
FRONTIER: A FAST PLACEMENT SYSTEM FOR FPGAS

Russell Tessier

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, Ma. 01003.

tessier@ecs.umass.edu

Abstract

In this paper we describe Frontier, an FPGA placement system that uses design macro-blocks in conjuction
with a series of placement algorithms to achieve highly-routable and high-performance layouts quickly. In
the first stage of design placement, a macro-based floorplanner is used to quickly identify an initial layout
based on inter-macro connectivity. Next, an FPGA routability metric, previously described in [14], is used
to evaluate the quality of the initial placement. Finally, if the floorplan is determined to be unroutable, a
feedback-driven placement perturbation step is employed to achieve a lower cost placement. For a collection of
large reconfigurable computing benchmark circuits our placement system exhibits a 4× speedup in combined
place and route time versus commercial FPGA CAD software with improved design performance for most
designs. It is shown that floorplanning, routability evaluation, and back-end optimization are all necessary to
achieve efficient placement solutions.

Keywords: FPGA, placement, floorplan

1 INTRODUCTION

Over the past decade field-programmable gate arrays (FPGAs) have revolutionized the way digital
systems are designed and built. With architectures capable of holding millions of logic gates on the
horizon and planned integration of reconfigurable logic into system-on-a-chip platforms, the versatility of
programmable devices is expected to increase dramatically.

When programmable logic first became available a decade ago the task of converting a high-level
design into a high-performance physical implementation was frequently a time-consuming, manually-
driven process requiring many days or weeks. While sizable development times are still tolerable for some
applications of FPGA devices today, many uses of FPGA technology, such as reconfigurable computing and
ASIC prototyping, require compilation times on the order of minutes to allow for rapid design turnaround
from high-level design to physical implementation. Currently, a majority of FPGA compilation time is
spent in device layout due primarily to the assumption that each collection of new design elements must
be placed and routed from scratch. Given the exponential growth of FPGA logic capacity expected in
the next few years, place and route times using algorithms currently employed in FPGA software systems
can only be expected to get worse.

While early FPGA designers used low-level schematics to create new designs, most FPGA implemen-
tations today start as RTL or procedural algorithm descriptions. Typically these high-level designs are
synthesized to circuit structures with the aid of pre-compiled macro-blocks that have predictable area
and timing characteristics. In general, these elements, such as adders, multipliers, and multiplexers, are
much larger than the primitive logical elements of the FPGA device and are used in multiple locations in

1

2

G1

C1

F1

X

F4 C4 G4
YQ

Y

G3

F3

G2C2F2
XQ

C3

Double

Double

Single

Longline

Longline

Double

Single

Double

Longline

Longline

 Switch
 Matrix

Direct

Logic
Block

Figure 1 Xilinx XC4000 Logic and Routing Cell

a given design. While macro-blocks have been leveraged successfully for FPGA synthesis for some time,
little work has been done in integrating macro techniques into automated FPGA layout.

In this paper Frontier, an integrated placement system that aggressively uses macro-blocks and floor-
planning to quickly converge to a high-quality placement solution, is detailed. This system can be used
in place of existing placement approaches for macro-based designs targetted to devices with architectures
similar to the Xilinx XC4000 [2] and Lucent Orca [1] families. Rather than using a single algorithm, the
new Frontier tool set relies on a sequence of interrelated placement steps. First, in a floorplanning step,
hard and soft macros are combined together into localized clusters of fixed size and shape and assigned to
device regions to minimize placement cost. Following initial floorplanning, a routability evaluator, based
on wire length, is used to determine if subsequent routing for a given target device is likely to complete
successfully. If this evalution is pessimistic, low-temperature simulated annealing is performed on the
contents of all soft macros in the design to allow for additional placement cost reduction and enhanced
design routability.

The organization of this paper is as follows. In Section 2 a description of the issues involved in FPGA
placement are presented. Section 3 describes previous related work in FPGA placement and floorplanning.
In Section 4 our placement system is discussed in detail. Experimental results obtained by applying
Frontier to a collection of benchmark circuits is presented in Section 5. Finally, Section 6 summarizes our
research and outlines directions for future work.

2 PROBLEM STATEMENT

The target FPGA architecture used for this research is the island-style architecture commonly found
in commercial FPGA devices such as the Xilinx XC4000 family [2] and the Lucent Orca family [1]. These
architectures are characterized by a regular two-dimensional array of logic and routing cells, such as the
example from the Xilinx XC4000 family shown in Figure 1. Each identical cell contains a logic block

Frontier: A Fast Placement System for FPGAs 3

consisting of a small number of programmable lookup tables and flip flops and associated routing wires of
differing segmentation lengths. Connections between logic blocks and routing resources are made through
programmable switches represented as small squares in the figure.

An FPGA design under placement consideration consists of Nblocks logic blocks grouped intoM instan-
tiated macro-blocks. Each macro-block contains an RTL component such as a datapath function or finite
state machine and has a distinct logic block capacity NMi . Hard macro-blocks are assigned fixed height
hi and width wi while soft macro-blocks have flexible shape.

The goal of our placement approach is to create a placement for Nblocks design logic blocks encompassed
by a set of M macro-blocks onto Ncells array logic blocks such that subsequent routing may complete
successfully. A set of NetsM inter-macro wires interconnect all macro-blocks and Netsblocks wires inter-
connect all logic blocks inclusive of NetsM . In general, placement progresses subject to the following
constraints:

1. Each hard macro-block is assigned a distinct placement rectangle Ri of dimensions hi and wi so
that no two macros overlap (Ri

⋂
Rj = φ).

2. Placement is performed to maximize overall routability by minimizing overall routability-based
placement cost. Initially, floorplanning considers, among other criteria, minimizing the length of
all inter-macro nets NetsM . Subsequently, during placement refinement, the length of all design
wiring, Netsblocks, is considered.

In addition to wire length, several supplemental cost criteria are considered in performing placement.
As shown in Figure 1, commercial FPGA devices, like the XC4000 family have direct connections between
logic blocks that enhance routability and long-lines that span the extent of the entire device. By building
hard macros that are constructed to take advantage of these features, additional design routability can
be achieved.

The need for placement optimization is directly dependent on the amount of wiring resources available
in an FPGA device and the specific design under consideration. In subsequent sections it is shown that
while in many cases floorplanning achieves a routable placement quickly, some initial floorplans may be
unroutable for a target device due to the nature of a specific design’s interconnection and the shape and
extent of its macro-blocks. When, through the use of an accurate routability metric, it is determined that
routing will not succeed for an initial floorplan, additional placement optimization that operates on soft
macros is performed. The quality of placement achieved with the placement system documented here is
comparable to that achieved with existing commercial tools, but placement completes on average more
than 60× faster.

3 BACKGROUND

3.1 RELATED WORK

Compile time has recently been recognized as an important issue for FPGAs. Most island-style FPGA
placement algorithms used in commercial software packages assume that a user design contains little or
no hierarchy and can be considered as a collection of logic components whose grain size matches the
logic block of the target device. Since the primary measure of routability for array layout is typically
wire length, a flattened design provides maximum flexibility in searching the placement space for reduced
overall cost.

Most commercial FPGA placement packages use simulated annealing [11] to evaluate a series of logic
block swaps based on a predefined cost function. Annealing, started from an initial placement, typically
achieves good placement quality at the cost of long execution times that are exponentially bounded by the
number of design logic blocks [15]. In [10], recursive clustering was used to identify circuit locality prior to
annealing to reduce subsequent annealing execution time. While this approach yielded a placement time

4

speedup of four in obtaining minimized FPGA placement cost, no mechanism for supporting pre-placed
macro-blocks was included. In performing hierarchical clustering, substantial placement time is spent
recreating locality information previously encompassed by RTL components. Additionally, this approach
does not deal with costs related to long-line alignment and near-neighbor logic block direct connects
through the use of hard macros.

A large amount of work in macro-based floorplanning has been applied to full and semi-custom VLSI
design styles including approaches based on mincut slicing, simulated annealing, and force directed place-
ment, among others [12] [13]. In general, the floorplanning problem for island-style FPGAs is much harder
than for non-programmable technologies since for FPGAs the amount of available routing resources is
fixed in preassigned channels that run through placed macro-block regions and additional resources can-
not be redistributed around macro borders. Several floorplanning efforts for island-style FPGAs have
relied on specific user design implementation styles to quickly achieve a highly-routable placement. These
systems [5] [9] [8] restrict target circuits to datapaths oriented in a left-to-right linear communication
pattern. Design regularity facilitates vertical bitwise abutment of macro-blocks and allows for a rapid
traversal of the one-dimensional topological search space. In general, one-dimensional approaches cannot
be easily modified for circuits with more irregular communication patterns and larger Rent parameters.

Several floorplanning approaches for island-style FPGAs based on mincut slicing have recently been
developed and tested. In [15] it was shown that while slicing floorplanning with hard macros achieves a
placement solution quickly, routability and performance may suffer due to increased wire length. In [7],
slicing with terminal propagation in conjunction with the reshaping of soft macros, was shown to quickly
generate high-utilization placements for Xilinx XC4000 series devices. While a factor of two speedup was
achieved for placement versus Xilinx PPR software, no routing execution times were reported so it is
impossible to determine overall place and route speedup.

A floorplanning methodology based on hierarchical placement was recently described in [6]. This
floorplanner clusters macros together into fixed sized bins and then optimizes bin placement using a two-
step tabu search. Several of the large benchmarks targetted by the system showed considerable speedup
in placement time but much more than a 100% increase in routing time. In this paper we show that this
routing time increase was likely caused by the lack of a globally optimizing placement smoothing step
following floorplanning to minimize localized wire length inefficiencies.

3.2 IMPLEMENTATION TRADEOFFS

The use of macro-blocks to accelerate placement for island-style FPGAs requires accommodation of
the following two competing placement goals:

Locality information stored in pre-placed macro-block libraries should be used to avoid the need to
reconstruct local design structure from scratch and to better take advantage of device features such
as near-neighbor direct connection and long-line alignment.

The placement system should have the flexibility to minimize global wire length by swapping indi-
vidual logic blocks across the entire design. An approach that is insufficiently flexible will lead to
high wire length placements that are likely to take additional time to route, eliminating the benefit
of placement time speedup.

The placement system described in this paper is the first integrated approach that addresses both
of these competing concerns in one package. First, a macro-based floorplanner based on clustering and
shaping is used to quickly identify a feasible floorplan that incorporates hard and soft macros and achieves
high device utilization. Once initial placement is complete, a routability estimator is applied to determine
if the placement is routable. If it is not routable, a low-temperature annealing step is performed on
the entire design to smooth out localized wire length maxima while maintaining the basic structure of
the floorplan. The diversity and flexibility of this system makes it applicable not only to user designs

Frontier: A Fast Placement System for FPGAs 5

 Macro−based Circuit

Set Bin Size

Cluster Increment
Bin Size

yes

no

Ncluster
> Nbins

Routable?

Low Temperature
 Annealing

no

yes

To Routing

Floorplanner

Bin Assignment

 Intra−bin
Placement

Figure 2 Frontier Placement Flowchart

which communicate as linear arrays and two dimensional meshes, but also to circuits exhibiting irregular
communication patterns.

4 FRONTIER IMPLEMENTATION

4.1 SYSTEM OVERVIEW

Our placement system progresses in a series of algorithmic steps by supplementing new layout techniques
with recent advances in FPGA routability analysis. As illustrated in Figure 2, the layout process starts
with a macro-based netlist of soft and hard macros targetted to an FPGA device containing Ncells logic
blocks. Initially, to enhance locality, the FPGA device is decomposed into an array of placement bins,
each of the same physical dimension, as shown in Figure 3. To determine bin contents, macros are grouped
together into clusters, each of which will accommodate the volume of macro logic blocks and the physical
dimensions of hard macros inside a bin. If following clustering an insufficient number of bins are available
to place all clusters, bin sizes are increased and clustering is restarted. After clustering, each cluster is
assigned to a physical bin location on the target device and entire bin clusters are subsequently swapped
between physical bins to minimize inter-bin placement cost including connectivity to device pins. Since
the number of bins allocated to a device is frequently much smaller than the number of device logic blocks,
this process proceeds rapidly. The annealing formulation used in inter-bin swapping follows directly from
logic block-level annealing used for flattened designs and is easily incorporated into the software flow.
Following bin placement, hard and soft macro-blocks are placed within each bin in a space-filling fashion.
All intra-bin placement is based on inter and intra-bin connectivity. Soft macros are resized at this point
to meet bin shape constraints.

In Section 5, it is shown that while floorplanning alone is sufficient to provide effective placements for
many designs targetted to contemporary FPGA devices, in some cases additional placement perturbation
is required. In Frontier, following floorplanning, a detailed estimate of the placement wire length is

6

Macros

Bins

Logic
Block

Figure 3 Bin-based Cluster Assignment

determined, taking into account the special features of the FPGA device. As described previously in [14],
this wire length estimate can be used to evaluate whether subsequent device routing will complete quickly,
require a long period of time, or fail to route at all. For floorplans that are impossible or difficult to route,
low-temperature simulated annealing is performed on soft macros to smooth wire length inefficiencies.
Through a series of design examples a set of annealing parameters that lead to the best time versus
performance tradeoff are determined.

4.2 PLACEMENT STEPS

Bottom-Up Clustering. In the first step of placement, macros are clustered together into placement
bins of identical dimensions and CLB volume to identify inter-macro design locality. While bins must
be sized to support a range of macro-block dimensions, needlessly large bins limit the number of bins
available for subsequent inter-bin swapping and may have a negative impact on final floorplan quality. As
previously suggested in [6], when floorplanning is started, bins are initially set to the X and Y dimensions
of the largest hard macro-block or, if no hard macros exist, to the square root of the logic block volume
of the largest soft macro.

Given the fixed dimension of each bin, clustering must not only take into account connectivity, but
also size feasibility of the cluster under consideration. To smooth macro-block size disparities, smaller
macro-blocks should be clustered first with other like-sized blocks so that the total number of created
clusters is minimized. For Frontier this is accomplished through the use of a cost function described in
[16] and [6] that is weighted to take logic block counts and interconnectivity into account:

Costij = feas(i, j) × Nblocks

NMi + NMj

× min(NMi , NMj)

max(NMi , NMj)
×

∑
Netsij (1.1)

where Nblocks is the total number of logic blocks in the circuit, NMi and NMj are the number of logic
blocks in the macro-blocksMi andMj under consideration and Netsij are the nets connectingMi andMj .
The first term in Equation 1.1 determines if a candidate cluster can be feasibly shaped during intra-bin
placement, using criteria described later in this section, to fit the physical dimensions of a target bin. Its
value is set to 1 if a shape is feasible and 0 if it is not. The second term in the cost function prevents
a specific cluster from becoming too large in relation to the rest of the circuit. The third term prevents

Frontier: A Fast Placement System for FPGAs 7

M: Initial set of design macro-blocks.
C: Set of macros or macro clusters to be combined.
SizeC: Number of elements of C.
Add elements of M to C.
While SizeC can be reduced

Loop over all SizeC elements.
Select feasible combination Ci, Cj that maximizes Costij .

If feasible Ci, Cj found.
Remove Ci, Cj from C.
Add macro cluster Ci

⋂
Cj to C.

Update connectivity.
EndWhile

Figure 4 Weighted Clustering Algorithm

two macros with vastly different numbers of blocks from being connected together thereby creating area
inefficiencies, and the last term measures connectivity. A detailed description of the O(M) clustering
algorithm appears in Figure 4.

If, following clustering, more clusters C than bins B exist, bin dimensions are modified by increasing
bin horizontal and vertical dimensions by 1 logic block and clustering is started again from scratch.

Bin Assignment. Following clustering, all macros are bound to a cluster and the number of clusters is
less than or equal to the number of available device bins. The next step is to determine an assignment of
clusters to specific device bins. After initial random assignment of clusters to bins, simulated annealing
is used to evaluate cluster swaps based on both inter-bin and bin-to-pad wire lengths. The dynamic
annealing schedule described in [4] is used to reach a good quality placement quickly. Given the small
number of bins (typically less than 20) annealed swapping can typically be completed in a few seconds.

Internal Bin Placement. Once each cluster of macro-blocks is assigned to a specific bin, intra-bin
placement is performed to assign macro logic blocks to specific device logic block locations. As a first step
for each bin, all Nhard hard macro-blocks and Nsoft soft macro-blocks in the assigned cluster are linearly
ordered in the horizontal dimension using a topological sort based on intra and inter-bin connectivity.
For soft macro-blocks, previously-determined library placements are used to approximate final soft macro
logic block positions and wire lengths.

Following ordering, exact X, Y logic block positions in each bin are determined for hard macros by
resolving inter-macro spacing. If the width of a bin is wbin and the combined horizontal width of all
hard macros in a bin is

∑
i wMi , the space between hard macros occupied by soft macros is determined

to be Xsoft = �wbin−
∑

i
wMi

Nsoft
�. This equation leads to an Xsoft value of 1 for the bin shown in Figure 5.

Following Xsoft determination, hard macros are assigned X coordinates inside each bin in a left-to-right
order with Xsoft spacing inserted for each soft macro.

Subsequent to the positioning of hard macros, intra-bin X and Y locations for soft macro logic blocks
are determined. These locations are determined by allocating bin space remaining after hard macro
placement in a snake-like fashion starting in the upper left-hand corner of the bin. Individual soft macro
logic blocks are assigned to specific locations within this shape by sequentially selecting logic blocks that
minimize overall wire length. By following this methodology, up to 100% logic block utilization can be
achieved in each bin.

8

Bin Hard MacroSoft Macro

Figure 5 Internal Bin Placement

Routability Prediction. Recently, a direct correlation has been formulated between the number of
routing tracks in an FPGA device, the wire length of a design placement, and the amount of time needed
to route a design [14]. Due to macro-block shape considerations and specific interconnection patterns
of individual designs, a successful floorplanning step provides no guarantee that a placement possessing
close to the global minimum cost has been achieved or that routing will subsequently succeed for a given
target device. To evaluate placement fitness, a wire length-based routability metric [14] has been directly
built into Frontier.

For a given placement, Wmin may be defined as the minimum track count per FPGA routing channel
required to successfully route a design. If the device track count available in a target FPGA, WFPGA,
exceeds 1.1 × Wmin the routing problem is defined to be low-stress and can be expected to complete
quickly (e.g. within several minutes). If Wmin < WFPGA < 1.1Wmin the routing problem is defined as
difficult and will likely require many minutes to complete. Generally, if WFPGA < Wmin it is unlikely
routing will complete successfully even after substantial routing time.

Swartz [14] noted that since a placement-only estimate of routability is required, it is necessary to use an
estimated rather than an exactWmin value to determine routability for a design. Through experimentation
it was determined that Wmin can be estimated from placement wire length as:

Wmin−est = �wirelength/(2 × Ncells × U)� (1.2)

where wirelength is the total estimated wire length determined from placement, Ncells are the number
of logic blocks in the device and U is a utilization factor determined to be architecture-specific. By
using this equation for estimation it was possible to determine needed device routing resources following
floorplanning for specific Xilinx XC4000XL devices exhibiting WFPGA of 32 tracks per channel and U of
0.6.

Low-Temperature Annealing. As will be shown in Section 5, simply performing floorplanning is
generally sufficient to create a placement in the low-stress routing range for many designs. In some cases,
however, routability evaluation may reveal that the current placement is difficult or impossible to route
given available target device routing resources. For these cases, additional placement perturbation is
needed to ensure subsequent fast routing.

To overcome placement inefficiency, Frontier employs low-temperature simulated annealing of individual
logic blocks to allow for smoothing of wire length across soft macros and bins without destroying the

Frontier: A Fast Placement System for FPGAs 9

Design Device CLBs Macros Device
Utilization

bheap5 4085XL 2715 30 87%

bubble16 4044XL 1280 31 80%

bubble32 4085XL 2608 63 83%

fft16 4085XL 3032 48 97%

spm4 4036XL 1064 11 82%

spm8 4085XL 2425 23 77%

ssp16 4052XL 1491 46 77%

ssp32 4085XL 2370 79 76%

Table 1 Macro-based Design Statistics

Execution times (s)

Xilinx PAR-M1.4 Floorplan Only

Design Place Route Total Fplan Route Total Wmin−est

bheap5 903 343 1246 8 647 655 35

bubble16 199 130 329 3 101 104 28

bubble32 1793 294 2087 15 316 331 29

fft16 710 360 1070 14 377 391 22

spm4 143 103 246 8 101 109 26

spm8 530 266 796 4 240 244 26

ssp16 180 81 261 16 72 88 26

ssp32 855 167 1022 17 136 153 22

average 664 218 882 10.6 248 259 27.5

Table 2 Design Layout Statistics - Xilinx 4000XL devices

high-level placement structure achieved by the floorplanner. While detailed discussions of the simulated
annealing algorithm for placement [11] and associated controlling parameters [4] are available elsewhere,
a brief description of several important parameters needed for floorplan refinement may be summarized
as follows:

Starting annealing temperature, Tinit - Starting temperature must be set high enough so that the
placement may be perturbed to a lower overall minimum, but low enough to avoid destroying the
basic hierarchy determined through floorplanning. For our system, a number of experiments were
performed to determine Tinit values that lead to an effective quality versus time tradeoff.

Inner number, β - This value varies the number of swaps made at each annealing temperature [10].
In the annealing formulation used to perturb logic block placement, the number of moves at each
temperature is set to β ×N

4/3
blocks [4]. In Section 5, quality-time tradeoffs for a range of β values are

considered and a β value of 1 is shown to exhibit the most favorable quality-time characteristics.

5 RESULTS

The placement system outlined previously was applied to eight macro-based reconfigurable computing
benchmarks from the RAW Benchmark Suite [3]. Prior to experimentation, all hard and soft macros
were mapped to Xilinx XC4000 logic blocks and resulting XNF netlist files were annotated with RLOC
placement information. Macro-based netlists in XNF format were then used as input to both the Frontier
system and to Xilinx PAR software, version M1.4 [2]. Design statistics for the benchmarks appear in
Table 1. All run time results for both Frontier and PAR were obtained using a 140 MHz UltraSparc I

10

Execution times (s) Performance
Flow PAR Fplan Low Temp Anneal Route Total (MHz)

PAR-only 903 0 0 343 1246 5.08
Fplan Only 0 8 0 647 655 8.17
Fplan/Anneal 0 8 34 272 314 12.71

Table 3 Layout Execution Time/Performance Comparison - Design bheap5

� T=0.1
� T=0.3

 T=0.5
� T=1.0

|
1

| | | | | | | | |
10

| | | | | | | | |
100

|1.0
|1.1

|1.2

|1.3

|1.4

|1.5

|1.6

 Time (in seconds)

 M
ea

n
 N

o
rm

al
iz

ed
 W

ir
e

L
en

g
th

 C
o

st

B=0.2

B=0.5

B=1

B=2

B=5

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

Figure 6 Simulated Annealing Parameter Variation

with 288 Mb of memory. Routing for all designs was performed using Xilinx PAR-M1.4 software with
default parameter and routing effort settings.

Execution times for PAR placement, Frontier floorplanning (without low-temperature refinement), and
PAR routing appear in Table 2. For all designs except one (bheap5) routing times for the floorplanned
designs were comparable to those found by the PAR-M1.4 placer that required 60× longer. This is not
suprising since for all designs except bheap5 the estimated minimum track count per channel needed to
route the circuit was less than the 32 tracks per channel available in Xilinx XC4000XL devices. Wmin−est

values were determined by measuring the post-floorplan wire lengths of designs and then directly corre-
lating them to required track counts via Equation 1.2. From Table 2 it can be seen that the minimum
track count needed to route the floorplanned version of bheap5 is significantly greater than the track
count available inside the XC4000XL device and route times (indicated in boldface) reflect the disparity.
Following floorplanning and routability determination, it is apparent that placement refinement is needed.

To determine appropriate values for β, the annealing moves-per-iteration variable, and Tinit, the an-
nealing start temperature for low-temperature annealing, a series of time-quality tradeoffs were evaluated.
Starting from a floorplanned placement, each design underwent low-temperature annealing with parame-
ters indicated in Figure 6 and the resulting placement cost was determined relative to the best cost that
could be achieved by performing simulated annealing from a random placement for many minutes. Each
curve in Figure 6 represents the geometric average of all eight designs over a collection of parameter values.
It was found that constraining soft macro logic blocks within the bounds of the soft macro determined
during intra-macro placement or within bin boundaries resulted in worse results than allowing soft macro
logic blocks to pass between bins. All results shown in the figure were collected without block movement

Frontier: A Fast Placement System for FPGAs 11

� T=0.3, B=1

|
1

| | | | | | | | |
10

| | | | | | | | |
100

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

|2.2

|2.4

 Time (in seconds)

 N
o

rm
al

iz
ed

 W
ir

e
L

en
g

th
 C

o
st

impossible

difficult

�

�

�

�

�

�

�

�
�

Figure 7 Placement Versus Design Quality - bheap5

Design Xilinx PAR-M1.4 Floorplan

MHz MHz

bheap5 5.08 12.71

bubble16 6.93 14.79

bubble32 10.04 12.48

fft16 21.94 22.47

spm4 8.10 9.20

spm8 6.06 2.07

ssp16 7.40 13.78

ssp32 14.77 13.12

Table 4 Placement Performance Comparison (post-route)

constraints. From the data collected it was determined that for our system the best time-quality tradeoff
was achieved for β = 1 and Tinit = 0.3.

These parameter values were used to refine the initial floorplan for bheap5 to a lower cost placement.
A graph of relative placement cost versus time at various points during execution is shown in Figure 7 for
Tinit = 0.3 and β = 1. Cost points associated with impossible, difficult and low-stress routing, as defined
in Section 5, are labelled. It can be seen that as low-temperature annealing is performed, placement cost
is moved from the impossible-to-route range, through difficult, and into the low-stress region.

The effect of this modified placement is clear from the results shown in Table 3. Even though placement
time has been extended by 34 seconds, routing time has now been significantly reduced due to the
refined placement. Table 4 shows that following routing by Xilinx PAR-M1.4 software, floorplanned (and
low-temperature annealed in the case of bheap5) circuits exhibit favorable performance characteristics
compared to circuit placements created by the PAR placer.

6 CONCLUSION AND FUTURE WORK

In this paper a novel FPGA placement tool has been described that quickly achieves high-quality
placement by leveraging design regularity in the form of pre-compiled macro-blocks. While placement

12

achieved through initial macro-based floorplanning steps are shown to be highly routable in most cases,
for some designs additional placement refinement may be necessary to achieve a routable placement. The
system that has been introduced exhibits this capability by first identifying if a design is routable and
then perturbing an initial floorplan with low-temperature simulated annealing.

In this work, algorithms were developed to address placement on existing FPGA architectures. An
alternate approach would be to consider modifying island-style FPGA devices to include additional levels
of routing hierarchy, effectively isolating intra-macro routing from inter-macro routing. Placement could
then be more effectively partitioned into local and global placement steps, much like contemporary multi-
FPGA systems.

References

[1] Field-Programmable Gate Arrays Data Book. Lucent Technologies, 1996.
[2] The Programmable Logic Data Book. Xilinx Corporation, 1996.
[3] J. Babb, M. Frank, V. Lee, E. Waingold, and R. Barua. The RAW Benchmark Suite: Computation

Structures for General Purpose Computing. In Proceedings, IEEE Workshop on FPGA-based Custom
Computing Machines, Napa, Ca, Apr. 1997.

[4] V. Betz and J. Rose. VPR: A New Packing, Placement, and Routing Tool for FPGA Research. In
Proceedings, Field Programmable Logic, Seventh International Workshop, Oxford, UK, Sept. 1997.

[5] T. Callahan, P. Chong, A. Dehon, and J. Wawrzynek. Fast Module Mapping and Placement for
Datapaths in FPGAs. In International Symposium on Field Programmable Gate Arrays, Monterey,
Ca., Feb. 1997.

[6] J. Emmert and D. Bhatia. A Methodology for Fast FPGA Floorplanning. In International Symposium
on Field Programmable Gate Arrays, Monterey, Ca., Feb. 1999.

[7] J. Emmert, A. Randhar, and D. Bhatia. Fast Floorplanning for FPGAs. In Field-Programmable
Logic and Applications (FPL’98), Tallinn, Estonia, Sept. 1998.

[8] S. Gehring and S. Ludwig. Fast Integrated Tools for Circuit Design with FPGAs. In International
Symposium on Field Programmable Gate Arrays, Monterey, Ca., Feb. 1997.

[9] A. Koch. Structured Design Implementation - A Strategy for Implementing Regular Datapaths on
FPGAs. In International Symposium on Field Programmable Gate Arrays, Monterey, Ca., Feb. 1996.

[10] Y. Sankar and J. Rose. Trading Quality for Compile Time: Ultra-Fast Placement for FPGAs. In
International Symposium on Field Programmable Gate Arrays, Monterey, Ca., Feb. 1999.

[11] C. Sechen. VLSI Placement and Global Routing Using Simulated Annealing. Kluwer Academic
Publishers, Boston, Ma, 1988.

[12] K. Shahookar and P. Mazumder. VLSI Cell Placement Techniques. ACM Computing Surveys, 23(2),
June 1991.

[13] N. Sherwani. Algorithms for Physical Design Automation. Kluwer Academic Publishers, Boston, Ma,
1992.

[14] J. Swartz, V. Betz, and J. Rose. A Fast Routability-Driven Router for FPGAs. In 6th International
Workshop on Field-Programmable Gate Arrays, Monterey, Ca, Feb. 1998.

[15] R. Tessier. Fast Place and Route Approaches for FPGAs. PhD thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science, 1998. also available as
MIT LCS TR-768.

[16] T. Yamanouchi, K. Tamakashi, and T. Kambe. Hybrid Floorplanning Based on Partial Clustering
and Module Rest ructuring. In Proceedings, ACM/IEEE 33rd Design Automation Conference, 1996.

