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Abstract—Reconfigurable systems often require secret keys to
encrypt and decrypt data. Applications requiring high security
commonly generate keys based on physical unclonable functions
(PUFs), circuits which use random manufacturing variations to
produce secret keys that are unique to each device. The security
of PUF-based keys comes at a high hardware cost. Due to the need
for error correction to extract reliable keys from noisy PUFs, the
total cost of an n-bit key far exceeds just the cost of producing
n bits of PUF output. In this work, we propose variation-aware
intra-FPGA PUF placement to reduce the area cost of PUF-based
keys on FPGAs. We show that placing PUF instances according to
the random variations of each chip instance reduces the bit error
rate of the PUFs and consequently greatly reduces the overall
cost of key generation. The proposed variation-aware placement
approach is applicable to any PUF-based system implemented in
reconfigurable logic. We demonstrate our approach on a Xilinx
Zynq-7000 Programmable SoC using FPGA-specific PUFs with
code-offset error correction based on BCH codes. We quantify the
effectiveness of our approach by comparing the implementation
costs of the same system when using the default approach of
variation-agnostic placement and our proposed variation-aware
placement. It is shown that our approach reduces the area
required for PUF and error-correction circuitry by about 50%
while achieving equivalent reliability.

I. INTRODUCTION

FPGAs are used for an increasingly large number of applica-
tions which require security. Due to their volatile nature, SRAM-
based FPGAs require security at multiple levels. Bitstream
encryption is commonly used to protect the configuration bits
which define application implementation. Additionally, secure
encrypt/decrypt cores are often implemented as part of a user’s
design to allow for the confidential processing of application
data. These cores require secret keys that are often customized
on a per-device basis.

PUFs represent a per-device method of generating secret
keys on-chip without reliance on non-volatile memory or
battery-backed storage. PUF-based keys are uniquely tied
to each device, and are not directly compromised by side-
channel attacks that learn AES keys to decrypt bitstreams.
These characteristics make PUFs well suited to key generation
for FPGA-based applications. PUF-based keys are enabled
in commercially available reconfigurable devices including
MicroSemi IGLOO2 and Altera Stratix 10 FPGAs.

Although the logic needed to create PUFs in FPGAs is
generally modest (e.g. a few lookup tables (LUTs)), the amount
of circuitry needed to create repeatable and consistent keys
from the PUF bits can be significant. In this paper we present
a method that greatly reduces the hardware cost of PUF-based
key generation by locating the best locations in reconfigurable
logic to generate the most highly-reliable PUFs. The ideas

proposed in this work are applicable to any PUF-based key
implementation, and we focus our implementation on the
LUT-based, FPGA-specific Anderson PUF [2]. The specific
contributions of this work are as follows:

• We analyze the spatial randomness of unreliable PUF
instances within chips and across chips, and based on
our findings propose a novel system of per-device PUF
configuration to improve PUF reliability and thereby
reduce the implementation cost of the overall system.

• We demonstrate an area savings of about 50% for PUF
and error correction circuitry over a default placement of
the same logic for 56-, 128-, and 256-bit keys.

• We implement the Anderson PUF (previously targeted to
a Virtex 5) on a more contemporary Xilinx architecture
(Virtex 7) and quantify its uniqueness and reliability in
the new device architecture.

II. RELATED WORK

Many applications in communications, vision, networking,
and consumer products require the data confidentiality offered
by FPGA-based encryption. For example, Wu and Huang [17]
document the use of an FPGA as an encryption engine for a
wireless communication system. An FPGA-based version of
the advanced encryption standard (AES) is used in conjunction
with one or more disks to provide secure data storage [1]. A
comprehensive approach to protecting the use of intellectual
property cores in FPGAs using public/private keys pairs is
described in Kumar et al. [10]. Keys created by a PUF are used
to initiate IP core operation and periodically authenticate its
use [15]. In Hu et al. [8], FPGA-based keys are used to validate
the downloading of network router monitors implemented in
FPGAs. The security of the download process is instrumental
in maintaining proper network operation. These examples
represent a small set of the diverse and growing set of
applications which use FPGAs to provide confidentiality.

A. Process Variations in FPGAs
Process variations can impact the performance of all inte-

grated circuits. Within the FPGA domain, a study of systematic
and intrinsic sources of delay variability is given by Sedcole
and Cheung [14]. Reconfigurability offers the opportunity for
per-device logic placement as a mechanism to address process
variations. Cheng et al. [4] use a simulation study to show
possible performance improvements from a two-step process of
extracting chip-specific delay information and then performing
chip-specific placement. Similar work by Bsoul et al. [3]
optimizes placement in consideration of both process variation



and aging. In contrast to these previous works on per-device
logic placement, we will show in this work that per-device
PUF placement has the potential for much greater gains on
account of being highly sensitive to variations.

B. Physical Unclonable Functions
Physical unclonable functions (PUFs) are circuits that

leverage manufacturing variations to produce instance-specific
output values. The output values produced by each PUF
instance are persistent over time, but can be influenced by
noise. PUF-based keys have been widely implemented on
FPGAs. SRAM PUFs on FPGAs utilize the unique power-up
state of SRAM cells [7] but are no longer feasible on common
FPGAs because SRAM blocks are now initialized to default
states at power-up. Attempts to circumvent SRAM initialization
have been largely unsuccessful. Sander et al. [13] use JTAG
to read out unique values from unused configuration memory
regions of Virtex 5 FPGAs, but there is no evidence that these
values result from process variation. Wild and Günesyu [16]
manipulate power gating and partial reconfiguration to extract
identifying values from block RAM on specific revisions of a
Xilinx Zynq 7020 design, but they note that the same approach
fails to work on later revisions of the same design. The initial
states of flip-flops in FPGAs depend on process variations [11],
but are extremely biased and produce low quality outputs.
Butterfly PUFs [10] use contention on cross-coupled latches to
generate output bits, but later work questions the uniqueness
of Butterfly PUF outputs [12].

For this work we use an FPGA-specific PUF based on LUTs
and hardened carry-chains found in Xilinx FPGAs [2]. Our
implementation of this PUF is described in Section IV-A.

III. ERROR CORRECTION FOR PUF-BASED KEYS

Cryptographic keys must be repeatable over time. The
outputs of PUFs are noisy and thus cannot be used directly as
key bits. Fuzzy extractors [6], [9] are cryptographic primitives
for deriving reliable key values from noisy biometric data, and
are widely used with PUFs. When a key is first enrolled to
(i.e. derived from) a PUF, the fuzzy extractor outputs helper
data to facilitate generation of the same key at a later time.
When the key is later generated in the field, the helper data
and the PUF are used together to derive the key. The generated
key matches the enrolled key as long as the PUF values used
at enrollment and generation are within some configurable
Hamming distance of each other. The reliability of the key
stems from the fuzzy extractor’s use of error correcting codes,
and the security of the key relies on an adversary’s inability to
guess the PUF outputs which are never revealed in the clear.

A. Code-Offset Fuzzy Extractor using Helper Data
We use a code-offset fuzzy extractor construction with BCH

codes for error correction in this work. BCH codes are a family
of error correcting codes where each code is described by a
tuple (n, k, t); parameter n is the block size or equivalently
the size in bits of each codeword, parameter k is the number
of information bits in each codeword, and parameter t is the
number of correctable errors in each codeword. A simple code-
offset construction using BCH codes is given in Fig. 1; k key
bits are enrolled and generated using n PUF instances. A larger
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(a) one-time key enrollment

BCH
Decode
C-1

Wi’
PUFs

Xi
+

BCH
Encode

C C(Xi)

Wi

Helper 
Data

Key
Bits 

PUFs 

+
nk n

Helper 
Data

Xi

k

Key
Bits 

nn
n

Hi Hi C(Xi)⊕Wi⊕Wi’

n

(b) key generation in the field

Fig. 1: During key enrollment, key bits are encoded and offset
by PUF outputs to produce helper data. The helper data is
later used with the PUF to regenerate the key in the field. The
generated key will match the enrolled key if the Hamming
distance between the PUF outputs (W

i

and W 0
i

) is within the
error correction capacity of the BCH code used.

key is generated by splitting the key into k-bit blocks and using
n PUF instances to enroll and generate each block.

Key Enrollment: During key enrollment (Fig. 1a), the ith

key segment is chosen as a k-bit string X
i

and encoded to
an n-bit BCH codeword C(X

i

); X
i

can be decoded from any
n-bit string that is within Hamming distance t of codeword
C(X

i

). The codeword is offset by XOR with n-bit PUF output
W

i

and the result is stored as helper data H
i

.

Key Generation: During key generation (Fig. 1b), the helper
data H

i

is offset by a PUF output observation W 0
i

that
may differ slightly from W

i

used during enrollment; this
produces the original codeword C(X

i

) corrupted by W
i

�W 0
i

.
The corrupted codeword can be decoded to regenerate the
enrolled value X

i

as long as C(X
i

) � W
i

� W 0
i

is within
Hamming distance t of C(X

i

). Stated differently, the key bits
X

i

are generated correctly if the difference between the PUF
values used at enrollment and generation does not exceed the
maximum number of errors that are correctable by the BCH
code. Therefore, the BCH code must be chosen according to
the reliability of the PUF outputs.

Security: The PUF outputs are never revealed in cleartext. As
long as the adversary knows nothing about the PUF outputs,
the public helper data H

i

reveals no information about the
codeword C(X

i

) or key bits X
i

. If the PUF outputs are biased
or predictable, then an additional key derivation function should
be used to extract a full-entropy key from X

i

.

B. Error Correction Cost versus Bit Error Rate

The overhead costs of error correction increase sharply with
the bit error rate (BER) of the PUFs. Specifically, the costs
that increase are the number of required PUF instances, and
the complexity of the BCH decoder used to correct the errors.

For a given block size (n), there is a tradeoff between the
number of information bits encoded (k), and the number of
correctable errors (t). For example, in a 127-bit block, a code
that corrects 5 errors carries 92 information bits, and a code
that corrects 15 errors carries only 36 information bits. By
choosing reliable PUFs, more key bits can be derived from
each block without compromising reliability, and fewer PUFs
are required overall.



The expected error rate of the key can be calculated as a
function of the PUF BER and the BCH code parameters, for
a given PUF BER, we minimize cost by choosing the most
efficient BCH code parameters that will result in a key with
an overall error rate not exceeding 1E-6. The value of 1E-6 as
a reliability criterion is used for consistency with previous
literature [5], [7].

IV. PUF IMPLEMENTATION AND CHARACTERIZATION

A. Anderson PUF Implementation on a Virtex 7 Architecture
The Anderson PUF is an FPGA-specific PUF that generates

chip-specific outputs by utilizing delay variations in the fixed
carry chain logic of Xilinx FPGAs. Due to space limitations,
we refer readers to the original paper on the Anderson PUF for
background [2]. Anderson’s original paper used Virtex 5 devices
and showed that the carry chain across a vertical distance of six
LUTs was optimal for performance [2]. Our experimentation
with a Virtex 7 architecture showed that a vertical distance of
five LUTs provides the best PUF performance.

B. PUF Reliability and Uniqueness
Reliability and uniqueness of the Anderson PUF on the

Virtex 7 architecture is evaluated using Hamming distances
between pairings of 128-bit PUFs across four chip instances.
We implement the same 16 disjoint 128-bit PUFs on each
chip, and record 1000 output trials from each. To mimic
a noisy application that could be placed with the PUFs,
each PUF is subjected to constant toggling of 5 toggle flip
flops placed in the slices which combine to make each
PUF bit. Within-class Hamming distances show reliability
by comparing two randomly selected output trials from the
same 128-bit PUF. The histogram of Fig. 2 comprises 10000
within-class comparisons, with random selection of PUFs and
trials for each comparison. The mean within-class distance is
5.29. Uniqueness is demonstrated by between-class Hamming
distances which are found to have a mean of 62.00 (Fig. 2).

Fig. 2: Within-class and between-class Hamming distances
show the reliability and uniqueness of the implemented PUF.

C. Device-Specific Location of Unreliable PUF Instances
Per-device variation-aware placement tries to avoid imple-

menting PUFs on each chip at locations where they would be
unreliable. A per-device placement approach is only necessary
if the locations of unreliable PUF instances are unique to each
chip, and in this subsection we offer empirical data showing
this to be the case.

Fig 3 shows graphically the correlation of BER for a single
pairing of chips; each point in this plot represents one of 2080
PUF instances, and its horizontal and vertical positions indicate

Fig. 3: Respective BERs of same-location PUFs on two
different chips. The 2080 data points in the figure represent
2080 PUF locations instantiated on two different chips.

its BER when instantiated on two different chips. If the BERs
were correlated, the points would tend to cluster along the
diagonal, but we do not observe this to occur. More formally,
we analyze the correlation of per-location BERs among all
pairs of chips using Pearson correlation coefficients. For two
chips x and y, the Pearson coefficient r

x,y

is computed using
Eq. 1, where Bx

i

represents the BER of PUF location i on
chip x, and B̄x represents the mean BER on chip x; By

i

and
B̄y have the same meaning for chip y. A coefficient close
to 0 indicates that the BERs across chips are uncorrelated.
The Pearson coefficients for all pairings of chips fall between
-0.020 and 0.018, indicating that the locations of unreliable
PUFs are largely unique to each chip.
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D. Spatial Autocorrelation of PUF Location BERs
It is important to consider whether unreliable PUFs are

correlated spatially within each chip, as spatial correlation could
imply a common cause for unreliability, instead of random
per-device variations. The heatmap of Fig. 4 shows, for a
single chip, the reliability of 2080 PUF instances according
to their locations. Informally, the lack of a clear pattern in
this figure gives visual indication that the unreliable PUFs
are likely to be random and chip-specific. To formalize the
apparent lack of spatial correlation in Fig. 4, we use Moran’s
I as a metric to quantify the spatial autocorrelation in the BER
of PUF instances. For any single chip instance, Moran’s I
is computed using Eq. 3, where B

i

and B̄ are the BER of
PUF instance i and the mean BER of the chip respectively.
Computing Moran’s I requires a spatial weight w

ij

to indicate
which PUF locations should be considered local to each other.
For PUF locations i and j, we compute the weight w

ij

as
shown in Eq. 2, where r

i

and c
i

are row and column indices
of the ith PUF location. Moran’s I can take values between
-1 and 1, where 1 indicates high spatial autocorrelation and
0 indicates no spatial autocorrelation. The I values for all



Fig. 4: Figure shows the BER of PUF instances placed at
different locations on a chip. Unreliable instances are scattered
and not concentrated in a particular area of the chip.

four chips fall between 0.013 and 0.017, indicating that the
unreliable PUFs do not tend to be highly clustered. Because
the locations of unreliable PUF instances are unique to each
chip and spatially uncorrelated, it can be beneficial to perform
per-device placement to use only the PUF locations that are
highly reliable on that chip.
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E. Cost Savings Through Per-Device Placement
Table I shows the number of LUTs saved by using per-device

placement of PUFs for various key sizes. The use of selected
PUF locations on each chip instance reduces BER to less than
0.01, which allows a BCH code with parameters n = 127,
k = 64, t = 10 to be used while satisfying the overall key
reliability criterion of failure rate less than 1E-6. When using
the default approach of variation-agnostic PUF selection, the
BER is 0.042 and a more expensive n = 127, k = 29, t = 21
BCH code must be used to achieve the same reliability. The
per-device placement therefore reduces the complexity of the
BCH decoder, and also reduces the total number of PUFs
required because more key bits are extracted from each BCH
codeword.

V. CONCLUSION

In this work we have proposed per-device variation-aware
PUF placement for reducing area cost of PUF-based keys in
reconfigurable computing systems. We have implemented three
different sizes of PUF-based keys and have demonstrated that
our approach can save between 49 and 55% of the area of
PUFs and error correction. Future work will consider how
per-device placement can be restricted to specific areas of

PUF BCH Reduction
Variation Agnostic 256-bit key 2569 2219 -
Variation Aware 256-bit key 1143 1249 49.39%

Variation Agnostic 128-bit key 1397 2160 -
Variation Aware 128-bit key 508 1292 50.04%

Variation Agnostic 56-bit key 889 2055 -
Variation Aware 56-bit key 254 1082 55.37%

TABLE I: Breakdown by function of the LUT counts used
to implement 256, 128, and 56-bit key generation. Variation-
agnostic denotes the default approach where instance-specific
variation is not considered in PUF placement.

the chip and used within an overall incremental compilation
approach so that the majority of a design can be placed in a
variation-agnostic fashion while still reaping the area savings
of variation-aware per-device PUF placement.
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