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Abstract 
 

Although soft microprocessors are widely used in 

FPGAs, limited work has been performed regarding how to 

automatically and efficiently generate soft multiprocessors. 

In this paper, an automated parallel compilation 

environment for multiple soft processors which 

incorporates parallel compilation and inter-processor 

communication structures is described. A total of eight 

previously-developed parallel processing benchmarks have 

been automatically mapped to a varying number of 

synthesized soft microprocessors in commercial FPGAs. 

The new automated infrastructure allows for an evaluation 

of area, performance, and power tradeoffs for a range of 

architectural choices. Experiments show that our soft-

multiprocessor systems consisting of up to 16 processors 

can offer up to 5x improvement in application performance 

against their uniprocessor counterparts.  

 

1. Introduction 
    

Over the past few years, soft microprocessors have 

become integral parts of FPGA-based systems-on-a-

programmable chip (SoPC). Increased FPGA area has 

driven interest in the combination of multiple concurrently-

executing soft processors implemented on the same FPGA 

substrate. For many applications, multiple soft processors 

provide a flexible and programmable platform for fast 

application mapping without the need for intensive RTL 

design. These implementations may be used for a variety of 

end purposes ranging from initial hardware prototyping to 

end product design implementation.  

Most research on soft multiprocessors has focused on 

the development of automated synthesis tools for small 

numbers of processors [11][12] and the investigation of 

interprocessor communication topologies [6][8][13] 

Although these projects demonstrated the potential of soft 

multiprocessors and their usefulness, a comprehensive 

evaluation of the combined impact of multiprocessor 

synthesis, interconnect topology choice, and scalability has 

not been performed for a substantial collection of 

multiprocessor benchmarks. An understanding of the 

interaction of these design choices on area, performance, 

and energy consumption is critical for successful soft 

multiprocessor implementation. 

In this evaluation, the customization and scalability of 

soft multiprocessor designs are assessed for a sizable 

number of stream-based parallel computing benchmarks. 

The StreamIt parallelizing compiler [7] provides a front-end 

which can automatically map high-level software 

descriptions of stream applications to multiple processors. 

Individual soft processors are customized with the SPREE 

synthesis infrastructure [15]. To determine the effect of soft 

multiprocessor customization and scaling, a collection of 

architectural optimizations are considered including 

interconnection network topology optimization, soft 

processor pipeline depth variation, inter-processor 

communication buffer sizing, and unused instruction 

removal for individual soft processors. Experimental results 

are determined via synthesis to Altera Stratix II and Stratix 

III devices. Performance results generated via simulation 

are verified by mapping designs containing up to sixteen 

processors to a Stratix III device located on an Altera DE3 

board [16].  

2. Background 
   

Our work builds on previous research in soft uni- and 

multiprocessor design and implementation. This previous 

research encompasses synthesis systems for soft 

multiprocessors, interconnection techniques for soft 

multiprocessors, and architectural optimization for 

individual soft processors. Unlike the experiments 

described in the paper, these previous efforts have primarily 

evaluated design area, performance, and energy impacts in 

isolation (e.g. interconnect-only, processor-only) without 

considering the underlying tradeoffs in complete system 

design and synthesis. 

Partitioning systems which automatically map stream-

based applications described at a high level to multiple soft 

processors have been considered in several contexts. Initial 

work by Ravindran et al. [12] focused on the use of an 

integer linear programming formulation to map tasks to 

multiple processors while achieving acceptable throughput. 

A subsequent clustering and packing approach [1] for soft 

multiprocessor synthesis targeted M-JPEG mapping. This 

mapping technique considers the assignment of tasks to 

processors connected via FIFOs in a point-to-point fashion. 

Both design latency and throughput constraints are 

considered during synthesis for up to seven processors. A 

recent soft multiprocessor environment [11] iteratively 



assigns tasks to a fixed number of processors to balance 

computation. An evaluation of an M-JPEG application for 

up to eight processors is considered for both point-to-point 

and crossbar topologies. Although these synthesis systems 

provide initial analysis, conclusions regarding appropriate 

inter-processor topology and mapping effectiveness for a 

range of automatically-mapped applications are difficult to 

ascertain. Additionally, these previous projects do not 

consider processor-specific optimizations and scalable 

numbers of processors connected in mesh topologies. 

A series of recent studies have examined appropriate on-

chip interconnect approaches for multiprocessors 

implemented in FPGAs. Saldana et al. [13] considered a 

range of inter-processor topologies, such as meshes, 

hypercubes, star, and fully-connected topologies for 

multiprocessors containing up to 64 nodes. The study 

concluded that all topologies, except fully-connected and 

star, could be easily synthesized to FPGAs. Although 

interesting, this study did not consider the communication 

patterns of applications mapped to multiple processors or 

their need for synchronization. Other network-on-chip 

(NoC) on FPGA studies [6] concluded that NoCs can 

significantly outperform on-chip buses and provide system 

scalability. Kapre et al. [8] observed that time-switched and 

packet-switched butterfly fat trees can be effectively 

mapped to FPGAs. Although not comprehensive, several 

experiments [2], which manually mapped sorting 

applications to hypercube networks, observed considerable 

application speedup. In general, none of these previous 

FPGA-based NoC studies considered a range of 

applications automatically mapped to a large number (e.g. > 

10) of soft processors.    

The optimization of soft microprocessors for area, 

performance, and energy consumption has been an active 

area of experimentation for several years. Yiannacouras et 

al. [15] examined the effect of optimizations such as shifter 

implementation, pipelining, and instruction set subsetting 

on soft microprocessor performance. It was found that the 

features of the optimal processor architecture for each 

application often vary greatly. More recently, researchers 

have examined the benefit of soft microprocessor 

multithreading to improve application performance and 

energy savings. Dimond et al. [3][4] examined the use of 

multi-threading, custom instruction coding and instruction 

scheduling as techniques to maintain high throughput while 

minimizing processor area and energy.  

Studies by Labrecque and Steffan [9] and Fort et al. [5] 

considered processor pipeline length variation and custom 

functional units as techniques to promote increased 

multithreading. The former study was later extended [10] to 

consider a performance comparison between a single multi-

threaded soft microprocessor, multiple multi-threaded soft 

processors and multiple single-threaded soft processors.  

3. Soft Multiprocessor Details and Tradeoffs 
 

The explored optimizations are driven by multiprocessor 

architectures which can be customized through the use of 

various parameters. These parameters allow for the 

customization of both the individual soft microprocessors 

via pipeline depth determination and instruction set 

subsettting and the interconnection network via automatic 

topology generation and communication buffer sizing. The 

main characteristics of the processor and interconnection 

components used in this work include the following details. 

Soft processor architecture: The 32-bit soft processors 

used in our evaluation are created from the SPREE soft 

processor generator [15]. The base RISC architecture used 

by this generator supports a subset of the standard MIPS 

instruction set architecture (ISA). Datapath pipelines of 

multiple stages are supported. The three-stage pipelines 

consist of fetch/decode, execute and write back stages. 

Four-stage pipelines extend three-stage pipelines by 

splitting fetch/decode into two separate stages. Five-stage 

pipelines extend the four-stage pipelines by including an 

additional execute stage. The soft processor architecture 

currently does not support caches, although this is not a 

significant issue for stream-based applications which do not 

exhibit temporal data locality. Our generated processors 

also do not support off-chip memories. The stream 

algorithms operate on test data generated internally within 

the multiprocessor system. Although support for off-chip 

memories will be a nice enhancement, we leave this as 

future work. Dynamic branch prediction, exceptions, and 

floating point operations are also not supported. 

Soft multiprocessor interconnection: Customizable soft 

processors in our generated multiprocessors are 

interconnected with unidirectional FIFO buffers. FIFO 

empty/full status is determined simultaneously with 

processor FIFO read/writes operations. Unsuccessful 

transactions are repeated. FIFOs are located at memory 

mapped processor locations (i.e. each processor is able to 

address FIFOs as though they are memory locations through 

load/store instructions in a single cycle). Soft 

multiprocessors can be configured in either mesh or direct 

point-to-point topologies. In meshes, each processor is 

assigned to a specific (x, y) location. Inter-processor 

connections between non-adjacent processors are made as a 

series of inter-processor hops. In this case, each processor 

uses at most eight unidirectional FIFOs for North, South, 

East, and West communication. For each hop, an 

intermediate processor must read the data from one FIFO 

and write it to another.  



 

Figure 1. Inter-processor interconnection scheme 

 As an example of mesh interconnection, Figure 1 

illustrates the software FM Radio application [7] 

parallelized over six processors. In this example, each 

processor consists of a three-stage in-order pipeline, register 

file and local on-chip instruction/data memories. The FIFO 

buffers are tightly integrated into the bypass paths of the 

processor pipeline using memory mapped input/output 

ports. In contrast to mesh topologies, point-to-point 

topologies involve direct FIFO connections between 

producers and consumers of data, irrespective of topology. 

This configuration indicates that some processors may have 

numerous input FIFOs while others may have only one.  

It is important to note that our synthesized soft 

multiprocessor architectures differ from current ASIC 

implementations of multicore stream processors, such as 

RAW [14]. In RAW multiprocessors, each RISC processor 

is augmented with a pipelined crossbar switch which is used 

as an inter-processor network-on-chip component. The 

crossbar is configured on a cycle-by-cycle basis based on a 

pre-compiled schedule. This approach has the benefit of 

providing a common communication substrate for many 

applications mapped to the same chip at the cost of 

increased hardware resources. The per-application synthesis 

of our soft processors eliminates the need for this overhead.   

Application language: Supported applications are 

written in StreamIt [7], a stream-based high-level language. 

StreamIt was initially created for mesh-based tiled 

multiprocessor architectures, such as RAW, that have 

predictable computation and communication schedules. The 

language and associated compiler effectively isolate the 

details of the multiprocessor architecture from the 

application designer. The StreamIt language represents 

applications as a hierarchical series of functional operations 

called filters. Each filter consists of initialization and steady 

state routines. Filters exchange data with each other using 

push(), pop() and peek() methods via FIFOs. Figure 2 

(taken from [7]) illustrates simplified software FM Radio 

application written in StreamIt language. As shown in the 

figure, StreamIt exposes the natural parallelism inherent in 

an application. Each application program consists of a 

hierarchical composition of many stream structures such as 

pipelines, splitters (duplicate) and joiners (roundrobin).  

 

Figure 2.  Software FM Radio in StreamIt [7] 

 Independent pipelined, parallel streams which diverge 

at a splitter and converge at a joiner form a split-join. 

Splitters send a copy of each data item into each parallel 

stream. A joiner then combines the results of the streams in 

a prescribed fashion.  

4. Soft Multiprocessor Synthesis Flow 
  

As stated in Section 1, a significant differentiating factor 

between this work and previous soft multiprocessor projects 

is the use of fully automatic compilation and use of a 

substantially-sized, unmodified benchmark set to evaluate 

both soft multiprocessor computation and interconnect 

tradeoffs. Existing tools (StreamIt, SPREE) are used along 

with new supporting tools to create a novel flow. The 

framework allows users to adjust a variety of 

multiprocessor system parameters such as the number of 

soft processors, the interconnect topology, and the number 

of pipeline stages for each processor. The framework also 

offers choices for application specific customization at the 

microarchitectural and application level. 
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Figure 3. Soft multiprocessor synthesis framework 

The main steps in the soft multiprocessor generator appear 

in Figure 3. Details of the five main steps are included in 

the following subsections. 

The StreamIt compiler, which was developed to 

support the RAW architecture, has been optimized to map 



stream-based applications to multiple processors. Although 

the StreamIt compiler contains many passes (the interested 

reader is directed to [7] for more details), the two StreamIt 

algorithms most relevant to soft multiprocessor generation 

are partitioning and scheduling. The role of partitioning is 

to assign filters so that each processor has roughly the same 

amount of operations, thus ensuring balanced operational 

throughput. To support balancing, StreamIt partitioning 

algorithms attempt to form a number of clusters that is 

equal to the number of processors. Partitioning offers an 

opportunity to split large filters into pieces (fission) or 

group filters together (fusion). Two specific partitioning 

algorithms are used. Greedy partitioning clusters filters 

based on their size (e.g. the number of operations) until the 

number of clusters equals the number of target processors. 

Dynamic programming-based partitioning clusters filters in 

adjacent pipeline stages together to form larger filters. The 

assignment of filters/clusters to specific processors in a 

mesh configuration takes place via a simulated annealing 

algorithm. 

 

Figure 4. Communication for a mesh topology 

Although the original StreamIt stream scheduling 

algorithm for meshes can be reused for the new mesh-based 

topology, the scheduler is changed to support point-to-point 

topologies. For example, consider the mesh-based 

communication pattern shown in Figure 4. Under steady 

state conditions, Processor 3 produces two data values. The 

first value is routed north (N) to Processor 0 and the second 

one is routed east (E) to processor 4. Processors 0 and 4 

process the incoming data and forward the results through 

Processors 1 and 2 to Processor 5. In this example, it takes 

multiple cycles for the data values produced by Processors 

0 and 4 to be transferred to their final destinations since the 

data must hop through intermediate processors.  

A modified schedule is shown in Figure 5 (note 

processor numbers are used rather than N, S, E, and W). 

The new schedule is used to coordinate point-to-point inter-

processor communication. To derive the modified switch 

schedule, a data flow graph is generated from the mesh-

style switch schedule produced by StreamIt. In this graph, 

nodes are represented by processors and edges are 

represented by switch operations that transfer the data. A 

depth-first traversal is performed in the graph from each 

data source to all the data’s destinations. Any inter-tile data 

hop edge discovered during this traversal is eliminated. 

Finally, edges are inserted in the graph between data 

sources and destinations. The updated data flow graph is 

then retimed to account for the removed hops in the point-

to-point topology.  

 

Figure 5. Communication for point-to-point 

The SoftCoreMapper modifies filters to include inter-

processor read/write primitives. In the case of clustered 

filters, some inter-filter communication takes place via soft 

microprocessor registers for filters assigned to the same 

processor. Communication between processors takes place 

via FIFOs. SoftCoreMapper parses StreamIt output to 

identify parts of the application where data exchange occurs 

and inserts appropriate FIFO operations. Synchronization 

primitives are included for each read/write operation.        

The SPREE soft processor generator creates an internal 

representation for the processors based on the parameters 

noted in Section 3 (e.g. pipeline depth, multiplier usage). 

The generator automatically ensures appropriate coverage 

for instructions in the ISA in creating the data and control 

paths. Communication FIFOs and supporting interface logic 

are also instantiated during processor creation. SPREE also 

provides a modified MIPS gcc compiler to generate 

application binaries for the customized processors.  

The binary profiler extracts application specific 

instruction set usage from disassembled binaries so that 

unused processor data and control path resources can be 

removed. The application specific multiprocessor 

generator (ASMG) modifies the internal representation of 

each processor and associated communication based on the 

results of the binary profiler. The instruction set of each 

processor is minimized to suit the assigned tasks. 

Information regarding inter-processor communication, 

individual processor instruction set usage, and pipeline 

depth is used to generate the complete Verilog model of the 

multiprocessor system. The MIPS compiler has not been 

modified to target the soft processors. Standard Quartus 

FPGA compile serves as a final step. 

5. Experimental Results 
    

Like other stream processing evaluations [7], throughput 

and overall execution time are assessed. Execution time is 

obtained by multiplying the cycles per output determined 



with Modelsim-Altera 6.1g with the maximum design 

frequency reported by Quartus v8.0. All designs were 

compiled with a timing constraint of 150 MHz. Altera’s 

PowerPlay power analyzer was used to determine core 

dynamic power results. 

 A set of eight StreamIt benchmarks [7], were 

parallelized over multiprocessor systems consisting of 6, 9 

and 16 processors using our automated synthesis flow. The 

benchmarks consist of a mix of sorting (Bitonic), signal 

processing (FMRadio, Equalizer, Autocor, Lattice, 

Filterbank, FFT), and security (DES) applications. Since 

the generated SPREE multiprocessor designs do not support 

floating point arithmetic, the benchmarks were executed 

using equivalent integer operations.  All the designs were 

mapped to a 90nm Stratix II EP2S180 device. Designs 

consisting of 16 processors were implemented and executed 

on a 65nm EP3SL150 Stratix III device on a DE3 board to 

verify functionality.  

5.1 Interconnect topology variation 

In this experiment, the run time performance of a set of 

four applications for mesh and direct point-to-point style 

network topologies is evaluated. Application speedups 

which consider both changes in clock cycles and design 

frequency are shown in Figure 6 for three-stage soft 

processors with complete instruction sets. Overall, point-to-

point interconnect outperforms a mesh-style network for all 

applications by a factor of between 1.1x and 2x. Point-to-

point topologies gain significant cycle speedups due to 

reduced synchronization overhead from the elimination of 

network hops. Point-to-point topologies consumed 28.6% 

less cycles when compared to mesh-style topologies on 

average. Interestingly, point-to-point topologies also give 

slightly better performance in terms of design frequency. 

For a 16 processor system, the point-to-point topology 

shows an average 2% improvement in design frequency. 

This frequency improvement results from the removal of 

unnecessary input/output FIFO ports. In a mesh-style 

topology, many processors need close to four ports as these 

nodes perform data forwarding in addition to computation. 

The improvement is observed even though processors with 

large data fan-outs (sources) and fan-ins (sinks) in point-to-

point topologies typically require more than four ports. For 

example, in a mesh-style topology for a 16 processor FM 

Radio application, the average port usage per processor is 

approximately 3, while for a point-to-point topology, the 

average port usage per processor is approximately 2. The 

processors executing splitter and joiner filters in the point-

to-point topology for this application requires 11 and 9 

ports, respectively. For smaller designs, like AutoCor, 

cycles per output increases or remains unchanged when 

parallelized over larger multiprocessor systems since 

increased communication costs dominate over the reduced 

computation costs.  

The clock frequency differences between individual 

mesh and point-to-point implementations of each design are 

less than 2.3 MHz. Overall, implementation frequencies 

range between 118.0 and 128.7 MHz. In all designs, the 

critical path is located within the three-stage processor 

logic. Thus, the addition of point-to-point links does not 

degrade the maximum design frequency significantly, 

although the addition of more point-to-point links may 

make the FPGA more difficult to route. The number of 

point-to-point links scales linearly with processor count in 

most designs. The effectiveness of our point-to-point results 

validates previous topology research for FPGAs [13], which 

did not consider specific applications. 
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Figure 6. Point-to-point speedups vs. mesh 

5.2 Customization of pipeline depth 

The choice of microarchitectural pipeline depth of each 

processor influences the overall throughput of the 

application. The impact of 3, 4 and 5 stage pipelining on 

application performance is studied. Deepening individual 

processor pipelines from three to four stages can give 

substantial performance improvements of 22% on average 

at a 9.6% increase in area. Figure 7 shows the relative 

execution time per output for six stream benchmarks 

mapped over 16 processors. The four-stage pipeline 

multiprocessor systems generally give better performance 

than their three-stage and five-stage counterparts. The 

critical paths of the multiprocessor systems for all designs 

are within the individual processors. In three-stage 

pipelines, the critical path is located between the register 

file and memory write-back logic through the branch 

predictor. For four- and five-stage pipelines, the critical 

path is between the register file and memory write-back 

logic through the integer multiplier. 

The relative performance improvement of the four-stage 

pipelines results from improved per-processor performance. 

On average, the maximum design frequency improves by 

26% from 118 MHz to 149 MHz as a transition from three- 

to four-stage pipelines is made. However, the maximum 

design frequency remains largely unchanged when the 

pipeline depth is increased to five since the critical path 



remains between register file and memory write-back logic 

through the integer multiplier. As more stages are added to 

the pipeline, an increase in the cycles per output is observed 

for all the applications. When compared to three-stage 

pipeline multiprocessor systems, the cycles per output 

increases by 5% for four-stage systems and by 14% for five 

stage systems. The trends are consistent for 6 and 9 

processor design cases.  
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Figure 7. Impact of pipeline stage count on 
application performance for 16 processor systems 

The increase in cycles can be attributed to two factors. 

First, the processors generated by the SPREE framework 

use interlocking to resolve data hazards. As pipeline depth 

increases, it becomes increasingly difficult for the compiler 

to support independent instructions within the interlocking 

window, which introduces more stalls. SPREE uses a 

simple static branch not taken prediction scheme [15]. In 

general, branch mispredictions can be costly in deeper 

pipelines. Also, it can be difficult to support branch delay 

slot instructions in deeper pipelines, causing more stalls. 

Stalls due to branch mispredictions and data hazards in 

individual processor pipelines can ripple across multiple 

processors in communication-intensive stream applications.  

5.3 Customization of communication buffer depth 

Stream applications are often communication-intensive 

since they consist of a pipeline of tasks. In many cases, 

communication overhead must be amortized to achieve 

effective performance. Figure 8 shows the variation of 

normalized application speedups with varying FIFO sizes 

for five benchmarks mapped to 9 processors using 

previously-discussed topology and processor pipeline 

preferences. 

For large applications, we observe that the cycle 

reduction (e.g. throughput) increased once a critical FIFO 

size is reached. For example, for Bitonic sort, the 

application speedup improved by over 20% when FIFO size 

was increased from 8 to 16 words. Smaller applications, 

such as AutoCor and Lattice, benefit little from an increase 

in buffer sizes due to limited inter-processor 

communication. In general, well-matched communication 

buffers prevents communication stalls without wasting 

system resources. 
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Figure 8. Impact of interconnect buffer sizing on 
application cycles per output 

Each soft-multiprocessor system consists of 

customizable processors which communicate using simple 

FIFO buffers. In previous work [11], communication 

controllers (CC) were used to interconnect processors. Each 

CC requires 468 four-input LUTs and about 128 flip flops 

for four word storage. In contrast, our synthesis results 

indicate that each FIFO requires only 11 LUTs, 72 registers 

and 128 memory bits, a small fraction of available FPGA 

resources. 

5.4 Soft-multiprocessor ISA subsetting 

In general, soft microprocessors use only a portion of 

their ISA for filter implementation. Figure 9 shows the 

average instruction set usage for the eight benchmarks 

mapped over a 16 processor system. Most applications, 

except DES, use less than fifty percent of the instructions 

supported by the instruction set. Smaller applications, such 

as Lattice, consume only about 26% of the available 

instructions. For a given application, the use of instructions 

per processor in the multiprocessor system is highly 

variable. For example, the instruction usage of each 

processor in a sixteen processor system for software FM 

Radio application varies between 20% and 50%.  
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Figure 9. Average instruction set usage per design 



On average, instruction set customization yielded a 27% 

percent improvement in area for the seven multiprocessor 

designs. A modest 4.2% improvement in maximum design 

frequency was also observed for the customized designs. 

The majority of the area savings were obtained in the 

decode logic and control circuitry in each processor. On 

average, the power consumption of subsetted designs 

consistently decreased by about 30% for 6, 9 and 16 

processor designs.  

5.5 Application scalability 

Figure 10 shows the application speedup for the set of 

eight benchmarks normalized to a single soft core processor 

system for the parameters described in previous 

subsections. The cycles per output and maximum design 

frequency in MHz are given in Table 1. The performance of 

larger applications such as DES, Bitonic and Filterbank 

improves by about a factor of 5x when parallelized over 

sixteen processors. The speedup improvement is primarily 

attributed to the amount of coarse-grained task-level 

parallelism inherent in these applications. The performance 

of smaller benchmarks, such as Autocor and Lattice, 

degrades when parallelized over multiple processors. The 

performance degradation is due to increased 

communication overhead in larger multiprocessor systems. 

This effect is also seen as Fliterbank scales from 9 to 16 

processors. As seen in Table 1, the maximum frequency of 

all the designs degrades when more soft processors were 

embedded on the FPGA substrate. On average, an 11% 

frequency degradation is observed when all applications are 

mapped to 16 processors. The critical paths in these designs 

are within the processors, between the register file and 

memory through the branch predictor. 

Figure 11 shows the dynamic core power consumption 

at 50 MHz for 1, 4, 9 and 16 processor designs for two 

benchmarks. A single processor design consumes about 60-

100 mW of dynamic power. The dynamic power 

consumption scales up linearly when the number of 

processors is increased from one to four. The power 

consumption for 9 and 16 processor designs for Bitonic sort 

shows mostly linear growth. In larger designs, each 

processor switches fewer times on average to produce the 

same number of outputs. However, increased 

communication and synchronization power costs increase 

the overall dynamic power. 

5.6 Combined impact of customizations  

In this section, the combined impact of all the 

optimizations is considered. The application speedup of 

four benchmarks under their best case and worst case 

configurations are considered for 16 processors. The best 

case configuration is the choice of microarchitectural 

pipeline depth, interconnection topology and instruction set 

that gives the best application performance in absolute  
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Figure 10. Application speedup scaling 

Table 1. Clock cycle counts and frequency (MHz) 

  Processors 

Bench- 

mark 

1 6 9 16 

  Cycle/Freq Cycle/Freq Cycle/Freq Cycle/Freq 

FMR 17728/131 9816/127 4930/122 2392/121 

FB 7986/131 3021/123 1339/122 1503/121 

Bitonic 13511/131 3628/127 2883/131 2470/118 

DES 69094/131 23338/127 16452/130 11527/117 

Eq 13862/131 9812/127 4765/123 2475/121 

FFT 137/131 64/127 63/121 54/119 

Autocor 306/131 211/123 214/122 208/121 

Lattice 55/131 75/130 40/121 43/122 
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Figure 11. Power consumption scaling 

execution time. The worst case configuration uses the 

multiprocessor parameters that give the worst case 

application performance. Figure 12 shows the normalized 

application speedup of the best case configurations of four 

benchmarks against their worst case configurations for each 

optimization and in total. On average, the performance of 



applications improves by a factor of 2.1x when all the 

customizations are applied on the soft-multiprocessor 

system. The primary factors contributing to the overall 

application speedup are the choice of the pipeline stage 

depth and the choice of the interconnection topology. 

Although instruction subsetting saves considerable area, it 

contributes only 4% improvement to the overall application 

speedup. Our results indicate that a judicious choice of 

interconnection topologies and microarchitectural features 

can give significant performance and area benefits in soft-

multiprocessor systems. Previously [15], it was determined 

that a single SPREE soft processor demonstrates an 11% 

speedup over an Altera NIOS II/s processor. Our results 

add to this improvement.  
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Figure 12. Combined impact of soft-
multiprocessor optimizations for 16 processors 

6. Conclusion and Future Work 

An automatic parallel compilation and synthesis 

environment for soft multiprocessors has been presented. 

Our results indicate larger soft multiprocessor systems 

benefit from point-to-point interconnection topologies 

rather than more common meshes and microarchitectural 

optimizations such as instruction subsetting, inter-processor 

buffer sizing and pipeline depth variation yield significant 

performance and area benefits. In the future, we plan to 

improve the performance of the soft multiprocessor designs 

by more aggressive pipelining and better branch prediction.   
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