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ABSTRACT 

APPLICATION-SPECIFIC CUSTOMIZATION AND SCALABILITY OF  

SOFT MULTIPROCESSORS 

 

APRIL 2009 

 

DEEPAK C. UNNIKRISHNAN 

 

 B.TECH E.C.E (Hons.), UNIVERSITY OF CALICUT, INDIA 

 

M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS, AMHERST 

 

Directed by: Professor Russell G. Tessier 

 

 

Soft multiprocessor systems exploit the plentiful computational resources available in 

field programmable devices. By virtue of their adaptability and ability to support coarse 

grained parallelism, they serve as excellent platforms for rapid prototyping and design 

space exploration of embedded multiprocessor applications. As complex applications 

emerge, careful mapping, processor and interconnect customization are critical to the 

overall performance of the multiprocessor system. In this thesis, we have developed an 

automated scalable framework to efficiently map applications written in a high-level 

programmer-friendly language to customizable soft-cores. The framework allows the user 

to specify the application in a high-level language called Streamit. After an initial 

analysis of the application, a soft multiprocessor system is generated automatically using 

a set of customizable SPREE processors which communicate with each other over point-

to-point FIFO connections. Several micro-architectural features of the processors are then 

automatically customized on a per-application basis to improve system area, performance 

and power consumption. The efficiency and scalability of this approach has been 

validated using a diverse set of eight audio, video and signal processing benchmarks on 
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soft multiprocessor systems consisting of one to sixteen processors. Results show that 

generated soft multiprocessor systems consisting of sixteen processors can offer up to 6x 

speedup over a conventional single processor system. Our experiments with soft 

multiprocessor interconnection networks show that point-to-point topologies perform 

approximately 2x better than mesh topologies.  Finally, we demonstrate that application-

specific customizations on the instruction set, memory size, and inter-processor buffer 

size can improve the area and performance of the generated soft multiprocessor systems. 

The developed framework facilitates rapid design space exploration of soft 

multiprocessors. 
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CHAPTER 1 

 

INTRODUCTION 

 

With technology scaling, increased field-programmable gate array (FPGA) area and logic 

resources have enabled designers to integrate more hardware resources into the FPGA 

fabric. In particular, there has been considerable effort to integrate microprocessors and 

FPGAs. The first efforts in this direction began during the late 1990s when designers 

integrated microprocessors built using transistors called hard cores with the FPGA fabric. 

Leading vendors such as Altera and Xilinx have developed Excalibur [34] and Virtex II 

Pro [35] devices respectively incorporating hard cores and FPGA fabric on a single chip. 

Altera Excalibur devices integrate an ARM9 processor with a 1 million gate FPGA fabric 

while Xilinx Virtex II Pro devices incorporate two or more PowerPC processors with a 

10 million gate FPGA fabric. However, in many cases, the fixed number of hard 

processors available on the chip does not match the application requirements. Hard 

processors impose severe routing constraints on the placement of custom logic on the 

FPGA fabric.  

 

A soft processor is a microprocessor embedded into the FPGA fabric. Unlike hard 

processors, soft processors offer considerable flexibility to match the requirements of the 

application. For example, the number of soft processors in an FPGA can be varied to 

match the computational requirements of the application. Since soft processors are 

embedded into the FPGA fabric, placement and routing decisions are largely taken by 

automated computer-aided design (CAD) tools. The customizability of individual soft 

processors makes them attractive for resource-limited applications. Leading FPGA 
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vendors, such as Altera and Xilinx, already offer 32-bit RISC soft processor IP blocks 

called Nios [36] and MicroBlaze [37], respectively. Soft processors are integral 

components of most system-on-a-programmable chip solutions available today. 

 

The significant increase in FPGA resources has spurred interest in embedding multiple 

soft processors on the same FPGA substrate.  Multiple soft processors integrated on a 

single FPGA device can serve as a flexible programming platform for fast application 

mapping without the need for intensive register transfer level (RTL) design. Soft 

multiprocessor systems also exhibit high degrees of task level parallelism which can be 

exploited to efficiently execute complex data processing applications. Typical 

applications involving these systems vary from initial hardware prototyping to final 

product designs for embedded multiprocessor systems.  

 

It is projected that the amount of logic and memory resources in FPGAs is likely to grow 

substantially in the near future to support hundreds of soft processors. However, three 

major challenges constraining the widespread use of soft multiprocessors are their 

complex design, programmability and system-wide energy consumption. In this context, 

an automated and efficient mapping of applications written in a programmer-friendly 

high-level language to FPGAs is highly desirable. Unlike commercial off-the-shelf soft 

processor IP blocks which offer limited customizability, custom-generated soft 

processors can be better tailored to suit the requirements of the application. Hence, there 

is scope for large scale system-wide application specific optimizations to improve 

performance and minimize energy consumption. 
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The process of application parallelization across multiple processors is a well established 

research area. However, given the limited amount of logic, as compared to memory, 

available in an FPGA, application mapping to soft multiprocessors presents a number of 

interesting new challenges. These include the implementation of several critical processor 

features such as caches, large memories and routing tables, among others. 

 

Previous work on soft multiprocessor systems has focused on the development of 

automated synthesis tools for smaller multiprocessor systems and the investigation of the 

performance of interconnection topologies. Although the potential of soft multiprocessor 

systems has been demonstrated in previous approaches, the primary focus has remained 

on relatively small multiprocessor systems targeting single or a small number of 

benchmarks. The primary contribution of this thesis is a comprehensive evaluation of the 

combined impact of soft multiprocessor synthesis, topology choices and scalability using 

a substantial collection of multiprocessor benchmarks on soft multiprocessor systems 

consisting of a large number of processors. Specific research objectives and challenges of 

the work include: 

 

1. Development of a comprehensive evaluation platform for large soft 

multiprocessor systems by integrating high-level application compilers with 

synthesizable soft processor generators. 

2. Modification of high-level application mapping tools to support FPGA aware task 

allocation and mapping. 
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3. Investigation of the impact of individual processor and interconnect optimizations 

on the overall performance of soft multiprocessor systems. 

4. Evaluation of a large set of existing multiprocessor benchmarks available in the 

parallel computing community on soft multiprocessor systems. 

  

The rest of the thesis is organized as follows: Chapter 2 provides insight into previous 

work. This includes a discussion of existing approaches that map applications onto soft 

multiprocessors and soft processor optimization techniques. Chapter 3 elaborates on the 

components of the proposed framework. Chapter 4 describes the design flow. Chapter 5 

explains the evaluation strategies and results. Chapter 6 summarizes the thesis and gives 

directions for future work. 
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CHAPTER 2 

 

BACKGROUND AND PREVIOUS WORK  

 

This thesis work builds on previous research in single and multi soft processor design and 

implementation. Earlier work has primarily focused on area, power and performance 

evaluation of smaller soft multiprocessor systems in isolation. The following sections will 

survey some of the existing approaches to automatic synthesis, architectural 

optimizations and evaluation of soft multiprocessor systems.  

 

2.1 Soft Multiprocessor Synthesis 

A number of recent research papers have examined application mapping from high-level 

data flow graphs to multiple soft processors. Yujia et al. [1] and Ravindran et al. [2] have 

illustrated the feasibility of using soft multiprocessors for a high performance IPv4 packet 

forwarding application. In this study, a framework to determine the best multiprocessor 

configuration for the data plane implementation of an IPv4 packet forwarding application 

using integer linear programming techniques is considered. Initially, the IPv4 application 

is represented as a data flow graph. The data flow graph is partitioned into an array of 

Xilinx Microblaze [37] soft processors. The number of partitions may be reduced by 

manually clustering multiple application tasks together. Once all application partitions 

have been extracted from the data flow graph, integer linear programming (ILP) 

techniques are applied to derive the best architecture for each partitioning. The inputs to 

the ILP solver include hardware constraints and worst case task execution times. The 

objective is to maximize the overall throughput under the given system constraints. 

Figure 1 illustrates the final multiprocessor design after ILP based automated exploration.  
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Figure 1: Multiprocessor design for IPv4 after automated exploration [1] 

 

Although the described approach achieves better performance over hand-tuned designs, 

integer linear programming techniques are generally considered to be slow and may not 

scale well over larger problem sizes. Note that in this approach, an efficient partitioning 

requires careful manual clustering of tasks by the designer. The described methodology is 

also tuned for a single application. 

 

A clustering and packing approach for soft multiprocessor synthesis targeted at an 

MJPEG application is described by Cong et al. [3]. The mapping consists of assignment 

of tasks to a number of soft processors interconnected by point-to-point FIFOs. The 

approach is targeted at throughput-constrained stream-oriented multimedia and network 

applications.  The work is unique in that it takes latency, throughput and resources 
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simultaneously into consideration during design space exploration. The application is 

initially represented as a synchronous data flow graph. The objective is to reduce the 

latency and improve throughput under constraints of communication costs and task 

execution times. To achieve this, a combination of labeling, clustering and packing 

algorithms are applied on the given task graph. Experiments using an MJPEG encoder 

application have produced multiprocessor configurations with high throughputs and 

significant reduction in design time compared to ILP approaches. However, the described 

approach only takes a single benchmark into consideration and can only be used for 

homogeneous processor systems consisting of a small number of processors. Further, the 

lack of processor optimizations after initial task mapping and resource allocation makes 

this scheme unattractive.  

 

A methodology for automated multiprocessor system design, programming and 

implementation from a high-level system specification using static affine nested loop 

Pprograms (SANLP) is described in [4]. First, a Kahn process network (KPN) 

specification is derived from the application description. The derived KPN specification 

is given as input to the embedded system-level platform synthesis and application 

mapping (ESPAM) tool, as shown in Figure 2. The tool generates multiprocessor systems 

connected by point-to-point FIFO links from a predetermined set of IP blocks.  
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Figure 2: ESPAM Application Mapping Flow [4] 

 

However, the proposed implementation is time consuming and selection of components 

from a standard IP library rules out any possibility of individual component optimization. 

Complex communication controllers are used as glue logic to interface standard 

components. Implementation of communication components using dual port memories is 

expensive in FPGAs. Also, the approach has been applied to relatively small 

multiprocessor systems with a restricted set of three applications.  

 

 

2.2 FPGA-Based Networks-On-Chip 

On-chip interconnects for integrating multiple soft processors have been examined in a 

series of recent studies. Saldana et al. [5] have examined the routability of several 

common network topologies as shown in Figure 3 to interconnect soft processors on 

FPGAs. This approach uses automated network topology generation from high-level 

specifications to generate multiprocessor systems consisting of up to 64 nodes. An 

important conclusion noted in the work is that modern FPGA fabrics are rich in resources 
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and are capable of supporting highly-interconnected topologies such as direct point-to-

point links. Like other previous approaches, this study is not comprehensive since 

automated approaches are applied only for interconnect topology generation. 

 

 

Figure 3: Interconnect Topologies – A-Ring, B-Star, C-Mesh, D-Hypercube, E-Fully 

connected, F-Torus [5] 

 

Studies [6] [7] have shown that NoCs can significantly outperform on-chip buses and 

thus provide system scalability. Kapre et al. [8] observed that time-switched and packet-

switched butterfly fat trees can be efficiently mapped to FPGAs.  

 

Several studies have examined the behavior of common parallel processing applications 

such as sorting networks on soft multiprocessor systems developed from commercial 

soft-core IP blocks. For example, Derutin et al. [9] evaluated the performance of a 

homogeneous soft multiprocessor architecture using a hypercube topology. A parallelized 

quicksort algorithm is used for the evaluation of multiprocessor systems consisting of 2, 

4, 8 and 16 processors. However, like many other approaches, the processors used for the 

study consist of standard IP cores which are hardly customizable. The application 
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parallelization was carried out manually which severely limits the scalability of this 

approach to larger multiprocessor systems and a wider set of benchmarks. A similar study 

described in [10] examines the performance of a parallelized merge sort application on a 

seven processor Xilinx Microblaze system. Each processing element is hooked to a router 

via the network interface. The routers are interconnected using a hypercube topology. A 

full adaptive minimal deadlock-free packet routing algorithm is used in the design.  

 

In general, many of the approaches considered previously suffer from the following 

limitations. First, the applications are described in a non-user friendly fashion with 

constructs such as data flow graphs. The parallelization techniques considered previously 

use time-consuming and non-scalable approaches such as integer linear programming. 

Finally, the previous studies limit themselves to a restricted set of applications and soft 

multiprocessor system sizes.  

 

2.3 Soft Processor Optimization 

Soft processors have created a unique niche in the embedded design space with 

their ability to be customized to suit the requirements of the application.  Recent studies 

on soft processor optimization have focused on area, performance and energy. It has been 

shown that application-specific customization has significant impact on the overall 

performance of the system. For example, Yiannacouras et al. [11] discuss the impact of 

microarchitectural customizations on automatically-generated synthesizable soft 

processors. In this work, a framework called Soft Processor Rapid Exploration 

Environment (SPREE) is developed. The framework can automatically generate 
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customizable soft processor RTL descriptions from high-level textual descriptions of the 

ISA, data path and control path of the processor. The tool can be used to customize 

several aspects of a microarchitecture, such as the shifter implementation, pipeline depth, 

instruction set and forwarding logic. An overview of the SPREE infrastructure is shown 

in Figure 4. 

.  

 

Figure 4: Overview of the SPREE System [11] 

 

SPREE supports a library of basic components such as the register file, adder, sign-

extender, fetch unit, etc. The user submits a high-level textual description of the data, 

control path, and the micro architectural features of the processor. The tool performs an 

integrity check on the submitted information to verify that the information can be used to 

generate a functional processor. Next, it instantiates the data path and control path of the 

processor according to the instruction set architecture description. It has been shown in 

Architecture Description 

SPREE 

Synthesizable RTL 

RTL Simulator RTL CAD 

1. Correctness 
2. Cycle Count 

3. Area 
4. Clock Frequency 
5. Power 
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this work that a tuned micro-architecture can offer up to a 30% improvement in 

performance and up to a 25% improvement in both area and energy.  

 

A methodology to derive application specific embedded SIMD cores has been described 

in [12] by Hebert et al. In this work, a microcode analysis tool decodes the instructions in 

the same way as it is done in the processor into bit fields according to their encoding 

pattern. The decoded field values are fed into emulators which emulate the processor’s 

controller. Results generated by the tool are used to optimize the original hardware 

model. Finally, the optimized model is given to the synthesis tool. The flow is 

summarized as shown in Figure 5.  

 

 

Figure 5: A methodology to derive application specific embedded cores[12] 

 

Several application specific post-microcode analysis optimizations such as resource 

elimination, constant signal propagation, local constant tables, field recoding and data 
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path width optimizations are applied on a template HDL model. This study has 

demonstrated large savings in lookup tables (ALUTs) for a single-instruction, multiple-

data (SIMD) Pulse VI processor. However, the restricted focus on SIMD architectures 

and use of emulators to derive application-specific optimizations makes this scheme 

architectural specific and hence unattractive. 

 

Researchers have considered multithreading to improve application performance and 

improve energy savings in soft processors. Dimond et al. [13] examines the use of multi-

threading and custom instructions as techniques to maintain high throughput while 

minimizing processor area. In this approach, custom instructions are generated on a 

customizable multi-threaded processor (CUSTARD) by identifying frequently occurring 

segments of computation that can be evaluated using the same hardware datapath. The 

tool is illustrated in Figure 6. CUSTARD takes a set of inputs which include an 

application specified in a high-level language such as C, a template processor and a set of 

user defined processor parameters. Next, the compiler generates custom instructions to 

accelerate the application. The generated custom instructions are combined with designer 

parameters to instantiate a synthesizable netlist for the processor. The framework also 

supports hardware threads to improve performance since context switches in hardware 

threads take just a single cycle. The SRAM bits abundantly available in FPGAs can be 

used to implement hardware registers for each thread context. 
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Figure 6: CUSTARD –Tool flow and microarchitecture [13] 

 

Later work [14] involving soft processor synthesis has examined techniques such as 

instruction scheduling and recoding to improve energy savings. Instruction recoding is 

based on the principle that instructions with high frequency differ by only a few bits so 

that bit switching may be reduced. The switching frequencies of instructions are obtained 

from an execution profile of the application. Power-aware scheduling complements 

instruction scheduling. In this technique, tasks with low Hamming distances are 



 15 

scheduled closer to each other without affecting inter-task data dependencies. The work 

demonstrates a power saving of up to 74% obtained with six application benchmarks. 

 

Fort et al. [15] use multithreading with custom functional units located outside the 

processor. The study shows that it is attractive to use a multithreaded processor in an 

FPGA environment because of significant area savings. Labrecque et al. [16] have 

extended the SPREE infrastructure [11] to support multithreaded soft processors. In this 

work, the authors show that that multithreaded soft processors are up to 106% more area 

efficient than non-multithreaded counterparts. Also, multithreaded processors are able to 

sustain high IPC when compared to their single threaded counterparts. It is noted that the 

key to improvement in the performance is a careful selection of ISA features, the number 

of registers, the number of threads and the intra-stage pipelining. A very important 

conclusion from this work is that off-chip memory latency is not a significant challenge 

for FPGA-based systems and a small on-chip memory is often sufficient to emulate an 

ideal cache.  

 

2.4 Summary of Previous Approaches 

In general, previous research on soft multiprocessors has focused on automatic synthesis 

systems, architectural optimizations and evaluation of interconnection topologies. 

However, many of these previous efforts primarily evaluated system area and 

performance and energy impacts in isolation without considering the underlying tradeoffs 

in system synthesis. Although the previous approaches provide initial analysis and 

emphasize the importance of automatic approaches towards soft multiprocessor design 
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cycle times, conclusions regarding appropriate inter-processor topology and mapping 

effectiveness on a range of stream-based applications are not provided. The synthesis 

frameworks examined previously do not consider the impact of processor optimizations 

on large scale multiprocessor systems. None of the previous work on soft processor 

interconnect topologies considers a range of applications automatically mapped to a large 

number of soft processors.  

 

Our work distinguishes itself from the previous approaches in the following ways: 

 

1. Our work describes an automatic synthesis framework to assess the scalability of 

a large number of existing parallel computing applications on large soft 

multiprocessor systems. 

 

2. The impact of a collection of architectural optimizations on soft multiprocessor 

systems are considered including: 

a. Interconnection network topology optimization such as tradeoffs between 

point-to-point and mesh-style interconnects. 

b. Unused instruction removal on individual soft processors based on the 

target application. 

c. Assessment of pipeline depth variation of individual soft processors on the 

performance of the multiprocessor system. 

d. Impact of tuning communication buffer sizes on the performance. 

e. Impact of tuning the memory size of individual processors.  
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3. Our work provides a system-level evaluation of stream applications on soft 

multiprocessor systems considering area, power and performance aspects. 
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CHAPTER 3 

 

FRAMEWORK COMPONENTS 

 

The proposed framework will be able to map applications written in a programmer-

friendly high-level language to binaries that could be executed on customized soft 

processors. We target stream applications since they represent a large class of data-

intensive applications most likely to dominate the embedded market in the near future.  

 

The framework integrates compilers for high-level application mapping, profilers that 

extract application specific parameters and soft processor synthesis algorithms into a 

single automated design flow. This section describes the components of the proposed 

automatic synthesis framework.  

 

3.1 Streamit – A compiler for stream-based applications 

Streamit [18][20] is a high-level, architecture-independent language and compiler 

targeted at streaming applications. Streamit compiler maps stream programs to software-

exposed architectures such as MIT RAW [19]. This section discusses the RAW 

microprocessor and explains how the Streamit compiler can be efficiently extended to 

support streaming applications on soft microprocessors.  

 

The RAW computational fabric is a scalable, tiled architecture developed to exploit the 

copious logic resources in next generation CMOS processes. The RAW is a single chip 

multiprocessor consisting of sixteen identical programmable tiles. RAW has been 

fabricated using IBM’s 180nm 1.8V 6-layer CMOS 7SF SA 27E copper process. The 
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sixteen cores communicate with each other using 32-bit full duplex mesh networks. 

RAW supports a static and dynamic network. The entire communication is specified at 

compile time in the static network, while the dynamic network supports run time events.  

As illustrated in Figure 7 andFigure 8, RAW represents a regular multiprocessor 

architecture. Interconnect between the cores is pipelined to convert across-chip wire 

delays into network hops. The longest wire in the chip need not be more than the width of 

a tile. Hence, the propagation delay across a tile is just one cycle. The network and 

computational resources can be programmed using the RAW ISA. Thus, RAW exploits 

all forms of parallelism including instruction level, data level, thread level and stream 

parallelism. 

 

 

Figure 7: Die Photograph of the RAW Microprocessor [19] 
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Figure 8: RAW fabric exposes on-chip interconnects to the software [19] 

 

 

The RAW design philosophy favors regularity and simplicity. Each tile incorporates an 

8-stage in-order MIPS style pipeline, 32KB instruction cache, 32KB data cache and a 4-

stage single precision pipelined floating point unit. The on-chip networks are interfaced 

to tiles through bypassed, register-mapped static routers built into each tile. Each static 

router (switch processor) executes a basic instruction set that consists of routing 

instructions to forward the data between tiles. A neighboring inter-tile transfer takes 3 

cycles while an inter-tile transfer involving N hops can be achieved in 2+N cycles [19]. 

The dynamic network support asynchronous events such as cache misses and interrupts.  

 

3.1.1 Streamit Language Constructs 

Streamit was initially developed as a language and compiler to exploit RAW’s software 

exposed interconnects. The basic idea was to provide a portable programming model to 

communication-exposed architectures. The computation is modeled as a hierarchy of 

basic computational units called filters [18]. The filter can be imagined as a block of user-

defined code which can process the streaming data. Each filter contains two parts – an 

init function and a work function. The init function is invoked during filter initialization 
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while the work function models the steady state execution steps of the filter.  Although 

each filter can be imagined to run on an individual tile, highly irregular filters can cause 

load balancing issues on the target architecture. To address this issue, Streamit supports 

fission/fusion operations to combine or split filters to match the granularity of the target 

architecture. A brief description of fission/fusion operations is given later in this section.  

 

Each filter can communicate with other filters using push(), pop() and peek() methods. 

The push() method sends data into the output queue of the filter. A pop() method receives 

the data from an input queue of the filter. Peek() is a special operation that returns the 

value at an index in the input queue without removing the item. 

 

 
 

Figure 9: Stream structures supported by StreamIt [18] 

 

A Streamit program is represented as a network of filters. The filters are interconnected 

by constructs such as pipelines, split-joins or feedback loops. The pipeline construct 

supports a sequential arrangement of the filters. The split-join specifies independent 

parallel data streams. Data is split into multiple streams at the splitter and later joined at 
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the joiner. For example, a duplicate splitter sends a copy of each data item into each 

parallel stream. A round robin joiner roundrobin(n1,n2,…..nm) sends the first n1 items to 

the first stream, the next n2 items to the next stream etc. The feedback loop construct 

supports cycles in a stream graph. Figure 9 illustrates the various hierarchical structures 

supported by the Streamit language. We illustrate Streamit with an example. Consider the 

representation of an FM Radio application as illustrated in Figure 10. The FM Radio 

consists of an analog to digital converter, FM demodulator, equalizer and a speaker. The 

equalizer can be thought of as a logical block composed of many low pass and high 

passes filters operating in parallel. The equivalent Streamit program for an FM Radio 

consists of a pipeline of filters that represent an A-D converter, FM demodulator, 

equalizer and speaker. The equalizer may be viewed as a component that consists of 

multiple band pass filters. Each band pass filter can be viewed as a hierarchical pipeline 

of low pass and high pass filters whose critical frequencies are set according to the 

characteristics of the filter. Since the components of equalizer can operate on the 

demodulated stream of data independently, the incoming stream is duplicated using a 

duplicate construct and later joined using a round robin joiner. Finally, the adder and 

speaker process the joined data stream to reconstruct the audio signal.  It is interesting to 

note that the Streamit program imposes a well-defined structure on all the streams that 

exposes stream level parallelism in natural way. From a programmer perspective, this 

structure helps to incorporate the parallelism inherent in the application naturally into the 

program. From a compiler perspective, the well-defined structure of Streamit programs 

makes them easier to analyze than arbitrary graphs.  
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Figure 10: FM Radio–Streamit progam and the equivalent stream graph [18] 

 

3.1.2 Streamit Compiler 

The Streamit compiler consists of eight phases as shown in Figure 11. The front end is 

built on top of a Java based open source compiler infrastructure called KOPI. The front-

end parses the Streamit syntax into a Java-like abstract syntax tree (AST). SIR conversion 

phase transforms the AST into a Streamit intermediate representation (SIR). Various 

structures in the stream graph are expanded during the graph expansion phase. 

Scheduling calculates the initial and steady state data transfer rates for each filter. The 

scheduler calculates two types of schedules – a non-repetitive initialization schedule and 

a repetitive steady state schedule.  

 

The partitioning phase performs load balancing operations using fission/fusion 

transformations on the stream graph. The basic idea is that the compiler initially estimates 
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the number of instructions executed by each filter in a single steady-state execution cycle 

of the program. Then, computationally intensive filters are split and less demanding 

filters are fused together. Vertical fusion algorithms combine multiple filters in a pipeline 

together to create a single filter while horizontal fusion combines parallel filters together. 

Vertical fission algorithms split a single filter into a series of parallel filters. Horizontal 

fission algorithms split a single filter into multiple pipelined components. Fission/fusion 

transformations are performed by simulating steady state execution schedules of the 

stream graph on the individual filters. More details on fission/fusion optimizations can be 

found in [18] and [20].  

 

 

Figure 11: Streamit Compiler Phases [18] 

 

The Streamit compiler currently supports three kinds of partitioning algorithms – based 

on a greedy algorithm, a greedier algorithm and dynamic programming. In the greedy 

approach, filters are first sorted in the descending order of computational requirements. 
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Then, a simple greedy algorithm is used to split heavy filters into smaller ones. The 

process is iterated until the heaviest filter can no longer be split or when the number of 

filters matches the granularity of the target architecture. If there are more filters than the 

number of processing elements, a similar greedy algorithm can be applied to combine 

multiple filters into coarser filters. 

 

Layout refers to the assignment of partitioned filters into the processors in the target 

architecture so that the communication and synchronization costs are minimized. 

Streamit uses the simulated annealing algorithm for layout. Once nodes of the stream 

graph are assigned to the nodes of the target platform, the communication scheduler 

simulates the execution of nodes in the stream graph and records the communication 

patterns during simulation. These communication patterns are translated into routing 

instructions that are executed on each switch processor.  

 

Finally, the code generation phase generates C code for each tile and switch instructions 

for each switch processor. The tile code contains translation of the filter functionality 

including statements to transfer data into or outside the filter. The communication 

schedule describes the static ordering of data to be sent or received. The schedule has an 

initialization part which runs exactly once and a steady state part that loops indefinitely. 

 

3.2 Automatic Soft Processor Generation  

The design space exploration of scalable soft processor systems requires automated 

approaches to generate the multiprocessor system. Automated approaches are required to 
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customize each processor according to the application segment executing on it. Previous 

approaches to generate and customize single soft processor systems automatically have 

been analyzed in [11]. We extend the Soft Processor Rapid Exploration Environment 

(SPREE) described in [11] to support the automatic generation of a large number of 

customized multiprocessors. The SPREE framework generates synthesizable RTL 

descriptions of processors from high-level descriptions of the micro-architectural features 

such as the data path, control path and instruction set architecture. In this framework, the 

user specifies the processor as an interconnection of basic micro-architectural features, 

such as adders, instruction fetch units, and register files. Next, a set of scripts verify the 

validity of the specified description and generates a datapath description of the processor 

using a library of hand-coded basic components. Finally, the tool generates the control 

path logic necessary to coordinate the elements in the data path. An overview of the 

SPREE infrastructure is shown in Figure 12. 

 

We generate our soft processors from the processor templates produced by SPREE. 

Although SPREE serves as a good tool to generate the basic components of our soft 

multiprocessor systems, the tool has some limitations. For example, SPREE considers 

only simple in-order issue processors with on-chip memories. This is not a serious 

limitation for our current evaluation since memory requirements for most of our 

benchmarks can be easily satisfied with the existing memory bits available in commercial 

FPGAs. In Chapter 5, we show that memory requirements of the application more or less 

remain the same or decrease slightly when the application is mapped over large 

multiprocessor systems. 
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Figure 12: Soft Processor Rapid Exploration Environment (SPREE) [11] 

 

Although caches are not supported in the present architecture, we do not consider their 

absence as a serious limitation since the proximity of memory and logic in FPGAs 

enables abundant on-chip memory bits to be used as good alternative to complicated on-

chip caches. In future work, we plan to extend our approach to support off-chip 

memories. Some of the other limitations include a lack of support for dynamic branch 

predictions, exceptions and operating systems. In general, the simplicity of processors 

helps us to fit large multiprocessor systems on standard FPGAs and study the impact of 

several micro-architectural parameters on the overall area, power and performance of our 

soft multiprocessor systems. A simple 3-stage SPREE processor is shown in Figure 13. 
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Figure 13: Architecture of a simple SPREE Processor  

 

3.2.1 Soft Multiprocessor Interfaces  

The choice of interconnection topology plays an important role in the performance of 

communication-intensive multiprocessor systems. The soft processors in our 

multiprocessor systems are interconnected using simple point-to-point FIFO links. We 

justify this architectural choice with the following reasons: 

a. Studies regarding interconnection topologies [5] show that the rich 

modern FPGA fabric is capable of supporting highly-interconnected 

topologies such as direct point-to-point links.  

b. Point-to-point links are more scalable than bus-based networks since the 

number of links increases proportionately with the number of processors 

in the system. The number of links increases linearly in a mesh type 

topology whereas it increases quadratically in a fully interconnected 

topology.  

c. The RAW-style architecture with dedicated switch router per processor is 

likely to consume more logic and memory resources in FPGAs since each 

switch processor has a dedicated processor pipeline and instruction 
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memory. Since the routing and placement tasks are handled by automated 

CAD tools in FPGAs, the mesh topology need not result in a strict grid-

layout within the FPGA. 

 

Synchronization is implemented in a very simple and efficient way by blocking 

read/write operations on FIFO empty/full conditions.  Although this approach is very 

similar to [4], the latter uses expensive and complicated dual-port BRAM based 

communication controllers for synchronization. In contrast, our approach uses 

inexpensive logic registers available in FPGAs. The approach proposed in [4] has the 

benefit that any processor can interface with any other processor in the system through a 

communication controller. This flexibility is made possible through a complicated 

addressing scheme where an interface unit attached to the communication controller 

decodes each FIFO address and generates write control signals for FIFOs. Although the 

scheme is attractive due to its flexibility, the inherent complexity of the communication 

controller makes it a poor interconnect solution in terms of area. Instead, we implement 

FIFO blocking mechanisms in software that check FIFO empty/full conditions and 

execute empty loop instructions during blocked transfers. The software approach has the 

benefit that it simplifies the integration of processors and minimizes hardware resources 

required for synchronization. Figure 14 shows an example of an interconnection where 

processors are connected together by FIFOs. Each FIFO in the illustrated example has a 

capacity of ‘n’ words where each word represents 32 bits or 4 bytes of data. 32 bits were 

selected to match the size of the processor register. The FIFOs can be read or written 

simultaneously. The FIFO implements a half-duplex communication between a pair of 

processors. Two FIFOs can implement a full-duplex communication between each pair of 
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processors. Each processor has memory mapped input/output ports which can be 

interfaced directly to the FIFOs. Memory mapped ports facilitate reads/writes to the 

FIFOs through conventional load/store instructions. To minimize the inter-tile data 

transfer latency, which is critical to instruction level parallelism, the memory mapped I/O 

ports are integrated into the bypass paths of the processor pipeline. A typical inter-tile 

transfer is described as follows: During the first cycle, the execution result from the 

producer is written to a FIFO location through a store instruction. During the next cycle, 

the consumer loads the value into its register through a load instruction. Thus, each inter-

tile transfer consumes only 2 cycles. 

 

Figure 14: Set of processors interconnected by FIFOs 
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The FIFO can be implemented using a minimal set of logic resources as shown in Table 

1. Hence our approach guarantees that the logic resources required for interconnect do 

not seriously constrain the scalability of the soft multiprocessor system. 

3.2.2 Interconnection Topologies 

Topology refers to the arrangement of processors and links in the multiprocessor system. 

Topology has a direct impact on the performance of the multiprocessor system since it 

dictates the way processors exchange data among themselves. Smaller multiprocessor 

systems use bus-based approaches. Previous research has been shown that bus-based 

topologies do not scale well with larger multiprocessor systems since the constraint on 

resources steadily increases with the number or processors. Pipelined channels could 

overcome the limitations of buses since the number of links can grow linearly with the 

number of computational nodes. RAW uses pipelined channels interconnected in a mesh-

type topology to interconnect its sixteen processing nodes. The mesh topology guarantees 

that the maximum distance the clock has to travel is across a pipelined channel. By 

increasing the pipelined channels, the clock frequency can be improved significantly. The 

mesh topology adapts well to the growing wire delay architecture models since 

propagation delays can be translated to network hops. To obtain high performance, tiles 

which communicate with each other often need to be placed closer to one another. Non-

neighboring tiles must forward the data via intermediate tiles through network hops. 

Thus, judicious placement-routing policies when combined with different architectural 

techniques can combat the increasing wire delays. In contrast, placement and routing for 

FPGAs is largely a responsibility of automated design compilers. Manual placement and 

routing in FPGAs can often result in sub-optimal performance due to the regularity in 
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logic arrangement and inflexibility in the location of resources such as memories and I/O 

pins. Thus, a multiprocessor system with a mesh topology may not result in a strict mesh-

like placement in FPGAs. For example, Figure 15 shows the layout of a six processor 

system mapped onto a Stratix II EP2S180F1508C3 device.  

 

  

       (A)  Complete 16 processor system        (B) Highlighted Processors 1,2,3,4 

 

Figure 15: Layout of a 16 processor system on a Stratix II EP2S180F1508C3 device 

 

The performance of mesh based architectures is dependent on how well the 

communication patterns of the application are mapped onto the underlying hardware. In 

RAW, the compiler statically schedules the data transfer orderings at each switch router. 

Although the data-hop based mesh-topologies can be directly mapped onto soft 
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multiprocessors, they do not take full advantage of the non-mesh layouts in FPGAs as 

shown in Figure 15. For example, mesh topologies incur significant synchronization 

overhead for inter-processor data transfers since each transfer requires status check and 

read/write operations on the FIFOs. However, the synchronization cost may be reduced 

by using direct point-to-point links between each pair of communicating processors. 

Although the point-to-point topology can transform into a fully-connected network in the 

worst-case, we will demonstrate in Chapter 5 that the point-to-point links do not increase 

latency for many applications.  

 

We illustrate three types of interconnection soft multiprocessor interconnection 

topologies – mesh, point-to-point and hypercube. Consider two kinds of interconnection 

topologies, as illustrated in Figure 16 and Figure 17. The labels on each processor in the 

illustration indicate the steady state communication patterns of the corresponding 

processors. In the mesh type topology, each soft processor has at most four ports – North, 

South, East and West. The communication between non-neighboring processing nodes 

must hop through intermediate nodes.  

 

In the example illustrated in Figure 16, processor 3 produces two values under steady 

state conditions which are sent to its North and East ports. Processors 0 and 4 receive the 

data, compute the results and route the results to processor 1. Processor 1 assembles the 

data in their respective arriving sequence and forwards them to processor 5 via processor 

2. Note that in this example, the data produced by processor 0 and 4 could have been 

forwarded to 5 through direct links. An alternate topology that uses direct point-to-point 
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links between processor 0, 4 and 5 is shown in Figure 17. Clearly, the point-to-point 

topology incurs fewer synchronization and transfer hops when compared to the mesh-

topology. We will analyze the area and performance benefits of using a point-to-point 

topology against a mesh topology in Chapter 5.  

 
 

Figure 16: Mesh topology 

 

 

 

Figure 17: Point-to-point topology 

 

A hypercube topology is illustrated in Figure 18. In this figure, each node represents a 

processor and each edge represents a FIFO channel between a pair of processors. The 

hypercube topology offers more flexibility than the mesh topology through additional 

communication links. However, the hypercube is less flexible when compared with a 
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fully-connected network. We examine the impact of using a hypercube topology for 

interconnecting the soft processors in Chapter 5. 

 

Figure 18: Hypercube topology for 16 processors 

 

3.2.3 Application Specific Soft Multiprocessor Optimizations 

Previous research has shown that application-specific micro-architectural customizations 

on individual soft processors can save significant area and power. In some cases, logic 

reduction has been shown to improve performance. We investigate the impact of 

individual processor optimizations on performance, area usage and power consumption 

for overall multiprocessor systems. Some of the optimizations under consideration are 

described below: 

 

Application-specific instruction subsetting and memory sizing 

Applications typically require far fewer instructions than are supported by the instruction 

set architecture. Figure 19 shows the average instruction usage of 7 Streamit benchmarks 

mapped onto 16 core soft multiprocessors. Figure 20 shows the average percentage of 
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used instructions in each processor for a software FM radio application. As observed in 

Figure 19, all applications, except DES, use less than 50% of the supported ISA. Smaller 

kernels such as Lattice filter use only about 26% of the available ISA. This motivates us 

to study the impact of using reduced decode logic and control circuitry for individual 

processors on the basis of application-specific instruction usage patterns. 

 

 

Figure 19: Instruction set usage for 7 Streamit benchmarks mapped to 16 soft 

processor systems 

 

As applications are mapped over a large number of processors, they become finer 

grained. Each processor requires less on-chip memory to store instructions and data for 

its application segment. We evaluate the impact of application granularity on on-chip 

memory later in Chapter 5.   
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Figure 20: Percentage ISA usage for a Software FM Radio over 16 processors 

 

Pipeline stage optimization 

The number of pipeline stages influences the complexity, size and performance of any 

processor. Deepening the pipeline is likely to increase the area of the processor, as 

observed in [11]. Although the addition of pipeline registers can improve the clock 

frequency, the CPI may be adversely affected due to a significant increase in branch 

penalties. We analyze the impact of tuning the pipeline depth of individual processors on 

the performance of multiprocessor systems.  

 

FIFO buffer sizing 

Stream applications are typically communication intensive. Most stream applications 

consist of kernels that interact with each other in real time to exchange data. In this 

context, the architecture of the inter-processor interconnect plays a vital role in the 

performance of communication intensive architectures. In many cases communication 
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overhead must be significantly reduced to achieve high speedups. It is worthwhile to take 

a look at how variations in buffer sizes can affect application performance.  
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CHAPTER 4 

 

SUMMARY OF DESIGN FLOW 

 

Our soft multiprocessor design framework extends an existing stream compiler and 

integrates a processor generator to create a scalable flow for soft multiprocessor systems. 

Figure 21 shows an overview of the proposed design flow for the soft multiprocessor 

synthesis framework. The tool allows the designer to specify different parameters of the 

multiprocessor system such as the topology, the number of processors and the custom 

features such as the pipeline depth and interconnect buffer size. 

 

 

Figure 21: Summary of design flow for soft multiprocessor synthesis framework 
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The application is specified in Streamit.  The Streamit compiler maps the application to a 

subset of the processors in the RAW architecture based on the number of processors 

specified by the user. The mapping involves phases such as graph expansion, 

partitioning, layout and scheduling. Streamit generates code for the RAW architecture 

that has processors and communication controllers that coordinate the communication 

between the individual cores. However, the code generated by Streamit cannot be 

executed directly on our soft multiprocessor designs for two reasons – First, soft 

multiprocessor systems generated using our flow do not support dedicated 

communication controllers. Hence, there is a need to map the communication schedule 

produced by Streamit onto the computation code. Second, the generated multiprocessor 

systems support point-to-point and hypercube topologies in addition to the mesh topology 

supported by the Streamit compiler. We developed a tool called SoftCoreMapper that 

extends the Streamit compiler passes to support the above requirements. Specifically, 

SoftCoreMapper performs the following operations on the Streamit output: 

 

Dead Code Elimination – In this phase, RAW-specific routines and segments of the 

application are removed to reduce the code size and remove irrelevant operations. 

Specifically, this phase removes RAW initialization routines and replaces floating point 

operations with their equivalent integer operations. 

 

Communication Rescheduling – Communication rescheduling analyzes the 

communication patterns produced by the Streamit compiler to derive a suitable schedule 

for the target topology of the soft multiprocessor system. At present, the rescheduler 

supports a point-to-point and hypercube topology. However, this phase can be extended 
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to support other topologies as well. We illustrate the communication rescheduling 

algorithm for a point-to-point topology in Figure 22. 

 

 

 

 

 

 

 

Figure 22 – Rescheduling algorithm for point-to-point topology 

 

 

For a point-to-point topology, the communication schedule generated by Streamit is 

represented as a data flow graph where the nodes represent the individual processors and 

the edges are represented by the instructions that transfer the data between the processors. 

Next, for each processor and each data value produced by that processor, we traverse the 

data flow graph for the generated data from source to destination(s). The traversal may 

produce multiple paths depending on whether the data is consumed by a single or 

multiple processors. Next we define a hop edge as an instruction that transfers data 

between two processors without performing any operation on the data. For each data path 

in step 4 of Figure 22, we discover all the hop edges and eliminate them. Next, a direct 

edge is inserted between the producer processor and all the consumers of the data. 

Finally, the resulting sub graph is used to reschedule the communication for the point-to-

point topology. 

 

1. Comm schedule -  directed graph  

2. For each generated data in graph 
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4.    Traverse the graph to discover hop edges  
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Communication Mapping – Since the generated soft multiprocessor designs do not 

support dedicated communication controllers for managing the communication between 

the processing cores, there is a need to integrate the communication, which is explicitly 

specified in the schedule generated by Streamit, into the application code for each 

processor. This phase analyses the computation and communication patterns to find a 

one-to-one mapping between the application code and the communication schedule. 

Next, register-mapped data transfer statements in the application code are replaced with 

memory-mapped communication statements.  

 

Synchronization and Code Generation- In the final phase, the SoftCoreMapper 

identifies portions of the application code where data communication occurs and inserts 

synchronization primitives. Examples of synchronization primitives include register 

comparison operations to check the empty or full conditions of FIFOs.  

 

Once the SofCoreMapper generates code for each soft microprocessor, the code is 

compiled through a modified MIPS gcc compiler supported by the SPREE package. The 

compiled binaries are analyzed by an application binary profiler to determine the 

application-specific instruction usage patterns of each processor.  

 

A significant challenge in the design space exploration of large-scale soft multiprocessor 

systems is the generation of the systems itself. To address this issue, we designed an 

Automatic Soft Multiprocessor Generator (ASMG). This tool accepts various parameters 

of the multiprocessor system from the user such as the pipeline depth of each processor 
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and the interconnect buffer size. It also allows the user to customize the instruction set 

logic according to the profiling information generated by the application binary profiler. 

Next, ASMG generates the Verilog descriptions for the multiprocessor systems and 

customizes the data path and control path logic to suit the requirements of the application. 

The switch schedules produced by Streamit are analyzed to derive communication ports 

for each processor. Finally, interconnection networks are generated according to the 

communication patterns generated by the rescheduler. In a mesh topology, the number of 

I/O interfaces is at most four. In case of a direct point-to-point topology, each processor 

can directly interface with all its data sources and sinks.  

 

The multiprocessor Verilog HDL files are synthesized with the Altera Quartus 

synthesis framework and simulated using the ModelSim [33] simulator to derive area, 

power and performance results.  
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

Soft multiprocessor systems consisting of 1, 4, 9 and 16 processors were generated using 

our framework. We synthesized our designs to Altera DE2 and DE3 development boards 

consisting of 90nm Cyclone II EP2S180 and 65nm Stratix III EP3SL150 FPGAs, 

respectively. The performance was measured in terms of absolute wall clock type per 

output, a measure of throughput for streaming applications. The wall clock time was 

obtained by multiplying the cycles required to produce an output under steady state 

conditions by the inverse of the maximum operating frequency of the design reported by 

the Quartus compiler. To assess the maximum frequency of each design, we synthesized 

each design with a timing constraint of 150MHz.   

 

Figure 23: Altera DE3 board with Stratix III device EP3SL150 

 

In the following sections, we evaluate the performance, area and power consumption of 

our designs and assess their scalability for all the benchmarks. Finally, we investigate the 
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impact of application specific microarchitectural customizations on the generated 

designs.  

 

5.1 Benchmarks 

The proposed framework was evaluated using a set of benchmarks available with the 

Streamit compiler. This set consists of signal processing kernels and security, sorting and 

multimedia applications. Table 2 describes some benchmarks used to evaluate our 

framework. 

 

Benchmark Description 

Bitonic  High performance bitonic sorting network 

DES Implementation of DES Encryption Algorithm 

FFT Fast Fourier Transform kernel. 

Filterbank Filterbank for multirate signal processing application 

FM Software FM Radio with multiband equalizer 

Autocor Filter which generates autocorrelation series for input 

Lattice Ten stage lattice filter 

Equalizer An equalizer program for audio applications 

 

Table 2: Framework Evaluation Benchmarks 

 

Most streaming applications fall in the category of signal processing, audio, video, 

multimedia, encryption and networking. In the benchmark set under consideration, 

applications such as FFT and Filterbank represent small signal processing kernels. Larger 

applications such as an audio beamformer, FM Radio and Equalizer reuse the kernels to 

create complex real-world applications. Many signal processing and audio/video 
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benchmarks require floating point computations which are not currently supported by the 

basic SPREE processor [11]. As a workaround, we replace floating point computations 

by their equivalent fixed point operations in software.  

 

5.2 Interconnection topology variation 

In this experiment, we measure the run time performance of four applications for mesh 

and point-to-point topologies. Figure 24 shows the normalized application speedup of a 

point-to-point topology against a mesh topology. All the processors in the designs consist 

of three stage pipelines. The cycles for output and maximum design frequency for all the 

benchmarks are given in Table 3. Overall, point-to-point interconnect outperforms a 

mesh-style network for all applications by a factor of between 1.1x and 2x. Point-to-point 

topologies gain significant cycle speedups due to reduced synchronization overhead from 

the elimination of network hops. Point-to-point topologies consumed 28.6% less cycles 

when compared to mesh-style topologies on average. Interestingly, point-to-point 

topologies also gave slightly better performance in terms of design frequency.  

 

Figure 24: Performance of point-to-point topology vs. mesh topology 
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Application Mesh Clock Cycles 

Point-to-point Clock 

Cycles 

  6 9 16 6 9 16 

Equalizer 15144 8625 4138 9812 4765 2475 

Filterbank 3353 3625 1954 3021 1339 1503 

FMRadio 14637 8923 4006 9816 4930 2392 

Autocor 250 189 224 211 214 208 

 

 

      

Application Mesh Design Freq 

Point-to-point Design 

Freq 

  6 9 16 6 9 16 

Equalizer 127.6 122.0 118.8 127.2 122.5 121.0 

Filterbank 124.0 123.0 118.0 122.5 121.8 121.4 

FMRadio 128.7 121.9 119.0 126.5 121.7 121.3 

Autocor 124.2 122.5 118.5 122.6 121.7 120.5 

 

Table 3: Comparison of clock cycles and frequencies 

 

For a sixteen processor system, the point-to-point topology shows an average 2% 

improvement in design frequency. This frequency improvement results from the removal 

of unnecessary input/output FIFO ports. In a mesh-style topology, many processors need 

close to four ports as these nodes perform data forwarding in addition to computation. 

The improvement is observed even though processors with large data fan-outs (sources) 

and fan-ins (sinks) in point-to-point topologies typically require more than four ports. For 

example, in a mesh-style topology for a 16 processor FM Radio application, the average 

port usage per processor is approximately 3, while for a point-to-point topology, the 

average port usage per processor is approximately 2. The processors executing splitter 

and joiner filters in the point-to-point topology for this application requires 11 and 9 

ports, respectively. For smaller designs, like AutoCor, cycles per output increases or 

remains unchanged when parallelized over larger multiprocessor systems since increased 
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communication costs dominate over the reduced computation costs. A comparison of the 

area costs of mesh and point-to-point topologies show that in larger multiprocessor 

systems, the point-to-point topologies consume about 2 to 5% less area than the mesh 

topologies. 

 

In all designs, the critical path is located within the three-stage processor logic. Thus, the 

addition of point-to-point links does not degrade the maximum design frequency 

significantly, although the addition of more point-to-point links may make the FPGA 

more difficult to route. The number of point-to-point links scales linearly with processor 

count in most designs. 

 

In another experiment, we compare the hypercube topology against a mesh and a point-

to-point topology. The hypercube has more flexibility in terms of connections when 

compared to a mesh topology. However, the hypercube does not offer an unlimited 

connectivity as in the point-to-point case. The results are plotted in Figure 25. 

 

In general, the hypercube topology gives a modest 2 to 8% improvement over the mesh 

topology. The performance gain results from the reduced number of cycles due to the 

increased connection flexibility. However, the direct point-to-point topology still 

outperforms both mesh and hypercube by around 60% in the applications under 

consideration. Our results also indicate that the performance of the topology is an 

application specific variable and point-to-point topologies can give better performance 

for coarse-grained applications, such as FMRadio and Equalizer, rather than fine-grained 

kernels. 
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Figure 25: Performance of point-to-point and hypercube topologies normalized to a 

mesh topology 

 

 

5.3 Customization of pipeline depth 

The choice of microarchitectural pipeline depth of each processor influences the overall 

throughput of the application. The impact of three, four and five stage pipelining on 

application performance is studied in this discussion. The three stage pipeline consists of 

the fetch/decode, execute/memory and the write back stages. Four stage pipelines extend 

three stage pipelines by splitting the execute/memory stages into two separate stages. 

Finally, the five stage pipelines extend the four stage pipelines by adding an additional 

execution stage. We found that deepening individual processor pipelines from three to 

four stages can give substantial performance improvements of 22% on average at a 9.6% 

increase in area. Figure 26 shows the relative execution time per output for six stream 

benchmarks mapped over 16 processors.  
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The four-stage pipeline multiprocessor systems generally give better performance than 

their three-stage and five-stage counterparts. The critical paths of the multiprocessor 

systems for all designs are within the individual processors. In three-stage pipelines, the 

critical path is located between the register file and memory write-back logic through the 

branch predictor. For four- and five-stage pipelines, the critical path is between the 

register file and memory write-back logic through the integer multiplier. 

 

The relative performance improvement of the four-stage pipelines results from improved 

per-processor performance. On average, the maximum design frequency improves by 

26% from 118 MHz to 149 MHz as a transition from three to four-stage pipelines is 

made. However, the maximum design frequency remains largely unchanged when the 

pipeline depth is increased to five since the critical path remains between register file and 

memory write-back logic through the integer multiplier. 

 

Figure 26: Relative performance of 4 and 5 stage pipelines against a 3 stage pipeline 
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As more stages are added to the pipeline, an increase in the number of cycles per output 

is observed for all the applications. When compared to three-stage pipeline 

multiprocessor systems, the cycles per output increases by 5% for four-stage systems and 

by 14% for five stage systems. The trends are consistent for 6 and 9 processor design 

cases. The increase in cycles can be attributed to two factors. First, the processors 

generated by the SPREE framework use interlocking to resolve data hazards. As pipeline 

depth increases, it becomes increasingly difficult for the compiler to support independent 

instructions within the interlocking window, which introduces more stalls. SPREE uses a 

simple static branch not taken prediction scheme [11]. In general, branch mispredictions 

can be costly in deeper pipelines. Also, it can be difficult to support branch delay slot 

instructions in deeper pipelines, causing more stalls. Stalls due to branch mispredictions 

and data hazards in individual processor pipelines can ripple across multiple processors in 

communication-intensive stream applications. 

 

5.4 Customization of communication buffer depth 

Stream applications are often communication-intensive since they consist of a pipeline of 

tasks. In many cases, communication overhead must be amortized to achieve effective 

performance. Figure 27 shows the variation of normalized application speedups with 

varying FIFO sizes for five benchmarks mapped to nine processors using previously-

discussed topology and processor pipeline preferences. For large applications, we observe 

that the cycle reduction (e.g. throughput) increased once a critical FIFO size is reached. 

For example, for Bitonic sort, the application speedup improved by over 20% when FIFO 

size was increased from 8 to 16 words.  
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Smaller applications, such as AutoCor and Lattice, benefit little from an increase in 

buffer sizes due to limited inter-processor communication. In general, well-matched 

communication buffers prevent communication stalls without wasting system resources. 

Each soft multiprocessor system consists of customizable processors which communicate 

using simple FIFO buffers. In previous work [4], communication controllers (CC) were 

used to interconnect processors. Each CC requires 468 four-input LUTs and about 128 

flip flops for four word storage. In contrast, our synthesis results indicate that each FIFO 

requires only 11 LUTs, 72 registers and 128 memory bits, a small fraction of available 

FPGA resources. 

 

Figure 27: Impact of the size of the interconnect buffer on application performance 

 

 

5.5 Soft multiprocessor ISA subsetting and memory size optimization 

In general, soft microprocessors use only a portion of their ISA for filter implementation. 

As discussed in the previous sections, the average instruction set usage for majority of   
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the benchmarks mapped over to sixteen processors was typically less than 50% of the 

available instructions. In fact, smaller applications such as Lattice consumed only about 

26% of the available instructions. We showed in Chapter 3 that for a given application, 

the usage of instructions per processor in the multiprocessor system is highly variable. 

For example, the instruction usage of each processor in a sixteen processor system for 

software FM Radio application varied between 20% and 50%.  

 

Figure 28: Area savings by instruction set customization for sixteen processors  

 

All these observations lead to the possible area savings that one could derive by 

customizing the instruction set in each processor according to the segment of the 

application running on it. We used the results from the binary profiler to customize the 

processors for each application. The results are plotted in Figure 28. On average, 

instruction set customization yielded a 27% percent improvement in area for the seven 

multiprocessor designs. The majority of the area savings were obtained in the decode 
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logic and control circuitry in each processor. On average, the power consumption of 

subsetted designs consistently decreased by about 30% for 6, 9 and 16 processor designs. 

A modest 4.2% improvement in maximum design frequency was also observed for the 

customized designs. The detailed frequency results for sixteen processor designs are 

illustrated in Table 4. 

 

Application 

Frequency Before 

Instruction Removal 

Frequency after 

Instruction removal 

 

FMRadio 119.0 123.0 

 

Beamformer 118.8 121.2 

Autocor 

 

118.5 

 

123.5 

 

Table 4: Design frequency improvement by instruction subsetting 

 

As our soft multiprocessor systems use on-chip memory bits in the FPGA for storing 

program code and data, memory is a critical resource that limits the number of soft 

multiprocessors that can be embedded into each FPGA. The memory requirements are 

further constrained by the fact that some of the components like the register file and the 

data memory needs dual port RAMs for simultaneous access of two operands. We use 

M4K and BRAM memory bits to implement instruction and data memories for the 

processors. In the following paragraphs, we present the results of scalability of soft 

multiprocessor systems from a memory point of view. The results and the following 

analysis reveal some interesting conclusions.  

 

The average memory usage per processor in soft multiprocessor systems is plotted in 

Figure 29 as processors are scaled up from one to sixteen. Note that the memory 
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requirement of each processor decreases significantly as the application is spread across 

more processors. For example, the memory required by each processor in larger 

benchmarks such as DES and Filterbank decreases nearly by an order of magnitude when 

processors are scaled from one to six. These results illustrate that by customizing each 

processor according to reduced memory size, it is possible to scale streaming applications 

across larger soft multiprocessor systems. Figure 30 plots the total memory usage of the 

entire soft multiprocessor system as processor count is scaled up from one to sixteen. 

Surprisingly, the memory requirements do not significantly increase as more processors 

are added to the multiprocessor system. The total memory usage of some of the larger 

benchmarks is lower than the memory requirements of the single processor system. The 

reduction is attributed to the lower memory requirement of each processor for smaller 

kernels. This result further corroborates our earlier observations that it is possible to scale 

soft multiprocessor systems for streaming applications if the memory size of each 

processor is customized on an application-specific basis. 
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Figure 29: Average memory usage per processor for eight benchmarks 

 

 

 

Figure 30: Total memory usage of scaling soft multiprocessor systems 
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5.6 Application scalability 

Figure 31 shows the application speedup for the set of eight benchmarks normalized to a 

single soft core system for the parameters described in previous subsections. Each 

processor in the soft multiprocessor system consists of a three stage pipeline. The 

processors are interconnected using a point-to-point topology with all the interconnect 

buffers having a width of four words. The cycles per output and maximum design 

frequency in MHz are given in Table 5. The performance of larger applications such as 

DES, Bitonic and Filterbank improves by about a factor of 5x when parallelized over 

sixteen processors. The speedup improvement is primarily attributed to the significant 

amount of coarse-grained task-level parallelism present in these applications. However, 

the performance of smaller benchmarks such as Autocor and Lattice, degrades when 

parallelized over multiple processors. The performance degradation is due to the 

increased communication overhead which is present when the application is parallelized 

over larger multiprocessors.  A similar trend is seen for the Filterbank benchmark as 

processor counts are scaled up from nine to 16 processors.  

 

As seen in Table 5, the maximum frequency of all the designs degrades when more soft 

processors are embedded on the FPGA substrate. On average, a 11% frequency 

degradation is observed when all applications are mapped to 16 processors. The critical 

paths in these designs are within the processors, between the register file and memory 

through the branch predictor. 
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Figure 31: Application speedup of 8 benchmarks over 1 to 16 processors 

 

  Clock Cycles Frequency (MHz) 

Benchmark\Processors 1 6 9 16 1 6 9 16 

DES 69094 23338 16452 11527 131 127 122 121 

Bitonic 13511 3628 2883 2470 131 123 122 121 

Filterbank 7986 3021 1339 1503 131 127 131 118 

FMRadio 17728 9816 4930 2392 131 127 130 117 

Equalizer 13862 9812 4765 2475 131 127 123 121 

FFT 137 64 63 54 131 127 121 119 

Autocor 306 211 214 208 131 123 122 121 

Lattice 55 75 40 43 131 130 121 122 

 

Table 5: Clock cycles and Frequency for 8 applications 

 

Figure 32 shows the dynamic core power consumption at 50 MHz for 1, 4, 9 and 16 

processor designs for seven benchmarks. A single processor design consumes about 60 to 
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100 mW of dynamic power at 50MHz. The dynamic power consumption scales up 

linearly when the number of processors is increased from one to four. The power 

consumption for 9 and 16 processor designs for Bitonic sort show mostly linear growth. 

In larger designs, each processor switches fewer times on average to produce the same 

number of outputs. However, increased communication and synchronization power costs 

increase the overall dynamic power. Note that the power consumption of smaller 

benchmarks such as Autocor, Lattice and FFT are considerably lower than those of the 

larger benchmarks. We observed that these applications were not large enough to 

distribute enough work to approximately 25% of the available processors in sixteen 

processor systems. Also, each processor in such benchmarks performed less computation 

due to the fine granularity of the application. 

 

 
 

Figure 32: Dynamic power consumptions of 1, 4, 9, 16 soft multi processor systems 
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5.7 Combined impact of customizations 

In this section, the combined impact of all the optimizations is considered. The 

application speedup of four benchmarks under their best case and worst case 

configurations are considered for 16 processors. The best case configuration is the choice 

of micro-architectural pipeline depth, interconnection topology and instruction set that 

gives the best application performance in absolute execution time. The worst case 

configuration uses the multiprocessor parameters that give the worst case application 

performance. In the given example, the best case is represented by a multiprocessor 

system where each processor has a four stage pipeline with all the instructions subsetted 

according to the requirements of the application segment. The best case uses ideal 

interconnect buffer sizes and a direct point-to-point topology. In contrast, the worst case 

design uses processors with five stage pipelines with a full instruction set. The processors 

are interconnected using a mesh topology with each FIFO configured for the worst case 

word size. Figure 33 shows the normalized application speedup of the best case 

configurations of four benchmarks against their worst case configurations for each 

optimization and in total.  

 

On average, the performance of applications improves by a factor of 2.1x when all the 

customizations are applied on the soft multiprocessor system. The primary factors 

contributing to the overall application speedup are the choice of the pipeline stage depth 

and the choice of the interconnection topology. Although instruction subsetting saves 

considerable area, it contributes only 4% improvement to the overall application speedup. 

Our results indicate that a judicious choice of interconnection topologies and 
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microarchitectural features can give significant performance and area benefits in soft 

multiprocessor systems. 

 

 

Figure 33: Impact of combined optimizations  

 

 

Previously in [11], it was determined that a single SPREE soft processor demonstrates an 

11% speedup over an Altera NIOS II/s processor. Our results add to this improvement. 
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CHAPTER 6  

 

SUMMARY AND FUTURE WORK 

 

The thesis has outlined an automatic soft multiprocessor generation and synthesis 

framework to facilitate the rapid design space exploration of soft multiprocessors. Our 

framework is capable of generating scalable soft multiprocessor systems by integrating 

efficient communication structures with customizable processors. The tool supports a 

high-level application compilation infrastructure that integrates state of the art streaming 

compilers with our own tools. The developed compilation infrastructure can be used to 

synthesize applications written in Streamit language to binaries that are executable on 

individual processors. Our approach has been verified with a diverse set of existing 

parallel computing benchmarks that represent the signal processing, multimedia and 

security application domains.  

 

Results show that soft multiprocessor systems consisting of sixteen processors generated 

using our framework can offer 5x to 6x speedup over their uniprocessor counterparts 

synthesized in modern FPGAs. We illustrated that a judicious selection of various micro-

architectural features such as interconnection topology, pipeline depth, inter-processor 

buffer size, memory size and customized instruction set can improve area by around 26% 

and performance by a factor of 2.1X in many applications. Our evaluation of soft 

multiprocessor interconnection topologies shows that highly interconnected topologies 

such as point-to-point can offer better performance than regular mesh topologies.  
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In the future, we plan to improve our soft multiprocessor systems by supporting advanced 

features such as off-chip memory accesses and better branch prediction schemes. We also 

plan to look into aggressive high-level compiler optimization techniques to improve 

application performance. We hope that the developed framework will facilitate rapid 

design space exploration of soft multiprocessors in the FPGA community. 
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