

APPLICATION-SPECIFIC CUSTOMIZATION AND SCALABILITY OF

SOFT MULTIPROCESSORS

A Thesis Presented

by

DEEPAK C. UNNIKRISHNAN

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

April 2009

ELECTRICAL AND COMPUTER ENGINEERING

 ii

© Copyright by Deepak C. Unnikrishnan 2009

All Rights Reserved

 iii

APPLICATION-SPECIFIC CUSTOMIZATION AND SCALABILITY OF

SOFT MULTIPROCESSORS

A Thesis Presented

by

DEEPAK C. UNNIKRISHNAN

Approved as to style and content by:

Russell G. Tessier, Chair

C. Mani Krishna, Member

Paul Siqueira, Member

C. V. Hollot, Department Head

Electrical and Computer Engineering

 iv

ACKNOWLEDGMENTS

I would first like to thank Altera Corporation and the National Science

Foundation for funding this project and allowing me to work on it. I would like to thank

Professor Russell Tessier for his motivation and guidance. I am also grateful to Professor

Mani Krishna and Professor Paul Siqueira for their time and for being on my thesis

committee. I would like to extend my gratitude to Jia Zhao and Ramakrishna Vadlamani

of the Reconfigurable Computing Group, UMass, for their valuable suggestions on the

project. Finally, I would like to thank my friends and family who have assisted me and

who have supported me throughout my time here at UMass.

 v

ABSTRACT

APPLICATION-SPECIFIC CUSTOMIZATION AND SCALABILITY OF

SOFT MULTIPROCESSORS

APRIL 2009

DEEPAK C. UNNIKRISHNAN

 B.TECH E.C.E (Hons.), UNIVERSITY OF CALICUT, INDIA

M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor Russell G. Tessier

Soft multiprocessor systems exploit the plentiful computational resources available in

field programmable devices. By virtue of their adaptability and ability to support coarse

grained parallelism, they serve as excellent platforms for rapid prototyping and design

space exploration of embedded multiprocessor applications. As complex applications

emerge, careful mapping, processor and interconnect customization are critical to the

overall performance of the multiprocessor system. In this thesis, we have developed an

automated scalable framework to efficiently map applications written in a high-level

programmer-friendly language to customizable soft-cores. The framework allows the user

to specify the application in a high-level language called Streamit. After an initial

analysis of the application, a soft multiprocessor system is generated automatically using

a set of customizable SPREE processors which communicate with each other over point-

to-point FIFO connections. Several micro-architectural features of the processors are then

automatically customized on a per-application basis to improve system area, performance

and power consumption. The efficiency and scalability of this approach has been

validated using a diverse set of eight audio, video and signal processing benchmarks on

 vi

soft multiprocessor systems consisting of one to sixteen processors. Results show that

generated soft multiprocessor systems consisting of sixteen processors can offer up to 6x

speedup over a conventional single processor system. Our experiments with soft

multiprocessor interconnection networks show that point-to-point topologies perform

approximately 2x better than mesh topologies. Finally, we demonstrate that application-

specific customizations on the instruction set, memory size, and inter-processor buffer

size can improve the area and performance of the generated soft multiprocessor systems.

The developed framework facilitates rapid design space exploration of soft

multiprocessors.

 vii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS ... iv

ABSTRACT .. v

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER

1. INTRODUCTION .. 1

2. BACKGROUND AND PREVIOUS WORK ... 5

2.1 Soft Multiprocessor Synthesis .. 5

2.2 FPGA-Based Networks-On-Chip ... 8

2.3 Soft Processor Optimization ... 10

2.4 Summary of Previous Approaches .. 15

3. FRAMEWORK COMPONENTS ... 18

3.1 Streamit – A compiler for stream-based applications 18

3.1.1 Streamit Language Constructs ... 20

3.1.2 Streamit Compiler .. 23

3.2 Automatic Soft Processor Generation ... 25

3.2.1 Soft multiprocessor Interfaces .. 28

3.2.2 Interconnection Topologies .. 31

3.2.3 Application Specific Soft Multiprocessor Optimizations 35

 viii

4. SUMMARY OF DESIGN FLOW .. 39

5. EXPERIMENTAL RESULTS .. 44

5.1 Benchmarks ... 45

5.2 Interconnection topology variation ... 46

5.3 Customization of pipeline depth ... 49

5.4 Customization of communication buffer depth ... 51

5.5 Soft multiprocessor ISA subsetting and memory size optimization 52

5.6 Application scalability .. 57

5.7 Combined impact of customizations ... 60

SUMMARY AND FUTURE WORK ... 62

BIBLIOGRAPHY ... 64

 ix

LIST OF TABLES

Table Page

Table 1: Resource usage of a simple FIFO ... 30

Table 2: Framework Evaluation Benchmarks ... 45

Table 3: Comparison of clock cycles and frequencies .. 47

Table 4: Design frequency improvement by instruction subsetting 54

Table 5: Clock cycles and Frequency for 8 applications .. 58

 x

LIST OF FIGURES

Figure 1: Multiprocessor design for IPv4 application after automated

exploration .. 6

Figure 2: ESPAM Application Mapping Flow .. 8

Figure 3: Interconnect Topologies – A-Ring, B-Star, C-Mesh, D-Hypercube,

E-Fully connected, F-Torus ... 9

Figure 4: Overview of the SPREE System ... 11

Figure 5: A methodology to derive application specific embedded cores 12

Figure 6: CUSTARD –Tool flow and microarchitecture .. 14

Figure 7: Die Photograph of the RAW Microprocessor .. 19

Figure 8: RAW fabric exposes on-chip interconnects to the software 20

Figure 9: Stream structures supported by StreamIt .. 21

Figure 10: FM Radio–Streamit progam and the equivalent stream graph 23

Figure 11: Streamit Compiler Phases ... 24

Figure 12: Soft Processor Rapid Exploration Environment (SPREE) 27

Figure 13: Architecture of a simple SPREE Processor ... 28

Figure 14: Set of processors interconnected by FIFOs ... 30

Figure 15: Layout of a 16 processor system on Stratix II EP2S180F1508C3

device .. 32

Figure 16: Mesh topology ... 34

Figure 17: Point-to-point topology ... 34

Figure 18: Hypercube topology for 16 processors .. 35

Figure 19: Instruction set usage for 8 Streamit benchmarks over 6 soft

processors .. 36

Figure 20: Percentage ISA usage for a Software FM Radio over 16 processors 37

 xi

Figure 21: Summary of Design flow for soft multiprocessor synthesis

framework ... 39

Figure 22 – Rescheduling algorithm for point-to-point topology 41

Figure 23: Altera DE3 board with Stratix III device EP3SL150 44

Figure 24: Performance of point-to-point topology vs. mesh topology 46

Figure 25: Performance of point-to-point and hypercube topologies

normalized to a mesh topology ... 49

Figure 27: Impact of the size of the interconnect buffer on application

performance .. 52

Figure 28: Area savings by instruction set customization for sixteen

processors .. 53

Figure 29: Average memory usage per processor for eight benchmarks 56

Figure 30: Total memory usage of scaling soft multiprocessor systems 56

Figure 31: Application speedup of 8 benchmarks over 1 to 16 processors 58

Figure 32: Dynamic power consumptions of 1, 4, 9, 16 soft multi processor

systems .. 59

Figure 33: Impact of combined optimizations .. 61

 1

CHAPTER 1

INTRODUCTION

With technology scaling, increased field-programmable gate array (FPGA) area and logic

resources have enabled designers to integrate more hardware resources into the FPGA

fabric. In particular, there has been considerable effort to integrate microprocessors and

FPGAs. The first efforts in this direction began during the late 1990s when designers

integrated microprocessors built using transistors called hard cores with the FPGA fabric.

Leading vendors such as Altera and Xilinx have developed Excalibur [34] and Virtex II

Pro [35] devices respectively incorporating hard cores and FPGA fabric on a single chip.

Altera Excalibur devices integrate an ARM9 processor with a 1 million gate FPGA fabric

while Xilinx Virtex II Pro devices incorporate two or more PowerPC processors with a

10 million gate FPGA fabric. However, in many cases, the fixed number of hard

processors available on the chip does not match the application requirements. Hard

processors impose severe routing constraints on the placement of custom logic on the

FPGA fabric.

A soft processor is a microprocessor embedded into the FPGA fabric. Unlike hard

processors, soft processors offer considerable flexibility to match the requirements of the

application. For example, the number of soft processors in an FPGA can be varied to

match the computational requirements of the application. Since soft processors are

embedded into the FPGA fabric, placement and routing decisions are largely taken by

automated computer-aided design (CAD) tools. The customizability of individual soft

processors makes them attractive for resource-limited applications. Leading FPGA

 2

vendors, such as Altera and Xilinx, already offer 32-bit RISC soft processor IP blocks

called Nios [36] and MicroBlaze [37], respectively. Soft processors are integral

components of most system-on-a-programmable chip solutions available today.

The significant increase in FPGA resources has spurred interest in embedding multiple

soft processors on the same FPGA substrate. Multiple soft processors integrated on a

single FPGA device can serve as a flexible programming platform for fast application

mapping without the need for intensive register transfer level (RTL) design. Soft

multiprocessor systems also exhibit high degrees of task level parallelism which can be

exploited to efficiently execute complex data processing applications. Typical

applications involving these systems vary from initial hardware prototyping to final

product designs for embedded multiprocessor systems.

It is projected that the amount of logic and memory resources in FPGAs is likely to grow

substantially in the near future to support hundreds of soft processors. However, three

major challenges constraining the widespread use of soft multiprocessors are their

complex design, programmability and system-wide energy consumption. In this context,

an automated and efficient mapping of applications written in a programmer-friendly

high-level language to FPGAs is highly desirable. Unlike commercial off-the-shelf soft

processor IP blocks which offer limited customizability, custom-generated soft

processors can be better tailored to suit the requirements of the application. Hence, there

is scope for large scale system-wide application specific optimizations to improve

performance and minimize energy consumption.

 3

The process of application parallelization across multiple processors is a well established

research area. However, given the limited amount of logic, as compared to memory,

available in an FPGA, application mapping to soft multiprocessors presents a number of

interesting new challenges. These include the implementation of several critical processor

features such as caches, large memories and routing tables, among others.

Previous work on soft multiprocessor systems has focused on the development of

automated synthesis tools for smaller multiprocessor systems and the investigation of the

performance of interconnection topologies. Although the potential of soft multiprocessor

systems has been demonstrated in previous approaches, the primary focus has remained

on relatively small multiprocessor systems targeting single or a small number of

benchmarks. The primary contribution of this thesis is a comprehensive evaluation of the

combined impact of soft multiprocessor synthesis, topology choices and scalability using

a substantial collection of multiprocessor benchmarks on soft multiprocessor systems

consisting of a large number of processors. Specific research objectives and challenges of

the work include:

1. Development of a comprehensive evaluation platform for large soft

multiprocessor systems by integrating high-level application compilers with

synthesizable soft processor generators.

2. Modification of high-level application mapping tools to support FPGA aware task

allocation and mapping.

 4

3. Investigation of the impact of individual processor and interconnect optimizations

on the overall performance of soft multiprocessor systems.

4. Evaluation of a large set of existing multiprocessor benchmarks available in the

parallel computing community on soft multiprocessor systems.

The rest of the thesis is organized as follows: Chapter 2 provides insight into previous

work. This includes a discussion of existing approaches that map applications onto soft

multiprocessors and soft processor optimization techniques. Chapter 3 elaborates on the

components of the proposed framework. Chapter 4 describes the design flow. Chapter 5

explains the evaluation strategies and results. Chapter 6 summarizes the thesis and gives

directions for future work.

 5

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

This thesis work builds on previous research in single and multi soft processor design and

implementation. Earlier work has primarily focused on area, power and performance

evaluation of smaller soft multiprocessor systems in isolation. The following sections will

survey some of the existing approaches to automatic synthesis, architectural

optimizations and evaluation of soft multiprocessor systems.

2.1 Soft Multiprocessor Synthesis

A number of recent research papers have examined application mapping from high-level

data flow graphs to multiple soft processors. Yujia et al. [1] and Ravindran et al. [2] have

illustrated the feasibility of using soft multiprocessors for a high performance IPv4 packet

forwarding application. In this study, a framework to determine the best multiprocessor

configuration for the data plane implementation of an IPv4 packet forwarding application

using integer linear programming techniques is considered. Initially, the IPv4 application

is represented as a data flow graph. The data flow graph is partitioned into an array of

Xilinx Microblaze [37] soft processors. The number of partitions may be reduced by

manually clustering multiple application tasks together. Once all application partitions

have been extracted from the data flow graph, integer linear programming (ILP)

techniques are applied to derive the best architecture for each partitioning. The inputs to

the ILP solver include hardware constraints and worst case task execution times. The

objective is to maximize the overall throughput under the given system constraints.

Figure 1 illustrates the final multiprocessor design after ILP based automated exploration.

 6

Figure 1: Multiprocessor design for IPv4 after automated exploration [1]

Although the described approach achieves better performance over hand-tuned designs,

integer linear programming techniques are generally considered to be slow and may not

scale well over larger problem sizes. Note that in this approach, an efficient partitioning

requires careful manual clustering of tasks by the designer. The described methodology is

also tuned for a single application.

A clustering and packing approach for soft multiprocessor synthesis targeted at an

MJPEG application is described by Cong et al. [3]. The mapping consists of assignment

of tasks to a number of soft processors interconnected by point-to-point FIFOs. The

approach is targeted at throughput-constrained stream-oriented multimedia and network

applications. The work is unique in that it takes latency, throughput and resources

 7

simultaneously into consideration during design space exploration. The application is

initially represented as a synchronous data flow graph. The objective is to reduce the

latency and improve throughput under constraints of communication costs and task

execution times. To achieve this, a combination of labeling, clustering and packing

algorithms are applied on the given task graph. Experiments using an MJPEG encoder

application have produced multiprocessor configurations with high throughputs and

significant reduction in design time compared to ILP approaches. However, the described

approach only takes a single benchmark into consideration and can only be used for

homogeneous processor systems consisting of a small number of processors. Further, the

lack of processor optimizations after initial task mapping and resource allocation makes

this scheme unattractive.

A methodology for automated multiprocessor system design, programming and

implementation from a high-level system specification using static affine nested loop

Pprograms (SANLP) is described in [4]. First, a Kahn process network (KPN)

specification is derived from the application description. The derived KPN specification

is given as input to the embedded system-level platform synthesis and application

mapping (ESPAM) tool, as shown in Figure 2. The tool generates multiprocessor systems

connected by point-to-point FIFO links from a predetermined set of IP blocks.

 8

Figure 2: ESPAM Application Mapping Flow [4]

However, the proposed implementation is time consuming and selection of components

from a standard IP library rules out any possibility of individual component optimization.

Complex communication controllers are used as glue logic to interface standard

components. Implementation of communication components using dual port memories is

expensive in FPGAs. Also, the approach has been applied to relatively small

multiprocessor systems with a restricted set of three applications.

2.2 FPGA-Based Networks-On-Chip

On-chip interconnects for integrating multiple soft processors have been examined in a

series of recent studies. Saldana et al. [5] have examined the routability of several

common network topologies as shown in Figure 3 to interconnect soft processors on

FPGAs. This approach uses automated network topology generation from high-level

specifications to generate multiprocessor systems consisting of up to 64 nodes. An

important conclusion noted in the work is that modern FPGA fabrics are rich in resources

 9

and are capable of supporting highly-interconnected topologies such as direct point-to-

point links. Like other previous approaches, this study is not comprehensive since

automated approaches are applied only for interconnect topology generation.

Figure 3: Interconnect Topologies – A-Ring, B-Star, C-Mesh, D-Hypercube, E-Fully

connected, F-Torus [5]

Studies [6] [7] have shown that NoCs can significantly outperform on-chip buses and

thus provide system scalability. Kapre et al. [8] observed that time-switched and packet-

switched butterfly fat trees can be efficiently mapped to FPGAs.

Several studies have examined the behavior of common parallel processing applications

such as sorting networks on soft multiprocessor systems developed from commercial

soft-core IP blocks. For example, Derutin et al. [9] evaluated the performance of a

homogeneous soft multiprocessor architecture using a hypercube topology. A parallelized

quicksort algorithm is used for the evaluation of multiprocessor systems consisting of 2,

4, 8 and 16 processors. However, like many other approaches, the processors used for the

study consist of standard IP cores which are hardly customizable. The application

 10

parallelization was carried out manually which severely limits the scalability of this

approach to larger multiprocessor systems and a wider set of benchmarks. A similar study

described in [10] examines the performance of a parallelized merge sort application on a

seven processor Xilinx Microblaze system. Each processing element is hooked to a router

via the network interface. The routers are interconnected using a hypercube topology. A

full adaptive minimal deadlock-free packet routing algorithm is used in the design.

In general, many of the approaches considered previously suffer from the following

limitations. First, the applications are described in a non-user friendly fashion with

constructs such as data flow graphs. The parallelization techniques considered previously

use time-consuming and non-scalable approaches such as integer linear programming.

Finally, the previous studies limit themselves to a restricted set of applications and soft

multiprocessor system sizes.

2.3 Soft Processor Optimization

Soft processors have created a unique niche in the embedded design space with

their ability to be customized to suit the requirements of the application. Recent studies

on soft processor optimization have focused on area, performance and energy. It has been

shown that application-specific customization has significant impact on the overall

performance of the system. For example, Yiannacouras et al. [11] discuss the impact of

microarchitectural customizations on automatically-generated synthesizable soft

processors. In this work, a framework called Soft Processor Rapid Exploration

Environment (SPREE) is developed. The framework can automatically generate

 11

customizable soft processor RTL descriptions from high-level textual descriptions of the

ISA, data path and control path of the processor. The tool can be used to customize

several aspects of a microarchitecture, such as the shifter implementation, pipeline depth,

instruction set and forwarding logic. An overview of the SPREE infrastructure is shown

in Figure 4.

.

Figure 4: Overview of the SPREE System [11]

SPREE supports a library of basic components such as the register file, adder, sign-

extender, fetch unit, etc. The user submits a high-level textual description of the data,

control path, and the micro architectural features of the processor. The tool performs an

integrity check on the submitted information to verify that the information can be used to

generate a functional processor. Next, it instantiates the data path and control path of the

processor according to the instruction set architecture description. It has been shown in

Architecture Description

SPREE

Synthesizable RTL

RTL Simulator RTL CAD

1. Correctness
2. Cycle Count

3. Area
4. Clock Frequency
5. Power

 12

this work that a tuned micro-architecture can offer up to a 30% improvement in

performance and up to a 25% improvement in both area and energy.

A methodology to derive application specific embedded SIMD cores has been described

in [12] by Hebert et al. In this work, a microcode analysis tool decodes the instructions in

the same way as it is done in the processor into bit fields according to their encoding

pattern. The decoded field values are fed into emulators which emulate the processor’s

controller. Results generated by the tool are used to optimize the original hardware

model. Finally, the optimized model is given to the synthesis tool. The flow is

summarized as shown in Figure 5.

Figure 5: A methodology to derive application specific embedded cores[12]

Several application specific post-microcode analysis optimizations such as resource

elimination, constant signal propagation, local constant tables, field recoding and data

 13

path width optimizations are applied on a template HDL model. This study has

demonstrated large savings in lookup tables (ALUTs) for a single-instruction, multiple-

data (SIMD) Pulse VI processor. However, the restricted focus on SIMD architectures

and use of emulators to derive application-specific optimizations makes this scheme

architectural specific and hence unattractive.

Researchers have considered multithreading to improve application performance and

improve energy savings in soft processors. Dimond et al. [13] examines the use of multi-

threading and custom instructions as techniques to maintain high throughput while

minimizing processor area. In this approach, custom instructions are generated on a

customizable multi-threaded processor (CUSTARD) by identifying frequently occurring

segments of computation that can be evaluated using the same hardware datapath. The

tool is illustrated in Figure 6. CUSTARD takes a set of inputs which include an

application specified in a high-level language such as C, a template processor and a set of

user defined processor parameters. Next, the compiler generates custom instructions to

accelerate the application. The generated custom instructions are combined with designer

parameters to instantiate a synthesizable netlist for the processor. The framework also

supports hardware threads to improve performance since context switches in hardware

threads take just a single cycle. The SRAM bits abundantly available in FPGAs can be

used to implement hardware registers for each thread context.

 14

Figure 6: CUSTARD –Tool flow and microarchitecture [13]

Later work [14] involving soft processor synthesis has examined techniques such as

instruction scheduling and recoding to improve energy savings. Instruction recoding is

based on the principle that instructions with high frequency differ by only a few bits so

that bit switching may be reduced. The switching frequencies of instructions are obtained

from an execution profile of the application. Power-aware scheduling complements

instruction scheduling. In this technique, tasks with low Hamming distances are

 15

scheduled closer to each other without affecting inter-task data dependencies. The work

demonstrates a power saving of up to 74% obtained with six application benchmarks.

Fort et al. [15] use multithreading with custom functional units located outside the

processor. The study shows that it is attractive to use a multithreaded processor in an

FPGA environment because of significant area savings. Labrecque et al. [16] have

extended the SPREE infrastructure [11] to support multithreaded soft processors. In this

work, the authors show that that multithreaded soft processors are up to 106% more area

efficient than non-multithreaded counterparts. Also, multithreaded processors are able to

sustain high IPC when compared to their single threaded counterparts. It is noted that the

key to improvement in the performance is a careful selection of ISA features, the number

of registers, the number of threads and the intra-stage pipelining. A very important

conclusion from this work is that off-chip memory latency is not a significant challenge

for FPGA-based systems and a small on-chip memory is often sufficient to emulate an

ideal cache.

2.4 Summary of Previous Approaches

In general, previous research on soft multiprocessors has focused on automatic synthesis

systems, architectural optimizations and evaluation of interconnection topologies.

However, many of these previous efforts primarily evaluated system area and

performance and energy impacts in isolation without considering the underlying tradeoffs

in system synthesis. Although the previous approaches provide initial analysis and

emphasize the importance of automatic approaches towards soft multiprocessor design

 16

cycle times, conclusions regarding appropriate inter-processor topology and mapping

effectiveness on a range of stream-based applications are not provided. The synthesis

frameworks examined previously do not consider the impact of processor optimizations

on large scale multiprocessor systems. None of the previous work on soft processor

interconnect topologies considers a range of applications automatically mapped to a large

number of soft processors.

Our work distinguishes itself from the previous approaches in the following ways:

1. Our work describes an automatic synthesis framework to assess the scalability of

a large number of existing parallel computing applications on large soft

multiprocessor systems.

2. The impact of a collection of architectural optimizations on soft multiprocessor

systems are considered including:

a. Interconnection network topology optimization such as tradeoffs between

point-to-point and mesh-style interconnects.

b. Unused instruction removal on individual soft processors based on the

target application.

c. Assessment of pipeline depth variation of individual soft processors on the

performance of the multiprocessor system.

d. Impact of tuning communication buffer sizes on the performance.

e. Impact of tuning the memory size of individual processors.

 17

3. Our work provides a system-level evaluation of stream applications on soft

multiprocessor systems considering area, power and performance aspects.

 18

CHAPTER 3

FRAMEWORK COMPONENTS

The proposed framework will be able to map applications written in a programmer-

friendly high-level language to binaries that could be executed on customized soft

processors. We target stream applications since they represent a large class of data-

intensive applications most likely to dominate the embedded market in the near future.

The framework integrates compilers for high-level application mapping, profilers that

extract application specific parameters and soft processor synthesis algorithms into a

single automated design flow. This section describes the components of the proposed

automatic synthesis framework.

3.1 Streamit – A compiler for stream-based applications

Streamit [18][20] is a high-level, architecture-independent language and compiler

targeted at streaming applications. Streamit compiler maps stream programs to software-

exposed architectures such as MIT RAW [19]. This section discusses the RAW

microprocessor and explains how the Streamit compiler can be efficiently extended to

support streaming applications on soft microprocessors.

The RAW computational fabric is a scalable, tiled architecture developed to exploit the

copious logic resources in next generation CMOS processes. The RAW is a single chip

multiprocessor consisting of sixteen identical programmable tiles. RAW has been

fabricated using IBM’s 180nm 1.8V 6-layer CMOS 7SF SA 27E copper process. The

 19

sixteen cores communicate with each other using 32-bit full duplex mesh networks.

RAW supports a static and dynamic network. The entire communication is specified at

compile time in the static network, while the dynamic network supports run time events.

As illustrated in Figure 7 andFigure 8, RAW represents a regular multiprocessor

architecture. Interconnect between the cores is pipelined to convert across-chip wire

delays into network hops. The longest wire in the chip need not be more than the width of

a tile. Hence, the propagation delay across a tile is just one cycle. The network and

computational resources can be programmed using the RAW ISA. Thus, RAW exploits

all forms of parallelism including instruction level, data level, thread level and stream

parallelism.

Figure 7: Die Photograph of the RAW Microprocessor [19]

 20

Figure 8: RAW fabric exposes on-chip interconnects to the software [19]

The RAW design philosophy favors regularity and simplicity. Each tile incorporates an

8-stage in-order MIPS style pipeline, 32KB instruction cache, 32KB data cache and a 4-

stage single precision pipelined floating point unit. The on-chip networks are interfaced

to tiles through bypassed, register-mapped static routers built into each tile. Each static

router (switch processor) executes a basic instruction set that consists of routing

instructions to forward the data between tiles. A neighboring inter-tile transfer takes 3

cycles while an inter-tile transfer involving N hops can be achieved in 2+N cycles [19].

The dynamic network support asynchronous events such as cache misses and interrupts.

3.1.1 Streamit Language Constructs

Streamit was initially developed as a language and compiler to exploit RAW’s software

exposed interconnects. The basic idea was to provide a portable programming model to

communication-exposed architectures. The computation is modeled as a hierarchy of

basic computational units called filters [18]. The filter can be imagined as a block of user-

defined code which can process the streaming data. Each filter contains two parts – an

init function and a work function. The init function is invoked during filter initialization

 21

while the work function models the steady state execution steps of the filter. Although

each filter can be imagined to run on an individual tile, highly irregular filters can cause

load balancing issues on the target architecture. To address this issue, Streamit supports

fission/fusion operations to combine or split filters to match the granularity of the target

architecture. A brief description of fission/fusion operations is given later in this section.

Each filter can communicate with other filters using push(), pop() and peek() methods.

The push() method sends data into the output queue of the filter. A pop() method receives

the data from an input queue of the filter. Peek() is a special operation that returns the

value at an index in the input queue without removing the item.

Figure 9: Stream structures supported by StreamIt [18]

A Streamit program is represented as a network of filters. The filters are interconnected

by constructs such as pipelines, split-joins or feedback loops. The pipeline construct

supports a sequential arrangement of the filters. The split-join specifies independent

parallel data streams. Data is split into multiple streams at the splitter and later joined at

stream

stream

stream

stream

Splitter

stream
. . .

stream

Joiner Splitter

Stream

Joiner

Stream

 22

the joiner. For example, a duplicate splitter sends a copy of each data item into each

parallel stream. A round robin joiner roundrobin(n1,n2,…..nm) sends the first n1 items to

the first stream, the next n2 items to the next stream etc. The feedback loop construct

supports cycles in a stream graph. Figure 9 illustrates the various hierarchical structures

supported by the Streamit language. We illustrate Streamit with an example. Consider the

representation of an FM Radio application as illustrated in Figure 10. The FM Radio

consists of an analog to digital converter, FM demodulator, equalizer and a speaker. The

equalizer can be thought of as a logical block composed of many low pass and high

passes filters operating in parallel. The equivalent Streamit program for an FM Radio

consists of a pipeline of filters that represent an A-D converter, FM demodulator,

equalizer and speaker. The equalizer may be viewed as a component that consists of

multiple band pass filters. Each band pass filter can be viewed as a hierarchical pipeline

of low pass and high pass filters whose critical frequencies are set according to the

characteristics of the filter. Since the components of equalizer can operate on the

demodulated stream of data independently, the incoming stream is duplicated using a

duplicate construct and later joined using a round robin joiner. Finally, the adder and

speaker process the joined data stream to reconstruct the audio signal. It is interesting to

note that the Streamit program imposes a well-defined structure on all the streams that

exposes stream level parallelism in natural way. From a programmer perspective, this

structure helps to incorporate the parallelism inherent in the application naturally into the

program. From a compiler perspective, the well-defined structure of Streamit programs

makes them easier to analyze than arbitrary graphs.

 23

Figure 10: FM Radio–Streamit progam and the equivalent stream graph [18]

3.1.2 Streamit Compiler

The Streamit compiler consists of eight phases as shown in Figure 11. The front end is

built on top of a Java based open source compiler infrastructure called KOPI. The front-

end parses the Streamit syntax into a Java-like abstract syntax tree (AST). SIR conversion

phase transforms the AST into a Streamit intermediate representation (SIR). Various

structures in the stream graph are expanded during the graph expansion phase.

Scheduling calculates the initial and steady state data transfer rates for each filter. The

scheduler calculates two types of schedules – a non-repetitive initialization schedule and

a repetitive steady state schedule.

The partitioning phase performs load balancing operations using fission/fusion

transformations on the stream graph. The basic idea is that the compiler initially estimates

 24

the number of instructions executed by each filter in a single steady-state execution cycle

of the program. Then, computationally intensive filters are split and less demanding

filters are fused together. Vertical fusion algorithms combine multiple filters in a pipeline

together to create a single filter while horizontal fusion combines parallel filters together.

Vertical fission algorithms split a single filter into a series of parallel filters. Horizontal

fission algorithms split a single filter into multiple pipelined components. Fission/fusion

transformations are performed by simulating steady state execution schedules of the

stream graph on the individual filters. More details on fission/fusion optimizations can be

found in [18] and [20].

Figure 11: Streamit Compiler Phases [18]

The Streamit compiler currently supports three kinds of partitioning algorithms – based

on a greedy algorithm, a greedier algorithm and dynamic programming. In the greedy

approach, filters are first sorted in the descending order of computational requirements.

Front end parsing

SIR Conversion

Graph expansion

Partitioning

C code for

 tiles

ASM code for

switches

Streamit Application

Communication

Scheduling

Code generation Scheduling

Layout

 25

Then, a simple greedy algorithm is used to split heavy filters into smaller ones. The

process is iterated until the heaviest filter can no longer be split or when the number of

filters matches the granularity of the target architecture. If there are more filters than the

number of processing elements, a similar greedy algorithm can be applied to combine

multiple filters into coarser filters.

Layout refers to the assignment of partitioned filters into the processors in the target

architecture so that the communication and synchronization costs are minimized.

Streamit uses the simulated annealing algorithm for layout. Once nodes of the stream

graph are assigned to the nodes of the target platform, the communication scheduler

simulates the execution of nodes in the stream graph and records the communication

patterns during simulation. These communication patterns are translated into routing

instructions that are executed on each switch processor.

Finally, the code generation phase generates C code for each tile and switch instructions

for each switch processor. The tile code contains translation of the filter functionality

including statements to transfer data into or outside the filter. The communication

schedule describes the static ordering of data to be sent or received. The schedule has an

initialization part which runs exactly once and a steady state part that loops indefinitely.

3.2 Automatic Soft Processor Generation

The design space exploration of scalable soft processor systems requires automated

approaches to generate the multiprocessor system. Automated approaches are required to

 26

customize each processor according to the application segment executing on it. Previous

approaches to generate and customize single soft processor systems automatically have

been analyzed in [11]. We extend the Soft Processor Rapid Exploration Environment

(SPREE) described in [11] to support the automatic generation of a large number of

customized multiprocessors. The SPREE framework generates synthesizable RTL

descriptions of processors from high-level descriptions of the micro-architectural features

such as the data path, control path and instruction set architecture. In this framework, the

user specifies the processor as an interconnection of basic micro-architectural features,

such as adders, instruction fetch units, and register files. Next, a set of scripts verify the

validity of the specified description and generates a datapath description of the processor

using a library of hand-coded basic components. Finally, the tool generates the control

path logic necessary to coordinate the elements in the data path. An overview of the

SPREE infrastructure is shown in Figure 12.

We generate our soft processors from the processor templates produced by SPREE.

Although SPREE serves as a good tool to generate the basic components of our soft

multiprocessor systems, the tool has some limitations. For example, SPREE considers

only simple in-order issue processors with on-chip memories. This is not a serious

limitation for our current evaluation since memory requirements for most of our

benchmarks can be easily satisfied with the existing memory bits available in commercial

FPGAs. In Chapter 5, we show that memory requirements of the application more or less

remain the same or decrease slightly when the application is mapped over large

multiprocessor systems.

 27

Figure 12: Soft Processor Rapid Exploration Environment (SPREE) [11]

Although caches are not supported in the present architecture, we do not consider their

absence as a serious limitation since the proximity of memory and logic in FPGAs

enables abundant on-chip memory bits to be used as good alternative to complicated on-

chip caches. In future work, we plan to extend our approach to support off-chip

memories. Some of the other limitations include a lack of support for dynamic branch

predictions, exceptions and operating systems. In general, the simplicity of processors

helps us to fit large multiprocessor systems on standard FPGAs and study the impact of

several micro-architectural parameters on the overall area, power and performance of our

soft multiprocessor systems. A simple 3-stage SPREE processor is shown in Figure 13.

Verilog Processor Designs

Processor

Description

RTL Generator

Area,

Power, Frequency

Quartus CAD Flow SPREE MIPS Compiler

 28

Figure 13: Architecture of a simple SPREE Processor

3.2.1 Soft Multiprocessor Interfaces

The choice of interconnection topology plays an important role in the performance of

communication-intensive multiprocessor systems. The soft processors in our

multiprocessor systems are interconnected using simple point-to-point FIFO links. We

justify this architectural choice with the following reasons:

a. Studies regarding interconnection topologies [5] show that the rich

modern FPGA fabric is capable of supporting highly-interconnected

topologies such as direct point-to-point links.

b. Point-to-point links are more scalable than bus-based networks since the

number of links increases proportionately with the number of processors

in the system. The number of links increases linearly in a mesh type

topology whereas it increases quadratically in a fully interconnected

topology.

c. The RAW-style architecture with dedicated switch router per processor is

likely to consume more logic and memory resources in FPGAs since each

switch processor has a dedicated processor pipeline and instruction

IFetch/

Decode

Execute/

Memory

Write

Back

IMEM DMEM Reg File

 29

memory. Since the routing and placement tasks are handled by automated

CAD tools in FPGAs, the mesh topology need not result in a strict grid-

layout within the FPGA.

Synchronization is implemented in a very simple and efficient way by blocking

read/write operations on FIFO empty/full conditions. Although this approach is very

similar to [4], the latter uses expensive and complicated dual-port BRAM based

communication controllers for synchronization. In contrast, our approach uses

inexpensive logic registers available in FPGAs. The approach proposed in [4] has the

benefit that any processor can interface with any other processor in the system through a

communication controller. This flexibility is made possible through a complicated

addressing scheme where an interface unit attached to the communication controller

decodes each FIFO address and generates write control signals for FIFOs. Although the

scheme is attractive due to its flexibility, the inherent complexity of the communication

controller makes it a poor interconnect solution in terms of area. Instead, we implement

FIFO blocking mechanisms in software that check FIFO empty/full conditions and

execute empty loop instructions during blocked transfers. The software approach has the

benefit that it simplifies the integration of processors and minimizes hardware resources

required for synchronization. Figure 14 shows an example of an interconnection where

processors are connected together by FIFOs. Each FIFO in the illustrated example has a

capacity of ‘n’ words where each word represents 32 bits or 4 bytes of data. 32 bits were

selected to match the size of the processor register. The FIFOs can be read or written

simultaneously. The FIFO implements a half-duplex communication between a pair of

processors. Two FIFOs can implement a full-duplex communication between each pair of

 30

processors. Each processor has memory mapped input/output ports which can be

interfaced directly to the FIFOs. Memory mapped ports facilitate reads/writes to the

FIFOs through conventional load/store instructions. To minimize the inter-tile data

transfer latency, which is critical to instruction level parallelism, the memory mapped I/O

ports are integrated into the bypass paths of the processor pipeline. A typical inter-tile

transfer is described as follows: During the first cycle, the execution result from the

producer is written to a FIFO location through a store instruction. During the next cycle,

the consumer loads the value into its register through a load instruction. Thus, each inter-

tile transfer consumes only 2 cycles.

Figure 14: Set of processors interconnected by FIFOs

Table 1: Resource usage of a simple FIFO

ALUTs 11

Registers 72

Memory bits 128

F/D

E/M

WB

F/D

E/M

WB

0 1 2

3 4 5

--Processor

--Circular FIFO

 31

The FIFO can be implemented using a minimal set of logic resources as shown in Table

1. Hence our approach guarantees that the logic resources required for interconnect do

not seriously constrain the scalability of the soft multiprocessor system.

3.2.2 Interconnection Topologies

Topology refers to the arrangement of processors and links in the multiprocessor system.

Topology has a direct impact on the performance of the multiprocessor system since it

dictates the way processors exchange data among themselves. Smaller multiprocessor

systems use bus-based approaches. Previous research has been shown that bus-based

topologies do not scale well with larger multiprocessor systems since the constraint on

resources steadily increases with the number or processors. Pipelined channels could

overcome the limitations of buses since the number of links can grow linearly with the

number of computational nodes. RAW uses pipelined channels interconnected in a mesh-

type topology to interconnect its sixteen processing nodes. The mesh topology guarantees

that the maximum distance the clock has to travel is across a pipelined channel. By

increasing the pipelined channels, the clock frequency can be improved significantly. The

mesh topology adapts well to the growing wire delay architecture models since

propagation delays can be translated to network hops. To obtain high performance, tiles

which communicate with each other often need to be placed closer to one another. Non-

neighboring tiles must forward the data via intermediate tiles through network hops.

Thus, judicious placement-routing policies when combined with different architectural

techniques can combat the increasing wire delays. In contrast, placement and routing for

FPGAs is largely a responsibility of automated design compilers. Manual placement and

routing in FPGAs can often result in sub-optimal performance due to the regularity in

 32

logic arrangement and inflexibility in the location of resources such as memories and I/O

pins. Thus, a multiprocessor system with a mesh topology may not result in a strict mesh-

like placement in FPGAs. For example, Figure 15 shows the layout of a six processor

system mapped onto a Stratix II EP2S180F1508C3 device.

 (A) Complete 16 processor system (B) Highlighted Processors 1,2,3,4

Figure 15: Layout of a 16 processor system on a Stratix II EP2S180F1508C3 device

The performance of mesh based architectures is dependent on how well the

communication patterns of the application are mapped onto the underlying hardware. In

RAW, the compiler statically schedules the data transfer orderings at each switch router.

Although the data-hop based mesh-topologies can be directly mapped onto soft

 33

multiprocessors, they do not take full advantage of the non-mesh layouts in FPGAs as

shown in Figure 15. For example, mesh topologies incur significant synchronization

overhead for inter-processor data transfers since each transfer requires status check and

read/write operations on the FIFOs. However, the synchronization cost may be reduced

by using direct point-to-point links between each pair of communicating processors.

Although the point-to-point topology can transform into a fully-connected network in the

worst-case, we will demonstrate in Chapter 5 that the point-to-point links do not increase

latency for many applications.

We illustrate three types of interconnection soft multiprocessor interconnection

topologies – mesh, point-to-point and hypercube. Consider two kinds of interconnection

topologies, as illustrated in Figure 16 and Figure 17. The labels on each processor in the

illustration indicate the steady state communication patterns of the corresponding

processors. In the mesh type topology, each soft processor has at most four ports – North,

South, East and West. The communication between non-neighboring processing nodes

must hop through intermediate nodes.

In the example illustrated in Figure 16, processor 3 produces two values under steady

state conditions which are sent to its North and East ports. Processors 0 and 4 receive the

data, compute the results and route the results to processor 1. Processor 1 assembles the

data in their respective arriving sequence and forwards them to processor 5 via processor

2. Note that in this example, the data produced by processor 0 and 4 could have been

forwarded to 5 through direct links. An alternate topology that uses direct point-to-point

 34

links between processor 0, 4 and 5 is shown in Figure 17. Clearly, the point-to-point

topology incurs fewer synchronization and transfer hops when compared to the mesh-

topology. We will analyze the area and performance benefits of using a point-to-point

topology against a mesh topology in Chapter 5.

Figure 16: Mesh topology

Figure 17: Point-to-point topology

A hypercube topology is illustrated in Figure 18. In this figure, each node represents a

processor and each edge represents a FIFO channel between a pair of processors. The

hypercube topology offers more flexibility than the mesh topology through additional

communication links. However, the hypercube is less flexible when compared with a

 35

fully-connected network. We examine the impact of using a hypercube topology for

interconnecting the soft processors in Chapter 5.

Figure 18: Hypercube topology for 16 processors

3.2.3 Application Specific Soft Multiprocessor Optimizations

Previous research has shown that application-specific micro-architectural customizations

on individual soft processors can save significant area and power. In some cases, logic

reduction has been shown to improve performance. We investigate the impact of

individual processor optimizations on performance, area usage and power consumption

for overall multiprocessor systems. Some of the optimizations under consideration are

described below:

Application-specific instruction subsetting and memory sizing

Applications typically require far fewer instructions than are supported by the instruction

set architecture. Figure 19 shows the average instruction usage of 7 Streamit benchmarks

mapped onto 16 core soft multiprocessors. Figure 20 shows the average percentage of

 36

used instructions in each processor for a software FM radio application. As observed in

Figure 19, all applications, except DES, use less than 50% of the supported ISA. Smaller

kernels such as Lattice filter use only about 26% of the available ISA. This motivates us

to study the impact of using reduced decode logic and control circuitry for individual

processors on the basis of application-specific instruction usage patterns.

Figure 19: Instruction set usage for 7 Streamit benchmarks mapped to 16 soft

processor systems

As applications are mapped over a large number of processors, they become finer

grained. Each processor requires less on-chip memory to store instructions and data for

its application segment. We evaluate the impact of application granularity on on-chip

memory later in Chapter 5.

 37

Figure 20: Percentage ISA usage for a Software FM Radio over 16 processors

Pipeline stage optimization

The number of pipeline stages influences the complexity, size and performance of any

processor. Deepening the pipeline is likely to increase the area of the processor, as

observed in [11]. Although the addition of pipeline registers can improve the clock

frequency, the CPI may be adversely affected due to a significant increase in branch

penalties. We analyze the impact of tuning the pipeline depth of individual processors on

the performance of multiprocessor systems.

FIFO buffer sizing

Stream applications are typically communication intensive. Most stream applications

consist of kernels that interact with each other in real time to exchange data. In this

context, the architecture of the inter-processor interconnect plays a vital role in the

performance of communication intensive architectures. In many cases communication

 38

overhead must be significantly reduced to achieve high speedups. It is worthwhile to take

a look at how variations in buffer sizes can affect application performance.

 39

CHAPTER 4

SUMMARY OF DESIGN FLOW

Our soft multiprocessor design framework extends an existing stream compiler and

integrates a processor generator to create a scalable flow for soft multiprocessor systems.

Figure 21 shows an overview of the proposed design flow for the soft multiprocessor

synthesis framework. The tool allows the designer to specify different parameters of the

multiprocessor system such as the topology, the number of processors and the custom

features such as the pipeline depth and interconnect buffer size.

Figure 21: Summary of design flow for soft multiprocessor synthesis framework

 40

The application is specified in Streamit. The Streamit compiler maps the application to a

subset of the processors in the RAW architecture based on the number of processors

specified by the user. The mapping involves phases such as graph expansion,

partitioning, layout and scheduling. Streamit generates code for the RAW architecture

that has processors and communication controllers that coordinate the communication

between the individual cores. However, the code generated by Streamit cannot be

executed directly on our soft multiprocessor designs for two reasons – First, soft

multiprocessor systems generated using our flow do not support dedicated

communication controllers. Hence, there is a need to map the communication schedule

produced by Streamit onto the computation code. Second, the generated multiprocessor

systems support point-to-point and hypercube topologies in addition to the mesh topology

supported by the Streamit compiler. We developed a tool called SoftCoreMapper that

extends the Streamit compiler passes to support the above requirements. Specifically,

SoftCoreMapper performs the following operations on the Streamit output:

Dead Code Elimination – In this phase, RAW-specific routines and segments of the

application are removed to reduce the code size and remove irrelevant operations.

Specifically, this phase removes RAW initialization routines and replaces floating point

operations with their equivalent integer operations.

Communication Rescheduling – Communication rescheduling analyzes the

communication patterns produced by the Streamit compiler to derive a suitable schedule

for the target topology of the soft multiprocessor system. At present, the rescheduler

supports a point-to-point and hypercube topology. However, this phase can be extended

 41

to support other topologies as well. We illustrate the communication rescheduling

algorithm for a point-to-point topology in Figure 22.

Figure 22 – Rescheduling algorithm for point-to-point topology

For a point-to-point topology, the communication schedule generated by Streamit is

represented as a data flow graph where the nodes represent the individual processors and

the edges are represented by the instructions that transfer the data between the processors.

Next, for each processor and each data value produced by that processor, we traverse the

data flow graph for the generated data from source to destination(s). The traversal may

produce multiple paths depending on whether the data is consumed by a single or

multiple processors. Next we define a hop edge as an instruction that transfers data

between two processors without performing any operation on the data. For each data path

in step 4 of Figure 22, we discover all the hop edges and eliminate them. Next, a direct

edge is inserted between the producer processor and all the consumers of the data.

Finally, the resulting sub graph is used to reschedule the communication for the point-to-

point topology.

1. Comm schedule - directed graph

2. For each generated data in graph

3. {

4. Traverse the graph to discover hop edges

5. Eliminate hop edges

6. Insert point-to-point edges

7. }

8. Reschedule communication

 42

Communication Mapping – Since the generated soft multiprocessor designs do not

support dedicated communication controllers for managing the communication between

the processing cores, there is a need to integrate the communication, which is explicitly

specified in the schedule generated by Streamit, into the application code for each

processor. This phase analyses the computation and communication patterns to find a

one-to-one mapping between the application code and the communication schedule.

Next, register-mapped data transfer statements in the application code are replaced with

memory-mapped communication statements.

Synchronization and Code Generation- In the final phase, the SoftCoreMapper

identifies portions of the application code where data communication occurs and inserts

synchronization primitives. Examples of synchronization primitives include register

comparison operations to check the empty or full conditions of FIFOs.

Once the SofCoreMapper generates code for each soft microprocessor, the code is

compiled through a modified MIPS gcc compiler supported by the SPREE package. The

compiled binaries are analyzed by an application binary profiler to determine the

application-specific instruction usage patterns of each processor.

A significant challenge in the design space exploration of large-scale soft multiprocessor

systems is the generation of the systems itself. To address this issue, we designed an

Automatic Soft Multiprocessor Generator (ASMG). This tool accepts various parameters

of the multiprocessor system from the user such as the pipeline depth of each processor

 43

and the interconnect buffer size. It also allows the user to customize the instruction set

logic according to the profiling information generated by the application binary profiler.

Next, ASMG generates the Verilog descriptions for the multiprocessor systems and

customizes the data path and control path logic to suit the requirements of the application.

The switch schedules produced by Streamit are analyzed to derive communication ports

for each processor. Finally, interconnection networks are generated according to the

communication patterns generated by the rescheduler. In a mesh topology, the number of

I/O interfaces is at most four. In case of a direct point-to-point topology, each processor

can directly interface with all its data sources and sinks.

The multiprocessor Verilog HDL files are synthesized with the Altera Quartus

synthesis framework and simulated using the ModelSim [33] simulator to derive area,

power and performance results.

 44

CHAPTER 5

EXPERIMENTAL RESULTS

Soft multiprocessor systems consisting of 1, 4, 9 and 16 processors were generated using

our framework. We synthesized our designs to Altera DE2 and DE3 development boards

consisting of 90nm Cyclone II EP2S180 and 65nm Stratix III EP3SL150 FPGAs,

respectively. The performance was measured in terms of absolute wall clock type per

output, a measure of throughput for streaming applications. The wall clock time was

obtained by multiplying the cycles required to produce an output under steady state

conditions by the inverse of the maximum operating frequency of the design reported by

the Quartus compiler. To assess the maximum frequency of each design, we synthesized

each design with a timing constraint of 150MHz.

Figure 23: Altera DE3 board with Stratix III device EP3SL150

In the following sections, we evaluate the performance, area and power consumption of

our designs and assess their scalability for all the benchmarks. Finally, we investigate the

 45

impact of application specific microarchitectural customizations on the generated

designs.

5.1 Benchmarks

The proposed framework was evaluated using a set of benchmarks available with the

Streamit compiler. This set consists of signal processing kernels and security, sorting and

multimedia applications. Table 2 describes some benchmarks used to evaluate our

framework.

Benchmark Description

Bitonic High performance bitonic sorting network

DES Implementation of DES Encryption Algorithm

FFT Fast Fourier Transform kernel.

Filterbank Filterbank for multirate signal processing application

FM Software FM Radio with multiband equalizer

Autocor Filter which generates autocorrelation series for input

Lattice Ten stage lattice filter

Equalizer An equalizer program for audio applications

Table 2: Framework Evaluation Benchmarks

Most streaming applications fall in the category of signal processing, audio, video,

multimedia, encryption and networking. In the benchmark set under consideration,

applications such as FFT and Filterbank represent small signal processing kernels. Larger

applications such as an audio beamformer, FM Radio and Equalizer reuse the kernels to

create complex real-world applications. Many signal processing and audio/video

 46

benchmarks require floating point computations which are not currently supported by the

basic SPREE processor [11]. As a workaround, we replace floating point computations

by their equivalent fixed point operations in software.

5.2 Interconnection topology variation

In this experiment, we measure the run time performance of four applications for mesh

and point-to-point topologies. Figure 24 shows the normalized application speedup of a

point-to-point topology against a mesh topology. All the processors in the designs consist

of three stage pipelines. The cycles for output and maximum design frequency for all the

benchmarks are given in Table 3. Overall, point-to-point interconnect outperforms a

mesh-style network for all applications by a factor of between 1.1x and 2x. Point-to-point

topologies gain significant cycle speedups due to reduced synchronization overhead from

the elimination of network hops. Point-to-point topologies consumed 28.6% less cycles

when compared to mesh-style topologies on average. Interestingly, point-to-point

topologies also gave slightly better performance in terms of design frequency.

Figure 24: Performance of point-to-point topology vs. mesh topology

 47

Application Mesh Clock Cycles

Point-to-point Clock

Cycles

 6 9 16 6 9 16

Equalizer 15144 8625 4138 9812 4765 2475

Filterbank 3353 3625 1954 3021 1339 1503

FMRadio 14637 8923 4006 9816 4930 2392

Autocor 250 189 224 211 214 208

Application Mesh Design Freq

Point-to-point Design

Freq

 6 9 16 6 9 16

Equalizer 127.6 122.0 118.8 127.2 122.5 121.0

Filterbank 124.0 123.0 118.0 122.5 121.8 121.4

FMRadio 128.7 121.9 119.0 126.5 121.7 121.3

Autocor 124.2 122.5 118.5 122.6 121.7 120.5

Table 3: Comparison of clock cycles and frequencies

For a sixteen processor system, the point-to-point topology shows an average 2%

improvement in design frequency. This frequency improvement results from the removal

of unnecessary input/output FIFO ports. In a mesh-style topology, many processors need

close to four ports as these nodes perform data forwarding in addition to computation.

The improvement is observed even though processors with large data fan-outs (sources)

and fan-ins (sinks) in point-to-point topologies typically require more than four ports. For

example, in a mesh-style topology for a 16 processor FM Radio application, the average

port usage per processor is approximately 3, while for a point-to-point topology, the

average port usage per processor is approximately 2. The processors executing splitter

and joiner filters in the point-to-point topology for this application requires 11 and 9

ports, respectively. For smaller designs, like AutoCor, cycles per output increases or

remains unchanged when parallelized over larger multiprocessor systems since increased

 48

communication costs dominate over the reduced computation costs. A comparison of the

area costs of mesh and point-to-point topologies show that in larger multiprocessor

systems, the point-to-point topologies consume about 2 to 5% less area than the mesh

topologies.

In all designs, the critical path is located within the three-stage processor logic. Thus, the

addition of point-to-point links does not degrade the maximum design frequency

significantly, although the addition of more point-to-point links may make the FPGA

more difficult to route. The number of point-to-point links scales linearly with processor

count in most designs.

In another experiment, we compare the hypercube topology against a mesh and a point-

to-point topology. The hypercube has more flexibility in terms of connections when

compared to a mesh topology. However, the hypercube does not offer an unlimited

connectivity as in the point-to-point case. The results are plotted in Figure 25.

In general, the hypercube topology gives a modest 2 to 8% improvement over the mesh

topology. The performance gain results from the reduced number of cycles due to the

increased connection flexibility. However, the direct point-to-point topology still

outperforms both mesh and hypercube by around 60% in the applications under

consideration. Our results also indicate that the performance of the topology is an

application specific variable and point-to-point topologies can give better performance

for coarse-grained applications, such as FMRadio and Equalizer, rather than fine-grained

kernels.

 49

Figure 25: Performance of point-to-point and hypercube topologies normalized to a

mesh topology

5.3 Customization of pipeline depth

The choice of microarchitectural pipeline depth of each processor influences the overall

throughput of the application. The impact of three, four and five stage pipelining on

application performance is studied in this discussion. The three stage pipeline consists of

the fetch/decode, execute/memory and the write back stages. Four stage pipelines extend

three stage pipelines by splitting the execute/memory stages into two separate stages.

Finally, the five stage pipelines extend the four stage pipelines by adding an additional

execution stage. We found that deepening individual processor pipelines from three to

four stages can give substantial performance improvements of 22% on average at a 9.6%

increase in area. Figure 26 shows the relative execution time per output for six stream

benchmarks mapped over 16 processors.

 50

The four-stage pipeline multiprocessor systems generally give better performance than

their three-stage and five-stage counterparts. The critical paths of the multiprocessor

systems for all designs are within the individual processors. In three-stage pipelines, the

critical path is located between the register file and memory write-back logic through the

branch predictor. For four- and five-stage pipelines, the critical path is between the

register file and memory write-back logic through the integer multiplier.

The relative performance improvement of the four-stage pipelines results from improved

per-processor performance. On average, the maximum design frequency improves by

26% from 118 MHz to 149 MHz as a transition from three to four-stage pipelines is

made. However, the maximum design frequency remains largely unchanged when the

pipeline depth is increased to five since the critical path remains between register file and

memory write-back logic through the integer multiplier.

Figure 26: Relative performance of 4 and 5 stage pipelines against a 3 stage pipeline

 51

As more stages are added to the pipeline, an increase in the number of cycles per output

is observed for all the applications. When compared to three-stage pipeline

multiprocessor systems, the cycles per output increases by 5% for four-stage systems and

by 14% for five stage systems. The trends are consistent for 6 and 9 processor design

cases. The increase in cycles can be attributed to two factors. First, the processors

generated by the SPREE framework use interlocking to resolve data hazards. As pipeline

depth increases, it becomes increasingly difficult for the compiler to support independent

instructions within the interlocking window, which introduces more stalls. SPREE uses a

simple static branch not taken prediction scheme [11]. In general, branch mispredictions

can be costly in deeper pipelines. Also, it can be difficult to support branch delay slot

instructions in deeper pipelines, causing more stalls. Stalls due to branch mispredictions

and data hazards in individual processor pipelines can ripple across multiple processors in

communication-intensive stream applications.

5.4 Customization of communication buffer depth

Stream applications are often communication-intensive since they consist of a pipeline of

tasks. In many cases, communication overhead must be amortized to achieve effective

performance. Figure 27 shows the variation of normalized application speedups with

varying FIFO sizes for five benchmarks mapped to nine processors using previously-

discussed topology and processor pipeline preferences. For large applications, we observe

that the cycle reduction (e.g. throughput) increased once a critical FIFO size is reached.

For example, for Bitonic sort, the application speedup improved by over 20% when FIFO

size was increased from 8 to 16 words.

 52

Smaller applications, such as AutoCor and Lattice, benefit little from an increase in

buffer sizes due to limited inter-processor communication. In general, well-matched

communication buffers prevent communication stalls without wasting system resources.

Each soft multiprocessor system consists of customizable processors which communicate

using simple FIFO buffers. In previous work [4], communication controllers (CC) were

used to interconnect processors. Each CC requires 468 four-input LUTs and about 128

flip flops for four word storage. In contrast, our synthesis results indicate that each FIFO

requires only 11 LUTs, 72 registers and 128 memory bits, a small fraction of available

FPGA resources.

Figure 27: Impact of the size of the interconnect buffer on application performance

5.5 Soft multiprocessor ISA subsetting and memory size optimization

In general, soft microprocessors use only a portion of their ISA for filter implementation.

As discussed in the previous sections, the average instruction set usage for majority of

 53

the benchmarks mapped over to sixteen processors was typically less than 50% of the

available instructions. In fact, smaller applications such as Lattice consumed only about

26% of the available instructions. We showed in Chapter 3 that for a given application,

the usage of instructions per processor in the multiprocessor system is highly variable.

For example, the instruction usage of each processor in a sixteen processor system for

software FM Radio application varied between 20% and 50%.

Figure 28: Area savings by instruction set customization for sixteen processors

All these observations lead to the possible area savings that one could derive by

customizing the instruction set in each processor according to the segment of the

application running on it. We used the results from the binary profiler to customize the

processors for each application. The results are plotted in Figure 28. On average,

instruction set customization yielded a 27% percent improvement in area for the seven

multiprocessor designs. The majority of the area savings were obtained in the decode

 54

logic and control circuitry in each processor. On average, the power consumption of

subsetted designs consistently decreased by about 30% for 6, 9 and 16 processor designs.

A modest 4.2% improvement in maximum design frequency was also observed for the

customized designs. The detailed frequency results for sixteen processor designs are

illustrated in Table 4.

Application

Frequency Before

Instruction Removal

Frequency after

Instruction removal

FMRadio 119.0 123.0

Beamformer 118.8 121.2

Autocor

118.5

123.5

Table 4: Design frequency improvement by instruction subsetting

As our soft multiprocessor systems use on-chip memory bits in the FPGA for storing

program code and data, memory is a critical resource that limits the number of soft

multiprocessors that can be embedded into each FPGA. The memory requirements are

further constrained by the fact that some of the components like the register file and the

data memory needs dual port RAMs for simultaneous access of two operands. We use

M4K and BRAM memory bits to implement instruction and data memories for the

processors. In the following paragraphs, we present the results of scalability of soft

multiprocessor systems from a memory point of view. The results and the following

analysis reveal some interesting conclusions.

The average memory usage per processor in soft multiprocessor systems is plotted in

Figure 29 as processors are scaled up from one to sixteen. Note that the memory

 55

requirement of each processor decreases significantly as the application is spread across

more processors. For example, the memory required by each processor in larger

benchmarks such as DES and Filterbank decreases nearly by an order of magnitude when

processors are scaled from one to six. These results illustrate that by customizing each

processor according to reduced memory size, it is possible to scale streaming applications

across larger soft multiprocessor systems. Figure 30 plots the total memory usage of the

entire soft multiprocessor system as processor count is scaled up from one to sixteen.

Surprisingly, the memory requirements do not significantly increase as more processors

are added to the multiprocessor system. The total memory usage of some of the larger

benchmarks is lower than the memory requirements of the single processor system. The

reduction is attributed to the lower memory requirement of each processor for smaller

kernels. This result further corroborates our earlier observations that it is possible to scale

soft multiprocessor systems for streaming applications if the memory size of each

processor is customized on an application-specific basis.

 56

Figure 29: Average memory usage per processor for eight benchmarks

Figure 30: Total memory usage of scaling soft multiprocessor systems

 57

5.6 Application scalability

Figure 31 shows the application speedup for the set of eight benchmarks normalized to a

single soft core system for the parameters described in previous subsections. Each

processor in the soft multiprocessor system consists of a three stage pipeline. The

processors are interconnected using a point-to-point topology with all the interconnect

buffers having a width of four words. The cycles per output and maximum design

frequency in MHz are given in Table 5. The performance of larger applications such as

DES, Bitonic and Filterbank improves by about a factor of 5x when parallelized over

sixteen processors. The speedup improvement is primarily attributed to the significant

amount of coarse-grained task-level parallelism present in these applications. However,

the performance of smaller benchmarks such as Autocor and Lattice, degrades when

parallelized over multiple processors. The performance degradation is due to the

increased communication overhead which is present when the application is parallelized

over larger multiprocessors. A similar trend is seen for the Filterbank benchmark as

processor counts are scaled up from nine to 16 processors.

As seen in Table 5, the maximum frequency of all the designs degrades when more soft

processors are embedded on the FPGA substrate. On average, a 11% frequency

degradation is observed when all applications are mapped to 16 processors. The critical

paths in these designs are within the processors, between the register file and memory

through the branch predictor.

 58

Figure 31: Application speedup of 8 benchmarks over 1 to 16 processors

 Clock Cycles Frequency (MHz)

Benchmark\Processors 1 6 9 16 1 6 9 16

DES 69094 23338 16452 11527 131 127 122 121

Bitonic 13511 3628 2883 2470 131 123 122 121

Filterbank 7986 3021 1339 1503 131 127 131 118

FMRadio 17728 9816 4930 2392 131 127 130 117

Equalizer 13862 9812 4765 2475 131 127 123 121

FFT 137 64 63 54 131 127 121 119

Autocor 306 211 214 208 131 123 122 121

Lattice 55 75 40 43 131 130 121 122

Table 5: Clock cycles and Frequency for 8 applications

Figure 32 shows the dynamic core power consumption at 50 MHz for 1, 4, 9 and 16

processor designs for seven benchmarks. A single processor design consumes about 60 to

 59

100 mW of dynamic power at 50MHz. The dynamic power consumption scales up

linearly when the number of processors is increased from one to four. The power

consumption for 9 and 16 processor designs for Bitonic sort show mostly linear growth.

In larger designs, each processor switches fewer times on average to produce the same

number of outputs. However, increased communication and synchronization power costs

increase the overall dynamic power. Note that the power consumption of smaller

benchmarks such as Autocor, Lattice and FFT are considerably lower than those of the

larger benchmarks. We observed that these applications were not large enough to

distribute enough work to approximately 25% of the available processors in sixteen

processor systems. Also, each processor in such benchmarks performed less computation

due to the fine granularity of the application.

Figure 32: Dynamic power consumptions of 1, 4, 9, 16 soft multi processor systems

 60

5.7 Combined impact of customizations

In this section, the combined impact of all the optimizations is considered. The

application speedup of four benchmarks under their best case and worst case

configurations are considered for 16 processors. The best case configuration is the choice

of micro-architectural pipeline depth, interconnection topology and instruction set that

gives the best application performance in absolute execution time. The worst case

configuration uses the multiprocessor parameters that give the worst case application

performance. In the given example, the best case is represented by a multiprocessor

system where each processor has a four stage pipeline with all the instructions subsetted

according to the requirements of the application segment. The best case uses ideal

interconnect buffer sizes and a direct point-to-point topology. In contrast, the worst case

design uses processors with five stage pipelines with a full instruction set. The processors

are interconnected using a mesh topology with each FIFO configured for the worst case

word size. Figure 33 shows the normalized application speedup of the best case

configurations of four benchmarks against their worst case configurations for each

optimization and in total.

On average, the performance of applications improves by a factor of 2.1x when all the

customizations are applied on the soft multiprocessor system. The primary factors

contributing to the overall application speedup are the choice of the pipeline stage depth

and the choice of the interconnection topology. Although instruction subsetting saves

considerable area, it contributes only 4% improvement to the overall application speedup.

Our results indicate that a judicious choice of interconnection topologies and

 61

microarchitectural features can give significant performance and area benefits in soft

multiprocessor systems.

Figure 33: Impact of combined optimizations

Previously in [11], it was determined that a single SPREE soft processor demonstrates an

11% speedup over an Altera NIOS II/s processor. Our results add to this improvement.

 62

CHAPTER 6

SUMMARY AND FUTURE WORK

The thesis has outlined an automatic soft multiprocessor generation and synthesis

framework to facilitate the rapid design space exploration of soft multiprocessors. Our

framework is capable of generating scalable soft multiprocessor systems by integrating

efficient communication structures with customizable processors. The tool supports a

high-level application compilation infrastructure that integrates state of the art streaming

compilers with our own tools. The developed compilation infrastructure can be used to

synthesize applications written in Streamit language to binaries that are executable on

individual processors. Our approach has been verified with a diverse set of existing

parallel computing benchmarks that represent the signal processing, multimedia and

security application domains.

Results show that soft multiprocessor systems consisting of sixteen processors generated

using our framework can offer 5x to 6x speedup over their uniprocessor counterparts

synthesized in modern FPGAs. We illustrated that a judicious selection of various micro-

architectural features such as interconnection topology, pipeline depth, inter-processor

buffer size, memory size and customized instruction set can improve area by around 26%

and performance by a factor of 2.1X in many applications. Our evaluation of soft

multiprocessor interconnection topologies shows that highly interconnected topologies

such as point-to-point can offer better performance than regular mesh topologies.

 63

In the future, we plan to improve our soft multiprocessor systems by supporting advanced

features such as off-chip memory accesses and better branch prediction schemes. We also

plan to look into aggressive high-level compiler optimization techniques to improve

application performance. We hope that the developed framework will facilitate rapid

design space exploration of soft multiprocessors in the FPGA community.

 64

BIBLIOGRAPHY

[1] Y. Jin, N. Satish, K. Ravindran, K. Keutzer, “An automated exploration

framework for FPGA-based soft multiprocessor systems,” In International

Conference on Hardware/Software Co design and System Synthesis (CODES),

September 2005, pp. 273-278.

[2] K. Ravindran, N. Satish, Y. Jin, K. Keutzer, “An FPGA-based soft multiprocessor

system for IPv4 packet forwarding,” In International Conference on Field

Programmable Logic and Applications (FPL),August 2005, pp. 487-492.

[3] J. Cong, G. Han, W. Jiang, “Synthesis of an application-specific soft

multiprocessor system,” In International Conference on Field Programmable

Logic and Applications, 2007, pp. 99-107.

[4] H. Nikolov, T. Stefanov, E. Deprettere, “Efficient automated synthesis,

programming, and implementation of mult-processor platforms on FPGA chips,”

In International Conference on Field Programmable Logic and Applications

(FPL), August 2006, pp. 1-6.

[5] M. Saldana, L. Shannon, J.S. Yue, S. Bian, J. Graig, P. Chow, “Routability of

Network Topologies in FPGAs,” In IEEE Transactions on Very Large Scale

Integration Systems, March 2007, pp. 948-951.

[6] H.C. Freitas, D.M. Colombo, F.L. Kastensmidt, P.O.A. Navaux, “Evaluating

Network-on-Chip for Homogeneous Multiprocessors in FPGAs,” In IEEE

International Symposium on Circuits and Systems (ISCAS), May 2007, pp. 3776-

3779.

[7] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and automated

multiprocessor system design, programming, and implementation,” In IEEE

Trans. On Computer-Aided Design of Integrated Circuits and Systems (TCAD),

March 2008, pp. 542-555.

[8] N. Kapre, N. Mehta, M. DeLorimier, R. Rubin, H. Barnor, M. Wilson, M.

Wrighton, A. DeHon, “Packet switched vs. time multiplexed FPGA overlay

networks,” In IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), April. 2006, pp. 205-216.

[9] J.P. Derutin, L.Damez, A. Desportes, J.L.L. Galilea, “Design of a scalable

network of communicating soft processors on FPGA,” In International Workshop

on Computer Architecture for Machine Perception and Sensing (CAMPS),

September 2006, pp. 184-189.

 65

[10] L. Sun, E. Aboulhamid, and J.-P. David, “Network on chip using a reconfigurable

platform,” In IEEE Midwest Symposium on Circuits and Systems, Dec. 2003, pp.

819-822.

[11] P. Yiannacouras, J.G. Steffan, J. Rose. “Application-specific customization of soft

processor microarchitecture,” In International Symposium on Field-

Programmable Gate Arrays (FPGA), February 2006, pp. 201-210.

[12] O. Hebert, I.C. Kraljic, Y. Savaria. “A method to derive application-specific

embedded processing cores,” In International Conference on Hardware Software

Codesign (CODES), September 2000, pp. 88-92.

[13] R. Dimond, O. Mencer, W. Luk, “CUSTARD- A customizable threaded FPGA

soft processor and tools,” In International Conference on Field Programmable

Logic and Applications (FPL), August 2007, pp. 1-6.

[14] R.G. Dimond, O. Mencer, W. Luk, “Combining Instruction Coding and

Scheduling to Optimize Energy in System-on-FPGA,” In IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), April 2006, pp.

175-184.

[15] B. Fort, D. Capalija, Z. Vranesic, and S. Brown, “A multithreaded soft processor

for SoPC area reduction,” In IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), Apr. 2006, pp. 131-142.

[16] M. Labrecque, J.G. Steffan, “Improving pipelined soft processors with

multithreading,” In International Conference on Field-Programmable Logic and

Applications (FPL), August 2007, pp. 210-215.

[17] M. Labrecque, P. Yiannacouras, J. G. Steffan, “Scaling Soft Processor Systems,”

In IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), April 2008, pp. 195-205.

[18] M. I. Gordon, W. Thies, S. Amarasinghe, “Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs,” In International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS), March 2006, pp. 151-162.

[19] M.B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H.

Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M.

Frank, S. Amarasinghe, A. Agarwal, “Evaluation of the RAW Microprocessor:

An Exposed-Wire-Delay Architecture for ILP and Streams,” In International

Symposium on Computer Architecture (ISCA), June 2004, pp. 2

 66

[20] M.I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A.A. Lamb, C. Leger,

J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe, “A Stream Compiler for

Communication Exposed Architectures,” In International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS), October 2002, pp. 291-303.

[21] R. Hoare, S. Tung, K. Werger. “An 88-Way multiprocessor within an FPGA with

customizable instructions,” In Proceedings of the 18
th

 International Parallel and

Distributed Processing Symposium (IPDPS), April 2004, pp. 258.

[22] S. Cravan, C. Patterson, P. Athanas, “A Methodology for generating application-

specific heterogeneous processor arrays,” In Proceedings of the Hawaii

International Conference on System Sciences (HICSS), January 2006, pp. 251a-

251a.

[23] J. Yu, G. Lemieux, “A case for soft vector processors in FPGAs,” In International

Conference on Field-Programmable Technology (FPT), December 2007, pp. 341-

344.

[24] R. Lysecky, F. Vahid, “A Study of the speedups and competitiveness of FPGA

soft process cores using dynamic hardware/software partitioning,” In Proceedings

of the Design, Automation and Test in Europe (DATE), March 2005, pp. 18-23.

[25] F. Sun, S. Ravi, A. Raghunathan, N. K. Jha, “Synthesis of application-specific

heterogeneous multiprocessor architectures using extensible processors,” In

Proceedings of the International Conference on VLSI Design (VLSID), January

2005, pp. 551-556.

[26] J. Yu, G. Lemieux, C. Eagleston, “Vector processing as a soft-core CPU

accelerator,” In International Conference on Field Programmable Logic and

Applications (FPL), September 2008, pp. 222-232.

[27] S. Craven, C. Patterson, P. Athanas, “Configurable Soft Processor Arrays using

the OpenFire Processor,” In Military and Aerospace Programmable Logic

Devices (MAPLD), September 2005

[28] M.A.R. Saghir, M. El-Majzoub, P. Akl, “Datapath and ISA customization for soft

VLIW processors,” In IEEE International Conference on Reconfiguurable

Computing and FPGAs (ReConFig), September 2006, pp. 1-10.

[29] D. Sheldon, R. Kumar, F. Vahid, D. Tullsen, R. Lysecky, “Conjoining soft-core

FPGA Processors,” In IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), November 2006, pp. 694-701.

[30] S. Kirkpatrick, J. C.D. Gelatt, and M. Vecchi. “Optimization by Simulated

Annealing,” In Science, May 1983

 67

[31] P. Yiannacouras, J. Rose, J. Gregory Steffan, “The Microarchitecture of FPGA-

Based Soft Processors,” In International Conference on Compilers, Architecture

and Synthesis for Embedded Systems (CASES), September 2005, pp. 202-212.

[32] F. Sun, S. Ravi, A. Raghunathan, N.K. Jha, “Custom-Instruction synthesis for

extensible-processor platforms,” In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol 23, Issue 2, December 2002, pp.

216-228.

[33] http://www.model.com/

[34] “Altera Excalibur devices,” http://www.altera.com/products/devices/arm/arm-

index.html.

[35] “Xilinx Virtex II Pro,”

www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Virtex-II+Pro+FPGAs

[36] “Nios,” http://www.altera.com/products/ip/processors/nios2/ni2-index.html

[37] “Microblaze,”

http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm

