of memory. These values are the average of fifty random
single-error recoveries initiated by the fault tolerant client.
In all cases it was possible to recover from the single fault
and maintain initial-map design performance with our new
VPR-based tool set (modified VPR version 4.30). As ex-
pected, the incremental CAD portion of the flow required
most of the recovery effort time.

The timing-driven incremental routing portion of the re-
covery effort using our new VPR-based flow is significantly
faster than re-routing each design from scratch or attempt-
ing to use the automated incremental reroute capabilities in
Xilinx PAR (Alliance version 2.1). As shown in Table 3
for incremental single fault recovery, our incremental VPR-
based approach is up to 12× faster than Xilinx PAR. For the
Xilinx PAR experiments, the faulty track was designated as
unusable in a Xilinx NCD file. The PAR router was then
run to reconnect the affected net. The initial VPR design
placement and routing files were read into the XDL inter-
face for these experiments. The time necessary to desig-
nate the fault in the NCD file or to read files from the XDL
interface were not included in the Xilinx total. The VPR-
based incremental route approach was deployed as shown
in Figure 3. The amount of time required to place and route
designs from scratch using both PAR and VPR is provided
for reference. Note that the fault recovery time required for
each design (about 12 seconds each) is only slightly larger

than the estimated combined fault test time (2 seconds) and
fault diagnosis time (6 seconds) described in Section 6.

Experimental testing of our system has demonstrated a
number of additional points:

• The timing-driven incremental router was used to re-
route designs with route fault counts ranging from 1 to
50. Although all faults could be overcome, incremen-
tal route time increased from 8 to 10s for the three de-
signs as the number of faults increased. Note that the
emergence of 50 permanent routing faults in a previ-
ously fault-free device is unlikely to occur in practice.

• For route fault counts ranging from 1 to 50, initial-
design performance could be maintained for fault
counts up to 14. Design performance degradation
ranged from an average of 1% to 5% for fault counts
between 15 and 50.

• Once bitstream generation was complete, the entire,
new configuration bitstream (about 100 KB) was re-
turned to the fault tolerant client. JBits analysis shows
that for each fault about 24 configuration bits are
changed, on average. This analysis indicates that in
congested network settings it may be more advanta-
geous to merge the netlist changes at the client rather
than at the server.

• It was determined that the use of initial-route history
values and criticality values for timing-driven incre-
mental routing reduced the overall route time by about
30%.

8. Future Work

The work outlined in this paper is an attempt to automate
the fault recovery process for remote FPGA systems. Once
a fault is detected, fault information is transfered over a net-
work to a computationally-powerful reconfiguration server.
Following reconfigurable design recovery, a replacement
bitstream is returned to the fault tolerant system via the net-
work. A necessary part of this system was the development
of an academic-tool based FPGA mapping tool set for Xil-
inx Virtex devices. The use of these tools gave us the flexi-
bility and compilation speed needed to complete single fault
recovery for FPGA designs with no manual intervention.

A number of improvements are required to enhance sys-
tem functionality. A complete Virtex fault diagnosis tool is
currently being tested. The functionality of the reconfigura-
tion server needs to be expanded to allow for the simultane-
ous service of multiple clients. The depth-optimal version
of FlowMap has not yet been integrated into our tool flow,
limiting the possible design performance achieved by our
VPR-based place and route flow for Virtex.



Time (s) FIR16 TEA FMUL
Custom Xilinx Custom Xilinx Custom Xilinx

Incremental Routing 8 152 8 43 8 76
Bitstream Generation 3 15 2 11 2 15
Promgen 2 2 2 2 2 2
Total 13 168 12 56 12 93
From-scratch 67 170 32 65 22 102

Table 3. Task time for timing-driven incremental routing and bitstream generation
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