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Abstract—Iterative algorithms represent a pervasive class of
data mining, web search and scientific computing applications.
In iterative algorithms, a final result is derived by performing
repetitive computations on an input data set. Existing techniques
to parallelize such algorithms typically use software frameworks
such as MapReduce and Hadoop to distribute data for an
iteration across multiple CPU-based workstations in a cluster and
collect per-iteration results. These platforms are marked by the
need to synchronize data computations at iteration boundaries,
impeding system performance. In this paper, we demonstrate
that FPGAs in distributed computing systems can serve a vital
role in breaking this synchronization barrier with the help of
asynchronous accumulative updates. These updates allow for the
accumulation of intermediate results for numerous data points
without the need for iteration-based barriers allowing individual
nodes in a cluster to independently make progress towards
the final outcome. Computation is dynamically prioritized to
accelerate algorithm convergence. A general-class of iterative
algorithms have been implemented on a cluster of four FPGAs.
A speedup of 7× is achieved over an implementation of asyn-
chronous accumulative updates on a general-purpose CPU. The
system offers up to 154× speedup versus a standard Hadoop-
based CPU-workstation. Improved performance is achieved by
clusters of FPGAs.

I. INTRODUCTION

Iterative algorithms form an important workload for dis-
tributed computing, including cloud computing. These algo-
rithms generally are structured to progress in a series of
iterations where the results of the current iteration are derived
from the results of the previous iteration using a fixed set of
operations. Although simple, Conway’s Game of Life, where
the state of a grid cell in a given iteration is based on the states
of its neighbors from the previous iteration, provides a familiar
example of an iterative algorithm. Many contemporary search
and data mining applications use iterative algorithms to refine
and process large volumes of data. For example, PageRank [1]
is used to refine the rank values of web pages in the world
wide web. K-means clustering [2] is an iterative algorithm
used to classify data in computational biology.

In most implementations of iterative parallel computation,
such as the widely-used MapReduce [3], a master node,
distributes input data to multiple worker nodes. Generally,
each iteration is scheduled as a separate task and intermediate
results from an iteration must be stored and synchronized in a
distributed file system (DFS) before the next iteration begins.
These types of barriers are particularly problematic for dis-
tributed systems for several reasons. First, a node must wait for
every other node to finish its task before the next iteration can

be scheduled. Synchronization requires repeated disk accesses
between successive iterations. Synchronization barriers also
introduce periods of traffic bursts within the cluster network,
degrading application performance and response time.

In many data mining and machine learning algorithms,
a selected portion of the data plays a critical role in the
convergence of the overall computation towards the final
result. For example, in the iterative formulation of Dijkstra’s
shortest path algorithm, a solution can be quickly determined
by exploring the nodes with the shortest paths from any given
node. Unfortunately, software frameworks such as MapReduce
and Hadoop lack mechanisms to prioritize the data, restricting
the ability to accelerate the computation. Several implemen-
tations of MapReduce on FPGAs and GPGPUs [4][5][6]
spatially parallelize the computation across multiple hardware
resources. Although these frameworks demonstrate improved
speedup over previous CPU-based approaches, they inherit
several limitations including the need to synchronize iterations
using a global interconnect and the absence of mechanisms to
prioritize data.

In this paper, we present Maestro, a first implementation
of an FPGA-based distributed system that uses asynchronous
updates [7] to break the synchronization barriers in iterative
algorithms. In Maestro, computations for a piece of data
progress as soon as an input which affects its value is
received, regardless of the iteration in which it was generated.
System-wide results are only synchronized at the end of many
computations, after the results have converged. Intermediate
results are stored in a memory close to the FPGA, eliminating
the need for multiple reads and writes to a distributed file
system. Further, Maestro dynamically refines the input data
set during the computation allowing critical data to receive
priority access to the available hardware resources. Our system
has been evaluated using three popular iterative algorithms
in a laboratory cluster consisting of four Altera DE4 FPGA
development boards. Experiments show that our system pro-
vides over 2 orders of magnitude speedup over Hadoop and
up to 40× speedup over a CPU-based implementation [7] of
asynchronous accumulative updates.

II. RELATED WORK

A. Previous Iterative Algorithm Implementations

A number of deployments of MapReduce and other imple-
mentations of iterative algorithms on distributed hardware have
been demonstrated. MapReduce was introduced as a compute



model for FPGAs and GPUs in 2008 [8]. A set of libraries
for a heterogeneous system containing a single component
of each device was demonstrated. FPMR [5] demonstrated
an implementation of iterative algorithms using an FPGA
and external DDR memory. FPMR addresses synchronization
issues for a single-FPGA system by allowing computation to
start as soon as intermediate values are available for a specific
element up until an iteration boundary. If the computation
requires multiple iterations, data values must be written back
to the global memory. Axel [4] is a heterogeneous cluster
consisting of FPGAs, GPUs and CPUs which are intercon-
nected using Ethernet links. This paper specifically mentions
the challenge of balancing computation across heterogeneous
resources to avoid waiting on barriers (Section 6.6, paragraph
2). Mars [6] implements iterative algorithms on GPGPUs. The
individual map and reduce tasks, specified using APIs, are
assigned to GPU threads. Although these frameworks mark
important steps towards integrating special-purpose hardware
with existing PC clusters, the need for synchronization barriers
in all of them imposes inefficiencies in the distributed iterative
compute model.

Several improvements have been proposed to accelerate iter-
ative algorithms [7][9][10] using distributed groups of general-
purpose CPUs. iMapReduce [9] transforms the map and reduce
tasks into persistent tasks that store intermediate results from
successive iterations in memory, eliminating the need for
unnecessary reads/writes to the distributed file system. Each
worker schedules the reduce phase as soon as intermediate
map results for that worker are available, obviating the need for
strict synchronization barriers. PrIter [10] identifies a subset of
the input dataset that can lead to faster convergence towards
the final outcome and performs iterations only on that subset.
Maiter [7] proposes a completely asynchronous approach by
allowing workers to independently update partitions of the
input dataset and propagate these values through asynchronous
updates. Although these frameworks greatly improve the ef-
ficiency of executing iterative algorithms on general-purpose
CPU clusters, the feasibility of such optimizations in special-
purpose hardware clusters has not been studied.

B. Asynchronous Accumulative Updates

An iterative computation is performed on a data vector v =
{v1, v2, ..., vn} by repetitively applying an update function f
to the vector v - ie. the values of the data vector v during the
kth iteration, denoted by vk = {vk1 , vk2 , ..., vkn}, is computed
as

vk = f(vk−1) (1)

The results of the current iteration are reused as inputs to the
successive iteration until a termination criterion is met.

For example, PageRank is an iterative algorithm that is used
to calculate the relative importance of the vertices (web pages)
in a graph. The general PageRank algorithm iterates over
a web address linkage graph G(V,E), where V represents
the webpages (vertices/nodes of the graph), and E, the set
of hyperlinks between web pages (edges of the graph). An

edge exists between nodes i and j if a hyperlink exists from
node i to node j. To calculate the relative importance of
web pages, each node v in the graph is initially assigned an
initial PageRank score R(v) = 1−d

|V | , where d is a constant
dampening factor. The page rank of a node in the iteration
i+ 1 is successively refined from its previous value in the ith

iteration as:

R(i+1)(v) =
1− d
|V |

+
∑

uεN−(v)

d×R(i)(u)

|N+(u)|
(2)

where N− denotes the set of nodes which have directed
edge connections towards node v and N+ denotes the set of
nodes that have outgoing edges from node v. The iterative
computation runs until the the difference in the PageRank
values between successive iterations is less than ε.

In the synchronous compute model, the update function f is
applied only after a node collects the intermediate results of the
previous iteration from all compute machines. Assuming that
n values are distributed equally among the compute machines,
the synchronous approach requires each machine to possess
O(n) storage.

In the asynchronous accumulative compute model [7], up-
dates for all R(u) across all iterations are unrolled so that
the updates in (2) can happen asynchronously. For example,
for PageRank, since d

|N+(u)| is a constant, R(i)(u) in (2)
could be replaced by a function of i − 1. For example,
1−d
|V | +

∑
uεN−(v)

d×R(i−1)(u)
|N+(u)| , another series of additions,

could be used. This type of replacement could be performed
repetitively, effectively unrolling the computation until R(∞),
the converged value for a specific web page, is equal to R(0)

(initial value) plus a group of summations of partial values.
Effectively, these summations can be performed as soon as the
input values are available, eliminating the need for iteration-
based synchronization barriers. For generality, consider that
the value of R(v) at a given point in time is v. If a new input
value arrives at a compute machine, it does not need to be
added to v immediately. Rather, it can be accumulated into a
partial sum ∆v which can later be added to v.

In this asynchronous accumulate model, each compute node
performs two operations:

Accumulate: When a compute node receives a message m
from any other worker, it is accumulated into a storage location
∆v. The accumulation is specified using an abstract operator⊗

. Incoming values are accumulated in any order. There is
one ∆v for each data value v.

∆v ← ∆v
⊗

m (3)

In the PageRank example,
⊗

is an addition operation.
Update: ∆v is added to v, updating its value and messages

are generated for other values which depend on v as an input.
The messages are sent to the compute nodes which contain
those values. This update operation is performed according
to a scheduling policy in three steps: (1) The node adds the
accumulated value ∆v into its current value v, (2) an update
function g() is applied to the change in its current value, ∆v,
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Fig. 1. Cluster setup for a four node Maestro system. Data stored in the distributed file system is processed by four FPGA slaves coordinated by the
master CPU node. FPGA assistants help interface the distributed file system (DFS) with the FPGA nodes.

and (3) the node propagates m=g(∆v) to all neighboring nodes
and resets ∆v.

v ← v
⊗

∆v, (4a)

if(∆v6=0) send m = g(∆v) (4b)
∆v ← 0 (4c)

For accumulative updates to guarantee correctness, the
⊗

operator must possess commutative, associative and identity
property over

⊗
and g() must possess distributive properties.

As an illustration, in the PageRank example, a node accu-
mulates PageRank scores received from other nodes for a
particular page j in a variable ∆Rj . The current PageRank
score for the page j is maintained in Rj . When the node
updates page j, it adds ∆Rj to Rj , propagates the value ∆Rj

|N(j)|
to other nodes and resets ∆Rj to 0. In this case, g(∆Rj) is
equal to d× ∆Rj

|N(j)| .
Scheduling Updates - A worker node that owns a partition

of the input data set performs updates according to a user-
defined scheduling policy. In a round robin scheduling policy,
a worker iterates through its data partition updating each
value in order one by one. Although simple, the round robin
strategy is quite inefficient. For example, if all data receive
equal priority, updates may be performed on many values that
are insignificant to the overall progress of the computation.
In many applications, it is possible to reduce the time to
convergence (e.g. fewer iterations/operations) by prioritizing
updates for the subset of data with higher importance.

III. DESIGN

The major contribution of this work is the scalable im-
plementation of asynchronous accumulative updates (AAU)
in a compute cluster consisting of FPGAs which contain
the parallelism and specialization necessary to accelerate the
customized computation versus a CPU-based cluster. The
distinguishing features of this system that separate it from
previous FPGA and GPGPU implementations of iterative algo-
rithms (e.g. MapReduce and other implementations) include:

Asynchronous updates: Each computing node propagates
results from its updates to other nodes as soon as they
are generated without waiting for updates from other nodes.
Updates received from other nodes are accumulated at the

recipient node. Some updates may be used locally on the node
which produces them.

Scalable FPGA implementation: A parallel hardware ar-
chitecture which implements the accumulative-update comput-
ing model [7] has been developed and tested. The architecture
allows users to scale the performance of individual FPGA
nodes as well as the capacity of the cluster by attaching
additional FPGA boards to the cluster network.

Prioritized updates in the hardware implementation:
The intermediate results in our system are stored in DRAM
during the computation, eliminating the need for frequent
disk accesses. The use of accumulations limits the need to
store numerous intermediate values. Effectively, intermediate
results are combined using

⊗
operations (e.g. addition in

the PageRank example). Updates are prioritized based on the
size of ∆v, where v values with large ∆v are updated first.
Prioritization is performed using a lightweight circuit within
the programmable logic.

A. Computing Cluster

Our Maestro asynchronous accumulative update model is
implemented on a compute cluster consisting of FPGA worker
nodes as shown in Fig. 1. The cluster consists of a single
master (CPU 0) workstation and several slave FPGAs in-
terconnected in a LAN configuration. The master is a CPU
node responsible for coordinating the tasks running in other
slaves and checking for termination conditions. Slaves are
built from Altera DE4 development boards each of which
includes a Stratix IV EPS230GX device. Slaves run in parallel
to execute the computation as tasks and communicate via
Gigabit Ethernet links attached to a NetFPGA1 router in a star
topology. The distributed file system (DFS) forms a logical
storage that stores the input data used for iterative processing.
DFS is implemented as a logical collection of hard drives
located at separate workstations.

In order to simplify the process of accessing the distributed
file system interface from the FPGA slave, in this prototype
implementation each FPGA is attached to a CPU workstation

1NetFPGA provides a programmable low-cost 1 Gbps router for our lab
prototype. In an actual implementation, the NetFPGA router may be replaced
by a commercial off-the-shelf router.
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(Master or FPGA Assistant in Fig. 1) which manages all dis-
tributed file accesses on behalf of the FPGA. Specifically, the
CPU is responsible for tasks such as loading the data from the
distributed file system into the FPGA, checking for termination
conditions and writing the computed results back into the DFS.
FPGA assistants exchange information such as termination
check information with the master using standardized message
passing interfaces (MPI) based on OpenMPI [11]. In future
implementations, these functions could be performed by a
soft or hard processor implemented on the FPGA. Each
FPGA slave node implements a hardware architecture for
performing accumulative updates and a network interface for
communicating with other worker nodes.

Each data element in the input set (e.g. each web page in
the PageRank example) is identified by a unique global key. A
hash function of the key is used to make the node assignment.
In the current implementation, a simple modulo (MOD) hash
function is used, although more efficient functions could be
considered in the future. Input data are organized as key-value
pairs (KV pairs) and transferred to the appropriate node by the
master at the beginning of the computation. A worker stores
its partition of input data in state tables. The FPGA worker
node stores state tables in a 1 Gbit DDR2 DRAM attached
to the DE4 board. Messages m communicated between nodes
during the computation also use a key-value pair structure.

B. FPGA Node Design

The compute architecture in the FPGA slave provides dra-
matic performance advantages over microprocessor implemen-
tation due to customization of both the computation and the
communication interface, optimizations that are not possible
in a microprocessor or a GPU. The FPGA slave performs
update and accumulate operations on a subset of key value
pairs assigned by the master node. The architecture is shown
in Fig. 2. Two hardware modules, Packet parser and Packet
composer, handle communication with other slaves and the
FPGA assistant. The packet parser, built by customizing the
receive datapath of a NetFPGA reference router [12], parses
incoming Ethernet packets and initiates appropriate actions
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(e.g. load KV pairs into the FPGA, start the computation, etc.).
The packet composer, built by modifying the transmit datapath
of the NetFPGA reference router, constructs Ethernet packets
from outgoing messages. Update/accumulate operations on
KV pairs are performed in parallel by several processors. Pro-
cessors access KV pairs from the state table using a shared 32-
bit Avalon interconnect. Each processor owns an equal share
of KV pairs assigned to the FPGA slave and is responsible for
all operations on these KV pairs. Users can vary the number
of processors to suit the needs of the specific application.
During every iteration, the processor selectively refines KV
pairs to prioritize the ones that are more relevant to the overall
computation. This is achieved by comparing the priority of
each KV pair with a threshold set by the threshold selection
module. To prevent any memory inconsistencies caused by one
or more processors performing update/accumulate operations
on the same KV pair, processors negotiate exclusive access to
a KV pair using the coherency controller.

Next, we discuss each component in greater detail.

1) State Table: KV pairs are stored using a state table
within the DRAM. Since many scientific and web data mining
applications involve processing on sparse graphs, the state
table is designed to store KV pairs in a memory-efficient
fashion. A state table entry is indexed by a hash of the key,
and consists of five fields as shown in Fig. 2: the key, its
current value (v), the accumulated change in the value between
two consecutive update operations (∆v), priority field and the
linkage information. The linkage information is a pointer to
a linked list of keys whose results depend on the current key
(e.g. in PageRank, other web pages which are referenced by
the current page). The state of the key including v and ∆v



fields are constantly modified by the update and accumulate
operations.

2) Threshold Selection: Prioritizing the updates to KV
pairs during an iteration is critical to accelerating the algorithm
convergence. A naive approach to select the K most relevant
KV pairs is to simply sort all KV pairs by their priority values
and then choose the top K KV pairs for update operations.
While this approach is quite simple, it is quite inefficient since
all keys must be sorted during each iteration. Instead, Maestro
uses a threshold-based heuristic. The intuition of this heuristic
is that the distribution of priority values in a statistical sample
of the KV pairs provides a good approximation of the priority
values in the state table. To refine the top K pairs, a small
subset of KV pairs (S) is randomly sampled. The sample is
sorted by the value of priority fields. The threshold is set as the
priority value of the top K th KV pair in the sorted sample. The
threshold is then used by the processor during every iteration
to measure a KV pair’s relative importance to the computation.
A KV pair is only chosen for update operations if its priority
field has a value larger than the threshold.

In the customized FPGA implementation, a modified
maximal-sequence linear feedback shift register (LFSR) circuit
a length of n bits (n = dlog2(N)e, N = number of keys
in state table) is used to randomly select S samples from
DRAM. As KV pairs are fetched, they are prioritized by a
threshold selection circuit, as shown in Fig. 3, using the values
in the priority field. The circuit works on the principles of
parallel insertion sort. A shift register chain of K cells holds
the KV pairs. Each cell stores a KV pair fetched from the
DRAM. When a KV pair is read from the DRAM, a floating
point comparator in the cell compares the priority field of the
incoming key entry with the priority field of the key entry in
the register. The low out signal indicates whether the stored
key’s priority is lower than the priority of the incoming key.
Additionally, each cell observes the comparison outcome of
its left neighbor through the low in port. Based on the two
comparisons, the cell makes a decision as follows: (1) If the
left neighbor’s priority field and the cell’s own priority are
lower than that of the incoming key entry (low in = 1 and
low out = 1), the cell shifts in the key entry from its left
neighbor, (2) if the left neighbor’s priority is higher than the
incoming key entry’s priority and the cell’s priority is lower
than that of the incoming key entry’s priority (low in = 0
and low out = 1) the cell replaces its current key entry with
the incoming key entry, (3) otherwise, the cell simply retains
its current key entry.

3) Processor: The processor performs update and accumu-
late operations on a subset of KV pairs assigned to the slave.
Each processor can be configured in two modes - transmitter
(TX) or receiver (RX). A processor in TX mode performs
both update and accumulate operations while a processor in
RX mode only performs accumulate operations. The operation
mode can be dynamically configured by the user through
software configurable registers. Update/accumulate operations
on KV pairs are sequenced using a five-stage pipelined dat-
apath in order to maintain high throughput, The coherence

controller ensures memory consistency for each key accessed
by the processor during update/accumulate operations. The
Tcheck module computes the progress of computation as
measured by the sum of v fields of KV pairs owned by
the particular processor. Each processor uses three memory
interfaces to access the state table in DRAM. During an
iteration, a processor configured in TX mode performs update
operations on all KV pairs it owns.

Accumulation messages generated locally or from other
workers follow the pipelined datapath except that an Up-
date/Accumulate operation only performs an accumulate on
the KV pair. A processor configured in RX mode accepts
messages for accumulation from other FPGA slaves via the
RX FIFO. A transmitter processor (TX) prioritizes messages
for local accumulation over updating new KV pairs.

4) Ensuring Memory Consistency during Updates: When
multiple processors operate on KV pairs resident in a shared
global memory, memory inconsistencies can occur due to
one or more processors writing to the same KV pair entry.
For example, consider two processors, each performing an
accumulate and update operation on the same KV pair. While
the update operation resets the ∆v field in the state table entry,
the accumulate operation accumulates the incoming message
m into the ∆v field according to (∆v ← ∆v

⊗
m). Similarly,

an inconsistency can also happen from two procesors trying to
perform identical operations (update/accumulate) on the same
KV pair. To avoid memory inconsistency, all operations on
KV pairs must be strictly atomic.

To address this issue, Maestro implements a snoopy co-
herency protocol that borrows principles from cache co-
herency protocols in symmetric multiprocessor systems. The
protocol is implemented within the coherence controller block
attached to each processor. The snoopy coherency protocol
guarantees that simultaneous accesses to the same KV pair are
serialized, enforcing strict memory consistency on each KV
pair. If accesses do not conflict, update/accumulate operations
proceed in parallel in all processors.

5) Termination Check: Each slave FPGA measures and
reports the progress of the local computation to the master
node. Progress is defined as the sum of v fields for all keys
in the state table. Since update and accumulate operations
are cumulative over the v field of the KV pair entry, the
rate of progress monotonically increases or decreases over
time. Within the slave FPGA, TCheck modules attached to
each processor compute local progress during every iteration.
The results are aggregated and made available to the packet
composer, which when requested, sends the estimated progress
to the master node.

C. System Scalability

The computing capacity can be scaled by adjusting the num-
ber of TX/RX processors within each FPGA or by attaching
several FPGAs in a multi-node cluster configuration. In multi-
node configurations, at least one processor must be configured
as a receiver processor to process update messages from other
slaves. The number of transmitter and receiver processors can



TABLE I
LIST OF ITERATIVE ALGORITHMS

Algorithm Initj gj(x)
⊗

Connected j x · ∆j max

PageRank 1− d d · x
|N(j)| · ∆j +

Katz metric [13] 1 (j = s) or 0 (j 6= s) β · x · ∆j +

be dynamically varied by the user to suit the requirements of
the application through software configurable registers.

IV. CLUSTER OPERATION

To parallelize an iterative algorithm using Maestro, a user
must specify three components: a data partitioner, an itera-
tion kernel, and a termination checker. These interfaces are
sufficiently general to describe any algorithm which meets
the asynchronous accumulative update criteria described in
Section II-B. The partitioner specifies the criterion to assign
the keys to workers (e.g. the MOD operation in the PageRank
example). The partitioner reads input key-value pairs from
a file and assigns them to the individual worker nodes.
The iteration kernel specifies the accumulate and update
operations and the initial values for the keys. These operations
are described as Verilog templates. The termination checker
component is used to describe the criterion which must be
satisfied to terminate the iterative computation.

The CPU node designated as the master (e.g. CPU 0 in
Fig. 1) runs the partition function to distribute the input data
according to the hash function specified in the partitioner.
The computation executes in every worker in three steps. The
master instructs all workers to load the data partitions from
the local file system into the DRAM-based state tables. The
FPGA assistant converts partition data into packets and sends
them over to the FPGA. Slaves start the iterative computation
process and exchange messages via Gigabit Ethernet links
attached to 1G NetFPGA reference router. To amortize the
communication cost of sending a KV pair outside a slave,
messages are aggregated until there are enough to fill the
maximum transmission capacity of an Ethernet frame (150
key-value pairs). The total progress in slaves is checked peri-
odically (e.g. every 4 seconds) by the master. Once terminated,
the results of the computation are retrieved by FPGA assistants
from the slave nodes.

V. EXPERIMENTAL APPROACH

Setup: To evaluate Maestro, we implemented a compute
cluster with four CPUs and four FPGA nodes. Each CPU
node has an Intel Core2 Quad processor running at 2.44 GHz
with 4 GB RAM and an attached 1 Gbit/s network interface
card. For Maestro cluster experiments, we fix the sampling
size (S) as 1024, threshold selection circuit size (K) as 128.
A termination check is performed by the master node every 4
seconds. The FPGA operates at a frequency of 125 MHz.

Algorithms: For each algorithm, Table I specifies the initial
value for the jth key (Initj), update (gj(x)) and accumulate
(
⊗

) operators. The objective of the connected components
(Connected) algorithm is to find all the connected nodes in a

TABLE II
SPEEDUP OF MAITER VERSUS HADOOP FOR 1, 2, AND 4 PROCESSOR

CLUSTERS

Configuration Cluster Graph Execution time (sec) SpeedupHadoop Maiter

PageRank
1 1.3M 2505 114 22
2 2.6M 3639 467 8
4 5.2M 6673 717 9

Katz
1 1.3M 4200 137 31
2 2.6M 4707 412 11
4 5.2M 10741 563 19

Connected
1 1.3M 500 29.2 17
2 2.6M 1115 66 17
4 5.2M 1695 121 14

graph. In the iterative formulation of this algorithm, the jth

key is initialized to a unique ID (Initj = j). Next, every key
propagates its ID to all its neighbors (gj(x) = x ·∆j). When
a key receives an ID, it compares its ID with the incoming
ID and chooses the maximum of the two (

⊗
= max). Katz

metric [13] finds the proximity measure of two nodes in a
graph. It is computed as the sum over all the paths between
two nodes exponentially dampened by the path length. In the
iterative formulation of Katz, a key chosen as the source node
(s). The source node is assigned an initial value of 1. All other
nodes are initialized to 0. During an iteration, every key node
multiplies its current value by a constant dampening factor β
and propagates the result to other nodes (gj(x) = β · x ·∆j).
When a key receives a message, it accumulates the message
(
⊗

= +).
To evaluate Maestro, we also implement the three algo-

rithms in Table I using Hadoop, an open source implementa-
tion of MapReduce [3], and Maiter frameworks, in addition
to our heterogeneous system. Hadoop requires the use of
strictly synchronous barriers and disk writes between succes-
sive iterations while Maiter provides an implementation of the
asynchronous accumulative update-based computing model
only using general-purpose CPUs. Both Hadoop and Maiter
use a single-core, single-threaded implementation. Maestro
improves Maiter by parallelizing the update and accumulate
process on the FPGA and specializing the computation.

Evaluation is performed using graphs where in-degrees
follow a log-normal distribution with parameters (σ = 0.5,
µ = 2.3). Graphs are sized to nearly fill the capacity of 1
Gbit DRAM memory on the Altera DE4 board.

VI. EVALUATION

A. Running time

In an initial experiment, we compare the execution time2 of
the asynchronous accumulative update based computing model
implemented on a single FPGA versus a Maiter implementa-
tion on a general-purpose CPU. To illustrate the state-of-the-
art nature of Maiter, the speedup of Maiter on up to four
microprocessors versus a standard Hadoop implementation
on up to four microprocessors is shown in Table II. Maiter
executes 22×, 31× and 17× faster than the Hadoop version

2The time to load data into the FPGA slave is negligible relative to the
computation time and hence it is ignored in the calculation of execution time.



 1

 0

 2

 3

 4

 5

 6

 7

Maiter 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

 
Maestro (Ptx)

PageRank
Katz

Connected

Fig. 4. Speedup of Maestro (1 FPGA) versus Maiter (1 microprocessor).
The Maestro configuration is adjusted from 1 to 8 processors inside 1 FPGA.

for PageRank, Katz and Connected benchmarks. The speedup
results from the removal of synchronous barriers and disk
writes between iterations. Our FPGA implementation makes
further dramatic improvements on this Maiter speedup by
using FPGA parallelism and specialization.

Fig. 4 shows the speedup of executing the three benchmarks
on one Maestro FPGA node normalized against the execution
time on Maiter on a single microprocessor. The input dataset
is a 1.3 million node graph (900MB). In the experiment, the
number of transmitter processors in the Maestro FPGA (Ptx)
is varied from 1 to 8. With one transmitter processor (Ptx=1),
Maestro is 77% faster than Maiter (39× faster than Hadoop)
for the PageRank benchmark. Speedup linearly scales as more
processors are added to the FPGA. With eight processors in
the FPGA, Maestro executes approximately 7× faster than
Maiter (154× faster than Hadoop). The Katz benchmark
executes approximately 6× faster than Maiter on eight pro-
cessors (186× faster than Hadoop). Connected components is
a relatively low compute intensive application (gj(x) = x ·∆j)
which yields only a modest speedup of 2.2× versus Maiter
(38× vs Hadoop) with eight processors in the FPGA. In
general, the performance gap between CPU and the FPGA
implementation grows with the complexity of accumulate and
update operations.

B. Scalability

1) Two nodes: A two-FPGA cluster is setup according to
the topology in Fig. 1. Each FPGA in the cluster includes
eight processors. The ratio of transmitter to receiver (Ptx:Prx)
processors in the design is dynamically varied during the
experiment. For each application, the problem size is doubled
from that of the one node experiment (2.6 million nodes).
The workload is evenly divided between all slaves using the
MOD partition function. For comparison, Maiter and Hadoop
are executed on two CPU workstations interconnected in a
LAN configuration. We find that a balanced ratio of transmitter
to receiver processors (4:4) yields the highest speedup in all
benchmarks (26×, 16× and 4.1× for PageRank, Katz and
Connected versus Maiter, or a speedup of 208×, 176× and
69.7× versus Hadoop). When the Ptx:Prx ratio is increased
further, higher update rates and lower accumulation rates cause
RX FIFOs in Fig. 2 to overflow. Thus, packet transmission
must be throttled, reducing application performance.
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Fig. 6. Best case speedup of Maestro versus Maiter for different cluster
configurations

2) Four nodes: For the four-node cluster, the problem size
is doubled from that of the two-node experiment (5.2 million
nodes). Maiter runs on four CPU workstations interconnected
in a LAN configuration. Fig. 5 shows speedup of Maestro
for different processor configurations versus Maiter. For the
PageRank benchmark, Maestro is 18× faster than equivalent
Maiter implementation when each FPGA is configured with
one transmitter and seven receiver processors. As more pro-
cessors are converted to transmitters, the speedup improves.
With four transmitter and receiver pairs in every FPGA,
the four-node Maestro executes 40× faster than the Maiter
implementation and 360× faster than Hadoop. Speedup drops
when transmitters exceed receivers.

Fig. 6 summarizes the best case speedup with Maestro
in a scaling problem size/cluster configuration. The FPGA
in the one-node Maestro cluster includes eight transmitter
processors. For two- and four-node Maestro configurations,
each FPGA was programmed with four transmitter and four
receiver processors. In general, for all benchmarks Maestro
demonstrates better speedup with larger problem sizes and
cluster configurations. In the four-node configuration, Mae-
stro offers 40×, 18.7× and 7.5× speedup versus Maiter for
PageRank, Katz and Connected benchmarks.

C. Resource consumption

Table III provides the logic and memory utilization of
an eight-transmitter processor Maestro system on a Stratix
IV FPGA. Each processor in our system requires 3,256
ALUTs and 3,375 registers. Table IV compares the energy



TABLE III
RESOURCE UTILIZATION ON A STRATIX IV EP4SGX230 FPGA

Resource Overall system Resources per processor

Combinational ALUTs 64,178 (35%) 3,256 (1.7%)
Registers 70,299 (39%) 3,375 (1.8%)
Memory bits 1,621,781 (20%) 4,110 (0.03%)

consumption and cost of executing three benchmarks in a four-
node cluster using Hadoop, Maiter and Maestro frameworks.
For these comparisons, we assume that a CPU workstation
costs $500 and consumes about 120W. Each Altera DE4
board costs $3,000 and consumes approximately 10W power
when attached to a x1 PCIe slot. Maestro consumes 238-
342× less energy in comparison to Hadoop for PageRank
and Katz for a 7× increase in the total system cost. Energy
savings of approximately 35× and 13× are observed for these
applications versus Maiter. As mentioned in Section III, the
FPGA Assistant CPUs are provided in this experimentation
for prototyping. These processor-based assistants could be
replaced by FPGA-based soft processors. Hence, they have
been omitted from the energy and cost analysis.

D. Fixed problem size

Table V provides the total number of iterations and exection
times Tp for different problem sizes on a p = 1, 2, and
4 FPGA Maestro configuration for PageRank. Each FPGA
implementation has one transmitter and seven receivers. A
linear speedup is observed when additional FPGAs (p = 1-
4) are used to solve a fixed size problem (e.g. problem size
= 1200k). Each FPGA holds fewer state table entries as the
problem is parallelized, resulting in a lower threshold for KV
pair selection in larger cluster configurations. The drop in the
threshold causes an overall increase in the number of iterations
required to finish the computation.

E. Comparison to Previous Work

FPMR [5] reports a speedup of 33.5× versus a CPU
implementation of MapReduce for RankBoost, a machine
learning application to rank web documents. In contrast,
our implementation of PageRank, a similar machine-learning
application demonstrates a speedup of 154× versus Hadoop
on one FPGA. Further, Maestro can be scaled to yield higher
speedups in larger configurations (up to 360× speedup for
PageRank on a four-node system). Mars [6], an implementa-
tion of MapReduce on an NVIDIA G80 GPGPU, demonstrates
a speedup of 5× versus a MapReduce implementation on an
Intel Quad-core processor. Our work improves the speedup
and scalability from these previous synchronous implemen-
tations by applying asynchronous accumulative updates and
prioritized data refinement.

VII. CONCLUSION

In this paper we have presented Maestro, an FPGA-based
distributed system that utilizes asynchronous accumulative
updates to execute iterative algorithms. This approach ad-
dresses the synchronization issue often found in distributed

TABLE IV
ENERGY/COST ESTIMATE FOR 4 NODE CLUSTER

Configuration Energy (KWh) CostPageRank Katz Connected
Hadoop 0.89 1.43 0.23 $2,000
Maiter 0.095 0.075 0.016 $2,000
Maestro 0.0026 0.006 0.0023 $12,000

TABLE V
ITERATIONS AND EXECUTION TIMES FOR PAGERANK

Problem Iterations (I) Tp(sec)
size (N) p=1 p=2 p=4 p=1 p=2 p=4

200k 239 291 795 10 5 2
400k 155 206 462 20 9 5
600k 131 181 232 30 12 6
800k 115 162 201 40 19 8

1000k 105 120 179 49 20 9.5
1200k 97 119 145 60 25 11

systems. Our work maps this approach to FPGA-based dis-
tributed systems, simplifying system scalability and demon-
strating significant speedups due to FPGA parallelism and
specialization. Prioritized computations accelerate algorithm
convergence through dynamic data refinement. In the future,
we plan to investigate better data partitioning strategies for
Maestro. An open source implementation of Maestro is
available from https://github.com/deepakcu/maestro.
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