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Abstract—As the Internet becomes integrated into nearly all aspects of
everyday life, its reliability grows in importance. This vital communication
resource, which has become an inviting target for attackers, must be
protected with the same vigor as the end-systems it interconnects.
Recent trends in network router architecture towards programmability
and flexibility have increased the susceptibility of communication hard-
ware to software attacks which modify intended data processing and
forwarding functions. Contemporary routers typically feature network
processors, whose protocol processing functions are determined via
software. Prior work has shown that these general-purpose software-
based processing systems can be attacked with data packets sent
through the Internet. As a defense mechanism, the correct functionality
of a network processor can be verified by a hardware monitor that
observes processor operation and compares it to expected behavior. In
the event of an attack, the monitor can interrupt the network processor,
suppress malicious behavior, and reset the processor to a usable state
for processing of subsequent traffic. In this work, we present several
significant advances in hardware monitoring for network processors.
A low-overhead monitor architecture that evaluates correct network
processor operation in real-time on an instruction-by-instruction basis
is described and tested. The monitor is shown to effectively prevent
stack smashing attacks on processors that use a Harvard architecture, a
widely used network processor configuration. Through experimentation,
we show that our approach to hardware monitoring does not affect data
plane packet throughput. In the event of an attack, malicious packets
are dropped while packets of regular network traffic proceed through the
network unaffected. A full evaluation of monitor architectural parameters
is provided to create an optimized monitor design.

Index Terms—computer network, security, hardware monitor, control
flow, deterministic finite automaton, Harvard architecture.

1 INTRODUCTION

Over the past forty years, the Internet has grown from
a modest research network to a critical communication
resource used by billions of people across the world. In-
deed, the reliable operation of this resource has become
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as critical to commerce, personal interaction, and govern-
ment activities as traditional utilities, such as the power
grid. With the continuing growth of the Internet, there
are ongoing technical challenges to meet emerging needs
for networking functionality, throughput performance,
reliability, and security. To address these challenges, it is
necessary to improve the security of networks, including
the router devices that constitute the core of the network,
with limited compromise in other networking goals.

To address this need, we have developed techniques
to secure the processing of packets in the data plane
of network routers. In contemporary routers, network
processors (NPs) are frequently used to perform packet
processing. These embedded processors (Figure 1) typ-
ically contain multiple simple RISC-based processing
cores that can efficiently manipulate data packets but
are potentially vulnerable to attacks initiated by data
packets. The functionality of these programmable pro-
cessors can easily be updated via software updates to
provide a broad range of router functionality. However,
this programmability leads to a significant drawback; the
security of the router is only as strong as the software
that programs it.

Recently, it has been shown that network processors
can be successfully attacked to generate denial-of-service
attacks [1]. Using strategically crafted data packets, these
attacks exploit weaknesses in the packet processing soft-
ware of the network processor. Specifically, it is demon-
strated that a malicious packet can exploit errors in
packet size boundary checking software to overwrite a
network processor’s stack. This stack smashing attack
can then be used to modify the return address of the
NP program, forcing control flow jumps to user-supplied
code or to library functions already present in the system
that can be used in unintended and malicious ways.
An important point to note is that this type of attack
vector is entirely in the data plane of the network. That
is, the attacker does not hack into the control interface
of the router, but merely transmits a malformed data
packet. Thus, these “in-network” attacks cannot easily
be defended against with conventional security mech-
anisms. Instead, our new high-performance hardware
monitoring approach is able to quickly identify this type
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Fig. 1. Attack on packet processing system in network
router data plane.

of attack, drop the offending packet, and reset the router
to continue processing normal traffic.

Previous efforts have shown that specialized digital
hardware can be used to monitor network processor op-
eration and identify deviations from expected behavior
[1]–[3]. This hardware typically examines the sequence
of executed instructions by a processor core to determine
if expected program sequencing is exhibited. Deviations
from the expected instruction flow indicate that an attack
is in progress and the monitor generates control signals
to initiate processor core recovery. For most processor
cores, hardware-based monitors, rather than software-
based detection approaches, are needed since monitors
operate at hardware speeds external to the core, thus
avoiding packet processing slowdowns. As networking
speeds increase, the need for rapid identification of at-
tacks using a minimum amount of additional monitoring
hardware is apparent. In particular, these mechanisms
must be tuned to the processor configurations most
commonly exhibited by contemporary NPs.

The research described in this manuscript addresses
several important monitoring issues for network pro-
cessors that must be considered to keep NPs safe from
packet-based attacks. For comprehensive protection, ev-
ery instruction executed by the NP should be validated
in real-time, necessitating a high-performance monitor-
ing solution. In general, the tracking of instructions is
easily modeled as a finite state machine with a finite
number of known paths. Although a non-deterministic
finite automaton (NFA) can be used to model instruction
sequencing for hardware monitoring [1], [2], this ap-
proach can require numerous memory lookups to differ-
entiate multiple parallel states, limiting performance. Al-
ternatively, monitoring can be more quickly performed
by tracking coarse basic blocks instead of instructions [3],

although this approach can exhibit a lag between when
an attack starts execution and when it is identified. Our
new approach, based on a deterministic finite automaton
(DFA), provides an advance over both of these previous
techniques.

It has been previously shown that network processors
with combined data and instruction memory (von Neu-
mann architecture) are susceptible to attacks that write
executable code to the processor stack [1]. However, con-
temporary network processors generally use separated
instruction and data memories (Harvard architecture)
for increased code security and performance. These ar-
chitectures make it impossible to execute code from a
stack located in data memory, drawing into question
whether data plane attacks are feasible in these types
of architectures. In this work, we show that data plane
attacks on Harvard architecture NPs are feasible and a
new instruction-level hardware monitoring system can
be used to defeat them.

The specific contributions of our paper are:

1) Design of a high-performance hardware monitor-
ing system for NPs: Our monitor design can per-
form instruction verification with a single memory
read per instruction and thus can operate at speeds
sufficient to maintain line rate networking data
transfer.

2) Algorithm for construction of a deterministic mon-
itoring graph: We present a method to convert
the monitoring graph of NP instructions, which
initially is non-deterministic due to control-flow
changes (e.g. branches), into a deterministic au-
tomaton. The representation of the DFA is com-
pacted to allow for a highly efficient implementa-
tion in the hardware monitor.

3) Demonstration of an attack on and defense of
a Harvard architecture network processor: We
demonstrate an in-network attack through the data
plane of the network that exploits an integer over-
flow vulnerability to smash the processor stack and
launch a return-to-library attack. This attack prop-
agates the attack packet and crashes the processor
system. We also show that our hardware monitor
is effective in defending against this attack and
allowing for continued NP-based router operation
after attack identification and recovery.

4) A full evaluation of architectural parameters
needed to build a hardware-based monitor for a
broad collection of nine network processing bench-
marks.

The remainder of the paper is organized as follows.
Section 2 discusses related work. The overall system
architecture is introduced in Section 3. The construction
of the monitoring data structure is presented in detail in
Section 4. Section 5 describes an example attack that we
use in our prototype system implementation described
in Section 6. Section 7 presents evaluation results that
show the effectiveness of our design. Section 8 summa-
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rizes the paper and offers directions for future work.

2 RELATED WORK

Programmability in the packet processing systems of
routers has been used increasingly widely over the past
decade. Most major router vendors employ network
processors in their products (e.g., Cisco QuantumFlow
[4], Cavium Octeon [5]). While the programmability of
these devices is hidden from network users, it is used
by vendors to extend system functionality. It can be ex-
pected that routers will continue to have programmable
packet processing components, especially with network
virtualization [6] emerging as promising technology for
the future Internet.

While network security as a whole has received much
recent attention (e.g., end-system vulnerabilities leading
to botnets [7], worm propagation [8]), there has been
little focus on vulnerabilities in the networking infras-
tructure itself. Cui et al. [9] have surveyed vulnerabilities
in the control plane of networks, where an attacker
can potentially gain access to the router system. In the
data plane, Chasaki et al. [1] have shown an example
of how a simple integer overflow vulnerability can be
exploited to launch a denial-of-service from within the
network. We adapt this attack example to a processor
system based on a Harvard architecture in our work to
demonstrate the effectiveness of our monitoring system
in detecting and stopping such data plane attacks in a
practical networking environment.

Protection mechanisms for embedded processors have
been proposed based on hardware monitors in general
[1]–[3], [10]–[14]. These monitors differ by the level
of monitoring granularity (function calls, basic blocks,
individual instructions, system calls) and if they require
changes to source code or if they are based on program
binaries. We only focus on approaches that do not re-
quire changes to the processor binaries.

A preliminary discussion of the main ideas presented
in this manuscript appeared in [15]. This previous work
introduced the idea of per-instruction monitoring using
a DFA-based monitor and protection for network pro-
cessors based on Harvard architectures. In this work we
explore a spectrum of possible implementation choices
for our monitor, including the use and costs of a diverse
set of hash functions in the monitor implementation and
a system-level model for NP and monitor implementa-
tion. The number of benchmarks used for analysis is
expanded from four to nine to better quantify mon-
itoring overheads, including the effects of monitoring
on network throughput. This manuscript also includes
a discussion of the relationship between the storage
requirements of monitoring information for a monitor
and the control flow details of a monitored application.
A description of the conversion of an application binary
into a finite automata and a system-level model, includ-
ing the monitor and NP, are also provided.
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Fig. 2. System architecture of network processor with
security monitor.

3 HARDWARE MONITOR SYSTEM ARCHITEC-
TURE

The system-level architecture of the network processor
system with security monitor is shown in Figure 2. The
network processor shown on the left of the figure is
based on a conventional Harvard architecture with sep-
arate data memory for network packets and processing
state and instruction memory for packet processing code.
For simplicity, only a single processor core is shown; the
system can easily be extended for multiple processor
cores. The processing monitor on the right side of the
figure verifies the operation of the processor instruction-
by-instruction. For every instruction that is executed
on the processor core, a hash value of the executed
operation is reported to the monitor. The monitor uses
the comparison logic to compare the reported hash value
to the information that is stored in the monitoring graph.
The monitoring graph is derived by offline analysis of
the packet processing code binary.

Any attack on the system necessarily needs to change
the operation of the processor core (otherwise the attack
is not effective). This deviation leads to the processor re-
porting hash values that do not match with the monitor-
ing graph. The comparison logic can detect this deviation
and reset the processor in response. In networking, such
a reset and recovery operation is very simple: The cur-
rent packet is dropped (i.e., the packet buffer is cleared),
the processing state is reset (i.e., the stack is reset), and
processing continues with the next packet. Since most
packet processing operations are not stateful and there
is no guarantee that packets are reliably delivered, no
further recovery actions are necessary.
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 4a0: 00000000 nop

 4a4: 2c420033 sltiu v0,v0,51

 4a8: 1440000a bnez v0,4d4

 4ac: 00000000 nop
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Fig. 3. State machine for hardware monitor generated from processing binary.

3.1 Monitoring Graphs

The monitoring graph used by the hardware monitor is
a state machine, where each state represents a specific
processor instruction. The state machine is derived from
the packet processing code, as illustrated in Figure 3.
Each processor instruction corresponds to a state. The
edges between states are labeled with information re-
lating to next valid instruction that can be executed
after the current instruction. In case of control flow
operations, there may be multiple outgoing edges from
each state (each being a valid transition). In our system,
we use a 32-bit processor (i.e., open source embedded
Plasma processor based on the MIPS instruction set).
The monitoring system uses a 4-bit hash of the next
instruction to label edges in the monitoring graph (as
has been recommended in [2]). A hash (instead of the
full 32-bit instruction) is used to reduce the size of the
monitoring graph and thus to reduce the implementation
overhead of the hardware monitor while still allowing
instruction-by-instruction monitoring. The use of a hash
(or any other method that uses a many-to-one mapping),
however, leads to two fundamental problems:

• Attack detection ambiguity: The many-to-one map-
ping that occurs in a hash function of the monitor
may make it possible for an attacker to remain unde-
tected. This would require that the attack performs
operations that lead to a sequence of hash values
that matches the monitoring information of valid
instructions. Mao et al. have shown that this prob-
ability decreases geometrically with the number of
instructions in the attack software code and thus is
unlikely to lead to practical attacks [2]. We do not
consider this issue further in developing the monitor
for this paper.

• Nondeterminism during monitoring: The many-to-
one mapping also leads to nondeterminism in the
monitoring graph. There may be a control flow
instruction where each of the next instructions has
the same hash value. As a result, the corresponding
node in the monitoring graph has two outgoing
edges with the same hash value (as illustrated in
Figure 5). Since this nondeterminism can continue
for multiple such control flow operations, it can lead
to complex implementations [1], potentially slowing
monitor performance.

Control
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External
Memory
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Monitor

Fig. 4. Model of network processor with monitoring
system.

In Section 4, we show how we can address the latter
problem by converting the nondeterministic monitoring
graph into a deterministic monitoring graph, which is
easier to use in high-performance implementations.

3.2 Model of Network Processor and Monitoring
System

The model of an NP system, including a monitor, is
shown in Figure 4. System operation is coordinated by
a control processor that forwards incoming packets to
the NP. Off-chip external memory provides bulk storage
for the packets and programs used by the NP. The NP,
control processor, monitor, and system interface ports
are interconnected using an on-chip communications
infrastructure. The same control processor used for the
assignment of programs and packets to the NP is used
for the loading of monitoring graphs into the monitor.
Monitoring graphs for all applications executed by the
NP are stored on-chip in a centralized monitor mem-
ory. For some network processor systems this storage
could be implemented in non-volatile storage (e.g. EEP-
ROM). Alternatively, the storage could be implemented
in DRAM with monitoring graphs downloaded to the
system each time power is applied. Encryption is used
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to cipher monitoring graph information when it is input
into the system using the external interface port. A
standard AES core is used to decipher the monitoring
graphs and place them in centralized monitor memory.

4 DETERMINISTIC PROCESSOR MONITORING

To realize a deterministic instruction-level monitor, we
first convert assembly instructions into a nondetermin-
istic finite automata (NFA) monitoring graph. This graph
is then converted into a DFA monitoring graph. The
monitoring system uses this DFA graph to dynamically
verify correct instruction execution.

4.1 Construction of Nondeterministic Monitoring
Graph

As described in the previous section and shown in Figure
3, each instruction represents a state in an NFA. For
monitoring to operate correctly, all possible executions
paths through the program must be determined from the
application binary. In our system, the conversion of in-
structions to NFA states is performed via a static analysis
of the binary (e.g., at compile-time or after compilation)
using a breadth first traversal of the program.

For instructions that do not alter control flow (e.g. add,
sub), the next state in the NFA simply represents the next
instruction in the code sequence, which can be quickly
determined by scanning through the program.

For control flow operations, the determination of all
possible next states requires the determination of all
potential jump destinations during static analysis. We
distinguish between the following cases:

• Direct jump instructions: For a jump instruction
with a specified target address, the next NFA state
for the instruction is the state associated with the
target instruction.

• Branch instructions: For branches in which a target
address is specified in the instruction, two next
states in the NFA are possible (as shown for the
bnez instruction in Figure 3). The states represent
the next sequential instruction in the code and the
branch target instruction.

• Indirect jump instructions: A more complicated situ-
ation occurs for indirect jumps. Our NFA generation
approach supports indirect jumps, where the jump
target address is stored in a register (e.g. MIPS
instruction jr $s3 indicates a jump to the address
stored in register $s3) if all potential register values
(jump targets) can be statically determined. For
example, all return addresses for a subroutine (the
next instruction after a call to the subroutine) can be
determined by examining all calls to the subroutine.
The collection of next states for the indirect jump to
a subroutine return address is the collection of states
representing these return address instructions. For
other indirect jumps, it is possible to statically de-
termine potential jump targets by observing where

fixed instruction addresses are assigned to regis-
ters in the code. These addresses and subsequent
address manipulations are tracked to determine all
possible targets. For example:
addi $s0, $zero, target // target -> $s0
addi $s1, $s0, 4 // target+4 -> $s1
jr $s1 // jump to target+4

Since target is an address label, it is flagged during
static analysis and the register(s) to which its ad-
dress (or modified versions) are assigned are tracked
in case they are later used for indirect branches.
Note that our NFA generation (and overall moni-
toring) approach does not work if the location of an
indirect jump target address is reliant on an input
data value determined at run-time. This issue could
be addressed by performing code simulation to de-
termine all possible dynamic jump target addresses,
an approach which we leave for future work. None
of the nine network processing applications we
evaluate in Section 7 used input data to determine
indirect jump targets, hence all NFA next states
could be straightforwardly determined.

As mentioned in Section 3.1, a 4-bit hash of the next
instruction is used to label the edge between states. This
hash value is generated using the 32-bit instruction asso-
ciated with the next state as a hash function input. Four
hash functions were considered for use: an arithmetic
sum of all 32 instruction bits, a modulo sum of all eight
4-bit nibbles, an XOR of the eight 4-bit nibbles, and an
OR/XOR of the eight 4-bit nibbles. Further details on
the implementation of these hash functions and their
effectiveness is presented in Section 7.2.

4.2 Construction of Deterministic Monitoring Graph

Tracking nondeterministic finite automata is difficult to
implement in practice since the automaton can have mul-
tiple active states. This leads to high bandwidth require-
ments between the monitoring logic and the memory
that maintains the NFA since next-state information for
all active states has to be fetched in each iteration. When
using a DFA, in contrast, only one state is active and
implementation becomes much easier.

To convert an NFA to a DFA, a standard powerset
construction algorithm can be used [16]. This algorithm
computes all possible state sets in which the automaton
can be situated (i.e., the powerset). Based on the power-
set, a DFA is then constructed. Figure 6 shows the DFA
that corresponds to the NFA shown in Figure 5. Note
that state {3,5} represents the sets of states to where
state 2 can branch when hash value c is observed.

One potential problem with NFA-to-DFA conversions
is that the number of states in the DFA can grow expo-
nentially over the number of states in the NFA. However,
the monitoring NFAs constructed from binary code for
network processing applications (including the nine ap-
plications we examined) do not exhibit this pathological
behavior since the number of control flow instructions
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(e.g. jumps and branches) in the applications is modest
and the number of potential branch targets is small.
These factors limit the need for additional DFA states
which arise from hash value collisions on control flow
instruction targets. Our experiments indicate that the
increase in states from NFA-to-DFA is small and does not
lead to drastically larger state machines (see Section 7).
Thus, this approach is effective for creating deterministic
hardware monitors.

4.3 Monitor Implementation

A key challenge in the implementation of our hardware
monitoring system is how to represent the monitoring
DFA in memory. The comparison logic needs to be able
to retrieve the information about next state transitions
for every instruction that it tracks. Thus, state transitions
need to be implemented with no more than one memory
access per instruction (to keep up with the network pro-
cessor core) and be as compact as possible (to minimize
the implementation overhead of the monitor).

The information that needs to be stored in the moni-
toring memory is illustrated on the left side of Figure
7. Each state represents an instruction and an outgo-
ing transition edge from this state represents the hash
value of the next expected instruction in the execution
sequence. For example, state c has two next states, d and
e, with hash values 11 and 3, respectively.

A naı̈ve way to store the state machine in RAM would
be to store each state and all its possible edge transitions.
This would require 2h entries per state for an h-bit hash.
Since most states have only one or two outgoing edges,
a large number of edge transitions would never be used,
leading to inefficient memory use. Assuming that only
two outgoing transitions exist for each state is also not
feasible due to the cases where powerset construction
creates states with up to 2h outgoing edges. Finally, for
performance reasons we should only use one memory
access per state transition, which precludes a design
where states with more than two outgoing edges are
handled as special cases.

Our implementation compactly represents DFA states
with varying numbers of outgoing edges to encode all
the necessary information in a single table entry and
to group states by the number of outgoing edges. The

approach achieves compactness by allocating exactly the
amount of memory that is needed for each state to store
next state information while still being able to index
this memory without degrading to linear search. In our
representation, we group states together if they have
the same previous state. A state belongs to group g if
the previous state has g outgoing edges. For a monitor
with a 4-bit hash value, there are 16 possible groups. For
example, in Figure 7 on the right side, groups are shown
with different colors. Note that a state can belong to
multiple groups (e.g., state f belongs to group 2 (because
a has two outgoing edges, one to b and one to f) and
to group 3 (because e has three outgoing edges)).

The memory layout and basic operation of our DFA
monitor system is shown in Figure 8. The memory
contains tuples of {number of next states, offset in state
group, valid hash values on outgoing edges} and is
logically divided into groups. The base addresses for
each group are stored in a register file with 16 entries.
Within a group, the sets of states that share the previous
state are grouped together (e.g., b and f are together and
d and e are together). Within a set, states are ordered by
the hash value on their incoming edge (e.g., e before
d because hash value 3 is smaller than hash value 11).
The hash comparison block performs two functions: it
determines if the one-hot coded hash bit is set in the 16-
bit value read from memory and it determines k, which
is the position of the matching hash value among the
valid hash values read from memory.

To illustrate the operation of the monitor, we describe
an example transition. Assume the monitor is in state a
and the processor reports an instruction that leads to a
hash value of 7. To perform the transition, the memory
row labeled a is read. The tuple in this row indicates
that there are two outgoing edges. The valid hash values
of these two edges are stored in the 16-bit vector. To
verify that the transition is valid, the hash comparison
unit checks if bit 7 is set in the bit vector (which it is). If
this bit is not set, then an invalid transition takes place,
indicating an attack, and the processor is reset. After the
check, the next state (i.e., state f) in the DFA needs to be
found in memory. To determine the address of that state,
the base address of the group of the next state is looked
up in the register file (i.e., 0x0002 since the next state
belongs to group 2). To this base address, the product
of the set size (i.e., group number) and the offset in the
state group is added (to index the correct set within the
group). Finally, k is added, which is the position of the
matching hash in the bit vector (in our case 1 since 2
is the first matching hash (i.e., k=0) and 7 is the second
matching hash (i.e., k=1)). Thus, the memory location of
state f is 0x0002 + 2×0 + 1 = 0x003.

Note that any state transition takes only one memory
read from state machine memory and a lookup into a
fixed-size register file. The DFA is represented compactly
without wasting any memory slots (states shown with
dots in Figure 8 point to other states not shown in our
example). Thus, this representation lends itself to a high-
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performance implementation.
The required size of the monitoring memory varies

from application to application depending on the moni-
toring graph that is stored. The size of each field in the
monitoring memory can be determined using parame-
ters associated with the specific DFA. The required size
of the monitoring memory and its associated fields for
an application are determined from the DFA as follows:

• Required rows in the monitoring memory - At
least one row is required for each DFA state in the
monitoring graph. If a state is a member of multiple
sets of states, one row is needed for each set in
which the state is a member.

• Number of groups - The number of state groups
implemented in the memory is equal to the number
of group types of DFA states (e.g., Figure 7 shows
group types of 1, 2 and 3). As noted earlier in this
section, a state is part of one or more groups based
on the fanout count of its fanin states. In the figure,
three distinct state groups are identified leading to
a partitioning of memory rows into three groups.

• Offset in state group - The number of bits needed
for this field is determined by the state group with
the maximum number of sets of states. In Figure

7, groups 1 and 2 contains two sets and group 3
contains one set. Since the maximum number of sets
in a state group is 2, only 1 bit is needed for the
encoding in the example.

• Number of next states - This field must accom-
modate a binary value which indicates the largest
number of next states for any state in the DFA. For
example, the largest fanout from a state in Figure 7
is three (from state e to states f, g, and h), a two-bit
encoding is needed for the field. For an n-bit hash
value, a maximum number of n bits is needed to
encode this field.

• Valid hash values on outgoing edges - This field
provides a one-hot encoding of hashes of all possible
next states. For a hash value of n bits, a total of 2n

bits are needed to encode the field. In the example,
since a 4-bit hash is used, the field is 16 bits in width.

It should be noted that both the number of rows in
the monitoring memory and the bit width of the offset
in the state group are application dependent. Since a
monitor will likely accommodate a number of different
applications, the size of these parameters should be
defined as part of the architecture specification for the
monitor.
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4.4 Similarity to Previous NFA-based Monitoring
Systems
Several previous research projects have explored ap-
proaches that have similarities to aspects of our work.
The idea of using the results of static analysis of an
application binary to generate monitoring information
has been previously proposed [14]. Like our approach,
an NFA of processor execution sequences is created,
although system calls, rather than individual instruc-
tions, are tracked. If a system call is identified that
does not occur at an appropriate point in the NFA, an
attack is assumed. Our new system differs in a number
of important ways. First, the hardware-level details of
the monitoring system in [14] are not presented, only
the NFA generation approach is described. Second, the
authors explicitly state that although it is possible, they
have not explored converting the NFA to a DFA. In our
system, due to potential collisions of hash values in the
hardware system implementation, a conversion to a DFA
is a necessity. Finally, our approach can quickly predict
attacks within one or a small number of instructions,
rather than at the granularity of system calls, and it is
optimized for packet dropping in network processors,
rather than multipurpose embedded processing.

A monitoring system for network processors with
some similarities to our approach was previously pre-
sented [1]. This system uses a static analysis of program
control flow to build a non-deterministic finite automata
(NFA) of basic block execution sequences. If basic blocks
are executed out of sequence, a stack smashing attack
is detected and the offending packet is dropped. One of
the limitations of this approach is attack detection speed.
Basic block information for each instruction is stored in
a monitoring memory. If a control flow instruction (e.g.
a jump) occurs, additional monitoring memory lookups
are required to verify that the new basic block for the
code after the jump is one that is expected from the
static analysis. If t jump targets are possible for the
control flow instruction, the monitoring memory must be
accessed t times for the instruction to check for t distinct
target basic blocks. This action can lead to a real-time
monitoring slowdown.

5 HARVARD ARCHITECTURE ATTACKS

In a Harvard architecture, the code and data are placed
in separate physical address spaces. Separate buses pro-
vide instruction and data access, with each potentially
having different word widths, timing and memory ad-
dress structures. The instructions are usually stored in
read-only memory while data is stored in read-write
memory. Since a program counter cannot point to ad-
dresses in the data memory, code injection attacks are
difficult to perform in a Harvard memory architecture.
Even if an attacker successfully writes a malicious code
in the stack, it will not be executed.

Even though general memory error techniques (in-
teger overflow, heap overflow etc.) cannot be used to

generate code injection attacks, Francillion et al. [17]
demonstrated that code injection attacks are still feasible
on a Harvard architecture processor using a return-
oriented programming technique. Here, an attacker takes
control of return instructions in the stack to chain attack
code from an existing library function. Since the code is
already present in executable memory, the attack will not
be prevented from running. In this section, we describe
how such an attack can be constructed for the network-
ing environment and how our monitor can detect it.

Figure 9 shows portions of congestion management
protocol (CM) and an IPV4 packet forwarding applica-
tion used to build an attack on the network processor
system. The congestion management protocol inserts
a custom protocol header in the packet header space
between the IP header and the UDP header. During this
operation, the code needs to make sure the new packet
size does not exceed the maximum datagram length (the
boxed instruction in the CM code). Exploiting an integer
overflow vulnerability, the boundary check in the CM
code can be circumvented and the stack can be smashed.
To do so, an attacker sends a malformed UDP packet
with a size 0xfffe (decimal value 65534), which will pass
the maximum packet size check (since 65334 + 12 = 10,
due to integer overflow). As a result, the packet payload
is copied over the stack. The packet payload of the attack
packet is crafted in such a way that the return address is
overwritten to direct the control flow to the IPv4 packet
forwarding application (which is library code on the
processor core) and the value of the ip dst low field is
0xff. The port information gets updated with this value
(the boxed instruction in the IPv4 code), forwarding
the attack packet to all the outgoing ports and then
crashing the processor system. As a result, the attack
packet gets forwarded to all outgoing interfaces before
the system crashes, thus propagating the attack through
the network.

Since there are no calls from the middle of the CM
to the middle of the IPv4 application, no valid edges
between states in the middle of the application are
present. If such a transition is attempted, the attack is
detected. As soon as the control flow changes, the hash
values reported by the processor no longer match the
monitoring information and the system is reset, drop-
ping the malicious packet. All packets in our system,
including attack packets, are created using the NetFPGA
packet generator tool [18]. All attack packets include 42
bytes for header with the remaining bytes used for data
payload. All attack packets used for experimentation
were the same.

6 PROTOTYPE SYSTEM IMPLEMENTATION

Although an end-system would likely be implemented
in fixed logic, we have prototyped the described network
processor and hardware monitoring system on a Stratix
IV GX230 FPGA located on an Altera DE4 board. The
router infrastructure surrounding the NP core is taken
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CM protocol IPV4 application

Fig. 9. Vulnerable application code.

TABLE 1
Resource utilization by our prototype implementation.

Resources Secure Network DE4 Available
monitor proc. interface in FPGA

LUTs 140 3,792 37,803 182,400
FFs 26 2,120 38,444 182,400
Mem. bits 131,072 201,216 2,550,800 14,625,792

from the NetFPGA reference router, which has been
migrated to the Stratix IV family. The DE4 board has four
1 Gbps Ethernet interfaces for packet input/output. In
our prototype implementation, the single-core network
processor is implemented as a soft core and the monitor
is implemented in FPGA logic (using Quartus for syn-
thesis, place and route). Only the memory initialization
files need to be reconfigured on a per-application basis.

6.1 FPGA-Based Prototype
Our network processor and monitoring system were
successfully implemented on the DE4 platform. The
lookup table (LUT), flip flop (FF), and memory resources
required for the network processor core, monitor, and
other interface circuitry for the router (e.g. buffers, input
arbiter, queuing control, etc) are shown in Table 1. The
monitor uses 140 LUTs and 26 FFs compared to 3,792
LUTs and 2,120 FFs for the network processor. In total,
the prototype system including the network interface
uses 23% of available LUTs, 22% of available FFs, and
20% of available memory bits in the FPGA.

The NP memory includes space for up to 4096 monitor
memory entries. All circuitry operated at 125 MHz, the
same clock speed for the system without the monitor.
Experiments in simulation and in the lab on FPGA
hardware showed that the processor is able to forward
packets ranging in size from 64 to 1500 bytes per packet
at the same rate under monitoring as without monitoring
(e.g. no slowdown for monitoring).

6.2 Monitoring Graph Generation
The automated offline analysis tool for security monitor
generation is illustrated in Figure 10. To run networking

MIPS-GCC
compiler

Benchmark
Source code

Memory generator module

NFA to DFA conversion
module

Identify 
Instructions

Identify 
Branches

Instruction
Info

Branch 
Info

State machine memory file

Fig. 10. Offline analysis to create state machine memory
file.

code on the processor plus monitor system, the code
is first passed through a standard MIPS-GCC compiler
flow to generate assembly-level instructions. The output
of the compiler allows for the identification of branch
instructions and their target addresses. In our current
implementation, all possible branch targets and return
instructions are analyzed at compile time. The monitor
can handle an arbitrary number of indirect branches
to statically known targets (e.g., return addresses) since
the NFA representation allows any number of outgo-
ing branches. The NFA-to-DFA conversion starts with
a non-deterministic NFA representation obtained from
the compiler information using the approach outlined
in Section 4.1. Through powerset construction, a DFA
is constructed. This DFA is then converted into a mon-
itoring state machine memory file using the process
described in Section 4 and is loaded into the monitor
when the processing binary is installed in the processor.

To evaluate our system, nine benchmarks from the
NpBench suite [19] were processed with this flow.
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TABLE 2
Statistics for NpBench benchmark applications.

Network Cate- No. No. No. Max
application gory of branch branches branch

instr. instr. >2 targ. targ.
crc PPG 276 17 0 2
frag PPG 573 70 3 3
red TQG 802 88 0 2
md5 SMG 3,147 211 24 8
ssld TQG 828 91 1 5
wfq TQG 905 112 2 3
mtc SMG 2,427 252 2 3
mpls- TQG 1,603 322 9 10
upstr.
mpls- TQG 1,574 276 5 12
dwnstr.

NpBench is a benchmark suite targeting modern net-
work processor applications. The benchmark applica-
tions are categorized into three specific functional groups
- the traffic management and quality of service group
(TQG), the security and media processing group (SMG)
and the packet processing group (PPG). A listing of
the benchmarks and their application categories appears
in Table 2. Since the presence of instruction branches
has a direct impact on NFA-to-DFA conversion and
monitoring state machine memory size, the number of
control flow instructions for each benchmark is included
in the table. Return instructions at the end of subroutines
often contain numerous targets since a subroutine can
be called from numerous other functions. The number
of these jump register instructions with more than two
possible return addresses is listed in the table. All ap-
plications, except md5 with 24, have fewer than 10 jump
register instructions. Additionally, the maximum number
of target addresses for any branch in each application
is also included. The mpls-dwnstr. application includes
a control flow instruction with the largest number of
branch targets, 12. Neither crc nor red contain a control
flow instruction with more than 2 targets.

6.3 Network Setup

The simple test topology that was used to verify the per-
formance of our monitoring system is shown in Figure
11. For hardware experiments, packets were generated
and transmitted to the DE4 with the network processor
and the monitor at a 1 Gbps line rate by a separate DE4
card serving as a packet generator. This same card was
used to receive the processed packets from the card with
the NP. The packet generator tool allows for customizing
the size and the throughput rate for the test packets.

7 EXPERIMENTAL RESULTS

Our experimental results explore the size of the mon-
itoring graphs generated by our system, the effect of
different size hash functions, and the effectiveness of our
system to detect actual attacks.

TABLE 3
Evaluation of monitoring approaches for our new DFA

approach and a previous NFA-only approach. The
maximum number of memory accesses for our approach

is 1 for all benchmarks.

Chasaki [1] Ours
Netw. No. NFA Max. DFA Mem. Mem.
appli- of states mem. states entries over-
cation instr. access head
crc 276 276 2 276 282 2.2%
frag 573 573 3 592 622 8.6%
red 802 802 2 805 847 5.6%
md5 3,147 3,147 8 3,173 3,228 2.6%
ssld 828 828 5 829 854 3.1%
wfq 905 905 2 914 953 5.3%
mtc 2,427 2,427 3 2,460 2572 6.0%
mpls- 1,603 1,603 10 1,621 1,753 9.4%
upstr.
mpls- 1,574 1,574 12 1,582 1,706 8.4%
dwnstr.

7.1 Monitoring Graphs
The results of generating instruction-level monitoring
graphs for both our approach and a previous approach
[1] described in Section 4.4 are illustrated in Table 3.
The number of entries in the state machine memory
(see Figure 8) for each benchmark is shown in the Mem.
entries column. For these results, the nibble-sum hash
function was used (see below).

A clear benefit of our new approach is speed. In all
cases, only one access to the monitor memory is required
for any benchmark since a DFA is used. The previous
NFA-based approach requires up to twelve memory
accesses for the benchmarks tested (and potentially up to
sixteen for other benchmarks when all possible 4-bit hash
values exist as outgoing edges). The conversion from an
NFA to a DFA does incur a memory overhead of 5.7% on
average for the benchmarks. Thus, our system requires
slightly more memory space in order to guarantee a
single memory access per instruction.

7.2 Evaluation of Hash Functions
As shown in Figure 8, each 32-bit instruction is converted
to a hash value containing a small number of bits (e.g.
h = 4). The hash function used to convert a 32-bit
instruction to a 4-bit hash value involves the summing
of all eight 4-bit instruction nibbles. The result of the
summation is the 4-bit hash value. However, there are
other possible hash functions, which we have explored
in our experimentation.

In Section 4.2, it is noted that an important aspect of
the NFA-to-DFA conversion is limiting the number of
cases where the hash values for multiple edges leaving
a state are the same (e.g. Figure 5). Limiting these
cases avoids the creation of powerset state sets, and
the corresponding increase in memory entries in the
state machine. To decrease the probability of these hash
collisions, it is desirable for the instruction hashes to
be as evenly distributed across the range of possible
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Altera DE4

NetFPGA PktGen

Altera DE4
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Proc + Monitor
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Fig. 11. Network topology used for experimentation.
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Fig. 12. Distribution of occurrences of different hash
values generated the four explored hash functions for
mpls-downstream benchmark.

instructions hashes as possible. Additionally, the 32-
bit instruction to h-bit hash value conversion must be
simple enough to be performed in one clock cycle.

Four hash functions were considered for this work:
• Sum of all ones in the 32-bit instruction (bit-sum):

All binary digits are summed and the result is
used to determine the h-bit hash value. For sums
exceeding h-bits, only the bottom h bits are used as
the hash value.

• Sum of all nibbles in the 32-bit instruction (nibble-
sum): All 4-bit nibbles are summed and the result
is used to determine the h-bit hash value. For sums
exceeding h-bits, only the bottom h bits are used as
the hash value.

• XOR of h-bit chunks in the 32-bit instruction (XOR):
The 32-bit instruction is broken into h-bit chunks,
which are then XORed together to generate an h-bit
result.

• OR/XOR of h-bit chunks in the 32-bit instruction
(OR/XOR): The 32-bit instruction is broken into h-
bit chunks. Half the chunks are ORed together while
the other half (including the final operation) are
XORed.

The distributions of 4-bit hash values for all instruc-
tions for the mpls-downstream benchmark are shown in

Figure 12. Plots for other benchmark applications are
similar. Note that the results for hash value 0 in Figure
12 do not include the large number of NOP instructions
(instruction 0x00000000) in branch delay slots following
branch instructions. These instructions are not used as
targets for branches and can be omitted from the analy-
sis.

The nibble-sum approach to generating hash values is
most effective in distributing hash values, approaching
the ideal uniform distribution with 1/16 = 6.25% prob-
ability of occurrence for any hash value. This result is
likely due to the randomness caused by bit carries in
generating the final hash values for nibble-sum.

The use of different hash functions directly impacts
the required size of the monitoring state machine mem-
ory. Table 4 shows that the use of the nibble-sum hash
approach reduces the number of required state memory
entries versus other approaches by a range of between
0.02% and 1.35% on average. The remainder of the
results presented in this section were generated using
the nibble-sum hash function.

The number of bits used in the hash values also
affects the amount of memory required in state machine
memory. Although hash functions with more output bits
decrease the possibility that an attacker can craft a useful
code sequence, more bits also require more memory
in the state machine. Each additional bit in the hash
function effectively doubles the size of the “valid hash
values on outgoing edges” field in the memory shown
in Figure 8. Table 5 illustrates the memory overheads
for different hash value bit widths using the nibble-sum
hash approach. The results show a significant increase
in memory size with every additional bit. A 4-bit hash
value bit width requires a 40% memory increase over
3-bit, and a 5-bit hash value bit width requires a 100%
increase over 3-bit.

7.3 Monitoring Effectiveness and Speed
We tested the ability of the monitor-based system to
detect and recover from an attack. The vulnerable ap-
plication code shown in Figure 9 was implemented and
used with the NP to send copies of a packet to all ports
of the router and then crash the router. We confirmed
this behavior for a system without a monitor both in
simulation and in hardware. A series of waveforms that
demonstrate this behavior appear in Figure 13. As shown
in Figure 14, after the monitor was added to the system,
the attack packet was successfully identified, the NP
was reset, and subsequent regular packets were routed
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TABLE 4
Comparison of DFA states and state machine memory entries for different hash functions for a 4-bit hash

nibble-sum bit-sum XOR OR/XOR
Network DFA Mem DFA Mem % Mem DFA Mem. % Mem DFA Mem. % Mem
application states entries states entries incr. states entries incr states entries incr.
crc 276 282 276 285 1.06 276 282 0.00 279 287 1.77
frag 592 622 592 627 0.80 592 620 -0.32 592 622 0.00
red 805 847 808 857 1.18 806 850 0.35 807 851 0.47
md5 3,173 3,228 3,208 3,277 1.52 3,181 3,248 0.62 3,190 3,261 1.02
ssld 829 854 836 878 2.81 831 860 0.70 836 875 2.46
wfq 914 953 921 977 2.52 916 955 0.21 918 960 0.73
mtc 2,460 2,572 2,460 2,584 0.47 2,459 2,567 -0.19 2,460 2,571 -0.04
mpls-upstream 1,621 1,753 1,625 1,758 0.29 1,622 1,744 -0.51 1,627 1,757 0.23
mpls-downstream 1,582 1,706 1,589 1,732 1.52 1,579 1,694 -0.70 1,584 1,712 0.35
average 1.35 0.02 0.78

TABLE 5
Comparison of DFA states, state machine memory entries, and memory bits for different hash sizes.

3-bit 4-bit 5-bit
Network Mem Mem Mem Mem Increase Mem Mem Increase
application entries bits entries bits over 3-bit entries bits over 4-bit
crc 288 6,048 282 8,460 39.9% 282 13,254 56.7%
frag 620 13,020 622 18,660 43.3% 623 29,281 56.9%
red 853 17,913 847 25,410 41.9% 845 39,715 56.3%
md5 3,255 68,355 3,228 96,840 41.7% 3,227 151,669 56.6%
ssld 855 17,955 854 25,620 42.7% 855 40,185 56.9%
wfq 957 20,097 953 28,590 42.3% 951 44,697 56.3%
mtc 2,590 54,390 2,572 77,160 41.9% 2,567 120,649 56.4%
mpls-upstream 1,783 37,443 1,753 52,590 40.5% 1,738 81,686 55.3%
mpls-downstream 1,727 36,267 1,706 51,180 41.1% 1,695 79,665 55.7%

successfully. This behavior was verified using our DE4
hardware setup.

In a final experiment, we evaluated the performance of
our network processor system. In particular, we consider
scenarios with varying amounts of attack packets that
are mixed in with regular packets. Both regular packets
and attack packets were generated at fixed rates by a
packet generator system. Packet sizes for both types of
packets were 256 bytes. We consider two cases, data
processing efficiency, in which the processing rate of all
packets (both regular and attack) is considered and the
throughput of regular packets.

Data processing rates of just below 50 Mbps for normal
network traffic are achieved, as shown in Figure 15.
The processor performs around 5,355 instructions for
each 256-byte packet (which is typical for a payload
processing application, such as ours where the packet
payload is moved [20]). Based on a processor clock rate
of 125 MHz (which corresponds to a cycle time of 8 ns)
and one cycle per instruction, processing for one packet
requires around 5, 355 · 8ns = 42.68 ms. Since with each
packet 256 bytes ·8 = 2048 bits of data are processed, the
expected rate is 2048 bits / 42.68 ms = 47.9 Mbps. Thus,
the peak rate corresponds with the expectation. Note
that the data processing rate increases as the percentage
of attack packets increases since attack packets can be
identified and dropped within a few cycles (since the
attack code is early in the packet processing code) versus
the thousands required for regular packets.

The throughput of regular packets is reduced by the
percentage of attack packets that is used. Figure 16
shows the throughput of regular packets for varying
ratios of regular packets to attack packets. Not surpris-
ingly, throughput is reduced by roughly the percentage
of attack packets. For example, for a 900 Mbps input rate,
the output throughput for no attack packets versus 50%
attack packets is 47.5 Mbps versus 25.8 Mbps. As seen
in Figure 16, the throughput of a system without moni-
toring is the same as the throughput with monitoring if
no attack packets are sent.

While this throughput performance may seem very
low for a modern network system, it is important to
note that our results are for a single core only. With
tens to hundreds of cores, such as can be found in
modern network processors, and with applications that
only process packet headers, aggregate throughput of
tens of Gigabits per second can be achieved.

8 SUMMARY AND FUTURE WORK

The security of the Internet infrastructure is of great
importance to our society. To protect the Internet, it
is critical to develop routers that are impervious to
attacks. Since a new class of data plane network attacks
has emerged targeting software-programmable network
processors, we have developed a hardware monitoring
system that can detect these attacks and protect network
processors.
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6.2. Experimental results 

6.2.1. Attack Detection 

This section explains the experiments performed to test the ability of our proposed 

security monitoring system to detect and recover from an attack. We observed the security 

monitor operation in simulation using the ModelSim-Altera simulator [41], and in hardware 

using an Altera Signal-tap logic generator [56]. 

6.2.1.1. Network processor without security monitor 

We initially tested the single-core network processor operation without the security 

monitor system when the attack described in section 5.1 is implemented. Figure 34 shows the 

simulation results for the behavior of the processor system. The attack packet was received 

through MAC port Rx0, and then forwarded to the network processor. The processor then 

forwards the attack packet to all the outgoing ports of the router and then crashes the router. 

This behavior was also verified in hardware. 

Figure 34: Simulation waveform showing attack packet propagation in the network 
processor system.   

6.2.1.2. Network processor with security monitor 

We then repeated the previous experiment after including the security monitor as 

illustrated in Figure 26. Figure 35 shows the simulation results for the behavior of the 

network processor system when an attack packet and normal packet are sent simultaneously. 

Fig. 13. Simulation waveforms showing an attack and subsequent forwarding of the packet to all output ports. This
behavior was confirmed using hardware.

Attack Packet

Normal Packet

Attack detected

& packet dropped

Normal Packet

forwarded

Fig. 14. Simulation waveforms showing the identification of an attack packet and the successful forwarding of the
subsequent packet. This behavior was confirmed using hardware.
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In this paper, we have described a high-performance
monitor for a network processor that requires only a
single memory lookup per network processor instruc-
tion. This single memory lookup is maintained regard-
less of the complexity of the NP program using an
NFA-to-DFA translation of the monitoring graph. Our
monitor, which tracks individual NP instructions, has
been verified in hardware using an NP with a Harvard
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Fig. 16. NP core throughput in terms of processed regular
packets under varying loads of attack packets.

architecture. Our results show that the use of DFA only
increases memory size by 5.7%, compared to previous
NFA approaches. Our prototype implementation of the
monitoring systems shows our design is so efficient that
even extremely large amounts of attack traffic do not
lead to a degradation of throughput performance of the
system.

We believe that this work presents an important
step towards deploying effective and efficient hardware
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protection mechanisms for network processors in the
Internet. Future work includes optimizing the moni-
toring memory architecture to consider the caching of
frequently used monitoring graphs. Also, the possibility
of crafting attacks which include instructions with the
same sequence of hash values as legitimate code could be
evaluated. Finally, the use of pre-deployment simulation
to determine dynamic branch targets for monitoring
could be considered.
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