
 

Abstract— The use of dynamic voltage and frequency scaling 

(DVFS) in contemporary multicores provides significant 

protection from unpredictable thermal events. A side effect of 

DVFS can be an increased processor exposure to soft errors. To 

address this issue, a flexible fault prevention mechanism has been 

developed to selectively enable a small amount of per-core dual 

modular redundancy (DMR) in response to increased 

vulnerability, as measured by the processor architectural 

vulnerability factor (AVF). Our new algorithm for DMR 

deployment aims to provide a stable effective soft error rate (SER) 

by using DMR in response to DVFS caused by thermal events. The 

algorithm is implemented in real-time on the multicore using a 

dedicated monitor network-on-chip and controller which 

evaluates thermal information and multicore performance 

statistics. Experiments with a multicore simulator using standard 

benchmarks show an average 6% improvement in overall power 

consumption and a stable SER by using selective DMR versus 

continuous DMR deployment.  

Keywords-architectural vulnerability, DVFS, monitor network 

I. INTRODUCTION 

The reliability and performance of multicore processors has 
become a significant concern as process technologies have 
scaled in recent years. Embedded on-chip sensors, such as 
thermal and error monitors, allow for the run-time assessment of 
multicore behavior in an effort to positively influence system 
behavior. For example, to mitigate the impact of soft errors, 
current multicores implement redundancy-based error detection 
and recovery schemes including component dual modular 
redundancy (DMR) and redundant multithreading [1]. 
However, these approaches may not be appropriate in all cases 
as they incur significant performance and power overhead and 
often require significant operating system support. A localized, 
low overhead error reduction approach which can be selectively 
enabled provides a possible alternative. 

In general, memory-based components in processor cores 
are vulnerable to single event upsets due to radiation. Although 
large memory structures are often protected by error checking 
and correcting circuits, smaller components, such as instruction 
queues and retirement order buffers, have less protection. 
Fortunately, not every bit flip in these components leads to an 
observable system error. A component's architectural 
vulnerability factor (AVF) states the probability that a fault 

generated in a processor structure will result in an error in the 
program output [2]. The AVF for various processor structures 
has been shown to vary widely both across and within 
applications [3]. Previous studies [3][4][5] have described the 
efficient run-time estimation and use of AVF for single core 
processors in an effort to promote stable processor failure in 
time (FIT) rates. However, the growth of multicore use and 
frequent per-core voltage and frequency scaling necessitates the 
reexamination of AVF calculation and use. 

Dynamic voltage and frequency scaling (DVFS) is 
commonly used in multicores to reduce hotspot temperatures 
and system power consumption. Unfortunately, voltage 
decreases and frequency increases can adversely affect system 
reliability [6][7], necessitating a fast system response to maintain 
a stable multicore soft error rate. One approach to maintaining 
system reliability is to enable a small amount of redundant 
resources for critical system components in the presence of 
increased soft error risk. This risk is determined by comparing 
the instantaneous AVF for the components following DVFS 
against a predetermined threshold. If the threshold is passed, 
redundant components are enabled to facilitate DMR actions. 

In this paper the power effects of using AVF-enabled DMR 
in a multicore environment are explored. AVF values for critical 
resources are continually assessed throughout processing but 
special consideration is given following thermally-induced 
voltage and frequency scaling. Thermal and AVF monitor data 
are transported to a centralized controller via a specialized 
monitor data interconnect. The controller collaboratively uses 
the data to perform DVFS on affected cores and to 
enable/disable redundant resources. Our approach is designed to 
scale to tens of cores, enabling flexible fault coverage and 
performance and power control enhancement. A multicore 
architectural simulator and an interconnect simulator are used to 
assess the power and performance benefit of our approach for 8 
and 16 processor multicores. An overall power benefit of 6% on 
average is achieved for 16 cores versus the continual use of 
redundant resources.  

The remainder of the paper is organized as follows. Section 
II presents brief background on AVF, DVFS, and soft error 
protection. Section III describes AVF estimation for multicores 
and the impact of thermal information on its calculation. Section 
IV discusses our experimental approach and experimental 

Multicore Soft Error Rate Stabilization  

Using Adaptive Dual Modular Redundancy 

Ramakrishna Vadlamani, Jia Zhao, Wayne Burleson and Russell Tessier 

Department of Electrical and Computer Engineering 

University of Massachusetts 

Amherst MA, United States 



results are presented in Section V. Section VI concludes the 
paper and offers directions for future work. 

II. BACKGROUND 

Measurements of a processor component's architectural 
vulnerability factor determine the probability that a soft error 
will lead to a user visible error [2]. If a data bit is necessary for 
architecturally-correct execution (ACE) [2], an output error will 
be produced whenever it flips due to a transient fault. 
Effectively, the soft error rate (SER) of a component is the 
product of the raw SER (overall bit flip rate) and the 
component's AVF. Per-component AVF is a time-varying 
quantity that varies both across and within applications based on 
a component's utilization [2][3][4]. For example, AVF metrics 
for the instruction queue (IQ), retirement-order buffer (ROB) 
and the load/store queue (LSQ) vary by 40%, 30% and 20% 
respectively during application run time [4]. These metrics 
suggest that affected processor units can potentially benefit from 
an AVF-aware redundancy scheme that disables redundant units 
during periods of low AVF, thus saving power [2][3][4].  

Accurate run-time AVF evaluation has recently been shown 
to be computationally feasible [2][3]. Walcott, et al. [3] and 
Biswas, et al. [4] demonstrated that the aggregated AVFs of 
uniprocessor pipeline components can be estimated with up to a 
90% accuracy using a small set of periodically-sampled 
microarchitectural parameters. This quantized-AVF (Q-AVF) 
approach is lightweight since the amount of processed data is 
restricted to a small quantum over a restricted sampling interval.  

AVF varies with the operating frequency and voltage of a 
component since it impacts the utilization of the component [8]. 
In Soundararajan, et al. [8], this variation was quantified for 
DVFS applied to a uniprocessor.  More recently, Siddiqua and 
Gurumurthi [9] used AVF variation to support redundant 
multithreading (RMT) in an effort to reduce soft errors. In the 
latter two cases, SER levels are considered static and unaffected 
by per-core variations in voltage and frequency. 

Error detection for storage components in processor-based 
systems is often performed using dual modular redundancy, in 
which outputs of duplicate copies of a component are compared 
before memory commits are performed [1][10]. DMR incurs a 
power consumption penalty and should only be used if a 
processor component is likely to incur soft errors. Many 
storage-based processor pipeline components are protected 
without the need for DMR. Register files and caches are 
generally protected by ECC/parity-check circuitry. Pipeline 
latches can use low-overhead error self detection and correction 
(i.e. Razor) [11]. Additionally, the AVF of a branch predictor is 
always 0% since a misprediction due to a predictor soft error 
strike will not lead to an output error [1]. As a result, this paper 
focuses on the DMR protection of specific components 
(instruction queue, retirement order buffer, and load store 
queue) which would otherwise be unprotected. The detection 
and rollback circuitry required to restore processor state 
following an error detection have been documented in numerous 
previous publications [10][12] and are not discussed here. 

III. ADAPTIVE AVF CALCULATION AND USE FOR DMR 

Our adaptive DMR approach requires real-time AVF 
computation and the use of an interconnect architecture for 
thermal monitor and system parameter data collection and 
processing. Three specific operating scenarios are considered in 
which real-time AVF information is used to enable/disable 
component-based DMR for the instruction queue (IQ), 
retirement order buffer (ROB), and load-store queue (LSQ): 

1) AVF information is used to enable/disable DMR for the 
components which exhibit an AVF below a 
predetermined, fixed threshold. 

2) AVF information is used to enable/disable DMR for the 
components which exhibit an AVF below a 
dynamically-determined, variable threshold which 
changes with voltage and frequency updates. 

3) AVF information is ignored and DMR is always enabled 
for the components. 

Each of these cases is considered in the context of multicore 
DVFS performed in response to thermal events. 

A. AVF Computation in a Multicore Environment 

AVF calculation for IQ, ROB, and LSQ components must 
occur periodically since AVF values typically show significant 
run time variation [1][3]. The AVF of each component is 
determined using microarchitectural parameters obtained from 
the processor. A linear combination of eight parameters can be 
combined [4] to describe the AVF for each component at an 
accuracy level approaching 90%. These parameters include (1) 
the stores flushed before data translation lookaside buffer 
response, (2) store buffer utilization, (3) retirement order buffer 
empty cycles, (4) retirement order buffer utilization, (5) branch 
misprediction count, (6) reservation station utilization, (7) 
instruction queue utilization, and (8) total front-end instruction 
kill latency. 

Each parameter is scaled and linearly combined to form the 
AVF estimates for the three components (IQ, ROB, LSQ) in 
each processor. Since our processor model is slightly less 
complex than the one used in [4], the coefficients for parameters 
(1), (6), and (8) are set to zero. The five remaining parameters 
related to AVF calculation are commonly monitored in 
hardware in microprocessors. The required performance 
monitoring hardware often consists of two parts [13], an event 
detector and an event counter.  

To evaluate AVF in our system, fixed event detectors and 
counters are needed to collect desired performance information. 
For example, store buffer (STB) utilization can be determined by 
monitoring store buffer write and read events. A corresponding 
counter for STB utilization increases by 1 when an STB write 
occurs and decreases by 1 when an STB read occurs. Since the 
size of the STB is known, it is straightforward to calculate STB 
utilization from the counter. The same method works for the 
utilization calculation of an ROB, a reservation station and an 
instruction decode queue. Event detectors are connected to both 
the read and write signals of the target structure. A write event 
increments the counter and a read event decreases the counter 



for the target structure. To determine ROB empty cycles, an 
event detector is connected to the ROB empty signal. A count is 
incremented for each cycle the signal indicates an ROB empty. 
The similar method works for the branch misprediction counter. 
The event detector is connected to a misprediction signal. 
Whenever a misprediction happens, the counter increases by 1. 

Fig. 1 shows the structure of a processor pipeline and the 
associated AVF monitoring circuitry. Event detectors are 
connected to the IQ, LSQ, ROB and branch predictor to probe 
operations in these units. Some detectors have been omitted 
from Fig. 1 for clarity. Five counters are connected to the 
corresponding detectors to obtain utilization information for the 
five parameters. The hardware cost of the performance counters 
and detectors is modest. AVF calculation is performed every 
1024 cycles [4] leading to a counter requirement of 5 * 10 bits = 
50 bits. Each detector can be implemented in a small number of 
logic gates. 

The hardware overhead required to duplicate the IQ, LSQ, 
and ROB is also modest. For our architecture, based on an 
Alpha264, a total of 16, 112 and 176 thirty-two bit values are 
needed (see Table 1 on page 5). This analysis indicates a total of 
9728 storage bits. As a result, the total hardware overhead for 
per-core AVF-enabled DMR is about 200K transistors, a small 
percentage of the total processor transistor count, including 
cache.  

As shown in Fig. 1, monitored information is transferred to a 
centralized processor using an interconnect network (MNoC), 
which is discussed in Section IV. The centralized processor 
(MEP) calculates the AVF of each core based on the obtained 
counter values. 

B. Reliability-aware AVF threshold computation 

Processing components require a stable SER to operate 
properly. Due to the masking capability of the AVF, the 
effective SER of a processor core [2] is defined as: 

Effective_SER = AVF * Raw_SER                  (1) 

The Raw_SER (total expected bit flip rate) is reduced to an 
Effective_SER since not all soft errors eventually affect the 
visible program output. Processors generally have a target 
effective_SER threshold (Target_SER) which is predefined for 
the architecture. To ensure proper operation, it is desirable to 
keep the instantaneous SER of the processor core components 
below the target SER. If the rate rises above the target SER 
threshold, resource redundancy can be used to mitigate errors.  
Equation 1 can be rewritten as: 

Target_SER = AVF_threshold * Raw_SER       (2) 

which indicates that the target SER threshold is directly related 
to the AVF_threshold. If the Raw_SER is constant, the need for 
component redundancy can be directly determined from the 
measured AVF. A measured value for a component which is 
above the AVF threshold indicates the need for DMR. 
Otherwise, DMR can be deactivated.  

In most cases, however, Raw_SER is not constant. For 
example, the SER fault model in Equation 3 [6] [14] assumes an 
exponential relationship for SER with respect to the frequency 

and supply voltage. In the equation, fmin corresponds to a 

normalized minimum-energy frequency [15] (e.g. an fmin of 0.2 

indicates the minimum frequency is 20% of the maximum) and x 

indicates the relative scaling of f and V between their min and 
max values.  

min1

)1(

0 10),(
f

xd

SERfVSER




                     (3) 

Frequencies below fmin (typically 5% of fmax [15]) consume 

additional energy due to increased memory latency. Parameter d 

= 2 is based on the expected fault injection source [6]. SER0 is 
the raw SER corresponding to the maximum voltage and 
frequency used by the multicore. This model indicates that both 
AVF_threshold and instantaneous SER must be considered in 
determining the need for DMR. If raw SER increases, the AVF 
threshold used to enable redundancy must be reduced so that 
target SER levels are not crossed. In summary, the relationship 
between AVF_threshold and Target_SER can be expressed as: 

AVF_Threshold = Target_SER/SER(V,f)       (4) 

where SER(V, f) can be calculated using Equation (3). 

C. Example AVF threshold and overhead computation 

The AVF thresholds used for experimentation in this work 
were determined as follows. Mukherjee et al. [2] determined a 
FIT of approximately 200 to 2000 for the 200,000 vulnerable 
bits in the SPARC64 microprocessor. Since each core (based on 
an Alpha264) in our example multicore has roughly 10% the 
number of vulnerable bits of a SPARC64, raw_SER in Equation 
2 is set to 28 FIT. Additionally, Mukherjee et al. determined a 
1000 year mean time between failures (MTBF) for a SPARC64 
and suggested that MTBF should be increased proportionally 
for each core when a multicore system is considered. For our 8 
core system, an MTBF of 8000 years is used to achieve an 

Fetch Dispatch IQ

LSQ

ROB ARF

FU 1

FU n

Instruction

Queue

Load/Store

Queue

Floating

Unit Reorder

Buffer

Architectural

Register File

D
e

te
c

to
rs

D
e

te
c

to
rs

D
e

te
c

to
rs

To MNoC

Router

Branch

Predictor

D
e

te
c

to
rs

C
o

u
n

te
r 0

C
o

u
n

te
r 1

C
o

u
n

te
r 2

C
o

u
n

te
r 3

C
o

u
n

te
r 4

Fig. 1. AVF monitor for one pipeline 



overall 1000 year MTBF. This MTBF corresponds to a 14 FIT 
per core (10

9
/8000*365*24), which is our target_SER. Using 

Equation 3, an AVF_threshold of 50% is determined.  

Our system dynamically computes AVF thresholds for each 
core in the system based on current frequency and voltage 
values. A two-level DVFS system is implemented which 
switches the voltage and frequency between more aggressive 
(2GHz, 1.2V) and less aggressive (1GHz, 0.84V) parameters. 
Since the minimum frequency for our system is equal to 0.05 * 
fmax, fmin is set to 100MHz/2GHz = 1/20 after normalization. 
When this value of fmin and the raw_SER (i.e. SER0) of 28 FIT 
are used in Equation 3, a new raw_SER at 0.84V, 1GHz is set to 
10 times SER0. Using Equation 4, this value leads to an adjusted 
AVF_threshold of 25% for low voltage (0.84V). This 
adjustment can be applied since AVF values are influenced by 
frequency changes [8].   

IV. EXPERIMENTAL APPROACH 

Our AVF-enabled DMR approach benefits from the use of a 
dedicated interconnect for monitor traffic. The five 
microarchitectural parameters listed in Section III.A are 
collected by an AVF monitor located in each processing core 
(Fig. 1). The monitor interfaces to lightweight monitor network 
on chip (MNoC) routers which transport the information to a 
centralized monitor executive processor (MEP) [16]. The 
irregular topology support provided by MNoC is suited to the 
distributed placement of an AVF monitor and one MNoC router 
in each core (Fig. 2). In addition to AVF information, MNoC 
also transports thermal monitor information and control 
information which modulates per-core voltage and frequency. A 
total of 8 thermal monitors are allocated per core to achieve 0.1 
degC accuracy [16].    

Shared memory multiprocessor systems consisting of 8 and 
16 cores are used for experimentation. Each processor contains 
the following duplicated pipeline structures: instruction queue, 
retirement-order buffer/reservation stations and load/store 
buffers. When DMR is enabled for a pipeline component, a 
per-core error detection system flags an error if a component 
output does not match the data from its counterpart. An AVF 
monitor, the 8 thermal monitors, and 3 error monitors per core 
are connected to an MNoC router via a multiplexer. The error 
monitor’s low bandwidth limits their impact on monitor data and 
processing.  

The MEP executes the following DMR throttling algorithm 
for each redundant component in each core. Initially, all 
redundancy is enabled. Each AVF monitor in the multiprocessor 
system is then sampled in a round-robin fashion. When the AVF 
values for a processor component falls below a predefined lower 
threshold, the MEP sends a disable signal for the replicated 
resource. If the AVF is greater than the threshold, the redundant 
resource is re-enabled. Sequentially, the DVFS algorithm on the 
MEP proceeds as follows: 

 Measure the instantaneous values of temperature (T) 
and AVFs for each core in each sampling period  

 If T > threshold, reduce V, f (perform DVFS) for 
affected core. Update AVF_Threshold values. 

 If AVF > AVF_Threshold for a processor component, 
enable DMR for the component. Otherwise disable 
DMR. 

The Update_AVF_Threshold routine required in the 
algorithm uses Equation (4).  

Based on previous work [17], the sampling rate of a thermal 
monitor is set to 1 per 800 clock cycles at 500 MHz. As 
mentioned in Section III, the five parameters needed for AVF 
calculation are transferred to the MEP once every 1024 system 
cycles. Since one MNoC router is used per core, the injection 
rate per MNoC router is 8 * (1 per 800 cycles) + 5 * (1 per 
1024) = 1 injection per 67 clock cycles. 

To assess the expected MNoC monitor data latency in 
MNoC, a latency experiment was performed for a 16 processor 
multicore system. As shown in Fig. 3, as long as the injection 
rate per router is less than 1 per 17 cycles, MNoC latency 
remains consistently low. In our system, the injection rate per 
MNoC router is low enough to provide an MNoC latency of less 
than 15 clock cycles. For 8 core multiprocessors, our 
experiments show a similar 15 cycle latency.  

V. EXPERIMENTAL PROCEDURE AND RESULTS 

The simulation setup including the configuration of the 

 
Fig. 3: Latency vs. injection rate per router for a 16 router system. 

Results were generated using a modified Popnet simulator 

L1$

L2$

Shared Memory

MEP

R

R

Shared Bus

R

R  Router

MEP  Monitor Executive

Comparators for

error detection

L1$

AVF calculation

related counters

MNoC

Redundant

Units

P1 P8

 
Fig. 2.  An 8-core system for AVF-aware DMR throttling 



simulated shared memory multiprocessor system is summarized 
in Table 1. A modified SESC [18] multiprocessor architectural 
simulator is used to evaluate the run-time effects of DVFS on a 
series of applications and the collection of information from one 
AVF (Fig. 1) and 8 thermal monitors in each processor core. 
The MEP functionality is assigned to one of the cores in the 
simulated multicore system.  

The processor power model used by SESC is based on 
Wattch [19]. The cache power model is based on CACTI [20] 
and the temperature model for both (called SESCSpot) is based 
on HotSpot [16]. SESCSpot calculates the temperature of 
processor subblocks based on the power trace of the 
architecture in a post processing fashion. The processor 
architecture is modeled on an Alpha264 with a MIPS ISA and 
the floorplan of each processor core used for thermal modeling 
is based on prior work [21]. For our DVFS implementation we 
integrated SESCSpot into the core of the SESC simulator to 
obtain temperature readings at run-time. This approach enabled 
the MEP to sample the temperature readings at run-time and 
execute the DVFS algorithm.  

In order to assess the benefits of our AVF-based dual 

modular redundancy approach, the three specific operating 
scenarios described in Section III are considered: 

1) AVF  threshold fixed – DMR enabled when a component 
AVF passes a fixed threshold 

2) AVF variable threshold – DMR enabled when a 
component AVF passes a threshold which varies with 
DVFS based on Equation 4.  

3) Full DMR: DMR is always enabled for all three 
components (IQ, ROB, and LSQ). 

All three of these cases are considered in the context of 
DVFS. The third case is the worst case scenario and it is used as 
a baseline for the other two. The first case considers the AVF 
threshold for a component to be fixed regardless of voltage and 
frequency. As a result, the AVF threshold must be set to a 
reduced value of 0.25 (25% of bits are important) which is used 

Table 2. Power benefit and overhead results for 8 and 16 core system 

Test 

bench 

name 

Case 

8 core 16 core 

Power 

per 

core 

(W) 

Power 

benefit 

(%) 

Power 

per 

core 

(W) 

Power 

benefit 

(%) 

LU 

Full DMR 11.50  11.75  

Fixed threshold 10.88 5.39 11.19 4.77 

Variable 

threshold 
10.80 6.09 11.10 5.53 

Ocean 

Full DMR 9.83  10.04  

Fixed threshold 9.63 2.03 9.63 4.08 

Variable 

threshold 
9.13 7.12 9.29 7.47 

FMM 

Full DMR 14.28  10.28  

Fixed threshold 14.13 1.05 9.75 5.16 

Variable 

threshold 
12.28 14.01 9.69 5.74 

Radix 

Full DMR 4.48  4.25  

Fixed threshold 4.38 2.23 4.13 2.82 

Variable 

threshold 
4.12 8.04 3.94 7.29 

 

0

10

20

30

40

50

60

70

80

1 11 21 31 41 51 61 71 81 91 101

Sample number

A
V

F
(%

)

1

2

3

4

5

 
Fig. 4.  Five 100-sample instruction queue AVF traces for the LU benchmark 

Time trial 

Table 1.  Experimental Setup 

Simulator SESC multiprocessor 

simulator [18] 

Technology 90 nm 

Num of processors 8, 16 

DVFS V, f levels f(high)=2GHz, V(high)=1.2V 

f(low)=1GHz, V(low)=0.84V 

Benchmarks SPLASH2 (400M instructions 

each) 

Processor configuration 

Instruction Issue 4 out-of-order 

I-cache 64KB, 4-way 

D-cache 64KB, 8-way, 2 cycles 

Branch Predictor Hybrid 

Branch Target Buffer 4K entries, 16-way 

Instruction Queue 16 entries 

Retirement Order Buffer 176 entries 

Load/Store Buffers 56/56 entries 

L2 Cache 1MB, 8-way, 10 cycles 

 



during both high voltage and low voltage usage. The second 
case considers the AVF threshold as dynamically varying as 
DVFS changes voltage and frequency levels. AVF thresholds of 
between 25% and 50% are determined by the MEP for each 
processor component.  

The power benefits of a variable AVF threshold in enabling 
DMR are shown in Table 2 for four SPLASH2 benchmarks 
mapped to 8 and 16 cores. Portions of each benchmark are 
distributed across the cores. DMR is only performed on the 
specific processor components which have an AVF greater than 
the target threshold. On average, the variable AVF threshold 
approach (case 1) reduces core power (without cache) versus 
full DMR (case 3) by about 8% and 6%, respectively, for 8 and 
16 core processors. An average power improvement of 6% and 
2% is seen for the variable AVF threshold approach versus the 
fixed AVF threshold approach. In general, the cost of providing 
a stable SER through DMR is low. The power cost of including 
DMR is about 5% for 8 cores and 6% for 16 versus unprotected 
scenarios. The power consumption of MNoC (~250 mW) is 
considered in these calculations. The 8-core FMM application 
shows a particular savings with a variable versus fixed threshold 
(14% vs. 1%) since most AVF values are above the fixed 
threshold. 

The variability of AVF is apparent from Fig. 4, which shows 
AVF variation across LU benchmark run time for an instruction 
queue for five traces of 100 samples. AVF values are measured 
over several time trials. In general, calculated AVF is mostly at 
or below 50% with frequent deviations over a wide range.                    
Wattch has previously been shown to have an accuracy of about 
10%, although there has been no explicit discussion on its 
precision [19]. Since we measure relative benefit using Wattch, 
the absolute precision of Wattch is a less important factor.  

VI. CONCLUSION AND FUTURE WORK 

The flexible deployment of dual modular redundancy can 
provide SER stability in DVFS-enabled multicores. In this 
paper, real-time architectural vulnerability metrics for processor 
components are used to evaluate if DMR is needed based on a 
dynamic threshold. Our system uses a novel monitor data 
collection and processing system to determine AVF and enable 
redundancy if it is needed. A 6% reduction in power is achieved 
versus always-active DMR for a 16 processor multicore while a 
stable multicore SER is maintained. Since we focus on IQ, ROB 
and LSQ processor memory structures, an error correction code 
(ECC) based error correction technique could potentially result 
in lower overall power, performance and area overhead 
compared to DMR. In the future, the benefits of such an 
approach will be assessed. 

ACKNOWLEDGEMENTS 

This work was funded by the Semiconductor Research 
Corporation under Task 1595.001. The authors would like to 
acknowledge our SRC liaisons at Intel, AMD, and Freescale. 

REFERENCES 

[1] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an 

architectural perspective”, in the Proc. of Int’l Symp. High-Performance 

Computer Architecture, pp. 243-247, 2005. 

[2] S. Mukherjee, et al., “A systematic methodology to compute the 

architectural vulnerability factors of a high-performance microprocessor”, 

in the Proc. of 36th Ann. Int’l Symp. Microarchitecture, pp 29-40, 2003. 

[3] K. Walcott, et al., “Dynamic Prediction of Architectural Vulnerability 

From Microarchitectural State”, in the Proc. of the Int’l Symp. Computer 

Architecture, pp. 516-527, 2007. 

[4] A. Biswas, et al., “Quantized AVF: A means of capturing vulnerability 

variations over small windows of time”, IEEE Workshop on Silicon Errors 

in Logic - System Effects, 2009.  

[5] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online estimation of 

architectural vulnerability factor for soft errors”, in the Proc. of Int’l Symp. 

Computer Architecture, pp.341-352, 2008. 

[6] D. Zhu, et al., “The effects of energy management on reliability in real-time 

embedded systems”, in the Proc. of the IEEE/ACM Int’l Conf. Computer 

Aided Design, pp. 35-40, 2004. 

[7] Z. Baoxian, H. Aydin, and D. Zhu, “Reliability-aware dynamic voltage 

scaling for energy-constrained real-time embedded systems”, in the Proc. 

of the IEEE Conf. Computer Design,  pp. 633-639, 2008. 

[8] N. Soundararajan, et al., “Impact of DVFS on the architectural 

vulnerability of GALS architectures”, in the Proc. of the Int’l Symp. Low 

Power Electronics and Design, pp. 351-356, 2008. 

[9] T. Siddiqua, and S. Gurumurthi, “Balancing soft error coverage with 

lifetime reliability in redundantly multithreaded processors”, in the Proc. of 

Int’l Symp. Modelling, Analysis and Simulation of Computer and 

Telecommunication Systems, 2009. 

[10] A. Golander, S. Weiss, and R. Ronen, “DDMR: Dynamic and scalable 

dual modular redundancy with short validation intervals”, in Computer 

Architecture Letters, vol. 7, issue 2, pp. 65-68, 2008. 

[11] D. Ernst, et al., “Razor: circuit-level correction of timing errors for 

low-power operation”, IEEE Micro, vol. 24, no. 6, pp.10-20, 2004. 

[12] K.-L. Wu, et al., “Error recovery in shared memory multiprocessors using 

private caches”, IEEE Transactions on Parallel and Distributed Systems, 

Volume 1, Issue 2, pp 231 – 240, 1990. 

[13] B. Sprunt, “Pentium 4 performance-monitoring features”, IEEE Micro, 

vol. 22, no. 4, pp. 72-82, 2002.  

[14] P. Hazucha, and C. Svensson, “Impact of CMOS technology scaling on the 

atmospheric neutron soft error rate”, in IEEE Transactions on Nuclear 

Science, pp. 2586-2594, 2000. 

[15] X. Fan, C. Ellis, and A. Lebeck, “The synergy between power-aware 

memory systems and processor voltage”, in the Proc. of the Workshop on 

Power-Aware Computing Systems, 2003. 

[16] S. Madduri, et al., “A monitor interconnect and support subsystem for 

multicore processors,” in the Proc. of the IEEE/ACM Design Automation 

and Test in Europe Conference, Nice France, pp. 761-766, 2009. 

[17] K. Skadron, et al., “Temperature-aware microarchitecture: Modeling and 

implementation”, in ACM Transactions on Architecture and Code 

Optimization, vol. 1 no. 1, pp. 94-125, 2004. 

[18] J. Renau, et al., “SESC Simulator”, 2005, http://sesc.sourceforge.net. 

[19] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for 

architectural-level power analysis and optimizations,” in the Proc. of the 

Int’l Symp. Computer Architecture, pp. 83-94, 2000. 

[20] P. Shivakumar, and N.  Jouppi, “CACTI 3.0: An integrated cache timing, 

power and area model,” in Technical Report 2001/2, Compaq Computer 

Corporation, 2001. 

[21] G. Link, and N. Vijaykrishnan, “Thermal trends in emerging 

technologies,” in Proc. of the Int’l Symposium on Quality Electronic 

Design, pp. 625-632, 2006. 


