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ABSTRACT 
Recent virtual network implementations have shown the 

capability to implement multiple network data planes using a 

shared hardware substrate. In this project, a new scalable virtual 

networking data plane is demonstrated which combines the 

performance efficiency of FPGA hardware with the flexibility of 

software running on a commodity PC. Multiple virtual router 

data planes are implemented using a Virtex II-based NetFPGA 

card to accommodate virtual networks requiring superior packet 

forwarding performance. Numerous additional data planes for 

virtual networks which require less bandwidth and slower 

forwarding speeds are implemented on a commodity PC server 

via software routers. Through experimentation, we determine 

that a throughput improvement of up to two orders of magnitude 

can be achieved for FPGA-based virtual routers versus a 

software-based virtual router implementation. Dynamic FPGA 

reconfiguration is supported to adapt to changing networking 

needs. System scalability is demonstrated for up to 15 virtual 

routers. 
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1. INTRODUCTION 
   As the Internet evolves, increasingly diverse network 

applications will be deployed to accommodate business and 

social needs. Often, network applications call for strikingly 

divergent performance requirements in terms of security, 

predictability, and throughput. Although physically separate 

networks could be constructed to meet these varied service 

requirements, a common physical substrate minimizes equipment 

investment, operating cost, and power consumption. Network 

virtualization, which supports the simultaneous operation of 

multiple virtual networks over shared network resources, 

provides a powerful way to customize each network to a specific 

purpose and service requirement while minimizing hardware 

resources [8]. Although virtual networks use the same hardware 

resources, individual network data and control planes are 

effectively isolated, providing protection against 

misconfigurations and intrusions from other networks. Such an 

approach also allows for customized protocols and/or 

configurations that may be experimental in nature without 

burdening pre-existing networks. 

The introduction of network virtualization has recently led to a 

collection of mostly software-based virtualization solutions.  

Although these implementations exhibit substantial flexibility 

and support for tens of simultaneous networks [2][5], the serial 

nature of general purpose microprocessors limits their achievable 

performance. This constraint points towards a configurable 

approach with significant fine-grained parallelism and 

specialization, i.e., the implementation of virtual networks in 

FPGA hardware to achieve both configurability and performance 

goals. Although improved performance versus software-based 

approaches has been demonstrated in existing FPGA-based 

systems [1][22], the scalability of these techniques to tens of 

networks is limited by the logic and memory resources of the 

target FPGA. More importantly, these previous systems do not 

gracefully support virtual network reconfiguration or re-

programming, which are much desired features in a network 

virtualization substrate. 

Our scalable virtual networking approach overcomes the 

limitations of previous approaches by seamlessly integrating 

FPGA-based virtual routers with software-based virtual routers. 

The highest-throughput routers are mapped to hardware while 

remaining virtual routers are implemented by software routers 



running in virtual machines hosted in a commodity PC. Both 

hardware and software routers support the same user-defined 

protocols and isolation techniques in an approach which is 

transparent to end users. A virtual router in our system can be 

migrated between the FPGA and the PC server. Decisions 

regarding which virtual routers should be hosted in the FPGA 

hardware can be made dynamically as user needs change. 

Dynamic reconfiguration is used to update FPGA virtual routers 

as networking needs change. 

To determine the real-time performance of the new virtual 

networking environment, a parameterizable virtual router design 

has been implemented in a Virtex II-based NetFPGA board [12]. 

The board is included in a Linux-based PC which is sliced into 

virtual machines using the OpenVZ virtualization scheme [23]. 

Our current FPGA architecture can simultaneously support up to 

five different virtual networks. The data planes of virtual 

networks requiring superior packet forwarding speed are hosted 

in FPGA hardware. A performance evaluation shows that when 

multiple virtual routers are hosted in FPGA hardware, each of 

them can achieve close to line speed packet forwarding. The 

virtual routers running in the FPGA can be migrated to software 

routers running in the OpenVZ containers when the FPGA needs 

to be reconfigured.  

The rest of the paper is organized as follows. Section 2 

introduces virtual networks and current software and hardware-

based virtualization techniques. Section 3 presents the 

architecture of our virtual routing system and compares its 

structure with previous hardware- and software-based 

implementations. The experimental approach used for virtual 

network evaluation is described in Section 4. In Section 5, the 

throughput, latency, and scalability results of our work are 

detailed. Section 6 summarizes the paper and offers directions 

for future work. 

2. BACKGROUND 

2.1 Network Virtualization 
Network virtualization has been proposed as a powerful approach 

to facilitate the testing and implementation of network 

innovations using a shared substrate [2][18]. In a network 

virtualization infrastructure, concurrent virtual networks are 

implemented in shared networking hardware. Such an approach 

reduces the expense of hardware and provides a platform for 

researchers to independently deploy and evaluate innovative 

networking techniques. To those who create the virtual networks, 

each independent virtual network represents an isolated and 

customizable platform with prespecified routing protocols, 

bandwidth guarantees, and quality of service (QoS). Figure 1 

shows a network infrastructure, which is virtualized to support a 

red virtual network and a blue virtual network. Each virtual 

network might run different routing processes (with the same or 

different routing protocols) and therefore might have different 

views of the network topology. For example, Figure 2 shows a 

topology which differs from the one in Figure 3 although both 

virtual networks run on the same physical network.  

Figure 4 shows the structure of a physical router in a 

virtualization substrate, which is partitioned into multiple virtual 

routers. A virtual router consists of two major parts: a control 

plane, where the routing processes exchange and maintain 

routing information; and a data plane, where the forwarding 

information base (FIB) stores the forwarding route entries and 

performs packet forwarding. 

 

  

Figure 1. Virtual networks 

 

Figure 2. Blue virtual networks 

 

Figure 3. Red virtual networks 

The virtual routers are independent of each other and can run 

different routing, addressing and forwarding schemes. A physical 

link is multiplexed into virtual links, which connect the relevant 

virtual routers into virtual networks. Any virtual router joining 

the virtual network is marked with this color (e.g. red or blue) 

and data packets are colored in a similar fashion. The physical 

router provides DEMUX and MUX circuitry for the hosted 

virtual routers. After exiting a physical link, a colored packet 

will be delivered by the DEMUX to the virtual router with the 

same color. When packets are emitted from a virtual router, it is 

colored with the router’s color at the MUX before it enters the 

physical link. Because of this packet-level separation, a virtual 

router can only communicate with virtual routers of the same 

color. As a result, a network infrastructure can run multiple 

virtual networks in parallel and each virtual network can run any 

addressing, routing and forwarding scheme without interfering 

with a different virtual network. 

Flexibility is a key requirement of any virtual networking 

substrate. Specifically, a virtual network must offer maximum 

control over its data and control planes. For example, the 

deployment of new addressing schemes such as ROFL [16] 

requires customization of nearly all aspects of the network core 



such as the routing protocol and the address lookup algorithm. 

Other examples include QoS schemes that require certain 

queuing and scheduling approaches and security mechanisms 

such as network anonymity or onion routing [19][20]. To attract 

existing applications whose performance requirements may scale 

over time, superior data plane performance is also of utmost 

importance.  

 

Figure 4. Virtual router architecture 

The customization of existing proprietary network devices to 

support virtual networking is challenging, if not impossible. 

Contemporary network devices typically do not provide the 

interfaces necessary to enable programmability. Most existing 

network systems employ application specific integrated circuits 

(ASICs). Although ASICs typically achieve high performance, 

they do not have the flexibility needed for service customization. 

For example, the Supercharging PlanetLab platform [17] only 

provides a customizable forwarding table interface, which makes 

it hard to support innovations such as network anonymity, onion 

routing and QoS schemes.  

2.2 Network Virtualization with Software 
To allow for the rapid allocation of system resources and a 

flexible programming environment, several network 

virtualization systems have recently been implemented using off-

the-shelf hardware with existing host virtualization technology 

[4][11]. The execution of customized software on general-

purpose microprocessors provides the flexibility and 

programmability needed to build customizable virtual networks.  

Bhatia, et al [5] developed a virtual networking environment 

which can be scaled to 60 independent networks. This system 

allows for individual network customization and the use of a 

commodity operating system which can support a variety of 

services, including tunneling. Packet forwarding is performed in 

the kernel under application control. Keller and Green [21] 

proposed a system which allows for customized packet handling 

for each data plane in a virtualized network. This system uses an 

unvirtualized Linux kernel to host multiple concurrent data 

planes implemented in Click [29]. Packet handling is specified as 

an interconnected graph of networking functions.  

Although the substantial progress of these and other virtual 

networking systems is important [4][7], the serial nature of 

general-purpose microprocessors limits the achievable 

performance of software-based virtual network devices. 

Software-based data plane implementations can exhibit 

statistical variations in observed network parameters due to jitter 

and resource contention. For example, in container-based 

virtualization and full virtualization techniques [2], each virtual 

network resource must contend for hardware and operating 

system resources such as CPU cycles, bandwidth and physical 

memory. Although the extent of contention could be reduced 

through CPU/memory reservations and real time priority 

assignments [2] to each virtual network, these approaches tend to 

degrade flexibility in experiments. 

2.3 Network Virtualization with FPGAs 
Over the past eight years, FPGAs have been used extensively to 

evaluate and implement network routers. These programmable 

components are now viewed as prime candidates for next 

generation network router implementations [13]. Initial work in 

FPGA-implemented routers focused on basic router 

implementations [10], network packet intrusion detection [9][15], 

and buffer sizing [3]. Two very recent efforts assess the use of 

FPGAs in virtual networking.  

In Anwer, et al [1], a NetFPGA board is used to implement up to 

eight identical virtual routing data planes in a single Virtex II 

Pro. The control planes are implemented in software with the 

help of virtual containers in the host operating system. Physical 

links are virtualized by associating each physical NetFPGA 

network port with one or more virtual ports. Although this setup 

is shown to provide twice as much throughput as a software 

kernel router, a number of limitations exist. All data planes are 

identical; only routing table differentiation is supported. 

Additionally, the resources of the FPGA provide a hard cap on 

the number of supported virtual networks. Finally, no support for 

dynamic reconfiguration of the FPGA to support changing 

networking needs is mentioned.  

Multiple different virtual data planes have recently been 

implemented [22] using a NetFPGA platform. Up to two data 

planes can be specified by designers and implemented in FPGA 

hardware. A series of configuration registers are available which 

allow for real-time updates to virtual routing protocols. No 

discussion of scalability, logic reconfiguration, or data plane 

customization is provided.  

3. SCALABLE VIRTUAL NETWORKING 
Our new network virtualization system makes two specific 

extensions to previously implemented systems: 

1. The number of virtual networks supported in our system is 

not limited to the amount of FPGA logic. Multiple high-

throughput, customized data planes are implemented in 

hardware while a scalable number of slower additional data 

planes are simultaneously implemented in software. 

Although the number of high performance virtual data 

planes is limited by the available FPGA logic, users have 



the additional flexibility of implementing slower data planes 

in host software. 

2. The FPGA implementation of the virtual data planes is not 

static. The FPGA can be dynamically reconfigured over time 

while the network is operational to support alternate planes.  

In the following subsections, an overview of our implementation 

and run-time environment is detailed. 

3.1 System Overview 
The high-level architecture of our system is shown in Figure 5. In 

this setup, virtual routers that require highest throughout and 

lowest latency are implemented on a Virtex II-Pro 50 on the 

NetFPGA platform [14] while additional software virtual routers 

are implemented in OpenVZ [23] containers running in the PC. 

The NetFPGA platform consists of four 1 Gbps Ethernet 

interfaces, a 33 MHz PCI interface, 64 MB of DDR2 DRAM and 

two 32 MB SRAMs. The hardware data path of the NetFPGA 

platform is implemented as a pipeline of fully customizable 

modules. The forwarding tables of the hardware virtual routers 

are implemented in BRAM and SRL16E memories within the 

FPGA. Forwarding tables can be updated from software through 

the PCI interface. The PCI interface facilitates flexible control 

plane implementations in software.  

In addition to the NetFPGA board, our system includes a PC 

server to host the software virtual routers. The PC server is 

sliced into virtual machines using OpenVZ [23]. OpenVZ is a 

lightweight virtualization approach used in several network 

virtualization systems [24][25] and it is included in major Linux 

distributions. OpenVZ virtualizes a physical server at the 

operating system level. The OpenVZ kernel allows multiple 

isolated user-space instances, which are called virtual machines 

or containers. Each virtual machine performs and executes like a 

stand-alone server. The OpenVZ kernel provides the resource 

management mechanisms to allocate resources such as CPU 

cycles and disk storage space to the virtual machines. Compared 

with other virtualization approaches, such as full virtualization 

[26] and paravirtualization [27], the OS-level virtualization 

provides the best performance and scalability. The performance 

difference between a virtual machine in OpenVZ and a 

standalone server is almost negligible [28]. 

When the number of virtual networks exceeds the available 

FPGA hardware resource capacity, additional routers are 

spawned in the host software on the PC server. Since software 

virtual routers must be effectively isolated from each other, they 

are hosted in separate OpenVZ containers that guarantee a fair 

share of CPU cycles and physical memory to each virtual router. 

Each instance of the OpenVZ container executes a user mode 

Click modular router [29] to process the packets.  The forwarding 

functions of Click can be customized according to the virtual 

network creator’s preferences. 

When a packet arrives at an Ethernet interface (PHY), the 

destination virtual IP address (DST VIP) in the packet header 

(Figure 6) is used to determine the location of its virtual router. 

If the packet is associated with a hardware virtual router, it is 

processed by the corresponding hardware router. Otherwise, it is 

transmitted to the host software via the PCI bus. A software 

bridge provides a mux/demux interface between the PCI bus and 

multiple OpenVZ routers. Periodically, the virtual networks in 

the FPGA are reconfigured to take into account changes in the 

bandwidth demands and routing characteristics. While the FPGA 

is being reconfigured, all traffic is routed by the host software. 

When reconfiguration is finished, selected virtual networks are 

shifted back to the hardware based on their performance 

requirements. The adoption of network virtualization for realistic 

network experiments requires widespread deployment across 

multiple sites. Tunneling transforms data packets into formats 

that enable them to be transmitted on networks that have 

incompatible address spaces and protocols. Our system supports 

the use of layer 3 virtualization based on IPIP tunneling [30]. In 

this tunneling approach, each node in a virtual network has a 

virtual IP address assigned from a private address space. To 

transmit a packet to another virtual node in the private address 

space, packet data is encapsulated in an IPv4 wrapper, as shown 

in Figure 6. 

The datagram is subsequently tunneled through routers to the 

next virtual node. When the packet reaches a virtual router, the 

inner virtual IP address is used to identify the next virtual hop. 

The packet is then tunneled to its final destination. Tunnel-based 

layer 3 virtualization is a popular virtualization strategy that has 

been deployed in many software virtualization systems such as 

VINI [2]. In the following sections, we describe the 

implementation details of each component in our system and 

finally their integration. 

3.2 Software Virtual Router Implementation 
The virtual routers hosted in the PC are implemented by running 

Click inside OpenVZ containers. Each OpenVZ container has a 

set of virtual Ethernet interfaces. 

 

 

Figure 5. High-level overview of the scalable system 

 

 

Figure 6 – Packet format for Layer 3 virtualization 

 



 

Figure 7 – Detailed system architecture

A software bridge on the PC performs the mapping between the 

virtual Ethernet interfaces and the physical Ethernet interfaces 

located in the PC. To enhance flexibility, Click is run as a user 

mode program inside the OpenVZ container so that the 

functions of the software virtual router can be fully customized. 

The penalty of running user mode Click inside the OpenVZ 

container is that the forwarding speed is much slower. Hence, 

the software virtual routers should be used in those virtual 

networks that do not carry too much traffic volume. The 

software virtual routers are also used to temporarily forward 

those packets usually forwarded by the hardware virtual routers 

when the FPGA hardware is being reprogrammed and cannot 

handle the packets. 

 

3.3 NetFPGA Virtual Router Implementation 
The base router [12] provided with the standard NetFPGA 

distribution has been extended to support multiple, 

customizable, virtual data planes. The following base router 

features have been retained for use with our extended router. 

The hardware data path of the base router consists of input 

queues, an input arbiter, an output port lookup module, and 

output queues. Incoming packets from PHY Ethernet interfaces 

are placed into input queues. The input arbiter module services 

each queue in a round robin fashion. The output port lookup 

module consists of SRAM-based forwarding tables that support 

IP lookup and ARP lookup mechanisms. Processed packets are 

sent to the output queues from where they are forwarded to the 

physical interface. The control plane for the base router is 

implemented in host software running the Linux operating 

system. The control plane currently supports a modified OSPF 

(PW-OSPF) routing protocol. Figure 7 shows our extended 

NetFPGA router architecture which supports four hardware 

virtual routers and an interface to additional software virtual 

routers. In this implementation, high speed data planes are 

constructed in hardware by replicating the forwarding tables 

and the forwarding logic (output port lookup module) of the 

base router. Each virtual router has its own unique set of 

forwarding table control registers. This architecture offers two 

advantages. First, it ensures close to line rate data plane 

throughput for each virtual data plane. Second, independent 

hardware resources facilitate strong isolation between the 

networks. By providing unique forwarding engines to each 

virtual router, the system allows network users to customize 

their data planes independently. Three different forwarding 

policies are supported: source-based, destination-based and 

source-and-destination-based routing approaches.  

A packet arriving at a PHY input queue (MAC RX Q) 

undergoes a series of forwarding steps. After selection by the 

input arbiter in a round robin fashion, a determination is made 

as to whether the appropriate virtual router is located on the 

NetFPGA board or in software. The dynamic design select 

module associates each incoming packet with a hardware or 

software virtual router. The dynamic design select module uses 

the destination virtual IP address (DST VIP in Figure 6) as an 

index into a lookup table to determine the associated virtual 

router. The table is realized using CAM memories in the 

FPGA. If a match to a hardware virtual router is found, the 

packet is sent to the virtual hardware forwarding engine which 

includes a forwarding table and forwarding logic. The 

forwarding table maps the virtual destination IP address to the 

next hop virtual destination IP address. The forwarding logic 

rewrites the source and destination IP addresses (SRC IP and 

DST IP in Figure 6) of the packet before placing the packet in 

one of the available output queues. The packet is dispatched to 

the physical interface via a transmit queue (MAC TX Q). The 

network administrator can use a programmable register in the 

NetFPGA card to write entries into the forwarding tables via 

the PCI bus.  

3.4 System Scalability Using Software 
The NetFPGA serves as a suitable platform to implement high 

performance hardware virtual routers. Nevertheless, the choice 

of a hardware platform for virtualization does create scalability 



issues. For example, the limited amount of logic available on 

the Virtex II Pro limits the maximum number of virtual 

hardware data planes to 5, a sharp reduction from the number 

of data planes previously implemented using software-based 

network virtualization. As a result, our system allows for the 

implementation of virtual routers in both hardware and 

software.  

Two separate, independent approaches are considered to 

support the implementation of a scalable system. In the first 

approach, all packets initially enter the NetFPGA card. Packets 

targeted for virtual networks implemented in software are then 

forwarded to the PC via the PCI bus. Following packet 

processing using Click, the packets were returned to the 

NetFPGA card for retransmission. This approach is 

subsequently referred to as the single receiver approach. In the 

second multi-receiver approach, only packets targeted for 

NetFPGA routing are received by the NetFPGA card. Packets 

destined for software virtual routing are received and 

subsequently retransmitted by a separate PC network interface 

card (NIC) (Figure 7). Details of each approach are now 

described. 

Single-receiver approach: If an incoming packet does not 

have a match for a hardware virtual router in the dynamic 

design select table on the FPGA, the packet is sent to the CPU 

transceiver module shown in Figure 7. The CPU transceiver 

examines the source of the packet and places the packet in one 

of the CPU DMA queues (CPU TX Q) interfaced to the host 

system through the PCI interface. The CPU DMA queues are 

exposed to the host OS as virtual Ethernet interfaces. The 

kernel software bridge forwards the Ethernet packet to its 

respective OpenVZ container based on its destination layer 2 

address (DST MAC in Figure 6). The Click modular router 

within the OpenVZ container processes the packet by 

modifying the same three packet fields as the hardware router 

(DST VIP, SRC IP, and DST IP). The software bridge then 

sends the packet to a CPU RX Q on the NetFPGA board via the 

PCI bus. After input arbitration, the processed packet is sent 

back to the CPU transceiver after a dynamic design select table 

lookup.   The CPU transceiver module extracts the source and 

exit MAC queue information from the processed packet. 

Finally, the packet is placed in the output MAC queue interface 

(MAC TX Q) for transmission.  

The software interface enables migration of virtual networks 

from software to hardware and vice versa on the fly. A network 

can be dynamically migrated from hardware to software in 

three steps. In the first step, an OpenVZ virtual environment 

that runs the Click router is initiated in the host operating 

system. Next, all the hardware forwarding table entries are 

copied to the forwarding table of the host virtual environment. 

The final step writes an entry into the dynamic design select 

table indicating the association of the virtual IP with software. 

Our current implementation imposes certain restrictions on 

virtual network migration from software to hardware. If the 

software virtual router has a forwarding mechanism that is 

unavailable in any of the hardware virtual routers, network 

migration to hardware requires reconfiguration of the FPGA as 

described in Section 3.5. 

Multi-receiver approach: Since in this approach packets can 

arrive at two different destinations based on their virtual 

network, network switches are required, as shown in Figure 8.  

Layer 2 addressing is used to direct each packet to the 

appropriate destination (NetFPGA card or PC NIC). When 

deployed in the Internet, we assume that that the sender is 

capable of classifying each packet as targeted to either the 

NetFPGA card or PC NIC based on the virtual layer 3 address. 

This approach requires the use of external hardware (the 

switches) but simplifies the NetFPGA FPGA hardware design 

since all packets arriving at the NetFPGA card are processed 

locally on the card and CPU RX Q and CPU TX Q ports are 

unused. Packets targeted for software arrive at the PC NIC. 

 

Figure 8. Multi-receiver setup for scalable virtual 

networking including dynamic FPGA reconfiguration 

3.5 Dynamic Reconfiguration 
Although forwarding table updates provide some flexibility for 

virtual routers, it may not be sufficient for significant protocol 

changes related to the forwarding logic. For example, virtual 

networks may require a change between source-based, 

destination-based and source-and-destination based routing. 

FPGAs provide a unique opportunity for real-time 

customization of both the forwarding tables and the underlying 

forwarding logic. To illustrate this concept, experiments 

involving dynamic NetFPGA reconfiguration were performed. 

All virtual networks remained fully active in software during 

this reconfiguration by implementing all virtual networks in 

OpenVZ containers and using the PC NIC (Figure 8) for the 

actual packet transmission. 

Significant changes to the hardware virtual networks can be 

accommodated by FPGA reconfiguration via the following 

steps.  

1. Software Click instances of all active hardware virtual 

routers are created in the OpenVZ virtual environment.  

2. The Linux kernel sends messages to all nodes attached to 

the network interface requesting a remap of layer-3 

addresses targeted at the NetFPGA board to layer-2 

addresses of the PC NIC. Each virtual network includes a 

mechanism to map between layer-2 and layer-3 addresses. 

When a virtual network uses IP, the Address Resolution 

Protocol (ARP) is used to do the mapping between layer-2 

and layer-3 addresses. In our prototype, where IP is used 

in the data plane, the ARPFaker element [29] 

implemented in Click is used to generate ARP reply 

messages to change the mapping between layer-2 and 

layer-3 addresses. 



3. Once addresses are remapped, all network traffic is 

redirected to the PC for forwarding with software virtual 

routers.  

4. The FPGA is completely reprogrammed with a new 

bitstream that incorporates changes in network 

characteristics. In our implementation, a collection of 

previously-compiled FPGA bitstreams is used. Partial 

reconfiguration of selected network components in the 

FPGA will be addressed in future work.  

5. The routing tables are written back to the hardware 

following reconfiguration.  

6. In a final step, the Linux kernel sends messages to all 

nodes attached to the network interface requesting a remap 

of layer-3 addresses back to the NetFPGA interface. The 

virtual network then resumes operation in the hardware 

data plane for the instantiated hardware routers.    

In Section 5, the overheads of this dynamic reconfiguration 

approach are quantified.  

3.6 Power Optimization 
The use of programmable hardware offers the opportunity to 

disable the power consumption of individual hardware virtual 

routers when they are not needed. To allow for additional 

flexibility, the forwarding table and forwarding logic of 

individual hardware virtual routers were instrumented with 

clock gating circuitry. A programmable register for each router 

can be set to disable the clock for all logic registers and BRAM 

blocks in the selected forwarding table and logic.  

4. EXPERIMENTAL APPROACH 
The following sections describe some of the techniques used to 

obtain experimental results. 

4.1 System Parameters 
To measure performance of hardware virtual routers, we use 

the network configuration shown in Figure 9. Initial 

experiments explored the performance of the hardware virtual 

routers. For these experiments, the NetFPGA hardware packet 

generator and packet capture tool [6] were used to generate 

packets at line rate. For all additional experiments which 

included the software virtual routers, iPerf [31] was used to 

generate packets. In general, the software routers cannot handle 

line rate traffic. The hardware virtual router implementations 

were compared against the Click modular router running on a 

Linux box which includes a 3 GHz AMD X2 6000+ processor, 

2 GB of RAM, and a dual-port Intel E1000 Gbit Ethernet NIC 

in the PCIe slot. Performance was determined in terms of 

network latency and observed throughput. The network latency 

was measured with the ping utility. 

To measure the scalability of our system, systems of between 1 

and 15 virtual routers were implemented. For these systems, 

between one and four virtual routers were implemented in 

hardware while the rest were implemented in host software. 

The Synopsys VCS simulator was used for the functional 

verification of the hardware designs. The Xilinx XPower (XPE) 

power estimator was used to determine power estimates. All 

hardware designs were successfully deployed on a NetFPGA 

cube and executed on the Virtex II FPGA.  

 

 

Figure 9 – Test topology 

 

5. EXPERIMENTAL RESULTS 

5.1 Performance  
In an initial experiment, the baseline performance of a single 

hardware virtual router running in the NetFPGA hardware and 

a Click software virtual router running in the OpenVZ 

container are compared. Figure 9 shows the testbed network 

used in our experiments. The NetFPGA packet 

generator/capture tools were used to generate traffic of different 

packet sizes and rates. The packet generator was loaded with 

PCAP files [6] with packet sizes of 64 to 1024 bytes. Packets 

were transmitted to our system at the line rate of 1Gbps.  

The throughput of three specific system configurations was 

considered: 

1. Hardware data plane – network traffic is received and 

transmitted by the NetFPGA board and forwarding is 

performed using a hardware virtual router on the 

NetFPGA board. 

2. Click/OpenVZ from NIC – network traffic is received and 

transmitted by the PC NIC (Figure 7) network interfaces 

and forwarding is performed using a Click router in 

OpenVZ. 

3. Click/OpenVZ from NetFPGA – network traffic is received 

and transmitted by the physical NetFPGA network 

interfaces but the forwarding operations are performed 

using a Click router in OpenVZ. Packets are transferred 

between the NetFPGA hardware and OpenVZ over the 

PCI bus. 

The throughput of the three approaches for differing packet 

sizes is shown in Figure 10. These values show the maximum 

achievable throughput by each implementation for a packet 

drop rate of no more than 0.1% of transmitted packets. The 

receiver throughputs were measured by hardware counters in 

the NetFPGA PktCap capture tool (Figure 9).  

The throughput of shorter packets drops considerably in the 

software-based implementations. In contrast, the single 

hardware virtual router consistently sustains throughputs close 

to line rates for all packet sizes. The hardware provides one to 

two orders of magnitude better throughput than the OpenVZ 

Click router implementions due to inherent inefficiencies in the 

software implementation. The OpenVZ running in user space 

trades off throughput for flexibility and isolation. The 

performance degradation in software implementations results 

from  frequent operating system interrupts and system calls 

during packet transfers between user space and kernel space. 

The hardware virtual routers takes advantage of the parallelism 

and specialization of the FPGA to overcome these issues.  



5.2 Network Scalability 
Network scalability can be measured in terms of both 

throughput and latency. For these experiments, the test 

topology was configured as shown in Figure 9. Four specific 

system configurations were considered for systems that 

required between 1 and 15 virtual networks. The software-only 

Click/OpenVZ from NIC and Click/OpenVZ from NetFPGA 

cases are the same as defined in Section 5.1. 
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Figure 10. Receiver throughput versus packet size for a 

single virtual router 

Additional cases which combine NetFPGA and software 

forwarding include: 

• Hardware+Click/OpenVZ from NIC - network traffic 

targeted to virtual networks implemented in software is 

received and transmitted by the PC NIC network interfaces 

and forwarding is performed using a Click router in 

OpenVZ. Network traffic targeted to virtual networks 

implemented by the NetFPGA is received and transmitted 

by the NetFPGA. This case represents the multiple 

receiver approach described in Section 3.4. 

• Hardware+Click/OpenVZ from NetFPGA - all network 

traffic is received and transmitted by the physical 

NetFPGA network interfaces. Some forwarding operations 

are performed by hardware virtual routers while others are 

performed using Click routers in OpenVZ. For the latter 

cases, packets are transferred between the NetFPGA 

hardware and OpenVZ over the PCI bus. This case 

represents the single receiver approach described in 

Section 3.4. 

In the latter two cases, up to four virtual routers were 

implemented in hardware and remaining networks (up to 11) 

were implemented in software (Click/OpenVZ).  

Transmission latency for the four cases were measured in the 

presence of background traffic. The packets of the background 

traffic were transmitted at the maximum capacity available to 

each router. The packet generation rate was fixed such that no 

more than 0.1% of the traffic was dropped. As shown in Figure 

11, the average network latency of the Click OpenVZ virtual 

router is approximately an order of magnitude greater than that 

of the hardware implementation. The latency of OpenVZ 

increases by approximately 66% from one to fifteen virtual 

routers. This effect is due to context switching overhead and 

resource contention in the operating system. Packets routed 

through OpenVZ via the NetFPGA/PCI interface incur 50% 

additional latency overhead than when they are routed through 

the NIC interfaces. The average latency of hardware routers 

remains constant for up to four data planes. After this, every 

additional software router increases the average latency by 

25%. 

To measure aggregate throughput when different numbers of 

virtual routers are hosted in our system, 64 byte packets were 

initially transmitted with an equal bandwidth allocated for all 

networks. Next, the bandwidth share of each virtual network 

was incrementally increased until the networks began to drop 

more than 0.1% of the assigned traffic.   
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Figure 11 – Average latency for an increasing number of 

virtual routers  

A single OpenVZ software virtual router can route packets 

through the PC NIC interface at a bandwidth up to 11 Mbps. 

The throughput drops by 27% when fourteen additional 

software routers are added. The software virtual router 

implementation which routes packets from the NetFPGA card 

to the OpenVZ containers can sustain only low throughput 

(approximately 800 Kbps) with 64 byte packets and 5 Mbps 

with 1500 byte packets due to inefficiencies in the NetFPGA 

PCI interface and driver. The hardware virtual router sustains 

close to line rate aggregate bandwidths for up to four data 

planes. The average aggregate bandwidth drops when software 

virtual routers are used in addition to hardware routers. Note 

that the use of a log scale causes the top two plots overlap.  

The top two plots (HW+Click/OpenVZ from NIC and HW+ 

Click/OpenVZ from NetFPGA), which overlap in Figure 12, 

show the average aggregate throughputs when software data 

planes are used in conjunction with hardware data planes. 

Since the hardware throughput dominates the average 

throughput for these two software data plane implementations, 

minor differences in bandwidth are hidden. Further, the use of 

a log scale hides minor differences in throughput between the 

two software implementations. 

Our virtual networking systems which contain more than the 

four virtual routers implemented in hardware exhibit an 

average throughput reduction and latency increase as software 

virtual routers are added. For systems that implement a range 

of virtual networks with varying latency and throughput 

requirements, the highest performance networks could be 

allocated to hardware while lower performing networks are 

implemented in software.   

5.3 Resource usage 
The Virtex II Pro FPGA can accommodate a maximum of five 

virtual routers, each with a 32-entry forwarding table. When 



the CPU transceiver module is included, the FPGA can 

accommodate a maximum of four virtual routers. Each virtual 

data plane occupies approximately 2000 slice registers and 

3000 slice LUTs. A fully populated design uses approximately 

90% of the slices and 40% of the BRAM. Table 1 shows the 

resource utilization of up to five virtual routers. All designs are 

operated at 62.5 MHz. Synthesis results for the virtual router 

design implemented on the largest Virtex 5 (5vlx330tff1738) 

shows that a much larger FPGA could support up to 32 virtual 

routers.  

Power consumption results show that a two virtual router 

system consumes approximately 158.8 mW of static power and 

766.2 mW of dynamic power. It is possible to save about 10% 

of the total dynamic power by clock gating an individual virtual 

router.  Additional power results are summarized in Table 2. 
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Figure 12 – Average throughput for an increasing number 

of virtual routers 

 

 Hardware data planes 

 1 2 3 4 5 

Slices 10068 12882 15696 18509 21322 

Slice FF 8964 11269 13574 15879 18184 

LUTs 15272 19744 24216 28689 33161 

IO 437 437 437 437 437 

BRAM 25 40 55 70 85 

Table 1 – Resource utilization 

 

#Virtual routers Static 

(mW) 

Dynamic 

(mW) 

Total 

(mW) 

1 158.8 687.5 846.3 

2 158.8 766.3 925.1 

3 158.8 853.2 1012.3 

4 158.8 936.2 1095.0 

Table 2 – Power consumption of virtual routers 

5.4 Overhead of Dynamic Reconfiguration 
To evaluate the cost and overhead of dynamic reconfiguration, 

we initially programmed the target FPGA with a bitstream that 

consisted of a single virtual router. An experiment was then 

performed in which a source host sent ping packets to the 

system at various rates which were forwarded using the 

NetFPGA hardware virtual router. Periodically, the hardware 

virtual router was migrated to a software-based router running 

in the OpenVZ container of the PC using the procedure 

described in Section 3.5. After FPGA reconfiguration, the 

virtual router was migrated back to the NetFPGA card.  

It was determined that approximately 12 seconds are required 

to migrate a hardware virtual router to a Click router 

implemented in OpenVZ. The FPGA reconfiguration, including 

bitstream transfer over the PCI bus, required about 5 seconds. 

Transferring the virtual router from software back to hardware 

took only around 3 seconds. The relatively high hardware-to-

software migration latency was caused by the initialization of 

the virtual environment and the address remapping via ARP 

messages. The software to hardware transfer only requires 

writes to forwarding table entries over the PCI interface. Our 

experiments show that if a source generates packets at 10,000 

or fewer packets per second, our system can gracefully migrate 

the virtual router between hardware and software without any 

packet loss.   

6. CONCLUSIONS AND FUTURE WORK 
A scalable network virtualization environment that implements 

fast data planes in hardware and slower data planes in software 

is presented. The system exploits the parallelism, specialization 

and adaptability in FPGAs to realize a flexible network 

virtualization substrate that can be used for realistic network 

experimentation. In the future, we plan to support partial 

reconfiguration and automatic scheduling of dynamic 

reconfiguration in the system. The evaluation of the clock 

gating scheme as a power efficient fault injection mechanism 

for network experimentation is a possibility. We also plan to 

evaluate various algorithms that can efficiently allocate virtual 

networks with diverse bandwidth requirements on the 

heterogeneous virtualization substrate. Finally, the efficiency of 

the system can be improved by integrating efficient kernel-

based virtual router implementations in software with fast 

hardware data planes in much larger FPGAs.  
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