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Abstract— On-chip monitoring of environmental information, 

such as temperature, voltage, and error data, is becoming 
increasingly important. To address this need, a low-overhead 
architectural approach to monitor data collection and use in 
multicore systems is described. A key aspect of our stand-alone 
monitoring subsystem is a low-complexity, on-chip network 
designed to transport monitor data with multiple priority levels.  
Collected monitor information is evaluated by a dedicated 
processor. Experimental results using architectural and 
interconnect simulators show that the new low-overhead 
subsystem facilitates employment of thermal and delay-aware 
dynamic voltage and frequency scaling. In contrast to using 
existing on-chip interconnect resources to communicate monitor 
data, the new subsystem provides necessary bandwidth for 
monitor data traffic without impacting application data traffic. 
Synthesis results show that our dedicated monitoring approach 
consumes about 0.2% of multicore area and power resources 
for an 8-core system based on AMD Athlon 64 processor cores.  

 
Index Terms—Network on chip, on-chip monitoring, 

multicore.  

I. INTRODUCTION 
omputing in the presence of various sources of 
uncertainty significantly complicates the design and 

implementation task. Multicore and manycore systems 
present a particular challenge as large numbers of processor 
cores are integrated into single-chip platforms. As multicore 
deployments become more diverse, a static system operating 
environment can no longer be assumed. These systems are 
susceptible to a number of reliability, performance, and 
power constraints that must be carefully addressed during 
system operation. As the size of multicore systems increase, 
the importance of using run-time monitoring information to 
tune system operation becomes critical. Fault tolerance issues 
are particularly acute for multicore system design in which 
system elements, such as caches and memory controllers, are 

 
Manuscript received August 4, 2009; revised February 2, 2010. This work 

was supported by the Semiconductor Research Corporation under Task 
1595.001. 

J. Zhao, W. Burleson and R. Tessier are with the Department of Electrical 
and Computer Engineering, University of Massachusetts, Amherst, MA 01003 
USA. (e-mail: tessier@ecs.umass.edu).  

S. Madduri is with Intel Corporation, Hillsboro, OR 97123 USA.  
R. Vadlamani is with Qualcomm Inc., Boxborough, MA 01719 USA. 
Digital Object Identifier xxxx.  

 

shared by many individual cores. Recent multicore processors 
from Intel (Montecito), AMD (Opteron) and IBM (Cell) use 
on-chip monitors for run-time estimates of temperature, 
power, clock jitter, supply noise and performance for a small 
number of cores. However, an automated, dedicated approach 
to the collection and use of monitor data in multicores has 
not been developed. Multicore monitor information 
represents a substantial data workload that must be analyzed 
in its own right, separate from the core processing 
capabilities of the multicore system. This information can 
then be used to configure multicore resources in conjunction 
with system and application software.  

System critical monitor information, including soft error 
failures, wear-out data, and voltage droop often require 
immediate attention at the system level. As demonstrated in 
this manuscript, the presence of a fast and dedicated, but 
minimal, interconnect for monitor information allows for 
effective, dedicated monitor data transfer. Monitor 
information from multiple multicore monitors is then 
assessed in real time at one or more processing components. 
The results of this processing are then used to affect 
multicore behavior via operations such as per-core frequency 
and voltage scaling, among others. 

The dedicated collection and processing of system-on-chip 
(SoC) environmental information from on-chip monitors 
provides an important multicore architecture design 
dimension. This research presents an integrated approach to 
address this issue with the development of a complete 
monitor subsystem for SoCs, including on-chip monitors, a 
low-overhead on-chip interconnect, which is optimized for 
monitors, and one or more monitor data processing 
components. The interconnect has been designed to provide 
interfaces to a variety of different monitor types and monitor 
data processing components, from low-complexity thermal 
monitors to a microcontroller. Although simplified versus 
typical on-chip interconnects, the monitor network-on-chip's 
(MNoC) support for irregular topologies, priority-based data 
transfer, and dead-lock free routing provide a flexible data 
collection environment. Following monitor data processing, 
MNoC is used as an interface to control circuitry (e.g. 
dynamic voltage and frequency scaling (DVFS) control) 
which affects multicore operation. 

The overhead and performance benefit of our monitoring 
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subsystem have been evaluated via hardware synthesis, 
interconnect simulation and multicore architectural 
simulation. Multicore systems of up to 16 cores which 
include thermal and voltage monitors are considered for 
DVFS while systems of up to 256 cores are considered for 
performance analysis. Each core is augmented with MNoC 
hardware which allows for prioritized monitor data transport 
and subsequent monitor data processing. Appropriate 
interconnect bitwidth and buffer sizing are assessed through a 
series of parameter sweeps with an interconnect simulator 
under realistic monitor data workloads. The size and power 
consumption of the MNoC hardware is determined via RTL 
synthesis using a 90nm technology library. This overhead is 
determined to be less than 0.2% for a system of 8 cores based 
on AMD Athlon processors. The system-level benefits of 
monitor collection and evaluation are examined through a 
series of application experiments in which decisions are made 
based on collated temperature and voltage information.  

The addition of a dedicated monitor interconnect may 
seem unnecessary given the available high-speed networks-
on-chip that are frequently available in multicore systems. To 
further validate our approach, direct comparisons between a 
dedicated monitor interconnect and the use of existing 
multicore interconnect for monitor data transfer are 
performed. Experimental results show significant latency 
limitations when existing interconnect is used to transport 
monitor information.  

The remainder of the manuscript is organized as follows. 
Section II describes existing SoC monitoring subsystems and 
related interconnect networks. Section III describes our 
monitoring subsystem including MNoC, dedicated processor 
for monitoring applications, and system interfaces. Section 
IV explores the details of per-core monitor allocation as a 
technique for justifying differing amounts of monitoring 
interconnect and monitor data processing. The experimental 
approach for validating our work appears in Section V. 
Section VI provides an analysis of experimental results and 
Section VII concludes the paper. 

II. BACKGROUND AND RELATED WORK 

A. Monitors and Monitor Subsystems 
As SoC design has migrated towards the use of multicores, 

the deployment and use of on-chip monitors has become 
more widespread. Monitors are important components in 
many SoCs. Typical examples include processor performance 
monitors, thermal monitors, delay monitors, and wearout 
monitors, among others. Most thermal sensors are based on 
simple ring oscillators or diode-based circuits [1]. Critical 
path monitors are used to identify the effects of aging, 
process variation and supply noise on circuit performance. 
Typical path delay monitors [2] include multi-inverter delay 
lines with capture latches at each inverter output. The output 
of the critical path monitor is often a digital code which can 

require high bandwidth. Hardware performance monitors 
measure processor performance by establishing a pattern for a 
certain interval of execution. Hardware monitoring can 
collect statistics such as instructions per cycle (IPC), resource 
utilization, and instruction dependencies that can be used to 
reconfigure processor resources.  

In many cases it is desirable to use information from 
multiple monitors to validate collected information. For 
example, 90nm Itanium processors [3] use a series of voltage 
and thermal sensors in conjunction with a controller to 
evaluate chip environmental conditions. This Foxton 
technology [3] allows for dynamic voltage and frequency 
scaling based on sampled monitor data. A similar approach 
for a Hitachi multiprocessor [4] uses thermal and 
performance information to control voltage and bandwidth 
allocation. All of these systems assume small numbers of 
cores and monitors connected in an ad hoc fashion.  

A relatively small number of SoC projects have examined 
the integration of multiple interconnected sensors and 
associated control onto a single SoC substrate. Velasumy et 
al. [5] describe the interconnection of an array of thermal 
monitors to a PowerPC with a CoreConnect on-board 
peripheral bus. Monitor information is then used to control 
system clock frequency. Although effective for small numbers 
of cores, bus-based interconnect approaches are generally not 
scalable for large core counts [6]. Additionally, the 
CoreConnect bus uses far more resources than necessary to 
implement communication and control for monitor data. The 
IBM Power6 architecture [7] interconnects multiple sensors 
and actuators via a high-speed serial bus. This interconnect 
primarily serves as an external interface to voltage and 
temperature control via an I2C bus for a modest number of 
cores.  

MNoC [8] builds on ideas previously used for SoC debug 
and test. The JTAG boundary scan interface provides a serial 
scan interconnect which typically operates at 1 MHz. This 
low bandwidth chain consumes a minimal amount of 
resources and provides scalability. A recent, enhanced debug 
system by Dafca, Inc. uses multiplexers to collate debug 
information to one or more debug control points. Unlike 
MNoC, debug subsystems do not attempt to use collected 
information to influence SoC run-time operation. 

B. Related On-Chip Interconnects 
Numerous network-on-chip architectures [9] have been 

proposed for SoCs over the past decade. These interconnects 
generally require a series of router circuits organized in a 
mesh-like topology. In contrast to MNoC, most network-on-
chip (NoC) routers are optimized for routing bandwidth and 
consume considerable chip resources. Often, individual NoC 
routers require tens of thousands of transistors [10], include 
datapath widths of 32 to 256 bits, and buffer tens to hundreds 
of data values. For example, TILE64 [11][12] interconnects 
64 processors with a series of 8×8 single channel 
interconnect meshes. The TRIPS processor uses a 4×10 mesh 
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on-chip network [13] with prioritized channels to 
interconnect various SoC resources.  In contrast, our 
approach attempts to minimize resource count to exactly the 
bandwidth and buffering required for SoC monitoring.  

This manuscript significantly extends a previous MNoC 
conference publication [8]. In this manuscript we consider 
MNoC-based connections to DVFS control and specialized 
monitors. Additionally, quantitative comparisons are made 
between MNoC-transferred monitor data and monitor data 
transferred with existing NoC interconnect. The impact of 
both approaches on DVFS and overall system performance 
are also explored.  

III. INTEGRATED MULTICORE MONITORING 

A. Monitor Network-on-Chip Overview 
Our monitoring subsystem augments conventional system-

on-a-chip hardware with additional components for 
monitoring, verification, and response. Multiple monitors are 
added to each major component of the SoC. The monitors are 
linked by a monitor network-on-chip, a heterogeneous 
communication substrate, as seen in Fig. 1. In general, the 
spread among the required bandwidths of different monitors 
is large. Hence, MNoC supports low-overhead routers and 
localized connections like buses and multiplexers. High 
bandwidth monitors are directly connected to routers, while 
the lower bandwidth monitors are connected via multiplexers 
or a bus that connects to the network as shown in Fig 1.  The 
MNoC is interfaced to a monitor executive processor (MEP), 
which provides a software layer to implement collaborative 
monitoring algorithms. MNoC has been designed to incur 
minimal area and energy overhead compared to a general 
purpose on-chip interconnect by optimizing its width, access 
control, arbitration, flexibility, and bandwidth to the monitor 
data collection task. Specific challenges of interconnect 
include the development of monitor-network and network-
MEP interfaces to accommodate different monitor types and 
the development of interconnection components for irregular 
topologies and mixed-priority traffic.  
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Fig. 1: Detailed view of MNOC for multiple cores 

On-chip monitors are typically distributed in an 
unorganized fashion, necessitating an irregular interconnect 
topology. An irregular mesh topology of routers is needed for 
MNoC, whose placement is dictated by the distribution of 
monitors. Although other topologies could possibly be used 
with MNoC, a mesh-like topology represents a simple, 
extensible solution for initial exploration. Two types of 
monitors are supported by MNoC: (1) monitors that put data 
into the network at regular intervals and (2) monitors that 
report data occasionally. For example, thermal monitors 
generally report temperature periodically, while error 
monitors only report data in the event of an error. For type 1, 
data requests are forwarded to the monitors by the associated 
router interfaces. Interrupts are used to support unexpected 
events detected at monitors for type 2. MNoC traffic is 
entirely monitor data that is communicated to the MEP and 
no monitor-monitor communication is required. Monitor data 
in the network is classified into two different priority levels. 
Messages to the MEP that are generated occasionally via 
interrupts are usually critical in nature and are hence tagged 
with a higher priority. Periodically-inserted monitor 
messages are usually regular priority unless there is an 
emergency event at the monitor. High-priority data is routed 
through the network using dedicated resources in the routers.  

Monitor information is transported on the network as 
packets of data. A network interface appends monitor 
information with routing information and converts each 
packet into flits. The packetization module also appends the 
source monitor’s address which is required by the MEP to 
identify the origin of the monitor data. A priority bit is 
included in the packet to enable the routers to differentiate 
critical data from regular data. MNoC flit width is chosen to 
be the same as the width of the physical channel. MNoC 
implements wormhole switching which ensures low latency 
while consuming a minimal amount of buffer space.  

The most commonly used adaptive routing protocols 
involve expensive router implementations [6] and are suitable 
for very high and unpredictable traffic rates. Instead, for low-
overhead MNoC, we use a static distributed routing protocol 
which involves the use of routing tables at individual routers. 
Each routing table is a lookup table that can be indexed using 
the destination address. For every possible destination, the 
table contains information about the output port that the 
packet needs to be routed through. Since most traffic is 
routed to a centralized MEP, the routing table can have a 
small number of entries (generally less than 8). The irregular 
placement of monitors results in an irregular mesh topology 
leading to concerns regarding deadlock. A fault tolerant mesh 
routing algorithm [14] is used to generate deadlock free paths 
that are stored in the routing tables. Since no monitor-to-
monitor communication is used, the overhead incurred with 
routing tables is minimal. This non-adaptive routing protocol 
allows for a very lightweight router implementation because 
the overhead for adaptive route evaluation is eliminated.  
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B. Monitor Interfaces to MNoC 
Direct, multiplexer and bus monitor interfaces provide a 

flexible selection of connections between monitors and 
MNoC routers. The interface control logic is able to support 
both monitors that inject data periodically and monitors that 
inject data occasionally. In the MNoC architecture, the 
monitors and the network router connect through a master-
slave interface with the router serving as the master and the 
monitor as a slave. The high-level architecture of a monitor-
network interface which includes a bus is shown in Fig. 2. 
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Fig. 2: Monitor –bus – network interface 

Typically, interface control logic is built to read data at a 
pre-determined rate from multiple connected monitors. A 
control state machine is used at the router interface to sample 
connected monitors according to a pre-set schedule. Each 
interrupt-driven monitor has a dedicated interrupt line 
connected to the router interface that generates an interrupt 
when a data read is required. In the event of an interrupt, the 
controller breaks away from the original read sequence to 
generate a read address for the interrupting monitor. Any 
data value read from an interrupting monitor is tagged as 
high priority data. Once the monitor data is read, the 
controller appends it with the address of the originating 
monitor and the data’s associated priority value. The data 
value is then written into a synchronizing FIFO, which is 
read by the packetization module (Fig. 2). The packetization 
module converts the data into flits and forwards them to the 
appropriate channel in the network (regular or priority). 

To illustrate interface flexibility, an example multiplexer-
based interface to thermal monitors is shown in Fig. 3. A 
contemporary eight-bit thermal monitor [1] is used to collect 
thermal information. Only one monitor is shown for clarity 
although the output from several monitors could be connected 
to the multiplexer. Thermal monitor sampling is triggered by 
the sample signal from the interface controller state machine. 
When thermal data is present and the appropriate output 
first-in, first-out buffer (FIFO) (regular or priority) is not full, 
the thermal data and routing information is put into a packet 
and sent to the appropriate channel.  

As shown in Figs. 2 and 3, the packetization module can 
append monitor data with a time stamp from an embedded 

timer which is used to identify the time at which data was 
sampled. The maximum value of the timer is chosen such 
that any packet injected in the network reaches the MEP 
before the timer resets twice. This ensures that the MEP 
accurately identifies the time frame in which the data was 
sampled. For example, if a monitor generated a temperature 
value of 20 degrees at time t = 1ms and the data is received at 
the MEP at time t = 1.0005ms, the MEP could interpret the 
current temperature value to be 20.00003 degrees using a 
known, average temperature gradient of 0.06 deg/ms [3]. A 
single timer is shared across several interfaces.  

 

 

Fig. 3: Thermal monitor and multiplexer router interface 
controller 

The MEP and the network router also connect through a 
master-slave (MEP-router) interface. Monitor data received 
from either of the router channels is read from separate 
FIFOs by a de-packetization module at the router-MEP 
interface. The MEP software reads information from the 
FIFOs at regular intervals with consideration given to priority 
data. Once data is received, the MEP uses the source 
information to determine the type and location of the monitor 
that sent the data and takes necessary action by affecting 
system parameters.  

In our monitoring subsystem, MNoC is also used to 
interconnect the MEP and system controllers, such as voltage 
controllers and frequency controllers. Current digital 
interfaces to controllers generally require a small number of 
bits written to a register [15][16]. For example, the voltage 
and frequency of each core can be adjusted locally using this 
type of interface.  
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C. MNoC Router Architecture 
The low bandwidth required by most monitors is exploited 

to minimize MNoC router area. Unlike typical NoC routers, 
MNoC routers provide sufficient bandwidth and latency with 
small (e.g. ≤ 24 bit) flit widths and minimal (e.g. 4) buffer 
sizes. Each router is further optimized by removing unused 
data ports as a result of the irregular mesh topology. The 
MNoC router is built to be parameterizably instantiated by 
designers. The optimal buffer sizes and widths can be 
determined based on the required latency and bandwidth for 
different monitoring systems. The parameter choices trade off 
performance (bandwidth and latency) and overhead (area and 
power).  

For MNoC, input buffering is used instead of output 
buffering due to the low overhead that input buffering offers 
[17]. Head-of-line blocking, a possible drawback of input 
buffering, is insignificant in the case of MNoC because most 
MNoC traffic is directed towards the MEP. Every input 
channel in the router is multiplexed into separate priority and 
regular virtual channels. The priority channel is used to 
exclusively transfer critical monitor data. A packet that is 
injected into a network with a high priority (priority field in 
the packet header is set to 1) travels in the priority channel 
until it reaches the destination. 

MNoC routers employ a credit-based flow control to 
regulate data traffic and avoid packet dropping. Each router 
has buffer slot counters that keep track of the number of 
empty regular and priority channel buffer slots in adjacent 
routers. Buffer space availability is communicated by 
adjacent routers using credit messages. Flits that enter the 
MNoC router pass through three router pipeline stages: 
routing table look up, switch arbitration, and switch traversal. 
Once switch access is granted by switch arbitration, a flit 
enters the final pipeline stage where it traverses the crossbar 
and enters the appropriate channel in the next router. The 
priority channel is given preference during switch arbitration 
to ensure the lowest possible priority channel latency. The 
arbiter grants access to the regular data channel in a random 
fashion. 

D. Monitoring Subsystem Design 
We view the design of the monitoring subsystem as an 

action that can be performed in concert with the design of 
main SoC resources. A high-level design flow for creating an 
MNoC-based monitoring subsystem is shown in Fig. 4. 
Initially, the designer specifies the parameters of the monitor 
data including required bandwidth and latency and the 
permissible area and power of the monitoring subsystem. An 
initial series of parameters, including MNoC buffer size and 
bitwidth, number of monitors per core, and number of MEPs 
are selected. The performance of MNoC is then determined 
via an interconnect simulator which takes network topology 
and congestion into account. The results of monitor data use 
can then be assessed with the use of an architectural 
simulator. The evaluation of the monitoring subsystem can be 

performed in an iterative loop until acceptable parameters are 
located.  
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Fig. 4: System-level monitoring design approach 

Although the steps shown in Fig. 4 could eventually be 
automated, the examples in subsequent sections are 
enumerated via user-guided experimentation. The parameters 
used in this analysis are justified in the next section. 

IV. EXPERIMENTAL PARAMETER ASSESSMENT 

A. Experimental Approach 
In an initial experiment, a series of simulation and 

synthesis evaluations similar to the type illustrated in Fig. 4 
have been performed. The Popnet interconnect simulator [18] 
has been significantly modified to estimate bandwidth and 
latency values for the heterogeneous MNoC interconnect. The 
router pipeline and the routing protocol were modified and 
additional support for an expanded set of interfaces (e.g. bus, 
multiplexer) was provided. The simulator, in modified form, 
allows for a complete evaluation of various MNoC topologies 
and components. 

To estimate the overhead of our MNoC approach, we 
developed a synthesizable hardware model of the MNoC 
router and MEP. The MNoC hardware model is 
parameterizable and allows for evaluation of area for 
different flit widths and buffer sizes. The hardware model, 
which operates at 500 MHz, was synthesized by Synopsys 
Design Compiler using a 90nm standard cell library [19]. 
Architectural simulations were performed using the SESC 
architectural simulator [20] to quantify the benefits of 
employing our monitor subsystem at a system level.  

B. Parameter Evaluation 
In an initial experiment to illustrate multicore MNoC 

tuning tradeoffs, 64 thermal monitors (8 monitors per 
processor core) are used to report temperature values from 
various multicore locations at a variety of monitor data 
injection rates. The processor core floorplan used for thermal 
modeling is based on the AMD Athlon 64 processor [21]. A 
mock-up of a layout of the eight core system including MNoC 
is shown in Fig 5. One MNoC router per core collects 
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thermal data from the 8 thermal monitors using a 
multiplexer. Thermal monitors [22] can be classified as low 
bandwidth monitors. Justification for the per-core thermal 
monitor and MNoC router count is given in Section V.   

 

 

Fig. 5: Monitor network on chip layout for thermal monitors 
on an 8 core processor 

The MEP is attached to a dedicated router (Fig. 5) at a 
location central to the routers. The resultant topology is an 
irregular mesh. With this 9 router setup, deadlock-free 
routing [14] was used to generate paths from the routers to 
the MEP. Our interconnect simulator was used to evaluate 
the latency of this network for different network parameters.  

Fig. 6 shows a plot of network latency versus injection 
rates for various buffer sizes for regular (non-priority) traffic. 
A total of 95% of total traffic is assumed to be regular traffic 
[8]. The X-axis, cycles between injections, indicates the 
number of clock cycles between two sampling points for each 
thermal monitor. The Y-axis, network latency, indicates the 
average time required (in clock cycles) for data to travel from 
a monitor to the MEP. Fig. 6 indicates a significant regular 
channel dependence on input buffer storage for sizes less 
than 4. No latency reduction is achieved by increasing buffer 
size for buffer sizes greater than and equal to 4. For longer 
delays between injections, the regular channel latency 
becomes insensitive to buffer size. Although not shown in the 
figure, latency remains roughly constant for the 5% of total 
traffic which is priority traffic. Network latencies between 16 
and 21 cycles were found for all injection rates.  

 
Fig. 6: Regular channel latencies for different buffer sizes for 
flit width = 24 

Fig. 7 shows a plot of network latency versus injection rate 
for different flit widths for regular traffic. As flit width 

increases, the sampling rate which saturates the network 
becomes higher.  

 
Fig. 7: Regular channel latencies for different flit widths for 
buffer size = 4 

Overall, it can be inferred from the results that for higher 
cycles between injection (lower sampling rates and lower 
bandwidth) the latency of a non-saturated network is mostly 
insensitive to network parameters such as buffer size and flit 
width. At such low sampling rates, low network latency (less 
than 20 clock cycles) can be achieved with minimal network 
resources. Monitors with higher sampling rates have 
latencies that are highly network dependent. These monitors 
usually dictate the choice of network parameters.  

Of course, larger flit and buffer size parameters require a 
larger network area. Table 1 shows area results for the 9 
router MNoC system estimated at a 90nm technology node. 
MNoC router area has been determined via synthesis. MNoC 
wire area has been estimated using a methodology based on 
wire pitch and wire length [23]. 

 
As seen in Fig. 8, as MNoC size increases, the saturation 

injection rate of a network with 24-bit flits and a buffer size 

TABLE 1: MNOC AREA RESULTS FOR A 9 ROUTER SYSTEM 

Buffer size = 2 Buffer size = 4 
Flit 

width Router 
area in 
mm2 

Wire 
area in 
mm2 

Total 
area in 
mm2 

Router 
area in 
mm2 

Wire 
area in 
mm2 

Total 
area in 
mm2 

12 0.408 0.035 0.443 0.438 0.035 0.473 

14 0.445 0.041 0.486 0.481 0.041 0.522 

16 0.482 0.047 0.529 0.523 0.047 0.570 

18 0.519 0.053 0.572 0.566 0.053 0.619 

20 0.556 0.058 0.614 0.610 0.058 0.668 

24 0.602 0.070 0.672 0.693 0.070 0.763 

Buffer size = 8 Buffer size = 16 
Flit 

width Router 
area in 
mm2 

Wire 
area in 
mm2 

Total 
area in 
mm2 

Router 
area in 
mm2 

Wire 
area in 
mm2 

Total 
area in 
mm2 

12 0.494 0.035 0.529 0.606 0.035 0.641 

14 0.547 0.041 0.588 0.676 0.041 0.717 

16 0.598 0.047 0.645 0.743 0.047 0.790 

18 0.648 0.053 0.701 0.810 0.053 0.863 

20 0.701 0.058 0.759 0.876 0.058 0.934 

24 0.801 0.070 0.871 1.013 0.070 1.083 
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of 4 is reduced. However, network bandwidth increase by 
30% leads to a higher saturation injection rate. This result 
indicates that MNoC can be expanded to a larger number of 
cores by increasing the network bandwidth via, for example, 
more aggressive pipelining or signaling to retain a similar 
saturation injection rate. For this experiment, a new MEP is 
allocated per 16 cores, reducing the global distribution of 
monitor data, although some congestion occurs at the borders 
of different regions. No inter-MEP communication is 
performed as part of the experiment.  

 
Fig. 8: MNoC performance with increasing number of cores 
and bandwidth for buffer size 4  

 
Fig. 9: Average versus worst-case latency for MNoC for 
buffer size = 4 and flit size = 24 

Generally, the worst-case latency for MNoC does not vary 
substantially from the measured average latency. As shown in 
Fig. 9, the curve knees for both average and worst-case 
latencies occur at roughly the same injection rates.  Our 
design methodology allows designers to consider both 
latencies in developing an appropriate MNoC system.  

V. APPLICATIONS OF DEDICATED MONITORING 
To better justify the use of MNoC, two applications of 

monitor data, dynamic frequency scaling (DFS) and voltage 
droop recovery, are examined. MNoC is used to transfer 
monitor data for each application based on monitoring 
parameters obtained from previously-published results. 

A. Experimental approach 
These experiments use SESC to simulate multiple 

processors and a central MEP, similar to the eight core 
system shown in Fig. 5. Each core has a private L1 and L2 
cache. In comparison to a commercial 8 core processor [24], 

the area overhead of an MNoC with a buffer size of 4 and 24-
bit flits in the configuration shown in Fig. 5 is 0.763/378 
mm2 = 0.20%. The power model that is used by SESC for 
processors is based on Wattch. The cache power model is 
based on CACTI and the temperature model for both (called 
SESCSpot) is based on HotSpot [22]. SESCSpot calculates 
the temperature of processor sub-blocks based on the power 
trace of the architecture in a post-processing fashion. For the 
DFS implementation, we integrated SESCSpot into the core 
of the SESC simulator to dynamically obtain the temperature 
readings. This approach enabled the MEP to sample the 
temperature readings at a pre-determined interval and 
execute the DFS and voltage droop recovery algorithms. 

B. Dynamic Frequency Scaling 
In a DFS experiment, a monitor subsystem that satisfies 

system design constraints while providing a performance 
benefit is demonstrated. Dynamic frequency scaling is 
performed in response to on-chip thermal conditions. 
Thermal monitor data is forwarded to a MEP which then 
determines a specific processor’s frequency. Although some 
contemporary DFS approaches support the use of thermal 
data within a core, several recent efforts [25] have 
determined the local and global effects of thermal data on 
DFS. 

To successfully evaluate the use of dedicated monitoring, a 
realistic dispersal of monitors per core and a realistic 
sampling rate to support DFS is needed. In the following 
experiments, a total of 8 thermal monitors per processor core 
are used for the Athlon cores. Previous work [26][27] has 
shown that for an architecture and per-processor transistor 
count (approximately 68 million transistors) similar to these 
cores, 8 thermal monitors per core is appropriate. Numerous 
contemporary thermal monitors generate eight-bit data [1], 
the thermal monitor data width used here. 

Previous DVFS experiments have used a temperature 
gradient of finer than 0.1 degC/sec [2] for available monitors 
to assess thermal activity. For example [22], temperature 
values used for DVFS have been sampled every 10,000 cycles 
for a 3GHz core to achieve a temperature resolution of less 
than 0.1 degC. For the following experiment, a sampling 
period of 1,600 cycles at 500 MHz is needed to match this 
rate. To ensure a conservative result, sampling at each 
thermal monitor is performed every 800 cycles. An MNoC 
configuration with flit width of 24 bits and an input buffer 
size of 4 was used to meet the required bandwidth and match 
subsequent MNoC experiments described in Sections V.C 
and VI. Data transfer requires a single flit. For this 
experiment, all data paths shown in Figs. 1, 2, and 3 are 24 
bits, unless explicitly marked otherwise in the figures.  

Flit size can be justified as follows. The largest analyzed 
system contains 17 routers and 128 total monitors and each 
thermal data value includes 8 bits. Thus, the thermal data 
packet contains 4 source router address bits, 4 destination 
router address bits, 3 monitor select bits, and an 8-bit data 
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value (19 bits total). The 5 extra bits in the MNoC flit allow 
for scalability to larger MNoC configurations, as discussed in 
Section VI. 

Dynamic frequency scaling of a processor system improves 
system performance by operating cores within power 
dissipation and temperature limits. Two trials were 
performed on multicore systems to demonstrate the benefits 
of DFS on a benchmark application. Three floating point 
benchmarks [28], listed in Table 2, were used to conduct the 
experiments for a total of at least 2 billion instructions.  The 
temperatures reported by the monitors are collected by MNoC 
and transported to the MEP which uses the data for dynamic 
frequency scaling. 

 
In one scenario, the system was operated at a constant 

frequency of 1GHz to meet pre-defined power and 
temperature limits and the run time consumed was noted. In 
this case, since the predefined temperature threshold is not 
exceeded, it was not necessary to employ MNoC. In a second 
scenario, MNoC is employed to transport monitor data which 
is used by a MEP to perform DFS. In this case, the operating 
frequency of the system is toggled between 2 GHz and a 
lower frequency (1 GHz) to ensure that the same power and 

temperature limits are not violated. The run time was again 
noted and the resulting performance improvement was 
calculated. The results of the evaluation for 4, 8, 12, and 16 
core systems are shown in Table 2. The performance 
advantage of employing DFS using MNoC is consistently 
above 15% as the number of cores is increased, as shown in 
the table. The resulting MNoC power for Whetstone in an 
eight-core system was determined to be 122 mW.  

For this experiment, MNoC latency does not notably affect 
the amount of performance benefits that are achieved. The 
thermal monitor sampling rate of one per 800 cycles is 
sufficiently low to avoid MNoC congestion. The achieved 
performance benefit results listed in the fourth column of 
Table 2 are nearly the same (within 0.2%) for an interconnect 
which could instantaneously transfer monitor data from 
monitors to the MEP with zero latency. Experiments with a 
standard master-slave bus also show similar results to MNoC. 

C. Voltage Droop Recovery 
In an additional experiment, the system-level benefits of 

our monitor subsystem were determined for delay-based 
voltage control. Real-time delay monitoring (using critical 
path delay monitors) and control techniques were used to 
offset voltage droops at system run time. The monitoring 
setup involves 8 delay monitors per core [7] which report 12 
bits of delay data [29]. Delay monitors (critical path 
monitors) are placed next to microprocessor core thermal 
monitors to maintain consistency with previous work [7]. 
Generally, regions which experience hotspots and high 
current flow also experience a higher failure rate due to 
voltage droops and transistor heating. These regions also tend 
to contain processor critical paths and increased power 
density [7]. Monitor data is transported to the MEP through a 
multi-router MNoC, similar to the one shown in Fig. 5. The 
delay monitors require higher network bandwidth than 
thermal monitors since voltage values can change at a rate of 
over an order of magnitude per second [30], motivating a 
need for frequent sampling. 

 

 
Fig. 10: Power savings in multicore processors using MNoC 

TABLE 2: RUNTIMES FOR NON-MNOC (COLUMN 3) AND NON-MNOC (COLUMN 
4) CASES. THE MNOC USES DFS TO TOGGLE CORE CLOCK FREQUENCIES 
BETWEEN 2 AND 1 GHZ. THE NON-MNOC CASE USES A CONSTANT 1 GHZ 
FREQUENCY 

Core 
number Test bench 

Runtime for 
Freq = 1 GHz 

(sec) 

Runtime for 
Freq = 2/1 GHz 

(sec) 

Performance 
benefit due to DFS

Whetstone 3.360 2.420 27.98% 
Water-spatial 0.420 0.326 22.38% 4 
Water-nsquared 0.424 0.328 22.64% 
Whetstone 2.750 2.250 18.18% 
Water-spatial 0.420 0.352 16.19% 8 
Water-nsquared 0.424 0.356 16.04% 
Whetstone 2.270 1.520 33.04% 
Water-spatial 0.428 0.372 13.08% 12 
Water-nsquared 0.428 0.374 12.62% 
Whetstone 1.750 1.350 22.86% 
Water-spatial 0.428 0.348 18.69% 16 
Water-nsquared 0.432 0.354 18.06% 
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In an MNoC-based system, the MEP increases the 
voltage of a core from 1.2V to 1.4V in response to a voltage 
droop event at the core. In a non-MNoC system the supply 
voltage is constant and is set conservatively to a 1.4V value 
that accounts for the maximum voltage droop. The 
experiment was conducted for 4, 8 and 16 processor cores. 
Fig. 10 shows the percentage power savings for MNoC-
supported processor cores versus a system without voltage 
droop recovery. The X-axis indicates the number of clock 
cycles between two sampling points for each delay monitor. 
As seen from the results, all three configurations result in 
power savings versus the non-MNoC case for specific 
sampling rates. The MNoC power consumption is included 
in this analysis. 

An additional set of data points is also included in Fig. 
10 which represents power savings for a 16 core system 
with a zero-latency monitor interconnect. These numbers 
represent the power savings if monitor data could 
immediately be moved from the monitors to the MEP rather 
than passing through the MNoC. The difference between 
the MNoC case and zero-latency case is about 15% for 16 
cores. In general, as the number of cores and overall 
monitor count increases, more bandwidth is required from 
the network. This trend motivates the need for a more 
distributed medium rather than buses or serial links.  

Fig. 10 shows that certain sampling intervals yield a 
negative result. In these cases, the sampling or the network 
delays are so high that the system gains no benefit from 
run-time monitoring. The exact combinations of sampling 
intervals and MNoC configurations for a proposed 
multicore can be determined during system design.  An 
additional approach to overcoming this issue for 
substantially larger collections of processors would be to 
dedicate one MEP per a fixed number of cores (e.g. 16). 

Table 3 illustrates the average power savings for a series 
of voltage monitor injection rates for a zero-latency 
interconnect, MNoC and master-slave bus. Overall, MNoC 

performs within 8% (8 core) and 15% (16 core) of the zero 
latency case in terms of power savings. Similar bus cases 
result in a 26% average reduction in power savings versus 
the ideal case for 8 cores and a reduction of nearly 100% 
for 16 cores.  Fine-grained on-chip dynamic voltage scaling 
typically uses a voltage sampling resolution of 200-400 ns 
[15] which fits within the target injection rate range shown 
in the table.  

A. Error Recovery 
The allocation and placement of error monitors barely 

affects the performance of MNoC, since the injection rate of 
error monitors is extremely low. Soft error rate is generally 
below one per hundred thousand hours [31] and each error 
requires a single bit error indicator. When a soft error 
occurs, immediate system remediation is needed to prevent 
the propagation of the error. In the monitoring system, soft 
error monitor data has the highest priority and must be 
transmitted in the priority channel. The expected error rate 
did not impact the results of DFS or voltage droop 
experiments. 

VI. COMPARISON OF MNOC AND STANDARD NOC FOR 
MONITOR DATA TRANSFER 

The use of MNoC in a multicore system that already 
includes a network-on-chip may seem redundant. In this 
section, the benefit of including MNoC as a separate 
network dedicated for monitor data traffic is contrasted with 
using an existing NoC to transfer both monitor and 
application traffic as a proof-of-concept implementation.  

A. Experimental approach 
In order to demonstrate the benefit of using MNoC as a 

separate network in NoC-based multicore systems, a model 
of a shared memory multicore system [32][33][34] based on 
the TRIPS on-chip network (OCN) [13] architecture and a 
processor architecture based on Tile64 [12] is used. The 
shared-memory multicore system model has 16 cores 

TABLE  3: COMPARISON OF MNOC AND BUS VERSUS A ZERO-LATENCY INTERCONNECT 
Power savings (%) 

4 cores 8 cores 16 cores Injection 
rates 

Zero-latency 
interconnect 

Bus MNoC Bus MNoC Bus MNoC 
190 8.56 8.15 8.21 6.88 8.16 1.61 6.52 
200 8.04 7.65 7.68 6.44 7.63 1.41 7.42 
210 7.51 7.14 7.17 5.98 7.10 1.18 6.88 
220 6.98 6.62 6.63 5.51 6.57 0.91 6.34 
230 6.45 6.10 6.09 5.04 6.04 0.62 5.81 
240 5.91 5.58 5.55 4.55 5.50 0.30 5.27 
250 5.38 5.05 5.01 4.06 4.96 -0.04 4.72 
260 4.84 4.52 4.48 3.56 4.41 -0.40 4.18 
270 4.29 3.99 3.92 3.06 3.87 -0.77 3.63 
280 3.74 3.45 3.37 2.55 3.32 -1.16 3.08 
290 3.19 2.91 2.82 2.03 2.77 -1.57 2.53 
300 2.64 2.36 2.26 1.51 2.21 -1.98 1.98 

Average 5.63 5.29 5.27 4.26 5.21 0.01 4.86 
Average. reduction in power 
savings w.r.t. zero-latency 
interconnect (%) 

6.5% 7.4% 26.4% 8.5% 98.5% 14.6% 
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connected by a 4×4 mesh NoC with 4 virtual channels. 
Each processor has its own L1 data and instruction cache. 
The shared main memory is connected to a router on one 
side of the mesh [11].  

The NoC performs communication between the 
processors and the shared memory. The NoC architecture 
has a 256-bit flit width, 4 virtual channels with different 
priority levels, and a buffer size of 2 flits [13]. All NoC 
packets have 2 flit packet sizes. In the case of physical 
routing channel contention, the crossbar selects the higher 
priority channel.  

As stated in Section V, according to our synthesis results 
using 90nm technology, MNoC can operate at a speed of 
500MHz. The hardware speed of TRIPS using 130nm 
technology is 500MHz and the 90nm Tile64 processor 
operates at 750 MHz. Thus, in this experiment, it is 
assumed that the system model operates at 500MHz using 
90nm technology. 

1) Monitor and MNoC configurations 
To evaluate monitor data transfer in this multicore 

system fairly, the number, placement and data rate of 
monitors is needed. In our evaluation, thermal monitors and 
delay monitors (critical path monitors) are considered. 
Similar to the configurations described in Section V, every 
core in the multicore system contains eight thermal 
monitors and eight delay monitors, which are placed in 
hotspots [26][27]. The total system monitor count is 240.  

2) MNoC configuration and experiment setup 
Monitor sampling rate determines the injection rate of 

monitor data into the monitor interconnect. Similar to the 
experiment described in Section V.B, a thermal monitor 
injection rate of 1 value every 800 cycles is used. Since 
delay values can fluctuate rapidly, delay monitor sampling 
should be performed about every 400 ns [15]. For an MNoC 
frequency of 500MHz, a delay monitor sampling rate of 200 
cycles is sufficient, leading to a per-monitor MNoC 
injection rate of the same value. 

For this series of multicore experiments, MNoC routers 
have a 24-bit flit width, 2 virtual channels and buffer sizes 
of 2 flits. All data paths shown in Figs. 1, 2, and 3 are 24 
bits, unless explicitly marked otherwise in the figures. To 
assess inter-monitor MNoC topology, the monitor data 
injection rate of each router must be known. For simplicity, 
each core is assigned one MNoC router and each monitor 
packet is one 24-bit flit. A total of 12 bits (6-bit destination 
address and 6-bit source address) are sufficient for router 
addressing. The thermal monitors and delay monitors use 
8-bit and 12-bit data, respectively [1][29]. Since the thermal 
monitor injection rate is once every 800 cycles and the 
delay monitor injection rate is once every 200 cycles and 
there are 8 pairs of thermal and delay monitors per core, the 
per-router monitor data injection is about (8/800+8/200) = 
1 per 20 cycles.  

 
Fig. 11: MNoC latency versus injection rate per core/router. 
The solid line represents the minimum injection period per 
core.  

Fig. 11 illustrates MNoC latencies for different injection 
rates determined via simulation for an MNoC with the flit 
width, buffer size, and core count parameters noted earlier 
in this section. Latency is less than 20 clock cycles if per-
router injection occurs less frequently than once every 17 
clock cycles, as shown in Fig. 11. 

3) Comparison test cases 
To show the benefit of using MNoC as a separate 

network, monitor data latency is compared in a variety of 
monitor data collection environments. These specific cases 
include: 
1. NoC with MNoC – In this case, all monitor data is 

transferred via MNoC. All other inter-processor traffic 
(“application traffic”) is transferred using the multicore 
NoC. 

2. MT-NoC (mixed traffic NoC) – All monitor data and 
application traffic is intermixed on the four virtual 
channel (VC) NoC. 

3. Iso-NoC (isolated channel NoC) – All monitor data is 
allocated to one specific VC in the four VC channel 
NoC. Application traffic uses the remaining three VCs. 

Note that cases 2 and 3 do not include an MNoC. The 
packet size of the monitor traffic is one 24-bit flit. Thermal 
and delay monitors for these cases are connected to the NoC 
router through a multiplexer. The processor in position (2, 
2) of the mesh performs the functionality of the monitor 
executive processor (MEP) by processing monitor data. In 
the Iso-NoC case, monitor data is given priority over 
application traffic, while all traffic has equal priority for 
case 2. Cases 1, 2 and 3 use a four virtual channel NoC. In 
the following section, the latencies and area overheads of 
the NoC with MNoC and NoC-only implementations are 
considered. 

B. Comparison results 
In this experiment, the Ocean.mips Splash benchmark is 

used to generate network traffic traces. The traces are then 
simulated using an enhanced version of Popnet to calculate 
both NoC and monitor packet latencies. For case 1 
simulations, two simulations are performed, one for MNoC 
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(MNoC-modified Popnet) and a second for the NoC 
(standard Popnet). Other cases require only one Popnet 
simulation. 

Fig. 12 shows the latency for application traffic for a 
range of injection rates for delay monitors. A constant 
injection rate of one value per 800 cycles is assumed for 
thermal monitors. The thermal monitor data was included 
in generating the plots. Fig. 12 shows that the latency of 
application data in mixed-traffic NoC (MT-NoC) for the 4 
virtual channel NoC is higher than the data latency for 
separated NoC and MNoC (NoC with MNoC). This latency 
increase is expected since the transfer of monitor data on 
the NoC increases resource contention.  The isolation of 
monitor data into a separate virtual channel helps latency 
reduction somewhat, but contention for the router ports 
eventually causes latency to spike once again. The best 
channel latency for application traffic is achieved when 
only application traffic (NoC with MNoC) is transferred on 
the 4 virtual channel NoC infrastructure.  

 
Fig. 12: Latency comparison for application traffic versus 
delay monitor data injection period. A fixed thermal 
monitor data injection rate of one value per 800 cycles is 
also used.  Application data is transferred with the lowest 
latency using the NoC in a system which includes both an 
MNoC and NoC. 

 
Fig. 13: Latency comparison for monitor traffic versus 
delay monitor data injection period. A fixed thermal 
monitor data injection rate of one value per 800 cycles is 
used. Although MT-NoC and NoC with MNoC cases 
support the same monitor data transfer latencies, Fig. 12 
showed that the application data latency for MT-NoC is 
higher. 

Fig. 13 shows monitor data latencies in the different 
scenarios which include the thermal monitor data. Since a 
dedicated, high-priority NoC virtual channel is used to 
transmit monitor data in the MT-NoC case, its monitor data 
latency performance matches MNoC, although as noted in 
Fig. 12, its application data latency is worse. 

The case 2 and case 3 plots in Figs. 12 and 13 represent 
about 80% monitor traffic and 20% application traffic. 
Table 4 indicates the performance change of the application 
as NoC latency is increased. Not surprisingly, more 
congested NoC channels lead to reduced application 
performance.  

 
Overall, the Ocean.mips application has a relatively low 

amount of inter-processor traffic allowing for a higher 
fraction of monitor traffic. As shown in Fig. 14, designers 
could consider the tradeoffs between application and 
monitor traffic injection rates which maintain a constant, 
per-router NoC injection rate. MNoC is a reasonable choice 
for NoC-based systems which cannot meet the application 
data latencies with mixed traffic, as shown in Figs. 12 and 
13. As noted earlier in this section, the per-router monitor 
data injection rate used for these plots was about one 
monitor data value every 20 cycles. 

 

 
Fig. 14: Tradeoff between application and monitor injection 
rates for constant NoC router injection rate of 1 value per 
18 cycles. 

TABLE 4: PERFORMANCE COMPARISON OF THE NOC SYSTEM WITH AND 
WITHOUT MNOC 

Delay monitor injection 
rate (cyc. between inject.)  400 300 250 

NoC with MNoC (cycles) 44,247,340 
NoC latency 
increase (cycles) 3 5 10 

Performance 
(cycles) 44,421,683 44,531,612 44,674,131 MT-

NoC 
Performance 
degradation (%) 0.39 0.64 0.96 

NoC latency 
increase (cycles) 5 10 23 

Performance 
(cycles) 44,531,612 44,674,131 45,068,956 Iso 

NoC 
Performance 
degradation (%) 0.64 0.96 1.86 
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In a final experiment, the area of the monitor data 
transfer cases was considered. The Synopsys Design 
Compiler was used to synthesize MNoC and a 4 virtual 
channel NoC in 90nm technology. The system speed was 
confirmed to match 500MHz.  

 
Table 5 shows the hardware cost of MNoC and 4 virtual 

channel NoC. The entire MNoC router is about 7% of the 
size of an entire NoC router. 

VII. CONCLUSION 
This work presents a dedicated and lightweight approach 

for monitor data collection and processing. System level 
performance benefits are obtained by using this monitor 
data to scale processor frequency and voltage values. 
Experiments show that the interconnect can be sized on a 
per-application basis to obtain substantial performance 
benefits. An area overhead of 0.20% was achieved for the 
monitor interconnect when applied to an 8-core system 
based on AMD Athlon processors. The new monitor data 
transfer approach is directly contrasted with transfer using 
an existing NoC, which also carries application data traffic. 
Experimental results show that the use of MNoC lowers 
both monitor data latency and application traffic in 
multicores, especially when the monitor sampling rate is 
high.  
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width 
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