
Application-Specific Customization and Scalability of Soft Multiprocessors

Deepak Unnikrishnan, Jia Zhao, and Russell Tessier

Department of Electrical and Computer Engineering

University of Massachusetts

Amherst, MA 01003

Abstract

Although soft microprocessors are widely used in

FPGAs, limited work has been performed regarding how to

automatically and efficiently generate soft multiprocessors.

In this paper, an automated parallel compilation

environment for multiple soft processors which

incorporates parallel compilation and inter-processor

communication structures is described. A total of eight

previously-developed parallel processing benchmarks have

been automatically mapped to a varying number of

synthesized soft microprocessors in commercial FPGAs.

The new automated infrastructure allows for an evaluation

of area, performance, and power tradeoffs for a range of

architectural choices. Experiments show that our soft-

multiprocessor systems consisting of up to 16 processors

can offer up to 5x improvement in application performance

against their uniprocessor counterparts.

1. Introduction

Over the past few years, soft microprocessors have

become integral parts of FPGA-based systems-on-a-

programmable chip (SoPC). Increased FPGA area has

driven interest in the combination of multiple concurrently-

executing soft processors implemented on the same FPGA

substrate. For many applications, multiple soft processors

provide a flexible and programmable platform for fast

application mapping without the need for intensive RTL

design. These implementations may be used for a variety of

end purposes ranging from initial hardware prototyping to

end product design implementation.

Most research on soft multiprocessors has focused on

the development of automated synthesis tools for small

numbers of processors [11][12] and the investigation of

interprocessor communication topologies [6][8][13]

Although these projects demonstrated the potential of soft

multiprocessors and their usefulness, a comprehensive

evaluation of the combined impact of multiprocessor

synthesis, interconnect topology choice, and scalability has

not been performed for a substantial collection of

multiprocessor benchmarks. An understanding of the

interaction of these design choices on area, performance,

and energy consumption is critical for successful soft

multiprocessor implementation.

In this evaluation, the customization and scalability of

soft multiprocessor designs are assessed for a sizable

number of stream-based parallel computing benchmarks.

The StreamIt parallelizing compiler [7] provides a front-end

which can automatically map high-level software

descriptions of stream applications to multiple processors.

Individual soft processors are customized with the SPREE

synthesis infrastructure [15]. To determine the effect of soft

multiprocessor customization and scaling, a collection of

architectural optimizations are considered including

interconnection network topology optimization, soft

processor pipeline depth variation, inter-processor

communication buffer sizing, and unused instruction

removal for individual soft processors. Experimental results

are determined via synthesis to Altera Stratix II and Stratix

III devices. Performance results generated via simulation

are verified by mapping designs containing up to sixteen

processors to a Stratix III device located on an Altera DE3

board [16].

2. Background

Our work builds on previous research in soft uni- and

multiprocessor design and implementation. This previous

research encompasses synthesis systems for soft

multiprocessors, interconnection techniques for soft

multiprocessors, and architectural optimization for

individual soft processors. Unlike the experiments

described in the paper, these previous efforts have primarily

evaluated design area, performance, and energy impacts in

isolation (e.g. interconnect-only, processor-only) without

considering the underlying tradeoffs in complete system

design and synthesis.

Partitioning systems which automatically map stream-

based applications described at a high level to multiple soft

processors have been considered in several contexts. Initial

work by Ravindran et al. [12] focused on the use of an

integer linear programming formulation to map tasks to

multiple processors while achieving acceptable throughput.

A subsequent clustering and packing approach [1] for soft

multiprocessor synthesis targeted M-JPEG mapping. This

mapping technique considers the assignment of tasks to

processors connected via FIFOs in a point-to-point fashion.

Both design latency and throughput constraints are

considered during synthesis for up to seven processors. A

recent soft multiprocessor environment [11] iteratively

assigns tasks to a fixed number of processors to balance

computation. An evaluation of an M-JPEG application for

up to eight processors is considered for both point-to-point

and crossbar topologies. Although these synthesis systems

provide initial analysis, conclusions regarding appropriate

inter-processor topology and mapping effectiveness for a

range of automatically-mapped applications are difficult to

ascertain. Additionally, these previous projects do not

consider processor-specific optimizations and scalable

numbers of processors connected in mesh topologies.

A series of recent studies have examined appropriate on-

chip interconnect approaches for multiprocessors

implemented in FPGAs. Saldana et al. [13] considered a

range of inter-processor topologies, such as meshes,

hypercubes, star, and fully-connected topologies for

multiprocessors containing up to 64 nodes. The study

concluded that all topologies, except fully-connected and

star, could be easily synthesized to FPGAs. Although

interesting, this study did not consider the communication

patterns of applications mapped to multiple processors or

their need for synchronization. Other network-on-chip

(NoC) on FPGA studies [6] concluded that NoCs can

significantly outperform on-chip buses and provide system

scalability. Kapre et al. [8] observed that time-switched and

packet-switched butterfly fat trees can be effectively

mapped to FPGAs. Although not comprehensive, several

experiments [2], which manually mapped sorting

applications to hypercube networks, observed considerable

application speedup. In general, none of these previous

FPGA-based NoC studies considered a range of

applications automatically mapped to a large number (e.g. >

10) of soft processors.

The optimization of soft microprocessors for area,

performance, and energy consumption has been an active

area of experimentation for several years. Yiannacouras et

al. [15] examined the effect of optimizations such as shifter

implementation, pipelining, and instruction set subsetting

on soft microprocessor performance. It was found that the

features of the optimal processor architecture for each

application often vary greatly. More recently, researchers

have examined the benefit of soft microprocessor

multithreading to improve application performance and

energy savings. Dimond et al. [3][4] examined the use of

multi-threading, custom instruction coding and instruction

scheduling as techniques to maintain high throughput while

minimizing processor area and energy.

Studies by Labrecque and Steffan [9] and Fort et al. [5]

considered processor pipeline length variation and custom

functional units as techniques to promote increased

multithreading. The former study was later extended [10] to

consider a performance comparison between a single multi-

threaded soft microprocessor, multiple multi-threaded soft

processors and multiple single-threaded soft processors.

3. Soft Multiprocessor Details and Tradeoffs

The explored optimizations are driven by multiprocessor

architectures which can be customized through the use of

various parameters. These parameters allow for the

customization of both the individual soft microprocessors

via pipeline depth determination and instruction set

subsettting and the interconnection network via automatic

topology generation and communication buffer sizing. The

main characteristics of the processor and interconnection

components used in this work include the following details.

Soft processor architecture: The 32-bit soft processors

used in our evaluation are created from the SPREE soft

processor generator [15]. The base RISC architecture used

by this generator supports a subset of the standard MIPS

instruction set architecture (ISA). Datapath pipelines of

multiple stages are supported. The three-stage pipelines

consist of fetch/decode, execute and write back stages.

Four-stage pipelines extend three-stage pipelines by

splitting fetch/decode into two separate stages. Five-stage

pipelines extend the four-stage pipelines by including an

additional execute stage. The soft processor architecture

currently does not support caches, although this is not a

significant issue for stream-based applications which do not

exhibit temporal data locality. Our generated processors

also do not support off-chip memories. The stream

algorithms operate on test data generated internally within

the multiprocessor system. Although support for off-chip

memories will be a nice enhancement, we leave this as

future work. Dynamic branch prediction, exceptions, and

floating point operations are also not supported.

Soft multiprocessor interconnection: Customizable soft

processors in our generated multiprocessors are

interconnected with unidirectional FIFO buffers. FIFO

empty/full status is determined simultaneously with

processor FIFO read/writes operations. Unsuccessful

transactions are repeated. FIFOs are located at memory

mapped processor locations (i.e. each processor is able to

address FIFOs as though they are memory locations through

load/store instructions in a single cycle). Soft

multiprocessors can be configured in either mesh or direct

point-to-point topologies. In meshes, each processor is

assigned to a specific (x, y) location. Inter-processor

connections between non-adjacent processors are made as a

series of inter-processor hops. In this case, each processor

uses at most eight unidirectional FIFOs for North, South,

East, and West communication. For each hop, an

intermediate processor must read the data from one FIFO

and write it to another.

Figure 1. Inter-processor interconnection scheme

 As an example of mesh interconnection, Figure 1

illustrates the software FM Radio application [7]

parallelized over six processors. In this example, each

processor consists of a three-stage in-order pipeline, register

file and local on-chip instruction/data memories. The FIFO

buffers are tightly integrated into the bypass paths of the

processor pipeline using memory mapped input/output

ports. In contrast to mesh topologies, point-to-point

topologies involve direct FIFO connections between

producers and consumers of data, irrespective of topology.

This configuration indicates that some processors may have

numerous input FIFOs while others may have only one.

It is important to note that our synthesized soft

multiprocessor architectures differ from current ASIC

implementations of multicore stream processors, such as

RAW [14]. In RAW multiprocessors, each RISC processor

is augmented with a pipelined crossbar switch which is used

as an inter-processor network-on-chip component. The

crossbar is configured on a cycle-by-cycle basis based on a

pre-compiled schedule. This approach has the benefit of

providing a common communication substrate for many

applications mapped to the same chip at the cost of

increased hardware resources. The per-application synthesis

of our soft processors eliminates the need for this overhead.

Application language: Supported applications are

written in StreamIt [7], a stream-based high-level language.

StreamIt was initially created for mesh-based tiled

multiprocessor architectures, such as RAW, that have

predictable computation and communication schedules. The

language and associated compiler effectively isolate the

details of the multiprocessor architecture from the

application designer. The StreamIt language represents

applications as a hierarchical series of functional operations

called filters. Each filter consists of initialization and steady

state routines. Filters exchange data with each other using

push(), pop() and peek() methods via FIFOs. Figure 2

(taken from [7]) illustrates simplified software FM Radio

application written in StreamIt language. As shown in the

figure, StreamIt exposes the natural parallelism inherent in

an application. Each application program consists of a

hierarchical composition of many stream structures such as

pipelines, splitters (duplicate) and joiners (roundrobin).

Figure 2. Software FM Radio in StreamIt [7]

 Independent pipelined, parallel streams which diverge

at a splitter and converge at a joiner form a split-join.

Splitters send a copy of each data item into each parallel

stream. A joiner then combines the results of the streams in

a prescribed fashion.

4. Soft Multiprocessor Synthesis Flow

As stated in Section 1, a significant differentiating factor

between this work and previous soft multiprocessor projects

is the use of fully automatic compilation and use of a

substantially-sized, unmodified benchmark set to evaluate

both soft multiprocessor computation and interconnect

tradeoffs. Existing tools (StreamIt, SPREE) are used along

with new supporting tools to create a novel flow. The

framework allows users to adjust a variety of

multiprocessor system parameters such as the number of

soft processors, the interconnect topology, and the number

of pipeline stages for each processor. The framework also

offers choices for application specific customization at the

microarchitectural and application level.

Customizable processor templates

Streamit

application

Streamit Compiler

Tile code

Code for soft processors

Quartus Compiler

Flow

Target #

Processors

Switch code

SoftCoreMapper

SPREE gcc

compiler

Memory Initialization
Binaries

Binary

Profiler
ASMG

Verilog multiprocessor
system designs

Topology

Area,Performance,Power evaluation

Customizable processor templates

Streamit

application

Streamit Compiler

Tile code

Code for soft processors

Quartus Compiler

Flow

Target #

Processors

Switch code

SoftCoreMapper

SPREE gcc

compiler

Memory Initialization
Binaries

Binary

Profiler
ASMG

Verilog multiprocessor
system designs

Topology

Area,Performance,Power evaluation

Figure 3. Soft multiprocessor synthesis framework

The main steps in the soft multiprocessor generator appear

in Figure 3. Details of the five main steps are included in

the following subsections.

The StreamIt compiler, which was developed to

support the RAW architecture, has been optimized to map

stream-based applications to multiple processors. Although

the StreamIt compiler contains many passes (the interested

reader is directed to [7] for more details), the two StreamIt

algorithms most relevant to soft multiprocessor generation

are partitioning and scheduling. The role of partitioning is

to assign filters so that each processor has roughly the same

amount of operations, thus ensuring balanced operational

throughput. To support balancing, StreamIt partitioning

algorithms attempt to form a number of clusters that is

equal to the number of processors. Partitioning offers an

opportunity to split large filters into pieces (fission) or

group filters together (fusion). Two specific partitioning

algorithms are used. Greedy partitioning clusters filters

based on their size (e.g. the number of operations) until the

number of clusters equals the number of target processors.

Dynamic programming-based partitioning clusters filters in

adjacent pipeline stages together to form larger filters. The

assignment of filters/clusters to specific processors in a

mesh configuration takes place via a simulated annealing

algorithm.

Figure 4. Communication for a mesh topology

Although the original StreamIt stream scheduling

algorithm for meshes can be reused for the new mesh-based

topology, the scheduler is changed to support point-to-point

topologies. For example, consider the mesh-based

communication pattern shown in Figure 4. Under steady

state conditions, Processor 3 produces two data values. The

first value is routed north (N) to Processor 0 and the second

one is routed east (E) to processor 4. Processors 0 and 4

process the incoming data and forward the results through

Processors 1 and 2 to Processor 5. In this example, it takes

multiple cycles for the data values produced by Processors

0 and 4 to be transferred to their final destinations since the

data must hop through intermediate processors.

A modified schedule is shown in Figure 5 (note

processor numbers are used rather than N, S, E, and W).

The new schedule is used to coordinate point-to-point inter-

processor communication. To derive the modified switch

schedule, a data flow graph is generated from the mesh-

style switch schedule produced by StreamIt. In this graph,

nodes are represented by processors and edges are

represented by switch operations that transfer the data. A

depth-first traversal is performed in the graph from each

data source to all the data’s destinations. Any inter-tile data

hop edge discovered during this traversal is eliminated.

Finally, edges are inserted in the graph between data

sources and destinations. The updated data flow graph is

then retimed to account for the removed hops in the point-

to-point topology.

Figure 5. Communication for point-to-point

The SoftCoreMapper modifies filters to include inter-

processor read/write primitives. In the case of clustered

filters, some inter-filter communication takes place via soft

microprocessor registers for filters assigned to the same

processor. Communication between processors takes place

via FIFOs. SoftCoreMapper parses StreamIt output to

identify parts of the application where data exchange occurs

and inserts appropriate FIFO operations. Synchronization

primitives are included for each read/write operation.

The SPREE soft processor generator creates an internal

representation for the processors based on the parameters

noted in Section 3 (e.g. pipeline depth, multiplier usage).

The generator automatically ensures appropriate coverage

for instructions in the ISA in creating the data and control

paths. Communication FIFOs and supporting interface logic

are also instantiated during processor creation. SPREE also

provides a modified MIPS gcc compiler to generate

application binaries for the customized processors.

The binary profiler extracts application specific

instruction set usage from disassembled binaries so that

unused processor data and control path resources can be

removed. The application specific multiprocessor

generator (ASMG) modifies the internal representation of

each processor and associated communication based on the

results of the binary profiler. The instruction set of each

processor is minimized to suit the assigned tasks.

Information regarding inter-processor communication,

individual processor instruction set usage, and pipeline

depth is used to generate the complete Verilog model of the

multiprocessor system. The MIPS compiler has not been

modified to target the soft processors. Standard Quartus

FPGA compile serves as a final step.

5. Experimental Results

Like other stream processing evaluations [7], throughput

and overall execution time are assessed. Execution time is

obtained by multiplying the cycles per output determined

with Modelsim-Altera 6.1g with the maximum design

frequency reported by Quartus v8.0. All designs were

compiled with a timing constraint of 150 MHz. Altera’s

PowerPlay power analyzer was used to determine core

dynamic power results.

 A set of eight StreamIt benchmarks [7], were

parallelized over multiprocessor systems consisting of 6, 9

and 16 processors using our automated synthesis flow. The

benchmarks consist of a mix of sorting (Bitonic), signal

processing (FMRadio, Equalizer, Autocor, Lattice,

Filterbank, FFT), and security (DES) applications. Since

the generated SPREE multiprocessor designs do not support

floating point arithmetic, the benchmarks were executed

using equivalent integer operations. All the designs were

mapped to a 90nm Stratix II EP2S180 device. Designs

consisting of 16 processors were implemented and executed

on a 65nm EP3SL150 Stratix III device on a DE3 board to

verify functionality.

5.1 Interconnect topology variation

In this experiment, the run time performance of a set of

four applications for mesh and direct point-to-point style

network topologies is evaluated. Application speedups

which consider both changes in clock cycles and design

frequency are shown in Figure 6 for three-stage soft

processors with complete instruction sets. Overall, point-to-

point interconnect outperforms a mesh-style network for all

applications by a factor of between 1.1x and 2x. Point-to-

point topologies gain significant cycle speedups due to

reduced synchronization overhead from the elimination of

network hops. Point-to-point topologies consumed 28.6%

less cycles when compared to mesh-style topologies on

average. Interestingly, point-to-point topologies also give

slightly better performance in terms of design frequency.

For a 16 processor system, the point-to-point topology

shows an average 2% improvement in design frequency.

This frequency improvement results from the removal of

unnecessary input/output FIFO ports. In a mesh-style

topology, many processors need close to four ports as these

nodes perform data forwarding in addition to computation.

The improvement is observed even though processors with

large data fan-outs (sources) and fan-ins (sinks) in point-to-

point topologies typically require more than four ports. For

example, in a mesh-style topology for a 16 processor FM

Radio application, the average port usage per processor is

approximately 3, while for a point-to-point topology, the

average port usage per processor is approximately 2. The

processors executing splitter and joiner filters in the point-

to-point topology for this application requires 11 and 9

ports, respectively. For smaller designs, like AutoCor,

cycles per output increases or remains unchanged when

parallelized over larger multiprocessor systems since

increased communication costs dominate over the reduced

computation costs.

The clock frequency differences between individual

mesh and point-to-point implementations of each design are

less than 2.3 MHz. Overall, implementation frequencies

range between 118.0 and 128.7 MHz. In all designs, the

critical path is located within the three-stage processor

logic. Thus, the addition of point-to-point links does not

degrade the maximum design frequency significantly,

although the addition of more point-to-point links may

make the FPGA more difficult to route. The number of

point-to-point links scales linearly with processor count in

most designs. The effectiveness of our point-to-point results

validates previous topology research for FPGAs [13], which

did not consider specific applications.

0

0.5

1

1.5

2

2.5

6 9 16

Number of processors

N
o

rm
a
li

z
e
d

 a
p

p
li

c
a
ti

o
n

 s
p

e
e
d

u
p

Equalizer

Filterbank

FMRadio

AutoCor

Figure 6. Point-to-point speedups vs. mesh

5.2 Customization of pipeline depth

The choice of microarchitectural pipeline depth of each

processor influences the overall throughput of the

application. The impact of 3, 4 and 5 stage pipelining on

application performance is studied. Deepening individual

processor pipelines from three to four stages can give

substantial performance improvements of 22% on average

at a 9.6% increase in area. Figure 7 shows the relative

execution time per output for six stream benchmarks

mapped over 16 processors. The four-stage pipeline

multiprocessor systems generally give better performance

than their three-stage and five-stage counterparts. The

critical paths of the multiprocessor systems for all designs

are within the individual processors. In three-stage

pipelines, the critical path is located between the register

file and memory write-back logic through the branch

predictor. For four- and five-stage pipelines, the critical

path is between the register file and memory write-back

logic through the integer multiplier.

The relative performance improvement of the four-stage

pipelines results from improved per-processor performance.

On average, the maximum design frequency improves by

26% from 118 MHz to 149 MHz as a transition from three-

to four-stage pipelines is made. However, the maximum

design frequency remains largely unchanged when the

pipeline depth is increased to five since the critical path

remains between register file and memory write-back logic

through the integer multiplier. As more stages are added to

the pipeline, an increase in the cycles per output is observed

for all the applications. When compared to three-stage

pipeline multiprocessor systems, the cycles per output

increases by 5% for four-stage systems and by 14% for five

stage systems. The trends are consistent for 6 and 9

processor design cases.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Bitonic FM Equalizer AutoCor Lattice FFT

Benchmark

N
o

rm
a

li
z
e

d
 a

p
p

li
c

a
ti

o
n

 s
p

e
e

d
u

p

3 stage

4 stage

5 stage

Figure 7. Impact of pipeline stage count on
application performance for 16 processor systems

The increase in cycles can be attributed to two factors.

First, the processors generated by the SPREE framework

use interlocking to resolve data hazards. As pipeline depth

increases, it becomes increasingly difficult for the compiler

to support independent instructions within the interlocking

window, which introduces more stalls. SPREE uses a

simple static branch not taken prediction scheme [15]. In

general, branch mispredictions can be costly in deeper

pipelines. Also, it can be difficult to support branch delay

slot instructions in deeper pipelines, causing more stalls.

Stalls due to branch mispredictions and data hazards in

individual processor pipelines can ripple across multiple

processors in communication-intensive stream applications.

5.3 Customization of communication buffer depth

Stream applications are often communication-intensive

since they consist of a pipeline of tasks. In many cases,

communication overhead must be amortized to achieve

effective performance. Figure 8 shows the variation of

normalized application speedups with varying FIFO sizes

for five benchmarks mapped to 9 processors using

previously-discussed topology and processor pipeline

preferences.

For large applications, we observe that the cycle

reduction (e.g. throughput) increased once a critical FIFO

size is reached. For example, for Bitonic sort, the

application speedup improved by over 20% when FIFO size

was increased from 8 to 16 words. Smaller applications,

such as AutoCor and Lattice, benefit little from an increase

in buffer sizes due to limited inter-processor

communication. In general, well-matched communication

buffers prevents communication stalls without wasting

system resources.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Bitonic FM Autocor Lattice FFT

Benchmark

N
o

rm
a

li
z
e

d
 a

p
p

li
c

a
ti

o
n

 s
p

e
e

d
u

p

2 words

4 words

8 words

16 words

32 words

64 words

Figure 8. Impact of interconnect buffer sizing on
application cycles per output

Each soft-multiprocessor system consists of

customizable processors which communicate using simple

FIFO buffers. In previous work [11], communication

controllers (CC) were used to interconnect processors. Each

CC requires 468 four-input LUTs and about 128 flip flops

for four word storage. In contrast, our synthesis results

indicate that each FIFO requires only 11 LUTs, 72 registers

and 128 memory bits, a small fraction of available FPGA

resources.

5.4 Soft-multiprocessor ISA subsetting

In general, soft microprocessors use only a portion of

their ISA for filter implementation. Figure 9 shows the

average instruction set usage for the eight benchmarks

mapped over a 16 processor system. Most applications,

except DES, use less than fifty percent of the instructions

supported by the instruction set. Smaller applications, such

as Lattice, consume only about 26% of the available

instructions. For a given application, the use of instructions

per processor in the multiprocessor system is highly

variable. For example, the instruction usage of each

processor in a sixteen processor system for software FM

Radio application varies between 20% and 50%.

0

10

20

30

40

50

60

70

80

Bitonic FM Equalizer AutoCor Lattice DES FFT

Benchmark

P
e
rc

e
n
ta

g
e
 o

f
u
s
e
d

 i
n
s
tr

u
c
ti
o

n
s

Figure 9. Average instruction set usage per design

On average, instruction set customization yielded a 27%

percent improvement in area for the seven multiprocessor

designs. A modest 4.2% improvement in maximum design

frequency was also observed for the customized designs.

The majority of the area savings were obtained in the

decode logic and control circuitry in each processor. On

average, the power consumption of subsetted designs

consistently decreased by about 30% for 6, 9 and 16

processor designs.

5.5 Application scalability

Figure 10 shows the application speedup for the set of

eight benchmarks normalized to a single soft core processor

system for the parameters described in previous

subsections. The cycles per output and maximum design

frequency in MHz are given in Table 1. The performance of

larger applications such as DES, Bitonic and Filterbank

improves by about a factor of 5x when parallelized over

sixteen processors. The speedup improvement is primarily

attributed to the amount of coarse-grained task-level

parallelism inherent in these applications. The performance

of smaller benchmarks, such as Autocor and Lattice,

degrades when parallelized over multiple processors. The

performance degradation is due to increased

communication overhead in larger multiprocessor systems.

This effect is also seen as Fliterbank scales from 9 to 16

processors. As seen in Table 1, the maximum frequency of

all the designs degrades when more soft processors were

embedded on the FPGA substrate. On average, an 11%

frequency degradation is observed when all applications are

mapped to 16 processors. The critical paths in these designs

are within the processors, between the register file and

memory through the branch predictor.

Figure 11 shows the dynamic core power consumption

at 50 MHz for 1, 4, 9 and 16 processor designs for two

benchmarks. A single processor design consumes about 60-

100 mW of dynamic power. The dynamic power

consumption scales up linearly when the number of

processors is increased from one to four. The power

consumption for 9 and 16 processor designs for Bitonic sort

shows mostly linear growth. In larger designs, each

processor switches fewer times on average to produce the

same number of outputs. However, increased

communication and synchronization power costs increase

the overall dynamic power.

5.6 Combined impact of customizations

In this section, the combined impact of all the

optimizations is considered. The application speedup of

four benchmarks under their best case and worst case

configurations are considered for 16 processors. The best

case configuration is the choice of microarchitectural

pipeline depth, interconnection topology and instruction set

that gives the best application performance in absolute

0

1

2

3

4

5

6

7

8

1 6 9 16

Processors

N
o

rm
a

li
z
e

d
 s

p
e

e
d

u
p

FMRadio

Filterbank

DES

Bitonic

Equalizer

FFT

Autocor

Lattice

Figure 10. Application speedup scaling

Table 1. Clock cycle counts and frequency (MHz)

 Processors

Bench-

mark

1 6 9 16

 Cycle/Freq Cycle/Freq Cycle/Freq Cycle/Freq

FMR 17728/131 9816/127 4930/122 2392/121

FB 7986/131 3021/123 1339/122 1503/121

Bitonic 13511/131 3628/127 2883/131 2470/118

DES 69094/131 23338/127 16452/130 11527/117

Eq 13862/131 9812/127 4765/123 2475/121

FFT 137/131 64/127 63/121 54/119

Autocor 306/131 211/123 214/122 208/121

Lattice 55/131 75/130 40/121 43/122

0

200

400

600

800

1000

1200

1400

1 4 9 16
Processors

D
y
n
a
m

ic
 P

o
w

e
r

(m
W

) DES

Bitonic

FMRadio

Equalizer

Autocor

Lattice

FFT

Figure 11. Power consumption scaling

execution time. The worst case configuration uses the

multiprocessor parameters that give the worst case

application performance. Figure 12 shows the normalized

application speedup of the best case configurations of four

benchmarks against their worst case configurations for each

optimization and in total. On average, the performance of

applications improves by a factor of 2.1x when all the

customizations are applied on the soft-multiprocessor

system. The primary factors contributing to the overall

application speedup are the choice of the pipeline stage

depth and the choice of the interconnection topology.

Although instruction subsetting saves considerable area, it

contributes only 4% improvement to the overall application

speedup. Our results indicate that a judicious choice of

interconnection topologies and microarchitectural features

can give significant performance and area benefits in soft-

multiprocessor systems. Previously [15], it was determined

that a single SPREE soft processor demonstrates an 11%

speedup over an Altera NIOS II/s processor. Our results

add to this improvement.

0

0.5

1

1.5

2

2.5

3

Autocor Bitonic Equalizer FMRadio
Benchmark

N
o

rm
a
li

z
e
d

 s
p

e
e
d

u
p

Overall best case vs

worst case
Direct vs mesh

3 vs 4 stage

Interconnect sizing

ISA subsetting

Figure 12. Combined impact of soft-
multiprocessor optimizations for 16 processors

6. Conclusion and Future Work

An automatic parallel compilation and synthesis

environment for soft multiprocessors has been presented.

Our results indicate larger soft multiprocessor systems

benefit from point-to-point interconnection topologies

rather than more common meshes and microarchitectural

optimizations such as instruction subsetting, inter-processor

buffer sizing and pipeline depth variation yield significant

performance and area benefits. In the future, we plan to

improve the performance of the soft multiprocessor designs

by more aggressive pipelining and better branch prediction.

Acknowledgments: This work was funded by a grant from

Altera Corporation. We acknowledge the efforts of Nicolas

Vincent in the early stages of this project.

7. References

[1] J. Cong, G. Han and W. Jiang, “Synthesis of an application-

specific soft multiprocessor system”, ACM/SIGDA Int.

Symposium on Field Programmable Gate Arrays, Feb.

2007, pp. 99-107.

[2] J. P. Derutin, et al., “Design of a scalable network of

communicating soft processors on FPGA”, International

Workshop on Computer Architecture for Machine Perception

and Sensing, Sept. 2006, pp. 184-189.

[3] R. Dimond, O. Mencer and W. Luk, “Combining instruction

coding and scheduling to optimize energy in system-on-

FPGA”, IEEE Symposium on Field-Programmable Custom

Computing Machines, Apr. 2006, pp. 175-184.

[4] R. Dimond, O. Mencer, and W. Luk, “CUSTARD: A

customizable, threaded FPGA soft processor and tools,”

IEEE Int. Conference on Field Programmable Logic and

Applications, Aug. 2005, pp. 1-6.

[5] B. Fort, D. Capalija, Z. Vranesic, and S. Brown, “A

multithreaded soft processor for SoPC area reduction”, IEEE

Symposium on Field-Programmable Custom Computing

Machines, Apr. 2006, pp. 131-142.

[6] H. Freitas, D. Colombo, F. Kastensmidt, and P. Navaux,

“Evaluating network-on-chip for homogeneous embedded

processors in FPGAs”, IEEE Int. Symposium on Circuits and

Systems, May 2007, pp. 3776-3779.

[7] M. I. Gordon, et al., “A Stream Compiler for

Communication Exposed Architectures,” In International

Conference on Architectural Support for Programming

Languages and Operating Systems, October 2002, pp. 291-

303.

[8] N. Kapre, et al., “Packet switched vs. time multiplexed

FPGA overlay networks”, IEEE Symposium on Field-

Programmable Custom Computing Machines, Apr. 2006, pp.

205-216.

[9] M. Labrecque and J. G. Steffan, “Improving pipelined soft

processors with multithreading”, Int. Conference on Field

Programmable Logic and Applications, Aug. 2007, pp. 210-

215.

[10] M. Labrecque, P. Yiannacouras, and J. G. Steffan, “Scaling

soft processor systems”, IEEE Symposium on Field-

Programmable Custom Computing Machines, Apr. 2008, pp.

195-205.

[11] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and

automated multiprocessor system design, programming, and

implementation, IEEE Trans. On Computer-Aided Design of

Integrated Circuits and Systems, vol. 27, no. 3, Mar. 2008,

pp. 542-555.

[12] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, “An FPGA

based multiprocessor system for IPv4 packet forwarding”,

Int. Conference on Field Programmable Logic and

Applications, Aug. 2005, pp. 487-492.

[13] M. Saldana, et al., “Routability of network topologies,” IEEE

Transactions on VLSI Systems, vol. 15, no. 8, Aug. 2007, pp.

948-951.

[14] M. B. Taylor, et al., “Evaluation of the RAW

Microprocessor: An Exposed-Wire-Delay Architecture for

ILP and Streams,” International Symposium on Computer

Architecture, June 2004, pp. 2-13.

[15] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-

specific customization of soft processor microarchitecture”,

ACM/SIGDA Int. Symp. on Field Programmable Gate

Arrays, Feb. 2006, pp. 201-210.

[16] Altera Corporation, Development and Education 3 (DE3)

board manual 2008

