
ReClick - A Modular Dataplane Design Framework for
FPGA-Based Network Virtualization

Deepak Unnikrishnan, Justin Lu, Lixin Gao and Russell Tessier
Dept. of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA 01003
unnikrishnan@ecs.umass.edu

ABSTRACT
Network virtualization has emerged as a powerful technique
to deploy novel services and experimental protocols over
shared network infrastructures. Although recent research
has highlighted field programmable gate arrays (FPGAs)
as attractive platforms for high performance network vir-
tualization, these devices remain inaccessible to the larger
networking research community due to the absence of user-
friendly programming models. A programming model that
can abstract the intricacies of the hardware platform while
being aware of the underlying resource constraints is highly
desirable. In this paper, we present ReClick, a framework
to efficiently design and deploy reconfigurable dataplanes for
FPGA-based network virtualization systems. A hardware-
agnostic programming model is described that allows de-
velopers to focus on the virtual dataplane semantics rather
than the implementation details. The framework exposes in-
terfaces similar to the popular software router development
framework, Click, and promotes design reuse. Optimization
strategies are included in ReClick which use similarities be-
tween virtual dataplane configurations to implement multi-
ple planes in an area-efficient manner. Dataplanes exhibiting
up to 1 Gbps data rate have been automatically compiled
and tested in hardware in a NetFPGA platform.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Experimentation, Performance

Keywords
Network Virtualization, FPGA, Programming models, Click
modular router, NetFPGA

1. INTRODUCTION
Over the past decade, the Internet has significantly evolved
to support new applications and services. As the demand
for application performance continues to grow, new proto-
cols and architectures will need to be deployed in the fu-
ture Internet. Network service providers are often wary of
the economic consequences of deploying experimental pro-
tocols and architectures on their stable network infrastruc-
tures. The construction of separate physical networks to
meet these requirements is generally economically unviable.
In many cases, a common physical substrate that minimizes
operating costs, investment and power consumption is de-
sirable. Network virtualization provides a powerful solution
to this problem by allowing multiple virtual networks to op-
erate over shared network resources [7] [14] [24]. Such an
approach allows new protocols and experimental services to
be deployed on legacy network infrastructures.

A physical network can be virtualized via routing resource
sharing across multiple distinct virtual routers. Often, each
virtual network has unique requirements regarding the way
packets are processed. The packet processing features of a
virtual network are implemented in its dataplane. The ex-
perimental nature of protocols implemented in virtual net-
works require a highly customizable dataplane to guarantee
flexibility. Additionally, virtual networks demand a high de-
gree of isolation and performance. Conventional approaches
for network virtualization use software techniques such as
full or para virtualization where software resources such as
CPU cycles and the physical memory of the physical router
are shared between the virtual routers [8]. Although software-
based techniques offer considerable flexibility, the perfor-
mance of virtual networks is limited by the sequential nature
of execution in microprocessors.

Recent research has identified field programmable gate ar-
rays (FPGAs) as attractive platforms for network virtualiza-
tion by virtue of their adaptability, specialization and fine-
grained parallelism [5] [18] [25]. FPGA-based virtualization
platforms have demonstrated up to two orders of magni-
tude better performance than their software counterparts
in terms of packet throughput. However, the widespread
adoption of FPGA-based network virtualization systems re-
quires access to high-level programming models that allow
a user to express complex dataplane features without com-
promising the performance and area efficiency of the imple-
mented hardware design. Although existing hardware de-
scription languages, such as Verilog and VHDL, can gener-

ate area-efficient and high-performance hardware for com-
plex dataplane functions, they expose an unfamiliar pro-
gramming interface to many network developers. Recently,
several frameworks that expose abstract interfaces have been
proposed [9] [22] to address this issue. However, these ap-
proaches can be limited in their ability to use the logic and
memory resources of a hardware platform in an area-efficient
manner.

In this paper, we present ReClick, a framework to design
and deploy custom dataplanes for FPGA-based network vir-
tualization that are modular and area-efficient. ReClick ab-
stracts the intricacies of reconfigurable hardware design by
providing the dataplane designer a language and compiler
which are sufficient to express common packet processing op-
erations. The framework exposes an interface which is simi-
lar to Click [2], the widely-used dataplane design framework
for software virtual routers. The framework features opti-
mizations to maximize packet forwarding performance and
resource efficiency in reconfigurable hardware for multiple
dataplanes. Designs are automatically compiled to FPGA
hardware without extensive user intervention. A validation
flow based on register transfer level (RTL) simulation is also
in place for debugging and assessment prior to hardware
deployment. A collection of pluggable modules which can
be used with the framework have been developed and made
available to the research community. The effectiveness of the
framework is demonstrated with two dataplane design exam-
ples - an IPv4 router and an IP router enhanced with onion
routing capabilities. These dataplanes have been verified on
a Virtex II FPGA available on the NetFPGA platform.

The rest of the paper is organized as follows: Section 2 intro-
duces FPGA-based network virtualization and presents re-
lated work on programming models for FPGA-based packet
processing. Section 3 describes the modular network virtu-
alization platform and introduces the ReClick programming
model. Section 4 presents the FPGA-based platform used
for experimentation and evaluates the performance of the
framework. The paper is summarized in Section 5 and di-
rections for future work are offered.

2. BACKGROUND
2.1 Network Virtualization
A virtual network represents a programmable slice of the
physical network providing fixed bandwidth and QoS guar-
antees. Flexibility is a key requirement of any virtual net-
working substrate. Specifically, a virtual network must offer
maximum control over its dataplane to implement custom
packet forwarding functions. For example, the deployment
of new addressing schemes such as ROFL [16] requires cus-
tomization of nearly all aspects of the network core such
as the routing protocol and the address lookup algorithm.
Other examples include QoS schemes that require security
mechanisms such as network anonymity or onion routing [13]
[28]. The experimental nature of virtual networks, however,
demands that dataplane flexibility does not come at the ex-
pense of long design cycles. An ideal virtualization platform
must also scale to support a large number of programmable
slices without considerable degradation of packet forwarding
performance.

Conventional network virtualization techniques use off-the-

shelf hardware and host virtualization techniques to share
router resources among virtual networks [7] [8]. A compre-
hensive survey of software-based virtualization techniques
can be found in [11]. Software approaches offer consider-
able design flexibility and ease of use, although the execu-
tion of virtual routers in operating system and higher lay-
ers severely limit their packet forwarding performance. For
example, container-based virtualization techniques such as
OpenVZ [4] can support only up to 300 Mbps with 64-byte
packets [7].

The continued demand for high performance in virtualized
networks has motivated hardware-based virtualization strate-
gies. Several commercial custom ASIC-based platforms have
been recently proposed [1] [24]. These approaches, however,
do not offer a level of design flexibility demanded by exper-
imental virtualization platforms. FPGAs offer a nice design
tradeoff between these two approaches by virtue of their
reconfiguration properties and availability of abundant par-
allelism. Recent FPGA-based virtualization systems [5] [27]
have demonstrated up to two orders of magnitude faster
throughput than previous software-based approaches.

2.2 Programming Models for FPGA-based
Packet Processing Systems

Programmability is a key issue for FPGA-based packet pro-
cessing systems. Although many of these systems [3] use
RTL description languages like Verilog and VHDL, the hard-
ware expertise required to master these languages makes
them inaccessible to the larger community of network devel-
opers. Several recent research attempts try to address this
issue by providing high-level programming descriptions that
abstract the details of the underlying hardware. Horta et
al. [15] provide a first attempt to introduce programmability
in FPGA-based packet processing systems. A module-based
approach to implement reconfigurable high speed packet pro-
cessing circuits is presented. Dynamic hardware plugins are
assembled in hardware for single data planes using a restric-
tive set of directives. In contrast, our approach provides a
flexible high-level interface to the user and support for mul-
tiple virtual dataplanes.

NetThreads [17] uses multiprocessors constructed from the
FPGA fabric (soft multiprocessors) to implement packet
processing features. The soft microprocessors are embed-
ded within the packet processing data path of a NetFPGA
card. Packet processing features are described using C pro-
grams that execute on the multiprocessor system. A modi-
fied GCC toolset is used to generate executable binaries for
the soft microprocessors. Writing C-style programs greatly
simplifies the task of the application designer. However, the
multiple cycles required to execute packet processing tasks
limit the packet forwarding performance of this approach to
5,000 packets per second.

Click [2] is a widely popular framework for building soft-
ware routers. Click allows users to write configurations that
describe packet processing functions as a graph of intercon-
nected modules called elements. While configurations are
written in a custom Click language, the behavior of indi-
vidual elements can be described in C++. The elements
are interconnected through ports that either actively for-
ward (push) or passively receive (pull) data. Click has been

Table 1: Feature comparison of programming models for FPGA-based packet processing systems
Framework Frontend Virtualization

support
Module selection

[10] XML No Static
NetThreads C No NA
G G, Click No Static
Chimpp Verilog HDL, Click No Static
SwitchBlade Verilog HDL Yes Dynamic
ReClick ReClick, Verilog HDL, Click Yes Dynamic

widely adopted in network research by virtue of it’s simple
design and the availability of a diverse collection of reusable
open source modules.

Nikander et al. [21] propose a tool chain that compiles C++-
based Click elements to synthesizable Verilog descriptions.
In this approach, Click elements described in C++ are first
transformed into an intermediate representation (LLVM).
The LLVM is a collection of modular components for build-
ing compiler tool chains which includes a number of code
optimizers and backends for hardware. The optimized code
is converted back into C code. The C program can be
taken through 3rd party C-to-Verilog synthesis tools such
as AHIR [23] to generate hardware descriptions. Although
this approach enables existing Click descriptions to be easily
migrated to reconfigurable hardware, it has many practical
limitations. Click, for instance, uses certain features in C++
such as virtual functions and polymorphism, that are diffi-
cult to directly implement in hardware. Furthermore, the
packet forwarding performance of generated configurations
have not been reported.

Brebner et al. [10] propose a system that can compile finite
state machines described using high level XML descriptions
to FPGA bitstreams. The packet processing system is com-
posed of threads and hooks. Threads represent a unit of
concurrency in the programmable logic while hooks provide
wrappers around unconventional packet processing blocks to
be interfaced to the system. The programming model, how-
ever, constrains designers to use finite state machine mod-
els, a rather nonintuitive way to describe packet processing
blocks.

The G [9] [20] framework represents a first attempt to con-
vert packet processing descriptions in a high-level language
to synthesizable Verilog descriptions. G uses a design phi-
losophy that is similar to the one used by Click. Packet pro-
cessing is specified as a pipeline of interconnected modules.
A module can perform simple operations on the packet such
as “set a field in the packet”, “insert a field after an offset in
the packet” or “push a packet through a specific port”. The
G language infrastructure includes a simulator and debugger
for functional verification of designs. Complex packet pro-
cessing operations such as packet switching and scheduling
are not yet supported. Additionally, the proprietary nature
of the framework, the lack of availability of a library of mod-
ules and the use of Xilinx-specific interconnect technology
are likely to affect the popularity of the framework.

Chimpp [22] is a framework similar to G for writing Click-
style packet processing descriptions on the NetFPGA plat-

form. Modules can be parameterized using XML descrip-
tions. Unlike G, Chimpp allows configurations to be com-
posed of a combination of hardware and software elements.
However, the behavior of hardware-specific elements must
be described using Verilog/VHDL, limiting access to typical
network programmers.

SwitchBlade [6] takes an alternative approach by provid-
ing a model that allows packet processing modules to be
swapped in and out of the reconfigurable hardware with-
out the need to resynthesize the hardware. Frequently-used
hardware blocks are presynthesized to the FPGA in advance.
Users select a subset of modules that are required to pro-
cess the packet through register interfaces. The selection is
later encoded in a bitmap header which is appended to in-
coming packets. Each module in the datapath examines the
bitmap and decides whether or not to process the packet.
Presynthesized elements as well as new modules need to be
written in Verilog which may be a challenge for networking
researchers who are not familiar with hardware design.

Table 1 summarizes the features supported in previously
discussed frameworks. In general, these efforts are either
proprietary or require designers to be familiar with hard-
ware design knowledge. Except SwitchBlade, none of the
frameworks provide a straightforward approach to virtual-
ize the hardware. ReClick addresses these issues by offering
a flexible and open platform for virtual dataplane design
using reconfigurable hardware. A modular design environ-
ment is used with a Click-style frontend that allows existing
Click configurations to be migrated to reconfigurable hard-
ware with minimal changes. New modules, designed in a
hardware-agnostic language, can be dynamically reused be-
tween multiple dataplanes. The generated designs can be
easily deployed on open hardware platforms like NetFPGA.

3. DESIGN
Our paper makes the following specific contributions:

1. An architecture for FPGA-based network virtualiza-
tion featuring extensible modular dataplane compo-
nents. The system supports component reuse between
multiple active virtual dataplanes in the FPGA. Pipelin-
ing is used within components to achieve the highest
packet forwarding rates. The operations on packets
are scheduled to minimize packet forwarding latency.

2. A software framework that describes common packet
processing features of virtual dataplanes as a permuta-
tion of simple operations on packets, hiding hardware
implementation details. A compilation framework that

Host OS

Virtex II

MAC RX Q

CPU RX Q

MAC RX Q

CPU RX Q

Input
Arbiter

CPU
Transceiver

Output
Queue

MAC TX Q

CPU TX Q

MAC TX Q

CPU TX Q

CONTROL

PHY
MAC

PHY
MAC

PHY
MAC

PHY
MAC

PHY
MAC

PHY
MAC

PCI

NetFPGA

MAC RX Q

CPU RX Q
MAC RX Q
CPU RX Q

MAC TX Q

CPU TX Q
MAC TX Q
CPU TX Q

PHY
MAC

PHY
MAC

Dynamic
Design
Select Virtual Data

Planes B & C

OpenVZ A OpenVZ N

ReClick
components

….

Custom RTL
block

Dynamic Design Select Table

0 1 2 3

VIP TYPE DPlane
0 HW A
1 HW B
2 HW C

Vector
...0111
...0111
...1111

3 SW OpenVZ A - 0 1
Virtual Data

Plane A

2

Figure 1: Overview of the FPGA-based virtualization platform

can translate these descriptions to area-efficient hard-
ware descriptions.

3. A Click-like interface to compose and deploy virtual
dataplanes from reusable dataplane components.

3.1 Architecture of the Virtualization Platform
Our ReClick system is explained in the context of an ex-
isting FPGA-based network virtualization platform. The
NetFPGA-based system [25] supports heterogeneous virtual
dataplanes implemented in both FPGA and host software.
High-throughput virtual dataplanes are synthesized and con-
figured in a Virtex II FPGA, while multiple low-throughput
virtual dataplanes are implemented in OpenVZ containers
in the host operating system. The packet processing dat-
apath consists of an input arbiter, a dynamic design select
module, several output port lookup modules and an output
queue module.

Packets arriving at physical Ethernet interfaces are polled
by the input arbiter. The dynamic design select module
classifies the packets to one of the several virtual dataplanes
implemented in the FPGA or in the host software. The hard-
ware dataplanes are implemented by replicating output port
lookup modules [26] of the NetFPGA reference router [3].
Each hardware dataplane includes custom forwarding logic
and forwarding tables to process packets. Processed packets
are dispatched through one of the several physical Ether-
net interfaces available on the NetFPGA card. The CPU
transceiver module within the FPGA is used to transmit
and receive packets from OpenVZ-based virtual dataplanes
in host software.

Figure 1 shows the architecture of our network virtualization
platform used with ReClick. The architecture implements
two specific extensions to support extensible and modular
virtual dataplanes. First, the forwarding logic resources pre-
viously implemented using output port lookup modules [25]
are organized as a hierarchical pipeline of smaller packet pro-
cessing units. Each unit represents an independent packet

processing entity with several streaming interfaces. The
framework facilitates the integration of two types of packet
processing units namely ReClick components and custom
RTL blocks (see Figure 1). The fundamental difference be-
tween these two types of units lies in the way they describe
packet processing behavior. ReClick components (hereafter
referred to as components) are specified in the domain spe-
cific language discussed in Section 3.2 as a permutation of
simple packet processing primitives.

The decomposition of virtual dataplanes into independent
packet processing units provides opportunities for design
reuse within the shared network virtualization platform. Con-
sider, for example, a virtual dataplane that describes a new
protocol, such as path splicing [19]. Such a dataplane per-
forms several conventional IP processing tasks such as time-
to-live (TTL) and checksum updates. In many cases, the
similarity between the virtual dataplanes can be exploited
to reduce the area overhead of implementing virtual data-
plane features separately in the FPGA-based network vir-
tualization platform. For example, a new virtual dataplane
can be deployed by adding a few components to an existing
virtual dataplane configuration or by reusing a subset of the
existing dataplane components.

To facilitate resource sharing, the dynamic design select ta-
ble (in Figure 1) has been modified to associate a 32-bit
bitvector tag (Vector in Figure 1) with each incoming packet.
The bitvector tag, programmed from software through a
user register, is used to select those virtual dataplane com-
ponents that are required to process the packet. Each bit
in the bitvector corresponds to a component in the virtual
dataplane. For simplicity, we reserve the lower order bits in
the bitvector for those components of the virtual dataplane
that process incoming packets first. A bit corresponding to
a component is set if that particular component is used to
process the packet. Each component in the virtual data-
plane checks its bit position in the bitvector tag associated
with the packet. If the bit is set for the incoming packet,
it is processed by the component. Otherwise, the packet is

Table 2: Reclick Primitives
Primitive Arguments Description Conditional

Execution?

get {field, packet} Extracts the field from the packet word. Assigns
to user variable

No

set {field, packet, value} Set field of packet to desired value-variable Yes
insert {value, position, packet} Insert a user defined field at the given position in

the packet
No

remove {field, packet} Removes a user defined field from the packet No
assign {packet, port} Assign inputs to packets or packets to output

ports
Yes

Dispatch
ToPort

component

Dec
IPTTL

Check
IPHeader

Input Outputs

FromDevice
(NetFPGA)

ToDevice
(NetFPGA)

Figure 2: (a) A basic component and (b) Use in a
virtual dataplane configuration

DST MAC SRC MAC HI

Packet Word (64 bits)

SRC MAC LO

WORD LEN

V L TOS

LENGTH FLAGS+FRAG TTL PROTID

CHKSUM SRCIP DSTIP HI

DSTIP LO UDP LENUDP SRC PORT UDP DST PORT

DST PORT BYTE LENSRC PORT

Word

1

2

3

4

5

6

.

.

.

Figure 3: An IPv4 packet word processed by NetF-
PGA reference router (from [3])

simply forwarded to the next module.

As an example, consider three virtual networks - black, white
and grey as shown in Figure 1. The black virtual network
does not share components with any other virtual network
and hence, has its own dedicated routing resources. The
white and gray virtual networks, however, share routing
components (except component 3). In this case, a single
dataplane configuration (C), is sufficient to address the re-
quirements of both the virtual networks. The bit vector
configuration for all the networks are indicated in Figure 1.

3.2 ReClick Programming Model
Our framework exposes two types of programming interfaces
to application developers. The first interface facilitates the
development of independent packet processing components

Program 1 Click description of the virtual dataplane con-
figuration in Figure 2

//Instantiate components
src::FromDevice(NetFPGA);
checkip::CheckIPHeader();
ttl::DecIPTTL();
dispatch::DispatchToPort();
sink::ToDevice(NetFPGA);

//Interconnect component instances
src[out]->[in]checkip[out] ->[in]ttl[out]->
[in]dispatch[out]->[in]sink;

by combining a set of simple primitives. The second inter-
face, which is similar to the software router development
framework, Click, allows virtual dataplanes to be composed
by stitching together multiple components.

Figure 2(a) shows a ReClick component. The component
interfaces include a set of input/output ports which may in-
clude optional configuration parameters. The input ports of
each component are actively driven by packet outputs from
previous components. ReClick implements this push style
dataflow in a manner similar to the Click modular router
framework [2]. Several such components may be intercon-
nected to form realistic virtual dataplane configurations. For
example, Figure 2(b) shows a simple virtual dataplane con-
figuration that accepts packets from the NetFPGA pipeline
(e.g. from dynamic design selection in Figure 1) via the
FromDevice(NetFPGA) component, filters non-IP packets
(CheckIPHeader), decrements the TTL field in the packet
(DecIPTTL), modifies the packet header to be forwarded
through a specific NetFPGA physical interface (DispatchTo-
Port) and forwards the packets to the rest of the NetFPGA
pipeline (e.g. output queue) via the ToDevice(NetFPGA)
component. Configurations can be formulated using Click
style descriptions. An example of the Click formulation of
the virtual dataplane in Figure 2(b) is shown in Program 1.

The behavior of individual components can be described
in the domain specific language, ReClick, or, if preferred,
by the dataplane designer, using conventional RTL descrip-
tions. Like other domain specific languages [9], the packet
is the central operational entity in a ReClick component.
Packets vary in size and packet sizes can exceed the datap-
ath width of the hardware pipeline.

Packet operations are therefore conducted as a sequence of
operations on packet words. The packet word represents
the largest quantum of packet data that can be accommo-
dated using the hardware datapath in a single clock cycle.
In a fully pipelined design, each packet word can be oper-
ated upon in a single clock cycle. Figure 3 shows the first
few words of an IPv4 packet processed by the NetFPGA
reference router [3]. The NetFPGA reference router uses
a 64-bit wide datapath. The packet word consists of one
or more fields, whose contents represent meaningful infor-
mation. For example, the most significant 48 bits of word
2 indicates the destination MAC address, while the lower
order bits 8 to 15 of word 4 indicate the TTL information.
ReClick provides a set of primitives that can characterize fre-
quent packet processing operations (Table 2). These prim-
itives can be combined with our software infrastructure to
form a virtual dataplane.

We illustrate the capabilities of ReClick by considering a
simple design example DecIPTTL. DecIPTTL is a frequently-
used packet processing component which is used to filter
packets whose TTL values have expired (indicated by a value
of zero in the TTL field). Program 2 describes the opera-
tion of a DecIPTTL component using the set of primitives
presented in Table 2. The component interfaces include an
input port (in0) and two output ports (out0, out1). Valid
packets are forwarded via out0 to the next component while
expired packets are dropped via out1. ReClick features two
special datatypes - Packet and Field, in addition to standard
datatypes. The Packet type is used to describe a packet,
which is operated upon by the component as it transits from
inputs to outputs. The Field type is used to define packet
fields within words. ReClick represents a field as a tuple of
two parameters - the index of the word relative to the start
of the packet and the subset of meaningful bits within that
word.

Standard data type variable declarations are associated with
integer values that characterize the storage width. These
values provide useful information for the ReClick compiler
while inferring hardware components. All primitives, except
assign, operate on packet words. The get and set primi-
tives are used to modify packet field information. They are
described in more detail in Section 3.3. Standard expres-
sions can be used to modify variable data or field informa-
tion. The insert and remove primitives (not shown in the
example) allow custom user fields to be inserted or removed
from specific bit positions within the packet word. Assign
statements are used to associate packets arriving at the in-
put ports of the component with packet variables.

If-else style conditional statements are supported for a sub-
set of primitives as indicated in Table 2. Conditional state-
ments enhance the expressiveness of the packet processing
descriptions by adding flexibility to operate on packets based
on static (compile-time) or run-time decisions. For example,
wrapping set statements within conditional statements en-
ables packet values to be conditionally modified. Similarly,
conditional execution of assign statements allows packets to
be scheduled across multiple ports. ReClick does not sup-
port straightforward implementation of conditionals for in-
sert and remove statements to reduce hardware complexity.

Program 2 ReClick description of a DecIPPTL component

component DecIPTTL {

//I/O port declaration
input in0;
output out0;
output out1;
packet pkt;

//Define Time-to-live(TTL) field
field TTL [15:8] of word 4;

//A 32 bit integer to store TTL value
int ttl_val:32;
//Variable to store the new TTL
int ttl_val_dec:32;

//Packet behavior
assign in0 to pkt;

ttl_val = get TTL of pkt;
ttl_val_dec = ttl_val - 1;

//Conditionally set fields
if(ttl_val>0) {

set TTL of pkt to ttl_val_dec;
} else {

set TTL of pkt to ttl;
}

//Schedule packets to outputs
if(ttl_val>0) {

assign pkt to out0;
} else {

assign pkt to out1;
}
}

Conditonal
Forward

Insert Insert

To
ReClick

component

To
ReClick

component

if(condition) {
 insert field1 at pos;
}
else {
 inesrt field2 at pos;
}

Figure 4: Conditional inserts/removals can be im-
plemented in an indirect fashion using Click config-
urations. In this example, a conditional insertion is
implemented as two separate ReClick components

ScheduleShift
Buffer

Word
Detect

word fields

Get

word fields

Set

field values/
schedule decision

Figure 5: The generic architecture of a ReClick com-
ponent

However, the programming model supports conditional in-
serts and removals in an indirect fashion.

Consider a scenario as shown in Figure 4 where two distinct
fields need to be inserted at a specific position in the packet
based on the falsity or trueness of a user-defined expression.
The semantics of this feature can be correctly implemented
with two ReClick components as shown in Figure 4. The
conditional forward component checks the user-defined con-
dition and pushes the packet through one of the two available
ports. The ports are attached to two distinct insert modules
that perform the insert operation.

ReClick allows special variables called handlers to be de-
fined. The handler variables are modeled as simple mem-
ory elements that store configuration parameters or packet
flow statistics within components. For example, a handler
variable whose value is incremented on the receipt of a first
packet word can be used to keep track of the number of pack-
ets handled by the particular component. ReClick models
handler variables as user registers in hardware.

3.3 Hardware Model
Packet forwarding performance is critical to FPGA-based
virtual dataplanes. As a result, a ReClick component is
modeled as a hardware pipeline as shown in Figure 5. The
ReClick compiler generates the elements of the pipeline ac-
cording to the packet processing behavior specified by the
user. Not all pipeline elements shown in the figure are re-
quired by all component descriptions. The pipeline consists
of a collection of the following set of modules:

1. get - The get module implements a table that stores
the words and fields of interest in the packet. Each
incoming packet word is checked against this table to
extract fields of interest. The contents of the table are
sequenced by the ReClick compiler.

2. set - The set module is similar to get except that it
is used for packet modification operations. The set
module includes a table that stores fields and words
that need to be modified. The module identifies fields
of interest in the packet word and modifies them as
they are clocked out of the component. The contents
of the set table are sequenced by the ReClick compiler.

3. insert - The insert module inserts fields at specific po-
sitions within the packet word and adjusts the packet

ReClick component

Frontend

Schedule

RTL Generate

Verilog module

Virtual dataplane configuration

element
element
element

Library

Parameterize &
Interface generate

Verilog Toplevel
pluggable into h/w

datapath

Click Frontend

Custom RTL
 blocks

Figure 6: Compiler Framework

length. Additional words are inserted whenever neces-
sary.

4. remove - The remove module removes fields of in-
terest from specific positions in the packet word and
adjusts the packet length.

5. schedule - The schedule module is responsible for
inter-component flow control. Additionally, it provides
the ability to conditionally forward packets between
multiple ports.

Packet forwarding at high throughput requires that each
component is free from pipeline stalls. However, this condi-
tion is seldom the case. A write operation on a packet word
whose value depends on information from words that are
yet to be received by the pipeline causes a pipeline to stall.
For example, a set operation on the DSTPORT (destination
port) of word 1 in Figure 3 depends on the DSTIPHI field
from word 5 and the DSTIPLO field from word 6 (destina-
tion IP address). This dependency causes the pipeline to
stall at least for 6 cycles.

To address such write after read hazards, we introduce a
shift buffer between the input and output ports. The size of
the shift buffer is statically computed at compile time as the
index of the farthest word from the first word of the packet,
whose field values affect packet modification or scheduling
decisions. For example, in the previous example, a shift
register of 6 words is used. When packets arrive at the com-
ponent’s input ports, they are successively shifted through
the shift module during every cycle. The shift buffer ensures
that field information from all dependent words is available
before packet modification or scheduling decisions are per-
formed.

3.4 Design Flow
The phases of the ReClick framework are illustrated in Fig-
ure 6. ReClick behavioral descriptions are parsed and type-
checked for errors by the frontend. The scheduler examines
the description to detect operations on fields that can be
scheduled in the same cycle. Specifically, fields belonging

to the same word can be scheduled in the same cycle. A
wider hardware datapath allows longer packet words, and
hence, more field operations to be sequenced in the same
cycle. However, this advantage comes at the expense of a
higher hardware cost. In general, the hardware datapath
width represents an important area-tradeoff parameter for
the virtual dataplane designer. For simplicity, we choose a
64-bit wide datapath which is similar to that used in the
NetFPGA reference router architecture.

Operations that are dependent on field values from multi-
ple packet words are scheduled according to the as soon as
possible (ASAP) schedule. Such operations are immediately
scheduled when all dependent information is available from
the hardware pipeline. The backend uses the schedule in-
formation to generate register transfer level descriptions in
Verilog HDL. Except for the shift buffer, all component fea-
tures are generated on an as needed basis. The backend
generates table entries for get and set modules within the
component pipeline according to the schedule determined in
the previous step. Parameterizable insert and remove mod-
ules are instantiated according to the component descrip-
tion. Finally, the compiler generates hardware structures,
such as wires and registers, to stitch together the compo-
nent pipeline.

To supplement user-defined components, automatically gen-
erated RTL descriptions are added to a library for use in sub-
sequent designs. The library supports the inclusion of ad-
ditional custom RTL blocks wrapped in standard streaming
interfaces that conform to the NetFPGA reference datapath.
The ReClick compiler generates an RTL description for each
component. We have developed a collection of library com-
ponents as shown in Table 3. Multiple such components can
be instantiated using the ReClick frontend to produce a vir-
tual dataplane description which is readily pluggable into
the NetFPGA datapath.

3.5 Example ReClick Configurations
We illustrate two design examples to demonstrate the capa-
bilities of ReClick.

3.5.1 IPv4 Router
Figure 7 illustrates an IPv4 router example designed from
simple ReClick components. The first two modules (Check-
IPHeader and DropBroadcast) are used to filter out non-
IP and broadcast packets. The lookup module is a custom
RTL block which is described in Verilog HDL. The module
is available for designers from a library. The lookup module
extracts the destination virtual IP address in the packet and
looks it up in a ternary CAM-based forwarding table within
the FPGA. It also features an ARP table to obtain the next-
hop MAC information. The DecIPTTL module recalculates
the time to live (TTL) values and filters out expired packets.
Register interfaces for writing forwarding table entries and
reading bookkeeping information are automatically inserted
by the compiler. All components except Lookup are ReClick
components. Lookup is a custom RTL module.

3.5.2 Onion router
Onion routing is a widely popular technique to implement
secure and anonymous communication over public networks.

FromDevice(netfpga)

CheckIPHeader

DropBroadcast

Lookup

DiscardToDevice(netfpga)

DecIPTTL

FromDevice(netfpga)

CheckIPHeader

DropBroadcast

Lookup

DiscardToDevice(netfpga)

DecIPTTL

DecryptOnion

(a) (b)

Figure 7: An IPv4 router. Subfigure (a) represents a
standard router. Subfigure (b) includes onion router
capabilities

The sender node chooses a set of onion routers to anony-
mously route a packet to the destination node. A path
is constructed from this node set. The sender then wraps
the packet using successive layers of encryption to create
an onion packet. The onion is passed to successive onion
routers, each of which removes a layer of encryption before
forwarding the packet to the next intermediate router. The
destination node removes the final layer of encryption to
recover the packet data.

We implement an onion router in ReClick by extending the
IPv4 router presented in the previous subsection. A decryp-
tion component is attached to the front of the data process-
ing pipeline. While real onion routers use public-key cryp-
tography to encrypt packets, we use a symmetric decryption
algorithm for simplicity. The onion router shares all compo-
nents except DecryptOnion with the standard IPv4 router.
A single configuration, as illustrated in Figure 7(b), can be
used for both dataplanes.

4. EVALUATION
We evaluate ReClick by comparing the packet forwarding
performance and resource consumption of an IPv4 dataplane
which is automatically generated by our framework against
a hand-coded IPv4 reference router implementation which
is available from the NetFPGA project. Additionally, we
compare the ReClick IPv4 dataplane with equivalent dat-
aplanes generated using Chimpp [22] and Switchblade [6]
frameworks using similar metrics.

Table 3: Resource Utilization and Latency of ReClick components on Virtex II Pro
Element Description Slices FFs LUTs Lines Latency

of (Cycles)
Code

CheckIPHeader Checks IP header and drops non-IP packets 192 324 160 223 5
DecIPTTL Decrements TTL and drops expired packets 30 210 339 227 3
DecryptOnion Decrypt packet data 1037 676 1155 291 6
Discard Discard the packet 12 0 3 165 1
DispatchToPort Forward packet through a specific port 666 324 167 180 1
DropBroadcast Filter broadcast packets out 196 324 312 217 2
EtherMirror Swap ethernet source and destination addresses 388 356 329 197 3
FromDevice Interface to NetFPGA input datapath 0 0 0 53 0
IPMirror Swap destination and source IP addresses 427 388 298 197 6
ToDevice Interface to NetFPGA output datapath 0 0 0 54 0

Port 0
Port 1NetFPGA

Packet
Generator Port 2

Port 3

Port 0
Port 1

ReClick
Dataplane

Port 2
Port 3

Figure 8: Topology for experiments using a packet
generator and a dataplane

4.1 Packet forwarding performance
For performance evaluation, we compare the throughput
of a single IPv4 virtual dataplane generated from ReClick
against the NetFPGA reference router. The Virtex II FPGA
can accommodate up to four IPv4 virtual dataplanes. Each
virtual dataplane operates at a clock frequency of 62.5 MHz.
Figure 8 shows the experimental setup for measuring packet
throughput. The NetFPGA packet generator [12] is used
to accurately generate traffic at line rate (1 Gbps). Pack-
ets of sizes varying from 64 bytes to 1024 bytes are used to
flood the physical Ethernet interfaces of the target NetF-
PGA card.

Figure 9 compares the throughput of the ReClick modu-
lar router against the throughput of the NetFPGA refer-
ence router for varying workloads. The ReClick IPv4 router
consistently handles line rate traffic for all packet sizes (1
Gbps) demonstrating that modular organization of the vir-
tual dataplane does not impose any forwarding performance
loss on the network virtualization platform. However, the
individual components do introduce additional latency into
the packet forwarding pipeline. These latencies are char-
acterized in Table 3. The shift buffers between input and
output ports prevent the increased latency from affecting
packet throughput.

4.2 Resource consumption
Table 4 presents the logic resources consumed by the ReClick
IPv4 router, an extended ReClick IPv4 router that supports
packet encryption for onion routing and the NetFPGA refer-
ence router implementation. The resource utilization statis-
tics were derived from Xilinx ISE 10.1 synthesis reports gen-
erated after the logic map step of the compilation process.
All designs were subsequently mapped to silicon through ISE
physical design (e.g. place, route, and bitstream generation).
The ReClick IPv4 router consumes approximately 49.7% of

2 500 000

2,000,000

2,500,000
NetFPGA reference router

ReClick IPv4 Router

1,500,000

se
co
nd

1,000,000

ck
et
s p

er
 s

500,000 Pa
c

0

64 128 256 512 1024
Packet size (Bytes)

Figure 9: Packet forwarding throughput of ReClick
IPv4 router and NetFPGA reference IPv4 router for
varying packet sizes

the available 4 input lookup tables (LUTs) and 62% of the
available slices. The logic utilization is thus comparable to
that of a hand-coded reference design available from the
NetFPGA development platform. However, the presence of
shift buffers, which are realized using block RAM memories
(BRAMs) and registers within the FPGA, increase the uti-
lization of BRAM resources by 25% and registers by 1%. We
believe that a highly fine-grained virtual dataplane composi-
tion approach is likely to increase the consumption of BRAM
and register resources. Alternately, designers can choose to
embed more features within each component, allowing for
tradeoffs between modularity and logic resources. The onion
router consumes an additional 5% slices, 3% LUTs and 2%
registers beyond the consumption of the IPv4 design exam-
ple. Table 3 summarizes the detailed logic resource usage
and code size for each ReClick component.

4.3 Comparison of ReClick with Other Frame-
works

To provide a fair evaluation, we compare the throughput
and resource consumption of a ReClick-generated IPv4 dat-
aplane with throughout and resource consumption of IPv4
dataplanes described in SwitchBlade [6] and Chimpp [22].
All evaluated dataplanes were implemented in a Virtex II
FPGA available on the NetFPGA 1G platform. The re-
source utilization of SwitchBlade and Chimpp IPv4 dat-
aplanes were obtained from previously published research
data [6] [22]. The IPv4 router described in Chimpp uses 4%

Table 4: Resource Utilization of ReClick IPv4 and
onion routers on a Virtex II Pro

NetFPGA ReClick ReClick

IPv4 IPv4 Onion

router router router

Slices 14640 14562 15599

Slice FF 15801 16439 17115

LUTs 23669 23470 24625

IO 356 356 356

BRAMS 25 31 31

more slices than the reference handcoded design. In con-
trast, the logic utilization of the ReClick router is compa-
rable to the handcoded implementation. The base Switch-
Blade platform features dataplane components supporting
preprocessor blocks for OpenFlow, IPv6, variable bit ex-
traction and PathSplicing supporting up to four IPv4 data-
planes. This configuration uses approximately 79% of avail-
able 4-input LUTs, 89% of available slices and 42% of slice
flip flops. The base ReClick IPv4 router features only pre-
processing blocks for IPv4 routing and hence consumes 27%
fewer slices and 7% fewer registers when compared to the
SwitchBlade platform. Since ReClick supports component
sharing between dataplanes, we expect the resource usage
to grow sublinearly with the number of dataplanes hosted
in the virtualization platform. All the dataplanes support
line rate forwarding (1 Gbps).

5. CONCLUSION
We have presented ReClick, an extensible modular data-
plane design framework for network virtualization. By ex-
posing a simple and intuitive programming model, ReClick
enables network developers to quickly adopt reconfigurable
hardware for the design and deployment of virtual data-
planes. The ability to integrate custom packet process-
ing blocks, specified in conventional hardware description
languages, enhances the flexibility of the framework. The
architecture and programming model built into the frame-
work allows logic and memory resources of the reconfigurable
hardware platform to be efficiently used without compromis-
ing packet forwarding performance. In the future we plan
to provide a mechanism for design feedback in the ReClick
framework, allowing for quick feedback to developers. Fi-
nally, we plan to make ReClick available to the academic
research community to encourage the addition of a rich set
of features and components for modern packet processing
systems.

6. ACKNOWLEDGMENTS
The work was funded in part by National Science Founda-
tion grant CNS-0831940. The FPGA compilation tools were
generously donated by Xilinx Corporation.

7. REFERENCES
[1] Cisco Nexus 1000V series switch. http:

//www.cisco.com/en/US/products/ps9902/.

[2] The Click modular router.
http://read.cs.ucla.edu/click.

[3] NetFPGA user’s guide. http://yuba.stanford.
edu/NetFPGA/static/guide.html.

[4] OpenVZ project page. http://www.openvz.org/.

[5] M. Anwer and N. Feamster. Building a fast,
virtualized data plane with programmable hardware.
In Proceedings of the ACM SIGCOMM Workshop on
Virtualized Infrastructure Systems and Architectures,
pages 1–8, Aug. 2009.

[6] M. B. Anwer, M. Motiwala, M. B. Tariq, and
N. Feamster. SwitchBlade: A platform for rapid
deployment of network protocols on programmable
hardware. In Proceedings of the ACM SIGCOMM,
pages 183–194, Aug. 2010.

[7] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In VINI veritas: Realistic and controlled
network experimentation. In Proceedings of the
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, pages 3–14, Sept. 2006.

[8] S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada,
V. Valancius, A. Bavier, N. Feamster, L. Peterson,
and J. Rexford. Trellis: A platform for building
flexible, fast virtual networks on commodity hardware.
In Proceedings of the ACM Conference on Emerging
Network Experiment and Technology, pages 72–77,
Dec. 2008.

[9] G. Brebner. Packets everywhere: The great
opportunity for field programmable technology. In
IEEE International Conference on
Field-Programmable Technology, pages 1–10, Dec.
2009.

[10] G. Brebner, P. James-Roxby, E. Keller, and
C. Kulkarni. Hyper-programmable architectures for
adaptable networked systems. In IEEE International
Conference on Application-Specific Systems,
Architectures and Processors, pages 328–338, Sept.
2004.

[11] N. M. Chowdhury and R. Boutaba. A survey of
network virtualization. Computer Networks,
54(5):862–876, Apr. 2010.

[12] G. A. Covington, G. Gibb, J. W. Lockwood, and
N. McKeown. A packet generator on the NetFPGA
platform. In Proceedings of the IEEE International
Symposium on Field-Programmable Custom
Computing Machines, pages 235–238, Apr. 2009.

[13] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings of
the USENIX Security Symposium, pages 303–320,
Aug. 2004.

[14] N. Feamster, L. Gao, and J. Rexford. How to lease the
Internet in your spare time. ACM SIGCOMM
Computer Communication Review, 37(1):1256–1261,
Jan. 2007.

[15] E. L. Horta, J. W. Lockwood, D. E. Taylor, and
D. Parlour. Dynamic hardware plugins in an FPGA
with partial run-time reconfiguration. In Proceedings
of the ACM Design Automation Conference, pages
343–348, June 2002.

[16] C. Kim, M. Caesar, A. Gerber, and J. Rexford.
Revisiting route caching: The world should be flat. In
Proceedings of the International Conference on
Passive and Active Network Measurement, pages 3–12,
Apr. 2009.

[17] M. Labrecque, J. G. Steffan, G. Salmon, M. Ghobadi,

and Y. Ganjali. NetThreads: Programming NetFPGA
with threaded software. In Proceedings of the
NetFPGA Developer Workshop, Aug. 2009.

[18] G. Lu, Y. Shi, C. Guo, and Y. Zhang. CAFE: A
configurable packet forwarding engine for data center
networks. In Proceedings of the ACM SIGCOMM
Workshop on Programmable Routers for Extensible
Services of Tomorrow, pages 25–30, Aug. 2009.

[19] M. Motiwala, M. Elmore, N. Feamster, and
S. Vempala. Path splicing. SIGCOMM Comput.
Commun. Rev., 38(4):27–38, Aug. 2008.

[20] C. Neely, G. Brebner, and W. Shang. ShapeUp: A
high-level design approach to simplify module
interconnection on FPGAs. In Proceedings of the
IEEE International Symposium on
Field-Programmable Custom Computing Machines,
pages 141–148, May 2010.

[21] P. Nikander, B. Nyman, T. Rinta-aho, S. D.
Sahasrabuddhe, and J. Kempf. Towards
software-defined silicon: Experiences in compiling
Click to NetFPGA. In European NetFPGA Developers
Workshop, Sept. 2010.

[22] E. Rubow, R. McGeer, J. Mogul, and A. Vahdat.
Chimpp: A Click-based programming and simulation
environment for reconfigurable networking hardware.
In Proceedings of the ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, pages 36:1–36:10, Oct. 2010.

[23] S. D. Sahasrabuddhe, H. Raja, K. Arya, and M. P.
Desai. Ahir: A hardware intermediate representation
for hardware generation from high-level programs. In
Proceedings of the IEEE International Conference on
VLSI Design, pages 245–250, Jan. 2007.

[24] J. Turner, P. Crowley, , J. DeHart, A. Freestone,
B. Heller, F. Kuhns, S. Kumar, J. Lockwood, J. Lu,
M. Wilson, C. Wiseman, and D. Zar. Supercharging
PlanetLab: A high performance, multi-application,
overlay network platform. In Proceedings of the ACM
International Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications, pages 85–96, Aug. 2007.

[25] D. Unnikrishnan, R. Vadlamani, Y. Liao, A. Dwaraki,
J. Crenne, L. Gao, and R. Tessier. Scalable network
virtualization using FPGAs. In Proceedings of the
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 219–228, Feb. 2010.

[26] G. Watson, N. McKeown, and M. Casado. NetFPGA:
A tool for network research and education. In
Proceedings of the Workshop on Architectural Research
Using FPGA, pages 160–161, Feb. 2006.

[27] D. Yin, D. Unnikrishnan, Y. Liao, L. Gao, and
R. Tessier. Customizing virtual networks with partial
FPGA reconfiguration. ACM SIGCOMM Computer
Communication Review, 41(1):125–132, Jan. 2011.

[28] L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron.
Cashmere: Resilient anonymous routing. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, pages 301–314,
Aug. 2005.

