
Scalable Network Virtualization Using FPGAs

Deepak Unnikrishnan̷, Ramakrishna Vadlamani̷, Yong Liao̷, Abhishek Dwaraki̷, Jérémie Crenne*,

Lixin Gao̷, and Russell Tessier̷

{unnikrishnan,vadlamani,yliao,adwaraki,lgao,tessier}@ecs.umass.edu, jeremie.crenne@univ-ubs.fr

̷Electrical and Computer Engineering

University of Massachusetts, Amherst

MA 01003

*European University of Brittany

UBS – Lab - STICC

Lorient, France 56100

ABSTRACT
Recent virtual network implementations have shown the

capability to implement multiple network data planes using a

shared hardware substrate. In this project, a new scalable virtual

networking data plane is demonstrated which combines the

performance efficiency of FPGA hardware with the flexibility of

software running on a commodity PC. Multiple virtual router

data planes are implemented using a Virtex II-based NetFPGA

card to accommodate virtual networks requiring superior packet

forwarding performance. Numerous additional data planes for

virtual networks which require less bandwidth and slower

forwarding speeds are implemented on a commodity PC server

via software routers. Through experimentation, we determine

that a throughput improvement of up to two orders of magnitude

can be achieved for FPGA-based virtual routers versus a

software-based virtual router implementation. Dynamic FPGA

reconfiguration is supported to adapt to changing networking

needs. System scalability is demonstrated for up to 15 virtual

routers.

Categories and Subject Descriptors

C.2 [Computer communication networks]: Internetworking

routers

General Terms

Design

Keywords

Virtual networks, FPGA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02...$10.00.

1. INTRODUCTION
 As the Internet evolves, increasingly diverse network

applications will be deployed to accommodate business and

social needs. Often, network applications call for strikingly

divergent performance requirements in terms of security,

predictability, and throughput. Although physically separate

networks could be constructed to meet these varied service

requirements, a common physical substrate minimizes equipment

investment, operating cost, and power consumption. Network

virtualization, which supports the simultaneous operation of

multiple virtual networks over shared network resources,

provides a powerful way to customize each network to a specific

purpose and service requirement while minimizing hardware

resources [8]. Although virtual networks use the same hardware

resources, individual network data and control planes are

effectively isolated, providing protection against

misconfigurations and intrusions from other networks. Such an

approach also allows for customized protocols and/or

configurations that may be experimental in nature without

burdening pre-existing networks.

The introduction of network virtualization has recently led to a

collection of mostly software-based virtualization solutions.

Although these implementations exhibit substantial flexibility

and support for tens of simultaneous networks [2][5], the serial

nature of general purpose microprocessors limits their achievable

performance. This constraint points towards a configurable

approach with significant fine-grained parallelism and

specialization, i.e., the implementation of virtual networks in

FPGA hardware to achieve both configurability and performance

goals. Although improved performance versus software-based

approaches has been demonstrated in existing FPGA-based

systems [1][22], the scalability of these techniques to tens of

networks is limited by the logic and memory resources of the

target FPGA. More importantly, these previous systems do not

gracefully support virtual network reconfiguration or re-

programming, which are much desired features in a network

virtualization substrate.

Our scalable virtual networking approach overcomes the

limitations of previous approaches by seamlessly integrating

FPGA-based virtual routers with software-based virtual routers.

The highest-throughput routers are mapped to hardware while

remaining virtual routers are implemented by software routers

running in virtual machines hosted in a commodity PC. Both

hardware and software routers support the same user-defined

protocols and isolation techniques in an approach which is

transparent to end users. A virtual router in our system can be

migrated between the FPGA and the PC server. Decisions

regarding which virtual routers should be hosted in the FPGA

hardware can be made dynamically as user needs change.

Dynamic reconfiguration is used to update FPGA virtual routers

as networking needs change.

To determine the real-time performance of the new virtual

networking environment, a parameterizable virtual router design

has been implemented in a Virtex II-based NetFPGA board [12].

The board is included in a Linux-based PC which is sliced into

virtual machines using the OpenVZ virtualization scheme [23].

Our current FPGA architecture can simultaneously support up to

five different virtual networks. The data planes of virtual

networks requiring superior packet forwarding speed are hosted

in FPGA hardware. A performance evaluation shows that when

multiple virtual routers are hosted in FPGA hardware, each of

them can achieve close to line speed packet forwarding. The

virtual routers running in the FPGA can be migrated to software

routers running in the OpenVZ containers when the FPGA needs

to be reconfigured.

The rest of the paper is organized as follows. Section 2

introduces virtual networks and current software and hardware-

based virtualization techniques. Section 3 presents the

architecture of our virtual routing system and compares its

structure with previous hardware- and software-based

implementations. The experimental approach used for virtual

network evaluation is described in Section 4. In Section 5, the

throughput, latency, and scalability results of our work are

detailed. Section 6 summarizes the paper and offers directions

for future work.

2. BACKGROUND

2.1 Network Virtualization
Network virtualization has been proposed as a powerful approach

to facilitate the testing and implementation of network

innovations using a shared substrate [2][18]. In a network

virtualization infrastructure, concurrent virtual networks are

implemented in shared networking hardware. Such an approach

reduces the expense of hardware and provides a platform for

researchers to independently deploy and evaluate innovative

networking techniques. To those who create the virtual networks,

each independent virtual network represents an isolated and

customizable platform with prespecified routing protocols,

bandwidth guarantees, and quality of service (QoS). Figure 1

shows a network infrastructure, which is virtualized to support a

red virtual network and a blue virtual network. Each virtual

network might run different routing processes (with the same or

different routing protocols) and therefore might have different

views of the network topology. For example, Figure 2 shows a

topology which differs from the one in Figure 3 although both

virtual networks run on the same physical network.

Figure 4 shows the structure of a physical router in a

virtualization substrate, which is partitioned into multiple virtual

routers. A virtual router consists of two major parts: a control

plane, where the routing processes exchange and maintain

routing information; and a data plane, where the forwarding

information base (FIB) stores the forwarding route entries and

performs packet forwarding.

Figure 1. Virtual networks

Figure 2. Blue virtual networks

Figure 3. Red virtual networks

The virtual routers are independent of each other and can run

different routing, addressing and forwarding schemes. A physical

link is multiplexed into virtual links, which connect the relevant

virtual routers into virtual networks. Any virtual router joining

the virtual network is marked with this color (e.g. red or blue)

and data packets are colored in a similar fashion. The physical

router provides DEMUX and MUX circuitry for the hosted

virtual routers. After exiting a physical link, a colored packet

will be delivered by the DEMUX to the virtual router with the

same color. When packets are emitted from a virtual router, it is

colored with the router’s color at the MUX before it enters the

physical link. Because of this packet-level separation, a virtual

router can only communicate with virtual routers of the same

color. As a result, a network infrastructure can run multiple

virtual networks in parallel and each virtual network can run any

addressing, routing and forwarding scheme without interfering

with a different virtual network.

Flexibility is a key requirement of any virtual networking

substrate. Specifically, a virtual network must offer maximum

control over its data and control planes. For example, the

deployment of new addressing schemes such as ROFL [16]

requires customization of nearly all aspects of the network core

such as the routing protocol and the address lookup algorithm.

Other examples include QoS schemes that require certain

queuing and scheduling approaches and security mechanisms

such as network anonymity or onion routing [19][20]. To attract

existing applications whose performance requirements may scale

over time, superior data plane performance is also of utmost

importance.

Figure 4. Virtual router architecture

The customization of existing proprietary network devices to

support virtual networking is challenging, if not impossible.

Contemporary network devices typically do not provide the

interfaces necessary to enable programmability. Most existing

network systems employ application specific integrated circuits

(ASICs). Although ASICs typically achieve high performance,

they do not have the flexibility needed for service customization.

For example, the Supercharging PlanetLab platform [17] only

provides a customizable forwarding table interface, which makes

it hard to support innovations such as network anonymity, onion

routing and QoS schemes.

2.2 Network Virtualization with Software
To allow for the rapid allocation of system resources and a

flexible programming environment, several network

virtualization systems have recently been implemented using off-

the-shelf hardware with existing host virtualization technology

[4][11]. The execution of customized software on general-

purpose microprocessors provides the flexibility and

programmability needed to build customizable virtual networks.

Bhatia, et al [5] developed a virtual networking environment

which can be scaled to 60 independent networks. This system

allows for individual network customization and the use of a

commodity operating system which can support a variety of

services, including tunneling. Packet forwarding is performed in

the kernel under application control. Keller and Green [21]

proposed a system which allows for customized packet handling

for each data plane in a virtualized network. This system uses an

unvirtualized Linux kernel to host multiple concurrent data

planes implemented in Click [29]. Packet handling is specified as

an interconnected graph of networking functions.

Although the substantial progress of these and other virtual

networking systems is important [4][7], the serial nature of

general-purpose microprocessors limits the achievable

performance of software-based virtual network devices.

Software-based data plane implementations can exhibit

statistical variations in observed network parameters due to jitter

and resource contention. For example, in container-based

virtualization and full virtualization techniques [2], each virtual

network resource must contend for hardware and operating

system resources such as CPU cycles, bandwidth and physical

memory. Although the extent of contention could be reduced

through CPU/memory reservations and real time priority

assignments [2] to each virtual network, these approaches tend to

degrade flexibility in experiments.

2.3 Network Virtualization with FPGAs
Over the past eight years, FPGAs have been used extensively to

evaluate and implement network routers. These programmable

components are now viewed as prime candidates for next

generation network router implementations [13]. Initial work in

FPGA-implemented routers focused on basic router

implementations [10], network packet intrusion detection [9][15],

and buffer sizing [3]. Two very recent efforts assess the use of

FPGAs in virtual networking.

In Anwer, et al [1], a NetFPGA board is used to implement up to

eight identical virtual routing data planes in a single Virtex II

Pro. The control planes are implemented in software with the

help of virtual containers in the host operating system. Physical

links are virtualized by associating each physical NetFPGA

network port with one or more virtual ports. Although this setup

is shown to provide twice as much throughput as a software

kernel router, a number of limitations exist. All data planes are

identical; only routing table differentiation is supported.

Additionally, the resources of the FPGA provide a hard cap on

the number of supported virtual networks. Finally, no support for

dynamic reconfiguration of the FPGA to support changing

networking needs is mentioned.

Multiple different virtual data planes have recently been

implemented [22] using a NetFPGA platform. Up to two data

planes can be specified by designers and implemented in FPGA

hardware. A series of configuration registers are available which

allow for real-time updates to virtual routing protocols. No

discussion of scalability, logic reconfiguration, or data plane

customization is provided.

3. SCALABLE VIRTUAL NETWORKING
Our new network virtualization system makes two specific

extensions to previously implemented systems:

1. The number of virtual networks supported in our system is

not limited to the amount of FPGA logic. Multiple high-

throughput, customized data planes are implemented in

hardware while a scalable number of slower additional data

planes are simultaneously implemented in software.

Although the number of high performance virtual data

planes is limited by the available FPGA logic, users have

the additional flexibility of implementing slower data planes

in host software.

2. The FPGA implementation of the virtual data planes is not

static. The FPGA can be dynamically reconfigured over time

while the network is operational to support alternate planes.

In the following subsections, an overview of our implementation

and run-time environment is detailed.

3.1 System Overview
The high-level architecture of our system is shown in Figure 5. In

this setup, virtual routers that require highest throughout and

lowest latency are implemented on a Virtex II-Pro 50 on the

NetFPGA platform [14] while additional software virtual routers

are implemented in OpenVZ [23] containers running in the PC.

The NetFPGA platform consists of four 1 Gbps Ethernet

interfaces, a 33 MHz PCI interface, 64 MB of DDR2 DRAM and

two 32 MB SRAMs. The hardware data path of the NetFPGA

platform is implemented as a pipeline of fully customizable

modules. The forwarding tables of the hardware virtual routers

are implemented in BRAM and SRL16E memories within the

FPGA. Forwarding tables can be updated from software through

the PCI interface. The PCI interface facilitates flexible control

plane implementations in software.

In addition to the NetFPGA board, our system includes a PC

server to host the software virtual routers. The PC server is

sliced into virtual machines using OpenVZ [23]. OpenVZ is a

lightweight virtualization approach used in several network

virtualization systems [24][25] and it is included in major Linux

distributions. OpenVZ virtualizes a physical server at the

operating system level. The OpenVZ kernel allows multiple

isolated user-space instances, which are called virtual machines

or containers. Each virtual machine performs and executes like a

stand-alone server. The OpenVZ kernel provides the resource

management mechanisms to allocate resources such as CPU

cycles and disk storage space to the virtual machines. Compared

with other virtualization approaches, such as full virtualization

[26] and paravirtualization [27], the OS-level virtualization

provides the best performance and scalability. The performance

difference between a virtual machine in OpenVZ and a

standalone server is almost negligible [28].

When the number of virtual networks exceeds the available

FPGA hardware resource capacity, additional routers are

spawned in the host software on the PC server. Since software

virtual routers must be effectively isolated from each other, they

are hosted in separate OpenVZ containers that guarantee a fair

share of CPU cycles and physical memory to each virtual router.

Each instance of the OpenVZ container executes a user mode

Click modular router [29] to process the packets. The forwarding

functions of Click can be customized according to the virtual

network creator’s preferences.

When a packet arrives at an Ethernet interface (PHY), the

destination virtual IP address (DST VIP) in the packet header

(Figure 6) is used to determine the location of its virtual router.

If the packet is associated with a hardware virtual router, it is

processed by the corresponding hardware router. Otherwise, it is

transmitted to the host software via the PCI bus. A software

bridge provides a mux/demux interface between the PCI bus and

multiple OpenVZ routers. Periodically, the virtual networks in

the FPGA are reconfigured to take into account changes in the

bandwidth demands and routing characteristics. While the FPGA

is being reconfigured, all traffic is routed by the host software.

When reconfiguration is finished, selected virtual networks are

shifted back to the hardware based on their performance

requirements. The adoption of network virtualization for realistic

network experiments requires widespread deployment across

multiple sites. Tunneling transforms data packets into formats

that enable them to be transmitted on networks that have

incompatible address spaces and protocols. Our system supports

the use of layer 3 virtualization based on IPIP tunneling [30]. In

this tunneling approach, each node in a virtual network has a

virtual IP address assigned from a private address space. To

transmit a packet to another virtual node in the private address

space, packet data is encapsulated in an IPv4 wrapper, as shown

in Figure 6.

The datagram is subsequently tunneled through routers to the

next virtual node. When the packet reaches a virtual router, the

inner virtual IP address is used to identify the next virtual hop.

The packet is then tunneled to its final destination. Tunnel-based

layer 3 virtualization is a popular virtualization strategy that has

been deployed in many software virtualization systems such as

VINI [2]. In the following sections, we describe the

implementation details of each component in our system and

finally their integration.

3.2 Software Virtual Router Implementation
The virtual routers hosted in the PC are implemented by running

Click inside OpenVZ containers. Each OpenVZ container has a

set of virtual Ethernet interfaces.

Figure 5. High-level overview of the scalable system

Figure 6 – Packet format for Layer 3 virtualization

Figure 7 – Detailed system architecture

A software bridge on the PC performs the mapping between the

virtual Ethernet interfaces and the physical Ethernet interfaces

located in the PC. To enhance flexibility, Click is run as a user

mode program inside the OpenVZ container so that the

functions of the software virtual router can be fully customized.

The penalty of running user mode Click inside the OpenVZ

container is that the forwarding speed is much slower. Hence,

the software virtual routers should be used in those virtual

networks that do not carry too much traffic volume. The

software virtual routers are also used to temporarily forward

those packets usually forwarded by the hardware virtual routers

when the FPGA hardware is being reprogrammed and cannot

handle the packets.

3.3 NetFPGA Virtual Router Implementation
The base router [12] provided with the standard NetFPGA

distribution has been extended to support multiple,

customizable, virtual data planes. The following base router

features have been retained for use with our extended router.

The hardware data path of the base router consists of input

queues, an input arbiter, an output port lookup module, and

output queues. Incoming packets from PHY Ethernet interfaces

are placed into input queues. The input arbiter module services

each queue in a round robin fashion. The output port lookup

module consists of SRAM-based forwarding tables that support

IP lookup and ARP lookup mechanisms. Processed packets are

sent to the output queues from where they are forwarded to the

physical interface. The control plane for the base router is

implemented in host software running the Linux operating

system. The control plane currently supports a modified OSPF

(PW-OSPF) routing protocol. Figure 7 shows our extended

NetFPGA router architecture which supports four hardware

virtual routers and an interface to additional software virtual

routers. In this implementation, high speed data planes are

constructed in hardware by replicating the forwarding tables

and the forwarding logic (output port lookup module) of the

base router. Each virtual router has its own unique set of

forwarding table control registers. This architecture offers two

advantages. First, it ensures close to line rate data plane

throughput for each virtual data plane. Second, independent

hardware resources facilitate strong isolation between the

networks. By providing unique forwarding engines to each

virtual router, the system allows network users to customize

their data planes independently. Three different forwarding

policies are supported: source-based, destination-based and

source-and-destination-based routing approaches.

A packet arriving at a PHY input queue (MAC RX Q)

undergoes a series of forwarding steps. After selection by the

input arbiter in a round robin fashion, a determination is made

as to whether the appropriate virtual router is located on the

NetFPGA board or in software. The dynamic design select

module associates each incoming packet with a hardware or

software virtual router. The dynamic design select module uses

the destination virtual IP address (DST VIP in Figure 6) as an

index into a lookup table to determine the associated virtual

router. The table is realized using CAM memories in the

FPGA. If a match to a hardware virtual router is found, the

packet is sent to the virtual hardware forwarding engine which

includes a forwarding table and forwarding logic. The

forwarding table maps the virtual destination IP address to the

next hop virtual destination IP address. The forwarding logic

rewrites the source and destination IP addresses (SRC IP and

DST IP in Figure 6) of the packet before placing the packet in

one of the available output queues. The packet is dispatched to

the physical interface via a transmit queue (MAC TX Q). The

network administrator can use a programmable register in the

NetFPGA card to write entries into the forwarding tables via

the PCI bus.

3.4 System Scalability Using Software
The NetFPGA serves as a suitable platform to implement high

performance hardware virtual routers. Nevertheless, the choice

of a hardware platform for virtualization does create scalability

issues. For example, the limited amount of logic available on

the Virtex II Pro limits the maximum number of virtual

hardware data planes to 5, a sharp reduction from the number

of data planes previously implemented using software-based

network virtualization. As a result, our system allows for the

implementation of virtual routers in both hardware and

software.

Two separate, independent approaches are considered to

support the implementation of a scalable system. In the first

approach, all packets initially enter the NetFPGA card. Packets

targeted for virtual networks implemented in software are then

forwarded to the PC via the PCI bus. Following packet

processing using Click, the packets were returned to the

NetFPGA card for retransmission. This approach is

subsequently referred to as the single receiver approach. In the

second multi-receiver approach, only packets targeted for

NetFPGA routing are received by the NetFPGA card. Packets

destined for software virtual routing are received and

subsequently retransmitted by a separate PC network interface

card (NIC) (Figure 7). Details of each approach are now

described.

Single-receiver approach: If an incoming packet does not

have a match for a hardware virtual router in the dynamic

design select table on the FPGA, the packet is sent to the CPU

transceiver module shown in Figure 7. The CPU transceiver

examines the source of the packet and places the packet in one

of the CPU DMA queues (CPU TX Q) interfaced to the host

system through the PCI interface. The CPU DMA queues are

exposed to the host OS as virtual Ethernet interfaces. The

kernel software bridge forwards the Ethernet packet to its

respective OpenVZ container based on its destination layer 2

address (DST MAC in Figure 6). The Click modular router

within the OpenVZ container processes the packet by

modifying the same three packet fields as the hardware router

(DST VIP, SRC IP, and DST IP). The software bridge then

sends the packet to a CPU RX Q on the NetFPGA board via the

PCI bus. After input arbitration, the processed packet is sent

back to the CPU transceiver after a dynamic design select table

lookup. The CPU transceiver module extracts the source and

exit MAC queue information from the processed packet.

Finally, the packet is placed in the output MAC queue interface

(MAC TX Q) for transmission.

The software interface enables migration of virtual networks

from software to hardware and vice versa on the fly. A network

can be dynamically migrated from hardware to software in

three steps. In the first step, an OpenVZ virtual environment

that runs the Click router is initiated in the host operating

system. Next, all the hardware forwarding table entries are

copied to the forwarding table of the host virtual environment.

The final step writes an entry into the dynamic design select

table indicating the association of the virtual IP with software.

Our current implementation imposes certain restrictions on

virtual network migration from software to hardware. If the

software virtual router has a forwarding mechanism that is

unavailable in any of the hardware virtual routers, network

migration to hardware requires reconfiguration of the FPGA as

described in Section 3.5.

Multi-receiver approach: Since in this approach packets can

arrive at two different destinations based on their virtual

network, network switches are required, as shown in Figure 8.

Layer 2 addressing is used to direct each packet to the

appropriate destination (NetFPGA card or PC NIC). When

deployed in the Internet, we assume that that the sender is

capable of classifying each packet as targeted to either the

NetFPGA card or PC NIC based on the virtual layer 3 address.

This approach requires the use of external hardware (the

switches) but simplifies the NetFPGA FPGA hardware design

since all packets arriving at the NetFPGA card are processed

locally on the card and CPU RX Q and CPU TX Q ports are

unused. Packets targeted for software arrive at the PC NIC.

Figure 8. Multi-receiver setup for scalable virtual

networking including dynamic FPGA reconfiguration

3.5 Dynamic Reconfiguration
Although forwarding table updates provide some flexibility for

virtual routers, it may not be sufficient for significant protocol

changes related to the forwarding logic. For example, virtual

networks may require a change between source-based,

destination-based and source-and-destination based routing.

FPGAs provide a unique opportunity for real-time

customization of both the forwarding tables and the underlying

forwarding logic. To illustrate this concept, experiments

involving dynamic NetFPGA reconfiguration were performed.

All virtual networks remained fully active in software during

this reconfiguration by implementing all virtual networks in

OpenVZ containers and using the PC NIC (Figure 8) for the

actual packet transmission.

Significant changes to the hardware virtual networks can be

accommodated by FPGA reconfiguration via the following

steps.

1. Software Click instances of all active hardware virtual

routers are created in the OpenVZ virtual environment.

2. The Linux kernel sends messages to all nodes attached to

the network interface requesting a remap of layer-3

addresses targeted at the NetFPGA board to layer-2

addresses of the PC NIC. Each virtual network includes a

mechanism to map between layer-2 and layer-3 addresses.

When a virtual network uses IP, the Address Resolution

Protocol (ARP) is used to do the mapping between layer-2

and layer-3 addresses. In our prototype, where IP is used

in the data plane, the ARPFaker element [29]

implemented in Click is used to generate ARP reply

messages to change the mapping between layer-2 and

layer-3 addresses.

3. Once addresses are remapped, all network traffic is

redirected to the PC for forwarding with software virtual

routers.

4. The FPGA is completely reprogrammed with a new

bitstream that incorporates changes in network

characteristics. In our implementation, a collection of

previously-compiled FPGA bitstreams is used. Partial

reconfiguration of selected network components in the

FPGA will be addressed in future work.

5. The routing tables are written back to the hardware

following reconfiguration.

6. In a final step, the Linux kernel sends messages to all

nodes attached to the network interface requesting a remap

of layer-3 addresses back to the NetFPGA interface. The

virtual network then resumes operation in the hardware

data plane for the instantiated hardware routers.

In Section 5, the overheads of this dynamic reconfiguration

approach are quantified.

3.6 Power Optimization
The use of programmable hardware offers the opportunity to

disable the power consumption of individual hardware virtual

routers when they are not needed. To allow for additional

flexibility, the forwarding table and forwarding logic of

individual hardware virtual routers were instrumented with

clock gating circuitry. A programmable register for each router

can be set to disable the clock for all logic registers and BRAM

blocks in the selected forwarding table and logic.

4. EXPERIMENTAL APPROACH
The following sections describe some of the techniques used to

obtain experimental results.

4.1 System Parameters
To measure performance of hardware virtual routers, we use

the network configuration shown in Figure 9. Initial

experiments explored the performance of the hardware virtual

routers. For these experiments, the NetFPGA hardware packet

generator and packet capture tool [6] were used to generate

packets at line rate. For all additional experiments which

included the software virtual routers, iPerf [31] was used to

generate packets. In general, the software routers cannot handle

line rate traffic. The hardware virtual router implementations

were compared against the Click modular router running on a

Linux box which includes a 3 GHz AMD X2 6000+ processor,

2 GB of RAM, and a dual-port Intel E1000 Gbit Ethernet NIC

in the PCIe slot. Performance was determined in terms of

network latency and observed throughput. The network latency

was measured with the ping utility.

To measure the scalability of our system, systems of between 1

and 15 virtual routers were implemented. For these systems,

between one and four virtual routers were implemented in

hardware while the rest were implemented in host software.

The Synopsys VCS simulator was used for the functional

verification of the hardware designs. The Xilinx XPower (XPE)

power estimator was used to determine power estimates. All

hardware designs were successfully deployed on a NetFPGA

cube and executed on the Virtex II FPGA.

Figure 9 – Test topology

5. EXPERIMENTAL RESULTS

5.1 Performance
In an initial experiment, the baseline performance of a single

hardware virtual router running in the NetFPGA hardware and

a Click software virtual router running in the OpenVZ

container are compared. Figure 9 shows the testbed network

used in our experiments. The NetFPGA packet

generator/capture tools were used to generate traffic of different

packet sizes and rates. The packet generator was loaded with

PCAP files [6] with packet sizes of 64 to 1024 bytes. Packets

were transmitted to our system at the line rate of 1Gbps.

The throughput of three specific system configurations was

considered:

1. Hardware data plane – network traffic is received and

transmitted by the NetFPGA board and forwarding is

performed using a hardware virtual router on the

NetFPGA board.

2. Click/OpenVZ from NIC – network traffic is received and

transmitted by the PC NIC (Figure 7) network interfaces

and forwarding is performed using a Click router in

OpenVZ.

3. Click/OpenVZ from NetFPGA – network traffic is received

and transmitted by the physical NetFPGA network

interfaces but the forwarding operations are performed

using a Click router in OpenVZ. Packets are transferred

between the NetFPGA hardware and OpenVZ over the

PCI bus.

The throughput of the three approaches for differing packet

sizes is shown in Figure 10. These values show the maximum

achievable throughput by each implementation for a packet

drop rate of no more than 0.1% of transmitted packets. The

receiver throughputs were measured by hardware counters in

the NetFPGA PktCap capture tool (Figure 9).

The throughput of shorter packets drops considerably in the

software-based implementations. In contrast, the single

hardware virtual router consistently sustains throughputs close

to line rates for all packet sizes. The hardware provides one to

two orders of magnitude better throughput than the OpenVZ

Click router implementions due to inherent inefficiencies in the

software implementation. The OpenVZ running in user space

trades off throughput for flexibility and isolation. The

performance degradation in software implementations results

from frequent operating system interrupts and system calls

during packet transfers between user space and kernel space.

The hardware virtual routers takes advantage of the parallelism

and specialization of the FPGA to overcome these issues.

5.2 Network Scalability
Network scalability can be measured in terms of both

throughput and latency. For these experiments, the test

topology was configured as shown in Figure 9. Four specific

system configurations were considered for systems that

required between 1 and 15 virtual networks. The software-only

Click/OpenVZ from NIC and Click/OpenVZ from NetFPGA

cases are the same as defined in Section 5.1.

0.1

1

10

100

1000

64 128 512 1024 1470

Packet size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Hardware data plane

Click/OpenVZ from

NIC

Click/OpenVZ from

NetFPGA

Figure 10. Receiver throughput versus packet size for a

single virtual router

Additional cases which combine NetFPGA and software

forwarding include:

• Hardware+Click/OpenVZ from NIC - network traffic

targeted to virtual networks implemented in software is

received and transmitted by the PC NIC network interfaces

and forwarding is performed using a Click router in

OpenVZ. Network traffic targeted to virtual networks

implemented by the NetFPGA is received and transmitted

by the NetFPGA. This case represents the multiple

receiver approach described in Section 3.4.

• Hardware+Click/OpenVZ from NetFPGA - all network

traffic is received and transmitted by the physical

NetFPGA network interfaces. Some forwarding operations

are performed by hardware virtual routers while others are

performed using Click routers in OpenVZ. For the latter

cases, packets are transferred between the NetFPGA

hardware and OpenVZ over the PCI bus. This case

represents the single receiver approach described in

Section 3.4.

In the latter two cases, up to four virtual routers were

implemented in hardware and remaining networks (up to 11)

were implemented in software (Click/OpenVZ).

Transmission latency for the four cases were measured in the

presence of background traffic. The packets of the background

traffic were transmitted at the maximum capacity available to

each router. The packet generation rate was fixed such that no

more than 0.1% of the traffic was dropped. As shown in Figure

11, the average network latency of the Click OpenVZ virtual

router is approximately an order of magnitude greater than that

of the hardware implementation. The latency of OpenVZ

increases by approximately 66% from one to fifteen virtual

routers. This effect is due to context switching overhead and

resource contention in the operating system. Packets routed

through OpenVZ via the NetFPGA/PCI interface incur 50%

additional latency overhead than when they are routed through

the NIC interfaces. The average latency of hardware routers

remains constant for up to four data planes. After this, every

additional software router increases the average latency by

25%.

To measure aggregate throughput when different numbers of

virtual routers are hosted in our system, 64 byte packets were

initially transmitted with an equal bandwidth allocated for all

networks. Next, the bandwidth share of each virtual network

was incrementally increased until the networks began to drop

more than 0.1% of the assigned traffic.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
a

te
n

cy
 (

m
s)

Number of virtual networks

Click/OpenVZ from

NetFPGA

Click/OpenVZ from

NIC

HW+Click/OpenVZ

NetFPGA

HW+Click/OpenVZ

from NIC

Figure 11 – Average latency for an increasing number of

virtual routers

A single OpenVZ software virtual router can route packets

through the PC NIC interface at a bandwidth up to 11 Mbps.

The throughput drops by 27% when fourteen additional

software routers are added. The software virtual router

implementation which routes packets from the NetFPGA card

to the OpenVZ containers can sustain only low throughput

(approximately 800 Kbps) with 64 byte packets and 5 Mbps

with 1500 byte packets due to inefficiencies in the NetFPGA

PCI interface and driver. The hardware virtual router sustains

close to line rate aggregate bandwidths for up to four data

planes. The average aggregate bandwidth drops when software

virtual routers are used in addition to hardware routers. Note

that the use of a log scale causes the top two plots overlap.

The top two plots (HW+Click/OpenVZ from NIC and HW+

Click/OpenVZ from NetFPGA), which overlap in Figure 12,

show the average aggregate throughputs when software data

planes are used in conjunction with hardware data planes.

Since the hardware throughput dominates the average

throughput for these two software data plane implementations,

minor differences in bandwidth are hidden. Further, the use of

a log scale hides minor differences in throughput between the

two software implementations.

Our virtual networking systems which contain more than the

four virtual routers implemented in hardware exhibit an

average throughput reduction and latency increase as software

virtual routers are added. For systems that implement a range

of virtual networks with varying latency and throughput

requirements, the highest performance networks could be

allocated to hardware while lower performing networks are

implemented in software.

5.3 Resource usage
The Virtex II Pro FPGA can accommodate a maximum of five

virtual routers, each with a 32-entry forwarding table. When

the CPU transceiver module is included, the FPGA can

accommodate a maximum of four virtual routers. Each virtual

data plane occupies approximately 2000 slice registers and

3000 slice LUTs. A fully populated design uses approximately

90% of the slices and 40% of the BRAM. Table 1 shows the

resource utilization of up to five virtual routers. All designs are

operated at 62.5 MHz. Synthesis results for the virtual router

design implemented on the largest Virtex 5 (5vlx330tff1738)

shows that a much larger FPGA could support up to 32 virtual

routers.

Power consumption results show that a two virtual router

system consumes approximately 158.8 mW of static power and

766.2 mW of dynamic power. It is possible to save about 10%

of the total dynamic power by clock gating an individual virtual

router. Additional power results are summarized in Table 2.

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Number of virtual networks

HW+Click/OpenVZ

from NIC

HW+Click/OpenVZ

NetFPGA

Click/OpenVZ from

NIC

Click/OpenVZ from

NetFPGA

Figure 12 – Average throughput for an increasing number

of virtual routers

 Hardware data planes

 1 2 3 4 5

Slices 10068 12882 15696 18509 21322

Slice FF 8964 11269 13574 15879 18184

LUTs 15272 19744 24216 28689 33161

IO 437 437 437 437 437

BRAM 25 40 55 70 85

Table 1 – Resource utilization

#Virtual routers Static

(mW)

Dynamic

(mW)

Total

(mW)

1 158.8 687.5 846.3

2 158.8 766.3 925.1

3 158.8 853.2 1012.3

4 158.8 936.2 1095.0

Table 2 – Power consumption of virtual routers

5.4 Overhead of Dynamic Reconfiguration
To evaluate the cost and overhead of dynamic reconfiguration,

we initially programmed the target FPGA with a bitstream that

consisted of a single virtual router. An experiment was then

performed in which a source host sent ping packets to the

system at various rates which were forwarded using the

NetFPGA hardware virtual router. Periodically, the hardware

virtual router was migrated to a software-based router running

in the OpenVZ container of the PC using the procedure

described in Section 3.5. After FPGA reconfiguration, the

virtual router was migrated back to the NetFPGA card.

It was determined that approximately 12 seconds are required

to migrate a hardware virtual router to a Click router

implemented in OpenVZ. The FPGA reconfiguration, including

bitstream transfer over the PCI bus, required about 5 seconds.

Transferring the virtual router from software back to hardware

took only around 3 seconds. The relatively high hardware-to-

software migration latency was caused by the initialization of

the virtual environment and the address remapping via ARP

messages. The software to hardware transfer only requires

writes to forwarding table entries over the PCI interface. Our

experiments show that if a source generates packets at 10,000

or fewer packets per second, our system can gracefully migrate

the virtual router between hardware and software without any

packet loss.

6. CONCLUSIONS AND FUTURE WORK
A scalable network virtualization environment that implements

fast data planes in hardware and slower data planes in software

is presented. The system exploits the parallelism, specialization

and adaptability in FPGAs to realize a flexible network

virtualization substrate that can be used for realistic network

experimentation. In the future, we plan to support partial

reconfiguration and automatic scheduling of dynamic

reconfiguration in the system. The evaluation of the clock

gating scheme as a power efficient fault injection mechanism

for network experimentation is a possibility. We also plan to

evaluate various algorithms that can efficiently allocate virtual

networks with diverse bandwidth requirements on the

heterogeneous virtualization substrate. Finally, the efficiency of

the system can be improved by integrating efficient kernel-

based virtual router implementations in software with fast

hardware data planes in much larger FPGAs.

7. ACKNOWLEDGMENTS
The work was funded in part by National Science Foundation

grant CNS-0831940. The FPGA compilation tools were

generously donated by Xilinx Corporation.

8. REFERENCES
[1] M. B. Anwer and N. Feamster. Building a fast, virtualized

data plane with programmable hardware. ACM

SIGCOMM Workshop on Virtualized Infastructure

Systems and Architectures, pp. 1-8, 2009.

[2] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J.

Rexford. In vini veritas: realistic and controlled network

experimentation. SIGCOMM Comput. Commun. Rev.,

36(4), pp. 3-14, 2006.

[3] N. Beheshti, J. Naous, Y. Ganjali, and N. McKeown.

Experimenting with buffer sizes in routers. In Proceedings:

ACM/IEEE Symposium on Architecture for Networking

and Communications Systems, pp. 41-42, 2007.

[4] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A.

Bavier, N. Feamster, L. Peterson, and J. Rexford. Hosting

virtual networks on commodity hardware. Georgia Tech

Computer Science Technical Report GT-CS-07-10, 2008.

[5] S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada, V.

Valancius, A. Bavier, N. Feamster, L. Peterson, and J.

Rexford. “Trellis: A platform for building flexible, fast

virtual networks on commodity hardware”. Proc.

Workshop on Real Overlays and Distributed Systems,

2008

[6] G. A. Covington, G. Gibb, J. W. Lockwood, and N.

McKeown, A packet generator on the NetFPGA platform.

Proceedings of the 17th IEEE Symposium on Field-

Programmable Custom Computing Machines, pp.235-238,

2009.

[7] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy,

and T. Schooley. Evaluating xen for router virtualization.

Proceedings of 16th International Conference on Computer

Communications and Networks, pp. 1256-1261, 2007.

[8] N. Feamster, L. Gao, and J. Rexford. How to lease the

Internet in your spare time. ACM SIGCOMM Computer

Communication Review, 37(1), pp. 61-64, 2007.

[9] R. Franklin, D. Carver, and B. Hutchings. Assisting

network intrusion detection with reconfigurable hardware.

In Proceedings: IEEE International Symposium on Field

Programmable Custom Computing Machines, pp. 111-120,

2002.

[10] F. Kuhns, J. DeHart, A. Kantawala, R. Keller, J.

Lockwood, P. Pappu, D. Richards, D. Taylor, J.

Parwatikar, E. Spitznagel, J. Turner, and K. Wong. Design

of a high performance dynamically extensible router. In

Proceedings: DARPA Active Networks Conference and

Exhibition, pp. 42-64, 2002.

[11] A. Menon, A. Cox, and W. Zwaenepoel. Optimizing

network virtualization in Xen. In Proceedings: USENIX

Annual Technical Conference, pp. 15-28, 2006.

[12] Stanford University. NetFPGA User’s Guide, 2008.

http://yuba.stanford.edu/NetFPGA/static/guide.html.

[13] J. Turner. A proposed architecture for the GENI backbone

platform. WUCSE2006-14 Washington University School

of Applied Science and Engineering Technical Report,

2006.

[14] G. Watson, N. McKeown, and M. Casado. NetFPGA: a

tool for network research and education. In Proceedings:

Workshop on Architectural Research Using FPGA

Platforms, pp. 160-161, 2006.

[15] N. Weaver, V. Paxson, and J. Gonzalez. The Shunt: An

FPGA-based accelerator for network intrusion protection.

In Proceedings: ACM/SIGDA International Sympoosium

on Field Programmable Gate Arrays, pp. 199-206, 2007.

[16] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan,

and I. Stoica, “ROFL: routing on flat labels,” SIGCOMM

Comput. Commun. Rev., 36(4), pp. 363–374, 2006.

[17] J. Turner et al, “Supercharging PlanetLab: a high

performance, multi-application, overlay network

platform,” in Proceedings of SIGCOMM, pp. 85-96, 2007.

[18] L. Peterson, S. Shenker, and J. Turner, "Overcoming the

Internet impasse through virtualization", Proceedings of

the Third Workshop on Hot Topics in Networking, pp. 34-

41, 2004.

[19] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The

Second-Generation Onion Router", Proceedings of the

13th USENIX Security Symposium", pp. 303-320, 2004.

[20] L. Zhuang, F. Zhou, B. Zhao and A. Rowstron,

"Cashmere: Resilient Anonymous Routing", Proceedings

of NSDI, pp. 301-314, 2005.

[21] E. Keller and E. Green, "Virtualizing the data plane

through source code merging.” in Proc. ACM SIGCOMM

Workshop on Programmable Routers for the Extensible

Services of Tomorrow, pp. 9-14, 2008.

[22] G. Lu, Y. Shi, C. Guo, and Y. Zhang, " CAFE: A

Configurable pAcket Forwarding Engine for Data Center

Networks” in Proc. ACM SIGCOMM Workshop on

Programmable Routers for the Extensible Services of

Tomorrow, pp. 25-30, 2009.

[23] OpenVZ project page, http://www.openvz.org, 2008

[24] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and

J. Rexford, "Virtual routers on the move: live router

migration as a network-management primitive",

SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp.

231-242, 2008.

[25] Y. Liao, D. Yin and L. Gao, “PdP: Parallelizing Data

Plane in Virtual Network Substrate", Proceedings of the

First ACM SIGCOMM Workshop on Virtualized

Infrastructure Systems and Architectures, pp. 9-18, 2009

[26] VMWare, "Understanding Full Virtualization,

Paravirtualization, and Hardware Assist", 2007,

http://www.vmware.com/files/pdf/VMware_paravirtualizat

ion.pdf"

[27] A. Whitaker, M. Shaw, and S. Gribble, "Denali:

Lightweight Virtual Machines for Distributed and

Networked Applications, Proceedings of the USENIX

Annual Technical Conference", 2002.

[28] S. Soltesz, H. Potzl, M. Fiuczynski, A. Bavier and Larry

Peterson, “Container-based operating system

virtualization: a scalable, high-performance alternative to

hypervisors”, Proceedings of the ACM SIGOPS European

Conference on Computer Systems, pp. 275-287, 2007.

[29] “The Click Modular Router”, http://read.cs.ucla.edu/click/

[30] “Tunneling”, www.linuxfoundation.org/en/Net:Tunneling

[31] “Iperf 1.7.0: The TCP/UDP bandwidth measurement tool.”

http://dast.nlanr.net/Projects/Iperf/

