
1

Efficient PUF-Based Key Generation in FPGAs using Per-Device Configuration

Mohammad A Usmani∗, Shahrzad Keshavarz∗, Eric Matthews†,
Lesley Shannon†, Russell Tessier∗ and Daniel E Holcomb∗,

∗Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
†School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

Email: holcomb@engin.umass.edu

F

Abstract—Reconfigurable systems often require secret keys to encrypt
and decrypt data. Applications requiring high security commonly generate
keys based on physical unclonable functions (PUFs), circuits that use
random manufacturing variations to produce secret keys that are unique
to each device. Implementing PUFs on FPGAs is usually difficult because
the designer has limited control over layout, and each PUF system
requires a large area overhead to correct errors in the PUF response
bits. In this work, we extend the state of the art for FPGA-based weak
PUFs using a novel methodology of per-device configuration and a
new PUF variant derived from the popular FPGA-specific Anderson
PUF. The PUF is evaluated using Xilinx XC7Z020 programmable SoC
chips from the Virtex-7 family on Zynq ZedBoard platforms. The design
we propose has several advantages over existing work including the
Anderson PUF on which it is based. Our design is tunable to minimize the
response bias and can be implemented using the common SLICEL
components on Xilinx FPGAs. Moreover, the proposed PUF design
enables an efficient per-device configuration that reduces bit-error-rate
by over 10× at room temperature, and improves response stability by
over 2× across all temperatures. We demonstrate that the proposed
per-device PUF configuration step leads to roughly 2× savings in area
resources for PUFs and error correction as used in key generation.

1 INTRODUCTION

FPGAs are used for an increasingly large number of applica-
tions that require security. Due to their volatile nature, SRAM-
based FPGAs require security at multiple levels. Bitstream
encryption is often used to protect the configuration bits
that define application implementation. Additionally, secure
encrypt/decrypt cores are often implemented as part of a
user’s design to allow for the confidential processing of
application data. These cores require secret keys that are
often customized on a per-device basis. Securing these keys
can be problematic. Common SRAM-based FPGAs do not
have on-chip non-volatile or battery-backed key storage that
a user can access, but if the keys are stored off-chip then
they are susceptible to the many attacks that have been
demonstrated against bitstream encryption [1].

PUFs represent a device-tied method of generating secret
keys on-chip without reliance on secured non-volatile mem-
ory or battery-backed storage. PUF-based keys are uniquely
tied to each device and are not directly compromised by
attacks that are able to recover decrypted bitstreams. These
characteristics make PUFs well-suited to key generation
for FPGA-based applications. For example, PUF-based keys

• The two first authors contributed equally to this work.

Manuscript received XXX; revised YYY.

are currently available in reconfigurable devices including
Microsemi IGLOO2 [2] and Intel Stratix 10 [3] FPGAs, but
these keys are generated by specialized blocks and not from
circuitry created from the user-accessible FPGA fabric.

A PUF’s response should solely rely on the inherent
process variation of its components. Therefore, most PUF
designs rely on differential circuits in which two paths are
designed with identical logic and matched routing, so that
the difference only comes from process variation. This level of
matching can be easily done in ASICs because the designer
has the freedom to easily control the layout of the PUF.
However, FPGA designers are limited in this freedom, and
must work within the constraints of the unmovable look-
up tables and routing tracks in the FPGA fabric. Based on
the design, different sections of logic and routing resources
in the FPGA can be used, leading to nonidentical paths.
Therefore, different approaches must be considered for FPGA
PUF design that consider the available resources and their
abundancy. In this work, we build our implementation on the
FPGA-specific Anderson PUF [4]. The specific contributions
of this work are as follows:

• We implement a new PUF variant that overcomes
limitations of the original Anderson’s PUF design,
and quantify its uniqueness and reliability on a more
advanced Xilinx architecture (Virtex 7).

• We demonstrate tunable PUF properties to adapt
its performance to produce unbiased responses. We
use these properties to tune the PUF for our target
architecture.

• We demonstrate a methodology for efficient per-
device PUF configuration that reduces the PUF re-
sources required for key generation by approximately
2× relative to the same PUF without per-device
configuration.

• We evaluate the temperature stability of PUF re-
sponses and show experimentally that per-device PUF
configuration reduces average bit error rates by more
than 2× across a range of temperatures.

The remainder of this paper is structured as follows.
Background and prior work related to our approach are
presented in Section 2. Our evaluation of PUF performance
impacted by FPGA process variation is reviewed in Section
3. Section 4 examines the per-device selection of PUFs. The
impact of enhanced reliability on error correction is explored



2

in Section 5 and Section 6 concludes the paper and offers
directions for future work.

2 BACKGROUND AND RELATED WORK

Many applications in communications, vision, networking,
and consumer products require the data confidentiality
offered by FPGA-based encryption. For example, Wu and
Huang [5] document the use of an FPGA as an encryption
engine for a wireless communication system. An FPGA-
based version of the advanced encryption standard (AES) is
used in conjunction with one or more disks to provide secure
data storage [6]. A comprehensive approach to protecting
the use of intellectual property cores in FPGAs using pub-
lic/private keys pairs is described in Kumar et al. [7]. Keys
created by a PUF are used to initiate IP core operation and
periodically authenticate its use [8]. In Hu et al. [9], FPGA-
based keys are used to validate the downloading of network
router monitors implemented in FPGAs. The security of the
download process is instrumental in maintaining proper
network operation. These examples represent a small set of
the diverse and growing set of applications which use FPGAs
to provide confidentiality.

2.1 Process Variations in FPGAs

Process variations can impact the performance of all in-
tegrated circuits. Within the FPGA domain, a study of
systematic and intrinsic sources of delay variability was
performed by Sedcole and Cheung [10]. Reconfigurable hard-
ware offers the opportunity for per-device logic placement
as a mechanism to address process variations. Cheng et
al. [11] used a simulation study to show possible performance
improvements from a two-step process of extracting chip-
specific delay information and then performing chip-specific
placement. Similar work by Bsoul et al. [12] optimized
placement on Xilinx Virtex II FPGAs in consideration of both
process variation and aging. In contrast to these previous
works on per-device logic placement, we will show in this
work that per-device PUF placement has the potential for
much greater gains on account of being highly sensitive to
variations.

2.2 Physical Unclonable Functions

Physically unclonable functions (PUFs) are circuits that lever-
age manufacturing variations to produce instance-specific
output values. Creating outputs that depend on process
variations often requires delay matching or other types of
symmetry that can be difficult to achieve in an FPGA. The
output values produced by each PUF instance are persistent
over time but can be influenced by noise. PUFs are sometimes
classified as strong PUFs or weak PUFs depending on whether
or not they accept input challenges.

Strong PUFs use process variations to map a large
space of input challenges to corresponding output values.
Strong PUFs are exemplified by the well-known Arbiter
PUF [13] that maps input challenges to responses according
to unique delay variations of each instance. The Arbiter PUF
requires carefully matched wiring delays, and this has been
achieved on Xilinx Virtex 5 FPGAs by selecting LUT input
combinations to tune and match propagation delays [14].

Strong PUFs are subject to modeling attacks, in which an
adversary uses a set of known input-output examples to train
a model that predicts a PUF’s outputs for previously-unseen
inputs.

Unlike strong PUFs, weak PUFs do not have a large
input space, and each PUF instance produces a single bit of
variation-dependent output. Weak PUFs can, therefore, be
considered as device-tied constants, and are not subject to
modeling attacks. Weak PUFs have been widely implemented
on FPGAs. The power-up state of SRAM can be used to save
secret data [15] or as a unique chip identifier [16] but are no
longer feasible on common FPGAs because SRAM blocks are
now initialized to default states at power-up. Attempts to
circumvent SRAM initialization have met with little success.
Sander et al. [17] use JTAG to read out unique values from
unused configuration memory regions of Virtex 5 FPGAs,
but there is no evidence that these values result from process
variation. Wild and Günesyu [18] manipulate power gating
and partial reconfiguration to extract identifying values from
block RAM on specific revisions of a Xilinx Zynq 7020 design,
but they note that the same approach fails to work on later
revisions of the same design. If uninitialized SRAM power-up
state were accessible on an FPGA, then one can consider the
possibility of using directed aging to enhance the reliability
of the PUF at the circuit level [19], [20], [21]. The initial states
of flip-flops in FPGAs depend on process variations [22],
but are extremely biased and produce low quality outputs.
Butterfly PUFs [7] use contention on cross-coupled latches to
generate output bits, but later work questions the uniqueness
of Butterfly PUF outputs [23]. Xu et al. [24] proposed a PUF
design that performs autonomous majority voting without
orchestration by a clock. Their proposed structure can also
be implemented on FPGAs, though it is not optimized for
this purpose in terms of resource usage.

Our work in this paper uses an FPGA-specific weak PUF
that is derived from an existing design, the Anderson PUF,
which uses LUTs and hardened carry chains found in Xilinx
FPGAs [4].

2.3 Anderson PUF
The basic circuit of the Anderson PUF [4] is shown in Fig. 1.
This PUF does not require the use of hard macros and
is designed purely at the register-transfer level with the
required constraints described in VHDL. The PUF uses two
adjacent SLICEM blocks of a Xilinx FPGA. In SLICEM blocks,
each LUT can be used as either a 6-input combinational logic
function, or as a 16-bit shift register, and the Anderson PUF
uses the shift register functionality. As shown in Fig. 1, the
outputs of Shift reg 1 and Shift reg 2 are connected to
the select lines of multiplexers that are separated by a chain
of multiplexers that have their select inputs stuck at 1. In
normal FPGA usage, the multiplexer chain is used as a carry
chain. In the PUF setting, these intermediate multiplexers
act as a delay line, such that the top multiplexer has its
select input connected directly to Shift reg 2 and has its
1-selected input connected to a delayed version of the output
from Shift reg 1. The two shift registers are loaded with
complemented alternating 0-1 values (e.g. Shift reg 2 is
loaded with 0x5555 and Shift reg 1 is loaded with 0xAAAA).
Although the shift register outputs are never both 1 at the
same time, due to the propagation delay of the carry chain,



3

10

SLICE1

0

1

S1

0

1

0

Shift
Reg 1

0

SLICE2

0

1

clk

S2

0

1

0

Shift
Reg 2

1

I0 I1

I1I0

1

Init: 0x5555

Init: 0xAAAA
clk

carry
chain
for
delay

clk
D Q
pre

FF

Fig. 1: Circuit diagram of Anderson PUF

there exists a window of time in which the top multiplexer
has a 1-value on both its select signal and its 1-selected input.
This creates a transient pulse on the multiplexer output with
a pulse duration that is proportional to the propagation delay
of the multiplexer carry chain. The multiplexer output that
carries the pulse is attached to the asynchronous preset of a
flip-flop. If the pulse has sufficient duration and amplitude
when reaching the preset input, then the flip-flop value will
be set to 1; otherwise, the flip-flop will remain at 0. Thus,
the flip-flop value depends on the delay and attenuation
of the multiplexer stages used as delay lines, which causes
the circuit to act as a PUF. The outputs of Anderson’s PUF
have been shown in previous work to be unique to each
PUF instance. Because this implementation of the Anderson
PUF requires shift registers it can only be implemented in
SLICEM cells of the FPGA chip.

2.4 Error Correction for PUF-based Keys

Cryptographic keys must be generated repeatably over
time. The outputs of PUFs are noisy and thus cannot be
used directly as key bits. Fuzzy extractors [25], [26] are
cryptographic primitives designed for deriving reliable key
values from noisy biometric data and are widely used with
PUFs. When a PUF is first enrolled with a fuzzy extractor, a
key is derived from the PUF and helper data is produced to
facilitate generation of the same key at a later time. When
the key is later generated in the field, the helper data and
the PUF are used together to regenerate the enrolled PUF
value so that the same key can again be derived from it.
The generated key matches the enrolled key as long as the
PUF values used at enrollment and generation are within
some configurable Hamming distance of each other. The
reliability of the key stems from the fuzzy extractor’s use of
error correcting codes and the security of the key relies on an
adversary’s limited ability to guess the PUF outputs, which
are kept secret.

X +
C(X)

W

H

extract 
keyPUFs

BCH
enc.

helper 
data

random 
secret

n

n nk

(a) one-time key enrollment

W’
+

helper 
data

H

+
C(X)

PUFs
W

extract 
key

n

C(X)⊕W⊕W’
H

n

n

n n BCH
corr.

(b) key generation in the field

Fig. 2: During key enrollment, a random secret is used to
derive helper data from PUF values. The helper data is later
used with the PUF to regenerate the initial PUF response,
and from that to extract a key. The generated key will match
the enrolled key if the Hamming distance between the PUF
outputs (W and W ′) is within the error correction capacity of
the BCH code used. Enrollment is performed off-line while
key regeneration occurs on the FPGA at power-up.

We use a code-offset fuzzy extractor construction with
BCH codes for error correction in this work. BCH codes
are a family of error correcting codes where each code is
described by a tuple (n, k, t); parameter n is the block size or
equivalently the size in bits of each codeword, parameter k
is the number of information bits in each codeword and
parameter t is the number of correctable errors in each
codeword. A simple code-offset construction using BCH
codes is given in Fig. 2; in this example, a random k-bit
secret value is used to enroll an n-bit PUF value. Multiple
blocks can be enrolled in the same way, and when this is
done, no values are reused across the different blocks.

Key Enrollment: During key enrollment (Fig. 2a), each k-
bit secret X is chosen at random and encoded to an n-bit
BCH codeword C(X); error correction ensures that X can
be decoded from any n-bit string that is within Hamming
distance t of codeword C(X). The codeword is offset by
XOR with n-bit PUF output W and the result is stored as
helper data H . Additionally, a key is extracted from PUF
value W using an entropy extractor such as a universal hash
function [27] or a cryptographic hash function assumed to
behave as a random oracle [28].

Key Generation: During key generation (Fig. 2b), the PUF
produces value W ′ that may differ slightly from the value W
used during enrollment. PUF output W ′ is offset by helper
data H to produce a value that is the original codeword
C(X) offset by W ⊕W ′. The corrupted codeword can be
corrected to regenerate C(X) as long as C(X) ⊕W ⊕W ′

is within Hamming distance t of C(X). Stated differently,
C(X) can be corrected if the difference between the PUF
values used at enrollment and generation does not exceed
the maximum number of errors that are correctable by the
BCH code. The corrected C(X) is offset by the helper data H
to regenerate value W that was produced by the PUF during
enrollment. Then, the same key extraction procedure is used
to generate the key from W .

Security: The security of error correction in PUF-based key
generation is an active field of research, and we give here
only a brief introduction to the topic. The PUF outputs and
the key derived from them are never revealed in cleartext, but
there are a number of factors that can diminish key entropy.
Firstly, any bias or correlations in the PUF will reduce the



4

min-entropy of the source, and the key can of course never
have more entropy than the source from which it is derived.
Second, the BCH code leaks n−k bits of information through
the helper data. Finally, the extractor used to derive the key
from value W cannot extract all available entropy from W
into the key. We point interested readers to a number of
works that consider in more depth the security details of key
generation [29], [30], [28], [31].

2.5 Relationship to Previous Analysis
This manuscript builds on an earlier version of the work [32]
that examined device-specific placement of the Anderson
PUF. The work at hand provides a significant advancement
over the previous work by developing a new PUF architec-
ture and a new PUF selection approach. We also evaluate the
performance of our new PUF across a range of temperatures.
In this new study, nine identical XC7020 FPGAs are used to
evaluate the PUFs, rather than the four devices used in the
earlier work.

3 PUF DESIGN AND CHARACTERIZATION

In this section, we redesign the Anderson PUF to improve
on its limitations. Our modifications allow for the creation
of PUFs using lookup table (LUT) based SLICEL elements
that cannot be used as shift registers. These elements are
more plentiful in FPGAs than the SLICEM elements that
the Anderson design uses. The modification provides the
capability for fine-grained PUF tuning to adjust a PUF’s
Hamming weight, thereby optimizing its uniqueness.

3.1 PUF Implementation on a Virtex 7 Architecture
Families of Xilinx SRAM-based FPGAs since the Virtex 4 have
two different types of logic clusters (SLICEs) that contain
LUT-based logic elements. As described in Sec. 2.3, the LUTs
in the SLICEM elements required in the Anderson PUF
are implemented as shift registers to ensure synchronous
switching of the multiplexer select lines at the top and
bottom of a carry chain. This SLICEM restriction limits
the placement of PUFs on the FPGA and consumes limited
resources that may be required for other design purposes. In
the Xilinx Zynq-7020 devices used for our work, two-thirds
of all SLICEs are SLICEL elements (8,950 SLICEL vs. 4,350
SLICEM).

Our revised Anderson PUF implementation is shown in
Fig. 3a. It consists of two Xilinx SLICEs that can be either
SLICEMs or SLICELs, although we focus on SLICELs. In
contrast to the Anderson PUF, our design replaces each
SLICEM shift register output with a synchronous toggling
signal created from a flip-flop (FF) and a LUT configured as
an inverter.

The timing operation of the design is shown in Fig. 3b.
Flip-flop FF1 in SLICE2 is initialized to a logic-1 and the
corresponding flip-flop FF1 in SLICE1 is initialized to a
logic-0. Since the LUTs are configured as inverters, during
evaluation these flip flops will toggle their value at each
rising clock edge. The race condition that occurs after every
second rising clock edge determines the width of the pulse
that is generated. The racing signals are as follows:

• On the clock edge, a falling transition propagates in
SLICE2 from signal Q2 at the output of FF1 through

the inverter-configured LUT to a rising transition on
signal S2 at the select input of multiplexer M1. The
rising transition arrives when the 1-selected input of
the multiplexer holds a logic-1 value, and causes the
output of M1 to rise.

• On the same clock edge that triggered the above
described sequence, in SLICE1 a rising transition on
signal Q1 at the output of FF1 propagates through
the inverter-configured LUT to a falling transition on
signal S1 at the select input of multiplexer M1. A logic-
0 then propagates upward through the carry chain.
When this falling transition reaches the 1-selected
input of M1 in SLICE2 it causes the output of the
multiplexer to fall, terminating the pulse.

According to the race condition described above, the
duration of the pulse on signal Pulse0 can be described by
Eq. 1. Here, Wglitch is the duration of the pulse, Dchain is
the delay through the length of the carry chain from falling
transition on S1 to falling transition on Pulse0, DQ1−S1 is
the delay from Q1 to signal S1 in SLICE1, and DQ2−S2 is the
delay from Q2 to signal S2 in SLICE2.

Wglitch = Dchain + DQ1−S1 −DQ2−S2 (1)

As shown in Fig. 3a, the pulse on signal Pulse0 can be
propagated through three additional multiplexers in SLICE2
giving designers a choice of which pulse signal should be
attached to the asynchronous preset signal of the flip-flop that
will capture the PUF response. The different pulse signals can
be viewed as different signal taps of the generated pulse. In
the figure, Pulse0 is the signal attached to the flip-flop, but in
the next subsection we show how the additional multiplexers
can act as filters that attenuate the pulse. The selection of
different taps for the pulse signal allows for the tuning of the
Hamming weight of the PUF responses. Note that the preset
signal is attached to all flip-flops within a slice. Consequently,
FF1 in SLICE2 may also be preset by the generated pulse
during a PUF evaluation. This can provide a second path
through which the PUF output can be set high, but does not
harm the PUF evaluation.

3.2 PUF Hamming weight tuning
A PUF design in which the responses of all instances are
biased toward the same value will tend to be less unique
than one in which the responses are unbiased. An average
fractional Hamming weight close to 0.5 (50%) is an indicator
that PUF responses include a balanced mixture of 0 and 1
bits and are not systematically biased. In the Anderson PUF
and our variation thereof, the average Hamming weight of
the PUF response bits depends on the expected width of the
glitch that arrives at the asynchronous preset input of the
capturing flip-flop. A short glitch is less prone to setting the
flip-flop value high, while a long glitch increases the chance
that the flip-flop will be triggered to store a response value
of 1. Ideally, the average pulse width will be on the cusp
of the two response values, such that the response of each
PUF instance will be caused by its process variations and
their effect on the pulses of that PUF instance. We explore
three different knobs that can be used to control the average
Hamming weight of the PUF response bits. The first of these
knobs has been proposed by Anderson in his original work



5

0

SLICE2

0

1

clk
D Q

I0 I1
Q2S2

M1

0

1

0

1

FF1

Pulse1

Pulse0

Pulse3

Pulse2

LUT1

L2

clk
D Q
pre

FFfilter
stages

0

SLICE1

0

1

clk
D Q

I0 I1
Q1S1

M1

0

1

0

1

FF1LUT1

1

carry
chain
for
delay

L1

(a) Implementation

clk

L1

L2

Pulse0

Pulse1

Pulse2

Pulse3

S1

S2

DQ1-S1

DQ2-S2

DChain

Wglitch

Q1

Q2

(b) Timing

Fig. 3: a) Enhanced implementation of the Anderson PUF [4] on a Virtex 7 architecture. The two LUTs are separated
vertically by three multiplexer stages. Each LUT feeds a flip-flop to generate a toggle signal for the select line of the attached
multiplexer. b) The timing waveforms govern the operation of glitch generation and glitch filtering.

0 1 2 3 4 5 6
Chain length

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 H
am

m
in

g 
w

ei
gh

t

(a) Effect of carry chain length

0 1 2 3 4 5 6
Number of filter stages

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 H
am

m
in

g 
w

ei
gh

t

(b) Effect of filter stages (c) Effect of route skew

Fig. 4: Figure shows three different design changes that are used as tuning knobs to increase or decrease the width of
the generated glitch and thereby increase or decrease the response bias; a) elongating the carry chain widens the glitch;
b) adding multiplexer filters attenuates and narrows the glitch; c) setting the lower feedback path to have a longer delay
widens the glitch. Results were generated using a Xilinx XC7Z020 device.

implementing this style of PUF [4] in SLICEM blocks; the
second and third knobs are novel and proposed for the first
time in this work.

Tuning by varying the chain length: Changing the
number of delay stages in the design can be used to adjust
the term Dchain in Eq. 1, which describes the propagation
time for a signal to propagate through the carry chain. As
implied by Eq. 1, if the delay values DQ1−S1 and DQ2−S2
are held constant, changing this term has a direct impact
on the glitch width, and therefore can be used to tune the
Hamming weight of a design. The effect of changing the
length is shown in Fig. 4a. A longer carry chain increases the
response Hamming weight. Note that, when two or fewer
multiplexers are used in the carry chain, the entire PUF can fit
within one slice; when between 3 and 6 multiplexers are used
for the carry chain, the PUF requires two slices. For carry

chains not having length 3, we are unable to route the PUF in
a way that holds DQ1−S1 and DQ2−S2 constant. Therefore,
to study the impact of the carry chain delay in these cases,
we use SLICEM cells in the shift-register configuration from
the original Anderson’s PUF. A carry chain of length 3 allows
the same relative multiplexer, lookup table, and flip-flops of
two different slices to be used at the two ends of the carry
chain, making it easier to match the routing and propagation
delays of DQ1−S1 and DQ2−S2 in the adjacent SLICEL cells.

Tuning by addition of filter stages: The second tuning
parameter is the number of filtering stages used between the
pulse generation and the preset input of the flip-flop that
generates the PUF response. As mentioned in the previous
subsection, a generated pulse can be propagated through
additional stages to create a number of different signal taps
that can be attached to the flip-flop preset to capture the



6

response. To optimize the PUF response Hamming weight,
the extra stages at the top of the selected carry chain can
be used to attenuate the pulse and tune the expected width
of the signal that will arrive at the preset input of the flip-
flop. Figure 4b shows the effect of adding extra multiplexer
stages as filters when the carry chain is comprised of three
multiplexers, as shown in Fig. 3a. Note that only three filters
can be fit within a two slice design, so the variants using
more than three filters require three slices. From the result,
we can see that adding one filter stage when the carry chain
contains three multiplexers gives a Hamming weight close to
the ideal value of 50%. Regardless of the chain length, it was
found that adding more filter stages reduces the Hamming
weight.

Tuning by adjusting path delays: The third parameter
used to tune the Hamming weight of the PUF response
involves varying the delay differences of the FF-LUT paths
that route signals from flip-flops back to the carry chain.
These FF-LUT delays are denoted as DQ1−S1 and DQ2−S2
in Eq. 1 and are annotated in Fig. 3b. The two delays affect
the width of the produced glitch (shown as Wglitch). Any
increase in delay DQ1−S1 relative to DQ2−S2 will delay the
end of the pulse and thereby increase the expected width
of the pulse. Because wide pulses are more likely to preset
the PUF response flip-flop, increasing the delay difference
between DQ1−S1 and DQ2−S2 will increase the Hamming
weight of the PUF responses. Similarly, decreasing the delay
difference by making DQ1−S1 smaller than DQ2−S2 will
cause shorter pulses to be generated and a lower Hamming
weight of the PUF responses. The Hamming weight impact
of varying the delay difference is shown in Fig. 4c.

To examine how path delays change the Hamming weight
of responses we begin with a PUF configuration that uses a
carry chain of length 2 and no filter stages on the generated
pulse. The following steps are performed:

• For each of the two feedback paths used in the
PUF, we apply different minimum delay constraint
values in steps of 10ps, and for each constraint let
the Xilinx Vivado routing tool find feedback paths
of appropriate lengths. This provides a catalog of
different-length paths for DQ1−S1 and DQ2−S2 .

• Repeatedly, we randomly choose feedback paths from
the cataloged set of paths, implement the PUFs using
those two paths, and record both the delay difference
between the paths and the Hamming weight of the
PUF responses.

• The PUF configurations are then binned according to
their delay difference, and the average Hamming
weight for each bin is calculated and plotted in
Fig. 4c. The plot shows the expected result, in which
making DQ1−S1 longer than DQ2−S2 will lead to
wider pulses being generated (see Eq. 1), and cor-
respondingly increase the Hamming weight of the
responses.

For the specific case of a length 2 carry chain with no filter
stages, it is found that delay differences between -25ps and
-75ps produce a fractional Hamming weight closest to 0.5.
This means that a fractional Hamming weight closest to 0.5
is obtained when routes are chosen such that the delay term
DQ1−S1 is 25ps to 75ps less than DQ2−S2 . If it is necessary
to implement the PUF in a single slice, this technique could

be used to obtain desirable PUF statistics without requiring
a long multiple-slice carry chain.

After evaluating the three tuning knobs, we settle on one
specific tuning that will be used throughout the remainder of
the paper. Our design uses a multiplexer carry chain of length
three with one filter stage and feedback paths with equal
delay. Aside from the observation that this design has good
PUF statistics, we choose this design for its simplicity, as the
two feedback paths with matched delays utilize identical
paths in different slices. All the results presented hereafter in
the paper will be with respect to this tuning.

3.3 PUF Reliability and Uniqueness
Reliability and uniqueness are the most important properties
of a weak PUF. Reliability refers to the repeatability of
PUF outputs over time, which lessens the burden of error
correction. Uniqueness is a measure of how different the
output values are across PUF instances. We quantify these
two properties for the Virtex 7 architecture by analyzing the
Hamming distances between pairings of 128-bit PUFs across
nine XC7Z020 chip instances. In total, we implement the
same 28 disjoint 128-bit PUFs on each chip and record 250
output trials from each.

For reliability, we consider the distribution of intra-class
Hamming distances between outputs of two different trials
from the same 128-bit PUF on the same chip. The histogram
in Fig. 5a shows the distribution of Hamming distances for
7,843,500 comparisons, representing all combinations of the
250 trials that are collected for each of the 28 different 128-bit
PUFs on each of the nine chips (28× 9×

(
250
2

)
comparisons).

The mean intra-class distance is 3.06 bits (2.39%). A bit
error occurs when a PUF output bit takes different values
at enrollment and key generation. Therefore the average
fractional intra-class Hamming distance also represents the
average bit error rate (BER) of the PUF.

We consider two different variants of inter-class Ham-
ming distance in our analysis. The first is the Hamming
distance between outputs from two 128-bit PUFs that are
on different chips or different locations on the same chip.
Over all combinations of PUFs and trials (

(
28×9

2

)
× 2502 =

1,976,625,000 total comparisons), the mean distance is found
to be 63.47 bits (49.59%) (Fig. 5b). The second set of inter-
class distances are similar to the first except confined to
only compare PUF pairings that occupy the same locations
on different chips; this case is interesting because it will
show a reduced Hamming distance if PUF output values
are significantly influenced by deterministic bias instead
of device-specific process variations. Comparing across all
trials and chips for each of the 28 different PUF locations
(28×

(
9
2

)
× 2502 = 63,000,000 total comparisons), the mean

distance is found to be 62.39 bits (48.74%) (Fig. 5c).
In addition to the above analysis of Hamming distances

between 128-bit PUFs, we also evaluate the standard PUF
metrics of uniqueness [33], [34] and bit-aliasing [34]. Both of
these metrics are computed using the ”golden” response of
each PUF instance, which is the response bit value produced
by that PUF on a specific chip in a majority of trials. We
use ri,l to denote the golden response on the i-th chip of
the l-th PUF bit. The uniqueness value of n single-bit PUFs
in a population of k chips is calculated according to Eq. 2.
The ideal value for uniqueness metric is 50% [34], and the



7

0 16 32 48 64 80 96 112 128
Hamming distance

0

0.05

0.1

0.15

0.2

Pr
ob

ab
ili

ty

(a) Intra-class Hamming Distance

0 16 32 48 64 80 96 112 128
Hamming distance

0

0.02

0.04

0.06

0.08

Pr
ob

ab
ili

ty

(b) Inter-class, all locations

0 16 32 48 64 80 96 112 128
Hamming distance

0

0.02

0.04

0.06

0.08

Pr
ob

ab
ili

ty

(c) Inter-class, same location

Fig. 5: Histograms of intra-class and inter-class Hamming distances of 128-bit PUFs. Intra-class distances compare two
measurements from the same 128-bit PUF instance. Inter-class distances (in b) compare two 128-bit PUFs from different
chips or different locations on the same chip, and (in c) compare 128-bit PUFs from the same locations on different chips. All
measurements were made at room temperature of approximately 24◦C and at the nominal supply voltage.

TABLE 1: Reliability and uniqueness of PUF implementations
on Zynq-7000 FPGAs.

Design Intra-class HD (%) Uniqueness (%)
Anderson PUF [4] 3.60 48.00
Butterfly PUF [7] 3.80 43.16

RO PUF [36] 0.48 46.15
Proposed scheme 2.37 46.25

uniqueness value for our PUF is found to be 46.25%. Bit-
aliasing describes the propensity of each bit to take the
same value on different chips. Bit-aliasing of the l-th bit
is calculated according to Eq. 3. The ideal value for the
average bit-aliasing is 50% [34]. The average bit-aliasing in
the proposed design is found to be 45.88%.

Uniqueness =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

∑n
l=1 ri,l ⊕ rj,l

n
× 100%

(2)

(Bit-aliasing)l =
1

k

k∑
i=1

ri,l × 100% (3)

Table 1 compares the reliability (average intra-class
Hamming distance) and uniqueness of our proposed PUF to
other designs implemented on the Xilinx Zynq-7020 FPGAs
as reported in [35]. Our PUF is found to be comparable to
the other small PUF designs. Ring oscillator PUFs are known
to be reliable but expensive since multiple oscillators are
needed for generating each response bit.

3.4 Spatial Autocorrelation of PUF Location BERs
It is important to consider whether the PUF BERs are
correlated spatially within each chip, as spatial correlation
could imply a common cause for unreliability, instead of
random per-device variations. The heatmap of Fig. 6 shows
the average BER of the PUF at each location, averaged over
all chips. Informally, the lack of a clear pattern in this figure
gives some visual indication that the unreliable PUFs are
likely to be random and not highly clustered.

To formalize the apparent lack of spatial correlation in
Fig. 6, we use Moran’s I [37] as a metric to quantify the
spatial autocorrelation in the average BER of PUF instances.
Moran’s I is computed using Eq. 5, where Bi and B̄ are the
average BER of PUFs at the i-th location and the average

0 20 40 60 80 100 120
X coordinate

0

20

40

60

80

100

120

140

Y
 c
oo

rd
in
at
e

0.00

0.02

0.04

0.06

0.08

0.10

Fig. 6: Figure shows the average BER of PUF instances placed
at different locations on the chips. Unreliable instances are
not concentrated in a particular area of the chip.

BER across all locations respectively. Computing Moran’s I
requires a spatial weight wij to indicate which PUF locations
should be considered local to each other. For PUF locations i
and j, we compute the weight wij as shown in Eq. 4, where
ri and ci are row and column indices of the ith PUF location,
and i 6= j enforces that each PUF is not considered to be
its own neighbor. Restating this, the weight is set to 1 if the
Euclidean distance between the row and column indices of
two different PUF locations is less than 10. Moran’s I can
take values between -1 and 1, where -1 and 1 indicate high
spatial autocorrelation, and values close to 0 indicates less
spatial autocorrelation.

To evaluate whether the BER values are spatially cor-
related, we consider the value of Moran’s I against a null
hypothesis of no spatial autocorrelation using a two-tailed
test. All analysis is performed using the publicly available
spatial analysis software PySAL (release 1.14.4) [38]. Under
the null hypothesis (no spatial correlation), for our positions
and weights, I has an expected value of -2.50E-4 and variance
of 5.78E-6. The value of I in our dataset (BER values from
Fig. 6 with weights according to Eq. 4) is 2.74E-3, which
corresponds to a p-value of 0.21. This p-value means that
spatially random data would on 21% of trials be expected to
produce a value of I that is more extreme that ours, and thus
we cannot reject the null hypothesis of no spatial correlation.
Stated more plainly, this analysis indicates that our BER



8

values do not have a significant spatial correlation.

wij =

{
1 if i 6= j,

√
(ri − rj)

2
+ (ci − cj)

2
< 10

0 otherwise
(4)

I =
n∑

i

∑
j wij

∑
i

∑
j wij(Bi − B̄)(Bj − B̄)∑

i(Bi − B̄)2
(5)

4 PER-DEVICE PUF CONFIGURATIONS

As mentioned in Section 3.2, our chosen PUF design uses
for a delay path a carry chain with 3 multiplexers and
1 stage of glitch filters to achieve an average Hamming
weight close to 50% (see Fig. 4b). There are multiple PUF
configuration options for placing the design in a pair of
SLICEs. Fig. 7 shows the two possible configurations that we
consider. In one configuration (Fig. 7a), the PUF’s carry chain
extends from the bottom-most multiplexer in one SLICE
to the bottom-most multiplexer in the next; in the second
configuration (Fig. 7b), the entire PUF is shifted up by one
multiplexer. It is possible to shift the entire design up by
one more multiplexer to obtain a third PUF configuration
from the two slices, but we consider in this work only
the two configurations shown. We have implemented each
of the two PUF configurations of Fig. 7 on nine different
chips. The average intra-class Hamming distance is 2.37%
for configuration 1 and 2.39% for configuration 2, while the
uniqueness value (based on Eq. 2) is 46.25% for configuration
1 and 48.74% for configuration 2. This implies that two
SLICEs can be configured in two different ways as a PUF,
and in either configuration will have similarly desirable PUF
statistics.

The average reliabilities of 2.37% and 2.39% are aggre-
gated over a population of PUF instances with heterogeneous
BERs. Within the population, there are many PUF instances
that are extremely reliable, and some that are very unreliable.
At a single location with two slices, we will show it is often
the case that one PUF configuration will be unreliable and
the other will be reliable. Because of this, it is possible to
create a highly reliable PUF by choosing the more reliable
configuration in each of the PUF locations, but the choice
must be made uniquely for each chip. The only scenario
in which per-device configuration will not be beneficial
is if both configurations for a given PUF bit are equally
unreliable. Note that per-device configuration does not
impact uniqueness. Our implementation results show that
the uniqueness value for PUFs after per-device configuration
is 48.53%, which is comparable to either configuration 1 or
configuration 2.

Implementing the per-device configuration yields a intra-
class distance of 0.22%. The improved reliability after per-
device configuration is also apparent in Fig. 8. The figure
shows that after per-device configuration, a smaller fraction
of PUFs produce a 1-response close to 50 percent of the
time (fewer unreliable responses), and that larger fractions
of PUFs produce a 1-response 0 or 100 percent of the time
(more reliable responses).

M1

0

SLICE2

M2

0

1

M3

0

1

0

1

D Q
pre

FF

D Q
FF2LUT2

SLICE1

M2

0

1

M3

0

1

M4

0

1

1

carry
chain
for
delay

D Q
FF2LUT2

M1

0

SLICE2

M2

0

0

1

0

1

D Q
pre

FF

D Q
FF1LUT1

M1

SLICE1

M2

0

M3

0

1

M4

0

1

0 1

D Q
FF1LUT1

1

1

carry
chain
for
delay

filter
stage

filter
stage

1

(a) configuration 1

M1

0

SLICE2

M2

0

1

M3

0

1

0

1

D Q
pre

FF

D Q
FF2LUT2

SLICE1

M2

0

1

M3

0

1

M4

0

1

1

carry
chain
for
delay

D Q
FF2LUT2

M1

0

SLICE2

M2

0

0

1

0

1

D Q
pre

FF

D Q
FF1LUT1

M1

SLICE1

M2

0

M3

0

1

M4

0

1

0 1

D Q
FF1LUT1

1

1

carry
chain
for
delay

filter
stage

filter
stage

1

(b) configuration 2

Fig. 7: Two possible PUF configurations using the same slices.

0 10 20 30 40 50 60 70 80 90 100
Percentage of one response

10-5

10-4

10-3

10-2

10-1

100
Fr

ac
tio

n 
of

 P
U

Fs
config 1
config 2
per-device selection

Fig. 8: Figure shows the fraction of PUFs that have each
different probability of a producing a 1-response. PUFs that
produce 1-response on close to 0 or 100 percent of trials are
highly reliable, and cases falling between the two extremes
are less reliable. Data generated from nine chips. Broken line
indicates points where the value is zero.

4.1 Comparing between-configuration PUF responses
Either of the configurations shown in Fig. 7 can be imple-
mented at each PUF location on a chip, and we exploit this
flexibility to choose the more reliable PUF configuration at
each location. Noting that the two configurations share in
common much of the carry chain, it is reasonable to wonder
whether the two configurations would tend to have similar
reliabilities, which would eliminate the benefits of per-device
configuration. Our findings in Fig. 9a show the BERs of
the two different configurations at one location do not tend
to be correlated; if one configuration happens to have a
high-BER PUF, it is not the case that the other configuration
would also have a high-BER PUF. Choosing the more reliable
configuration therefore can lower BER.

In fact, despite the two configurations sharing a number
of delay stages, the responses of the two configurations are
relatively unique to each other, as shown in Fig. 9b. The



9

0 0.1 0.2 0.3 0.4 0.5
BER in configuration 1

0

0.1

0.2

0.3

0.4

0.5

B
E

R
 in

 c
on

fi
gu

ra
tio

n 
2

(a) BER of the two configurations at each location.
Different markers are used for each of the nine chips.

0 16 32 48 64 80 96 112 128
Hamming distance

0

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ili

ty

(b) Hamming distance between the two configurations.

Fig. 9: When the same logic slices are configured in two
different ways (see Fig. 7) on the same chips: (a) their BERs
are uncorrelated; and (b) the Hamming distance between 128-
bit responses from each configuration is 40.23-bits (fractional
Hamming distance of 31.43%).

Hamming distance between 128-bit responses in this case is
40.23-bits (fractional Hamming distance of 31.43%), which
is less than ideal, but more than ten times higher than the
intra-class distances. The between-configuration Hamming
distance indicates that the two configurations can produce
glitches with different propensities for setting their flip flops
to 1, which explains why the two configurations can likewise
have different reliabilities.

4.2 Design flow for per-device PUF configuration

Per-device configuration will only be attractive if the amount
of work performed to customize the design for each device is
minimal. The scheme we propose ensures that global design
costs are only paid once, and that customizing the design for
each chip is relatively inexpensive. Our CAD flow is a two
step process, in which a global design is created that contains
PUFs, and this design is then customized with a chip-specific
partial bitstream that customizes PUF configurations without
going through place-and-route. The procedure uses the steps
described below.

One-time Design Procedure: Two configuration-agnostic
steps are performed at design time.

• When performing place-and-route of the overall de-
sign, each PUF is represented by a placeholder design
that uses the union of configuration 1 and configura-
tion 2 resources. This produces the bitstream for the
uncustomized global design. The PUF placeholders
ensure that the overall design preserves all resources
that will be needed for either PUF configuration. Each
placeholder will later be replaced by a PUF in one
configuration or the other. Regardless of which PUF
configuration is used, the response bit is read from
the same flip-flop.

• Once the PUF locations are chosen during place-
and-route, two bitstreams are created to characterize
the PUF configurations at each location. The first
characterization bitstream instantiates configuration-1
PUFs at each PUF location, along with testbench logic
to collect 100 responses from each PUF instance and
communicate back the results. A similar bitstream is
created for configuration-2 PUFs.

Per-device PUF Configuration: To deploy the PUF-
containing design with per-device PUF configuration, the
following steps are performed for each chip instance.

• Apply the characterization bitstream for
configuration-1 PUFs and collect results. Repeat
characterization using the configuration-2 bitstream.
For each PUF location, decide whether configuration
1 or configuration 2 has a lower BER.

• Customize the global design bitstream for the chip by
replacing the PUF placeholders with each location’s
chosen PUF configuration.

4.3 Temperature stability of PUF response
Although per-device configuration of PUFs does not explic-
itly consider temperature, we confirm in this section that
configuring PUFs to be reliable at one temperature will
implicitly lead to improved across-temperature reliability.
Thermal data is collected in a TestEquity 115A Temperature
Chamber. The soak time for each temperature is 10 minutes,
and the on-chip temperature sensor is used to verify the
temperature after the soak time. After the soak, 250 trials
are collected from each chip and the process is repeated
for each temperature. The 10◦C trials are considered as the
enrolled responses and trials from other temperatures are
compared against these enrolled responses to obtain across
temperature intra-class Hamming distances. Fig. 10a shows
how the Hamming distances change from 10◦C to 50◦C in
steps of 10◦C. Table 2 shows the average across-temperature
BER for each configuration. In absence of per-device PUF
configuration, when comparing a 50◦C response to a 10◦C
enrolled response, the average BER is 11.24%.

The across-temperature reliability of the PUF design
is improved by selecting at a single temperature the best
configurations for each chip. In this case, we select the best
PUF configuration based on their responses at 10◦C. The
selected configuration for each PUF is then implemented and
evaluated at all the temperatures from 10◦C to 50◦C. The
reliability data after selection of the best configurations is
tabulated in the final row of Table 2 and plotted in Fig. 10b.
Even though the choice of which PUF configuration to use is
made based on responses at a single temperature, these PUFs



10

0 100 200 300 400 500
Hamming Distance

0

0.04

0.08

0.12

0.16
Pr

ob
ab

ili
ty

10-10
10-20
10-30
10-40
10-50

(a) Intra-class, nominal configuration

0 100 200 300 400 500
Hamming Distance

0

0.04

0.08

0.12

0.16

Pr
ob

ab
ili

ty

10-10
10-20
10-30
10-40
10-50

(b) Intra-class, per-device configuration

Fig. 10: Effect of temperature on reliability of 3,584-bit PUF response: (a) reliability of arbitrarily chosen PUF configurations;
(b) reliability after per-device PUF configuration where configurations are chosen according to 10◦C responses.

TABLE 2: Average bit-error-rate of PUF configurations at
different temperatures. Responses from each temperature
are compared against 10◦C enrolled responses. Even in the
worst case of comparing 10◦C to 50◦C responses, the per-
device configuration reduces average bit error rate by over
2× compared to nominal configurations.

Temp(◦C) 10 20 30 40 50
Normal config. 2.47% 3.32% 5.26% 7.86% 11.24%

Per-device config. 0.33% 0.37% 0.76% 2.15% 4.83%

are found to be more reliable across a range of temperatures,
with an average BER of 4.83% in the worst case, compared
to 11.24% without per-device configuration.

5 ERROR CORRECTION IMPACT OF RELIABILITY

Reliable key generation using PUFs, as described in Sec. 2.4,
requires error correction. The error correction parameters are
chosen according to the reliability of the PUF bits, and the
cost of the error correction therefore depends on the reliability
of the PUF design. In this section we show that the improved
reliability from per-device PUF configuration enables simpler
error correction and reduces the area cost of the PUFs and
error correction in key generation to approximately half of
their nominal cost in the Xilinx XC7020 FPGAs.

To evaluate PUF reliability and determine the error
correcting code strength that will be needed, we use the
standard heterogeneous reliability model for PUFs from Roel
Maes [39]. Because our application of the model directly
follows Maes’ work, we refer readers to his paper [39] for
complete details and do not reproduce his formulation here.
In the heterogeneous model, which accounts for non-uniform
bit error rates of PUFs, reliability targets are specified using
both a key generation error rate and a percentage of chips
in which that error rate must be satisfied. Consistent with
previous work on PUFs, the reliability criterion that we
enforce is for 99% of chips to generate 128-bit keys with
failure rates of less than 10−6. Our design must therefore
choose a BCH code that will meet that criterion. The first
step in using the heterogeneous error rate model is to fit its
2-parameter model to empirical PUF data using least squares
fitting. We fit the model to data from nine chips with 3,584

PUF instances per chip and 250 responses collected from
each. Figure 11 shows agreement between the model and the
empirical data on the 1-probability distribution of PUF cells,
indicating that the model provides an accurate fit.

Once the analytical model is fit to empirical data, it is used
to judge which BCH codes will meet the specified reliability
target. By testing all BCH codes, we can select the lowest-cost
code that satisfies our reliability criterion for the per-device
configuration and for the standard configurations. In the
case of PUFs taken from the two nominal configurations, the
code required to meet the key reliability criterion described
above is BCH (255 , 91 , 25 ), meaning that 91 reliable bits
can be extracted from 255 PUFs with the capability to correct
25 errors. Because each block produces only 91 bits, two
code blocks are needed. The 128-bit key would be extracted
from the 182 reliable bits. After performing the per-device
configuration to improve PUF reliability, the same reliability
criterion can be satisfied with BCH (255 , 199 , 7 ). The full
distribution of key reliability for these two cases is shown
in Fig. 12. In this figure, the x-axis values represent key
generation failure rates and the corresponding y-axis values
show the proportion of chip instances that will exceed each
failure rate.

The reliability of the per-device configuration saves
resources in two ways, as shown in Table 3. Firstly, because
the more reliable PUFs require only a single code block
instead of two, the PUF resources are halved. Secondly, the
more robust BCH (255 , 91 , 25 ) decoder is itself significantly
more expensive than the BCH (255 , 199 , 7 ). Note that, for
the BCH (255 , 91 , 25 ) decoder, a single decoder circuit is
reused to decode each block, so the cost difference between
the two decoders is due to the complexity of the circuit and
not the number of blocks that must be decoded. The resource
savings given in Table 3 are computed by comparing the
requirements for the two cases. The total savings are about
55% for LUTs and 41% for flip-flops.

6 CONCLUSION

In this work, we have proposed a new PUF on Xilinx FPGAs
that is based on the Anderson PUF design [4], and proposed
a methodology for per-device configuration of PUFs. Our



11

TABLE 3: Resource requirements for PUF instances and error correction in key generation. The scheme using per-device
configuration generates a larger number of PUF-derived secret bits (199 vs. 182) while using 50% fewer PUFs, and in error
correction using 57% fewer LUTs and 36% fewer flip-flops.

Mode BCH code
(n,k,t)

Error Correction PUF Total Savings%
LUTs Flip-Flops LUTs Flip-Flops LUTs Flip-Flops LUTs Flip-Flops

Nominal configurations 255,91,25 3914 3000 1020 1530 4934 4530 55% 41%Per-device configuration 255,199,7 1689 1924 510 765 2199 2689

0 10 20 30 40 50 60 70 80 90 100
Percentage of one response

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n 

of
 P

U
Fs

config 1
per-device selection
fitted model

Fig. 11: The distribution of 1 response across 3,584 PUF
instances on each of nine different chips. The markers show
empirical data and the dashed lines shows the fitted model
for the relative distributions.

10-12 10-10 10-8 10-6 10-4 10-2 100

Key failure rate (x)

10-3

10-2

10-1

Pr
(P

Fk
ey

>
x)

normal,
BCH(255,91,25)
per-device selection,
BCH(255,199,7)

Fig. 12: Key failure rate after applying error correcting codes
for nominal and per-device configuration. Different codes
are applied for each case to meet the reliability criterion.

new PUF design uses the more plentiful SLICELs instead of
the conventional design that uses the rarer SLICEMs. The
response bias of the PUF design is shown to be tunable using
carry chain length, mismatch in delay of feedback paths, and
glitch filtering stages. The per-device configuration allows
for one of two logically equivalent PUFs to be selected at
each PUF location, and this improves the response reliability.
Improving response reliability reduces the burden of error
correction, and reduces the overall cost of PUFs and error
correction by 55% in LUTs and 41% in flip-flops compared
to a design that doesn’t use per-device configuration. Fur-
thermore, the per-device placement is shown to improve the
stability of the PUF with respect to temperature by over 2×
even when the two responses are taken at 10◦C and 50◦C
respectively. The PUF design, and the methodology that we
suggest, can be used to produce reliable LUT-based PUF keys
on FPGAs, and can find broad applicability in reconfigurable
systems going forward.

Acknowledgement: This work has been supported in
part by a grant from the National Science Foundation (NSF).

REFERENCES

[1] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-
Channel Attacks on the Bitstream Encryption Mechanism of Altera
Stratix II - Facilitating Black-Box Analysis using Software Reverse-
Engineering,” in ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Feb. 2013, pp. 91–100.

[2] “Microsemi Corp, Introduction to Implementing Design Security
with Microsemi SmartFusion2 and IGLOO2 FPGAs,” November
2013.

[3] “Intel Corp., Stratix 10 Device Data Sheet,” January 2018.
[4] J. H. Anderson, “A PUF design for secure FPGA-based embedded

systems,” in Proceedings of the 2010 Asia and South Pacific Design
Automation Conference, 2010, pp. 1–6.

[5] J. Wu and R. Huang, “A FPGA-based wireless security system,” in
Proceedings of the International Conference on Multimedia Information
Networking and Security, 2011, pp. 512–515.

[6] “Helion Corp., Product Brief: AES-XTS Cores for FPGA,” January
2016.

[7] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, “The
butterfly PUF protecting IP on every FPGA,” 2008, pp. 67–70.

[8] E. Simpson and P. Schaumont, “Offline hardware/software authen-
tication for reconfigurable platforms,” in Cryptographic Hardware
and Embedded Systems, 2006, pp. 311–323.

[9] K. Hu, T. Wolf, T. Teixeira, and R. Tessier, “System-level security
for network processors with hardware monitors,” in Proceedings of
IEEE/ACM Design Automation Conference, 2014, pp. 1–6.

[10] P. Sedcole and P. Y. Cheung, “Within-die delay variability in
90nm FPGAs and beyond,” in International Conference on Field
Programmable Technology, 2006, pp. 97–104.

[11] L. Cheng, J. Xiong, L. He, and M. Hutton, “FPGA performance
optimization via chipwise placement considering process varia-
tions,” in International Conference on Field Programmable Logic and
Applications, Aug 2006, pp. 1–6.

[12] A. A. Bsoul, N. Manjikian, and L. Shang, “Reliability-and process
variation-aware placement for FPGAs,” in Proceedings of the Confer-
ence on Design, Automation and Test in Europe, 2010, pp. 1809–1814.

[13] B. Gassend, D. Clarke, and M. Van Dijk, “Silicon physical random
functions,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2002, pp. 148–160.

[14] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using
programmable delay lines,” in International Workshop on Information
Forensics and Security, Dec 2010, pp. 1–6.

[15] S. Keshavarz and D. Holcomb, “Threshold-based obfuscated keys
with quantifiable security against invasive readout,” in Proceedings
of the 36th International Conference on Computer-Aided Design, 2017,
pp. 57–64.

[16] J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” 2007, pp. 63–80.

[17] O. Sander, B. Glas, L. Braun, K. Mller-Glaser, and J. Becker,
“Intrinsic identification of Xilinx Virtex-5 FPGA devices using
uninitialized parts of configuration memory space,” in International
Conference on Reconfigurable Computing and FPGAs, Dec 2010, pp.
13–18.

[18] A. Wild and T. Guneysu, “Enabling SRAM-PUFs on Xilinx FP-
GAs,” in International Conference on Field Programmable Logic and
Applications, Sept 2014, pp. 1–4.

[19] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up SRAM state
as an identifying fingerprint and source of true random numbers,”
vol. 58, no. 9, Sept 2009, pp. 1198–1210.

[20] R. Maes and V. van der Leest, “Countering the effects of sili-
con aging on SRAM PUFs,” in IEEE International Symposium on
Hardware-Oriented Security and Trust, May 2014, pp. 148–153.



12

[21] A. Roelke and M. R. Stan, “Controlling the reliability of SRAM
PUFs with directed NBTI aging and recovery,” 2018, pp. 1–11.

[22] R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic PUFs from
flip-flops on reconfigurable devices,” in 3rd Benelux Workshop on
Information and System Security, vol. 17, 2008.

[23] S. Morozov, A. Maiti, and P. Schaumont, “An analysis of delay
based PUF implementations on FPGA,” in Reconfigurable Computing:
Architectures, Tools and Applications, 2010, pp. 382–387.

[24] X. Xu, S. Keshavarz, D. J. Forte, M. M. Tehranipoor, and D. E.
Holcomb, “Bimodal oscillation as a mechanism for autonomous
majority voting in PUFs,” 2018, pp. 1–12.

[25] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
vol. 38, no. 1, 2008, pp. 97–139.

[26] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in
Proceedings of the ACM Conference on Computer and Communications
Security, 1999, pp. 28–36.

[27] J. L. Carter and M. N. Wegman, “Universal classes of hash
functions,” in Proceedings of the ninth annual ACM symposium on
Theory of computing, 1977, pp. 106–112.

[28] J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M.-D. M. Yu,
“Efficient fuzzy extraction of PUF-induced secrets: Theory and
applications,” in International Conference on Cryptographic Hardware
and Embedded Systems, 2016, pp. 412–431.

[29] R. Maes, V. van der Leest, E. van der Sluis, and F. Willems, “Secure
key generation from biased PUFs,” in Cryptographic Hardware and
Embedded Systems, 2015, pp. 517–534.

[30] M. Hiller and A. G. Önalan, “Hiding secrecy leakage in leaky helper
data,” in Cryptographic Hardware and Embedded Systems, 2017, pp.
601–619.

[31] P. Koeberl, J. Li, A. Rajan, and W. Wu, “Entropy loss in PUF-
based key generation schemes: The repetition code pitfall,” in IEEE
International Symposium on Hardware-Oriented Security and Trust.
IEEE, 2014, pp. 44–49.

[32] S. Vyas, N. Dumpala, R. Tessier, and D. Holcomb, “Improving the
efficiency of PUF-based key generation in FPGAs using variation-
aware placement,” in International Conference on Field Programmable
Logic and Applications, Sep. 2016, pp. 1–4.

[33] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, “Quantitative and
statistical performance evaluation of arbiter physical unclonable
functions on FPGAs,” in IEEE International Conference on Reconfig-
urable Computing and FPGAs, 2010, pp. 298–303.

[34] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method
to evaluate and compare the performance of physical unclonable
functions,” in Embedded systems design with FPGAs, 2013, pp. 245–
267.

[35] J.-L. Zhang, Q. Wu, Y.-P. Ding, Y.-Q. Lv, Q. Zhou, Z.-H. Xia, X.-M.
Sun, and X.-W. Wang, “Techniques for design and implementation
of an FPGA-specific physical unclonable function,” in Journal of
Computer Science and Technology, vol. 31, no. 1, 2016, pp. 124–136.

[36] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in ACM/IEEE Design
Automation Conference, June 2007, pp. 9–14.

[37] P. A. P. Moran, “Notes on continuous stochastic phenomena,”
vol. 37, no. 1/2. [Oxford University Press, Biometrika Trust],
1950, pp. 17–23.

[38] S. J. Rey and L. Anselin, “Pysal: A python library of spatial
analytical methods,” in Handbook of Applied Spatial Analysis: Software
Tools, Methods and Applications, 2010, pp. 175–193.

[39] R. Maes, “An accurate probabilistic reliability model for silicon
PUFs,” in Proceedings of the 15th International Conference on Crypto-
graphic Hardware and Embedded Systems, 2013, pp. 73–89.

Mohammad A. Usmani Received his B.S. de-
gree in Electronics and Communication engi-
neering from Aligarh Muslim University, UP, In-
dia and his M.S. degree in Electrical and Com-
puter engineering from the University of Mas-
sachusetts Amherst, Amherst, MA, USA. He is
currently working as a Silicon Design Engineer
at Netronome Systems. His research interests
include Hardware security and VLSI design.

Shahrzad Keshavarz is pursuing the Ph.D. de-
gree with the Department of Electrical and Com-
puter Engineering at University of Massachusetts,
Amherst. She received her M.S. from University
of Tehran, Iran in computer engineering, in 2014.
Her current research interests includes hardware
security, digital systems testing and testable de-
sign and verification.

Eric Matthews received his BASc and MASc
degrees from the School of Engineering Science
at Simon Fraser University in 2009 and 2012,
respectively. He is currently pursuing his Ph.D. at
Simon Fraser University with a research focus on
soft-processor architectures for FPGAs.

Lesley Shannon is an Associate Professor Chair
for the Computer Engineering Option in the
School of Engineering Science at Simon Fraser
University. She is also the NSERC Chair for
Women in Science and Engineering for the
BC/Yukon Region. She received her Bachelors
in Electrical and Computer Engineering in 1999
from the University of New Brunswick and her
Masters and PhD in Computer Engineering from
the University of Toronto in 2001 and 2006, re-
spectively. Dr. Shannons research focuses on

computing system design, including reconfigurable computing and het-
erogeneous computing architectures, application-specific architectures
and reconfigurable digital microfluidics.

Russell Tessier (M00-SM07) received the B.S.
degree in computer and systems engineering
from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1989, and the S.M. and Ph.D. degrees
in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, MA, USA,
in 1992 and 1999, respectively. He is currently
Professor of Electrical and Computer Engineering
with the University of Massachusetts, Amherst,
MA. His current research interests include com-
puter architecture and FPGAs.

Daniel Holcomb (M07) received the B.S. and
M.S. degrees in electrical and computer engi-
neering from the University of Massachusetts
Amherst, Amherst, MA, USA, and the Ph.D.
degree in electrical engineering and computer
sciences from the University of California at
Berkeley, Berkeley, CA, USA. He is currently an
Assistant Professor with the Department of Elec-
trical and Computer Engineering, University of
Massachusetts Amherst. His research interests
are in hardware security and embedded systems.


