
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

1

Abstract— On-chip monitoring of environmental information,

such as temperature, voltage, and error data, is becoming
increasingly important. To address this need, a low-overhead
architectural approach to monitor data collection and use in
multicore systems is described. A key aspect of our stand-alone
monitoring subsystem is a low-complexity, on-chip network
designed to transport monitor data with multiple priority levels.
Collected monitor information is evaluated by a dedicated
processor. Experimental results using architectural and
interconnect simulators show that the new low-overhead
subsystem facilitates employment of thermal and delay-aware
dynamic voltage and frequency scaling. In contrast to using
existing on-chip interconnect resources to communicate monitor
data, the new subsystem provides necessary bandwidth for
monitor data traffic without impacting application data traffic.
Synthesis results show that our dedicated monitoring approach
consumes about 0.2% of multicore area and power resources
for an 8-core system based on AMD Athlon 64 processor cores.

Index Terms—Network on chip, on-chip monitoring,

multicore.

I. INTRODUCTION
omputing in the presence of various sources of
uncertainty significantly complicates the design and

implementation task. Multicore and manycore systems
present a particular challenge as large numbers of processor
cores are integrated into single-chip platforms. As multicore
deployments become more diverse, a static system operating
environment can no longer be assumed. These systems are
susceptible to a number of reliability, performance, and
power constraints that must be carefully addressed during
system operation. As the size of multicore systems increase,
the importance of using run-time monitoring information to
tune system operation becomes critical. Fault tolerance issues
are particularly acute for multicore system design in which
system elements, such as caches and memory controllers, are

Manuscript received August 4, 2009; revised February 2, 2010. This work

was supported by the Semiconductor Research Corporation under Task
1595.001.

J. Zhao, W. Burleson and R. Tessier are with the Department of Electrical
and Computer Engineering, University of Massachusetts, Amherst, MA 01003
USA. (e-mail: tessier@ecs.umass.edu).

S. Madduri is with Intel Corporation, Hillsboro, OR 97123 USA.
R. Vadlamani is with Qualcomm Inc., Boxborough, MA 01719 USA.
Digital Object Identifier xxxx.

shared by many individual cores. Recent multicore processors
from Intel (Montecito), AMD (Opteron) and IBM (Cell) use
on-chip monitors for run-time estimates of temperature,
power, clock jitter, supply noise and performance for a small
number of cores. However, an automated, dedicated approach
to the collection and use of monitor data in multicores has
not been developed. Multicore monitor information
represents a substantial data workload that must be analyzed
in its own right, separate from the core processing
capabilities of the multicore system. This information can
then be used to configure multicore resources in conjunction
with system and application software.

System critical monitor information, including soft error
failures, wear-out data, and voltage droop often require
immediate attention at the system level. As demonstrated in
this manuscript, the presence of a fast and dedicated, but
minimal, interconnect for monitor information allows for
effective, dedicated monitor data transfer. Monitor
information from multiple multicore monitors is then
assessed in real time at one or more processing components.
The results of this processing are then used to affect
multicore behavior via operations such as per-core frequency
and voltage scaling, among others.

The dedicated collection and processing of system-on-chip
(SoC) environmental information from on-chip monitors
provides an important multicore architecture design
dimension. This research presents an integrated approach to
address this issue with the development of a complete
monitor subsystem for SoCs, including on-chip monitors, a
low-overhead on-chip interconnect, which is optimized for
monitors, and one or more monitor data processing
components. The interconnect has been designed to provide
interfaces to a variety of different monitor types and monitor
data processing components, from low-complexity thermal
monitors to a microcontroller. Although simplified versus
typical on-chip interconnects, the monitor network-on-chip's
(MNoC) support for irregular topologies, priority-based data
transfer, and dead-lock free routing provide a flexible data
collection environment. Following monitor data processing,
MNoC is used as an interface to control circuitry (e.g.
dynamic voltage and frequency scaling (DVFS) control)
which affects multicore operation.

The overhead and performance benefit of our monitoring

A Dedicated Monitoring Infrastructure For
Multicore Processors

Jia Zhao, Sailaja Madduri, Ramakrishna Vadlamani, Wayne Burleson, Senior Member IEEE, and
Russell Tessier, Senior Member IEEE

C

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

2

subsystem have been evaluated via hardware synthesis,
interconnect simulation and multicore architectural
simulation. Multicore systems of up to 16 cores which
include thermal and voltage monitors are considered for
DVFS while systems of up to 256 cores are considered for
performance analysis. Each core is augmented with MNoC
hardware which allows for prioritized monitor data transport
and subsequent monitor data processing. Appropriate
interconnect bitwidth and buffer sizing are assessed through a
series of parameter sweeps with an interconnect simulator
under realistic monitor data workloads. The size and power
consumption of the MNoC hardware is determined via RTL
synthesis using a 90nm technology library. This overhead is
determined to be less than 0.2% for a system of 8 cores based
on AMD Athlon processors. The system-level benefits of
monitor collection and evaluation are examined through a
series of application experiments in which decisions are made
based on collated temperature and voltage information.

The addition of a dedicated monitor interconnect may
seem unnecessary given the available high-speed networks-
on-chip that are frequently available in multicore systems. To
further validate our approach, direct comparisons between a
dedicated monitor interconnect and the use of existing
multicore interconnect for monitor data transfer are
performed. Experimental results show significant latency
limitations when existing interconnect is used to transport
monitor information.

The remainder of the manuscript is organized as follows.
Section II describes existing SoC monitoring subsystems and
related interconnect networks. Section III describes our
monitoring subsystem including MNoC, dedicated processor
for monitoring applications, and system interfaces. Section
IV explores the details of per-core monitor allocation as a
technique for justifying differing amounts of monitoring
interconnect and monitor data processing. The experimental
approach for validating our work appears in Section V.
Section VI provides an analysis of experimental results and
Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Monitors and Monitor Subsystems
As SoC design has migrated towards the use of multicores,

the deployment and use of on-chip monitors has become
more widespread. Monitors are important components in
many SoCs. Typical examples include processor performance
monitors, thermal monitors, delay monitors, and wearout
monitors, among others. Most thermal sensors are based on
simple ring oscillators or diode-based circuits [1]. Critical
path monitors are used to identify the effects of aging,
process variation and supply noise on circuit performance.
Typical path delay monitors [2] include multi-inverter delay
lines with capture latches at each inverter output. The output
of the critical path monitor is often a digital code which can

require high bandwidth. Hardware performance monitors
measure processor performance by establishing a pattern for a
certain interval of execution. Hardware monitoring can
collect statistics such as instructions per cycle (IPC), resource
utilization, and instruction dependencies that can be used to
reconfigure processor resources.

In many cases it is desirable to use information from
multiple monitors to validate collected information. For
example, 90nm Itanium processors [3] use a series of voltage
and thermal sensors in conjunction with a controller to
evaluate chip environmental conditions. This Foxton
technology [3] allows for dynamic voltage and frequency
scaling based on sampled monitor data. A similar approach
for a Hitachi multiprocessor [4] uses thermal and
performance information to control voltage and bandwidth
allocation. All of these systems assume small numbers of
cores and monitors connected in an ad hoc fashion.

A relatively small number of SoC projects have examined
the integration of multiple interconnected sensors and
associated control onto a single SoC substrate. Velasumy et
al. [5] describe the interconnection of an array of thermal
monitors to a PowerPC with a CoreConnect on-board
peripheral bus. Monitor information is then used to control
system clock frequency. Although effective for small numbers
of cores, bus-based interconnect approaches are generally not
scalable for large core counts [6]. Additionally, the
CoreConnect bus uses far more resources than necessary to
implement communication and control for monitor data. The
IBM Power6 architecture [7] interconnects multiple sensors
and actuators via a high-speed serial bus. This interconnect
primarily serves as an external interface to voltage and
temperature control via an I2C bus for a modest number of
cores.

MNoC [8] builds on ideas previously used for SoC debug
and test. The JTAG boundary scan interface provides a serial
scan interconnect which typically operates at 1 MHz. This
low bandwidth chain consumes a minimal amount of
resources and provides scalability. A recent, enhanced debug
system by Dafca, Inc. uses multiplexers to collate debug
information to one or more debug control points. Unlike
MNoC, debug subsystems do not attempt to use collected
information to influence SoC run-time operation.

B. Related On-Chip Interconnects
Numerous network-on-chip architectures [9] have been

proposed for SoCs over the past decade. These interconnects
generally require a series of router circuits organized in a
mesh-like topology. In contrast to MNoC, most network-on-
chip (NoC) routers are optimized for routing bandwidth and
consume considerable chip resources. Often, individual NoC
routers require tens of thousands of transistors [10], include
datapath widths of 32 to 256 bits, and buffer tens to hundreds
of data values. For example, TILE64 [11][12] interconnects
64 processors with a series of 8×8 single channel
interconnect meshes. The TRIPS processor uses a 4×10 mesh

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

3

on-chip network [13] with prioritized channels to
interconnect various SoC resources. In contrast, our
approach attempts to minimize resource count to exactly the
bandwidth and buffering required for SoC monitoring.

This manuscript significantly extends a previous MNoC
conference publication [8]. In this manuscript we consider
MNoC-based connections to DVFS control and specialized
monitors. Additionally, quantitative comparisons are made
between MNoC-transferred monitor data and monitor data
transferred with existing NoC interconnect. The impact of
both approaches on DVFS and overall system performance
are also explored.

III. INTEGRATED MULTICORE MONITORING

A. Monitor Network-on-Chip Overview
Our monitoring subsystem augments conventional system-

on-a-chip hardware with additional components for
monitoring, verification, and response. Multiple monitors are
added to each major component of the SoC. The monitors are
linked by a monitor network-on-chip, a heterogeneous
communication substrate, as seen in Fig. 1. In general, the
spread among the required bandwidths of different monitors
is large. Hence, MNoC supports low-overhead routers and
localized connections like buses and multiplexers. High
bandwidth monitors are directly connected to routers, while
the lower bandwidth monitors are connected via multiplexers
or a bus that connects to the network as shown in Fig 1. The
MNoC is interfaced to a monitor executive processor (MEP),
which provides a software layer to implement collaborative
monitoring algorithms. MNoC has been designed to incur
minimal area and energy overhead compared to a general
purpose on-chip interconnect by optimizing its width, access
control, arbitration, flexibility, and bandwidth to the monitor
data collection task. Specific challenges of interconnect
include the development of monitor-network and network-
MEP interfaces to accommodate different monitor types and
the development of interconnection components for irregular
topologies and mixed-priority traffic.

MEP

R R

R

RR

M
M

M

D
M

D
M

T

X-Bar

Port

Control

Interface

MEP – Monitor Executive
Processor

R – Router
M – Monitor
D – Data
T – Timer module

Fig. 1: Detailed view of MNOC for multiple cores

On-chip monitors are typically distributed in an
unorganized fashion, necessitating an irregular interconnect
topology. An irregular mesh topology of routers is needed for
MNoC, whose placement is dictated by the distribution of
monitors. Although other topologies could possibly be used
with MNoC, a mesh-like topology represents a simple,
extensible solution for initial exploration. Two types of
monitors are supported by MNoC: (1) monitors that put data
into the network at regular intervals and (2) monitors that
report data occasionally. For example, thermal monitors
generally report temperature periodically, while error
monitors only report data in the event of an error. For type 1,
data requests are forwarded to the monitors by the associated
router interfaces. Interrupts are used to support unexpected
events detected at monitors for type 2. MNoC traffic is
entirely monitor data that is communicated to the MEP and
no monitor-monitor communication is required. Monitor data
in the network is classified into two different priority levels.
Messages to the MEP that are generated occasionally via
interrupts are usually critical in nature and are hence tagged
with a higher priority. Periodically-inserted monitor
messages are usually regular priority unless there is an
emergency event at the monitor. High-priority data is routed
through the network using dedicated resources in the routers.

Monitor information is transported on the network as
packets of data. A network interface appends monitor
information with routing information and converts each
packet into flits. The packetization module also appends the
source monitor’s address which is required by the MEP to
identify the origin of the monitor data. A priority bit is
included in the packet to enable the routers to differentiate
critical data from regular data. MNoC flit width is chosen to
be the same as the width of the physical channel. MNoC
implements wormhole switching which ensures low latency
while consuming a minimal amount of buffer space.

The most commonly used adaptive routing protocols
involve expensive router implementations [6] and are suitable
for very high and unpredictable traffic rates. Instead, for low-
overhead MNoC, we use a static distributed routing protocol
which involves the use of routing tables at individual routers.
Each routing table is a lookup table that can be indexed using
the destination address. For every possible destination, the
table contains information about the output port that the
packet needs to be routed through. Since most traffic is
routed to a centralized MEP, the routing table can have a
small number of entries (generally less than 8). The irregular
placement of monitors results in an irregular mesh topology
leading to concerns regarding deadlock. A fault tolerant mesh
routing algorithm [14] is used to generate deadlock free paths
that are stored in the routing tables. Since no monitor-to-
monitor communication is used, the overhead incurred with
routing tables is minimal. This non-adaptive routing protocol
allows for a very lightweight router implementation because
the overhead for adaptive route evaluation is eliminated.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

4

B. Monitor Interfaces to MNoC
Direct, multiplexer and bus monitor interfaces provide a

flexible selection of connections between monitors and
MNoC routers. The interface control logic is able to support
both monitors that inject data periodically and monitors that
inject data occasionally. In the MNoC architecture, the
monitors and the network router connect through a master-
slave interface with the router serving as the master and the
monitor as a slave. The high-level architecture of a monitor-
network interface which includes a bus is shown in Fig. 2.

Network Router with master
interface

Interface
Control

Monit
or

Address/Data Bus

Monitor Interface
Control

Slave Interface

Monitor Interface
Control

Slave Interface

Master Interface

Injection I/P
port

Packetization
module

Interface
Control

Network
Router

Synchronizing
buffers

Regular &
Priority Channels

TIMERInterrupt 1

Interrupt 2

Fig. 2: Monitor –bus – network interface

Typically, interface control logic is built to read data at a
pre-determined rate from multiple connected monitors. A
control state machine is used at the router interface to sample
connected monitors according to a pre-set schedule. Each
interrupt-driven monitor has a dedicated interrupt line
connected to the router interface that generates an interrupt
when a data read is required. In the event of an interrupt, the
controller breaks away from the original read sequence to
generate a read address for the interrupting monitor. Any
data value read from an interrupting monitor is tagged as
high priority data. Once the monitor data is read, the
controller appends it with the address of the originating
monitor and the data’s associated priority value. The data
value is then written into a synchronizing FIFO, which is
read by the packetization module (Fig. 2). The packetization
module converts the data into flits and forwards them to the
appropriate channel in the network (regular or priority).

To illustrate interface flexibility, an example multiplexer-
based interface to thermal monitors is shown in Fig. 3. A
contemporary eight-bit thermal monitor [1] is used to collect
thermal information. Only one monitor is shown for clarity
although the output from several monitors could be connected
to the multiplexer. Thermal monitor sampling is triggered by
the sample signal from the interface controller state machine.
When thermal data is present and the appropriate output
first-in, first-out buffer (FIFO) (regular or priority) is not full,
the thermal data and routing information is put into a packet
and sent to the appropriate channel.

As shown in Figs. 2 and 3, the packetization module can
append monitor data with a time stamp from an embedded

timer which is used to identify the time at which data was
sampled. The maximum value of the timer is chosen such
that any packet injected in the network reaches the MEP
before the timer resets twice. This ensures that the MEP
accurately identifies the time frame in which the data was
sampled. For example, if a monitor generated a temperature
value of 20 degrees at time t = 1ms and the data is received at
the MEP at time t = 1.0005ms, the MEP could interpret the
current temperature value to be 20.00003 degrees using a
known, average temperature gradient of 0.06 deg/ms [3]. A
single timer is shared across several interfaces.

Fig. 3: Thermal monitor and multiplexer router interface
controller

The MEP and the network router also connect through a
master-slave (MEP-router) interface. Monitor data received
from either of the router channels is read from separate
FIFOs by a de-packetization module at the router-MEP
interface. The MEP software reads information from the
FIFOs at regular intervals with consideration given to priority
data. Once data is received, the MEP uses the source
information to determine the type and location of the monitor
that sent the data and takes necessary action by affecting
system parameters.

In our monitoring subsystem, MNoC is also used to
interconnect the MEP and system controllers, such as voltage
controllers and frequency controllers. Current digital
interfaces to controllers generally require a small number of
bits written to a register [15][16]. For example, the voltage
and frequency of each core can be adjusted locally using this
type of interface.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

5

C. MNoC Router Architecture
The low bandwidth required by most monitors is exploited

to minimize MNoC router area. Unlike typical NoC routers,
MNoC routers provide sufficient bandwidth and latency with
small (e.g. ≤ 24 bit) flit widths and minimal (e.g. 4) buffer
sizes. Each router is further optimized by removing unused
data ports as a result of the irregular mesh topology. The
MNoC router is built to be parameterizably instantiated by
designers. The optimal buffer sizes and widths can be
determined based on the required latency and bandwidth for
different monitoring systems. The parameter choices trade off
performance (bandwidth and latency) and overhead (area and
power).

For MNoC, input buffering is used instead of output
buffering due to the low overhead that input buffering offers
[17]. Head-of-line blocking, a possible drawback of input
buffering, is insignificant in the case of MNoC because most
MNoC traffic is directed towards the MEP. Every input
channel in the router is multiplexed into separate priority and
regular virtual channels. The priority channel is used to
exclusively transfer critical monitor data. A packet that is
injected into a network with a high priority (priority field in
the packet header is set to 1) travels in the priority channel
until it reaches the destination.

MNoC routers employ a credit-based flow control to
regulate data traffic and avoid packet dropping. Each router
has buffer slot counters that keep track of the number of
empty regular and priority channel buffer slots in adjacent
routers. Buffer space availability is communicated by
adjacent routers using credit messages. Flits that enter the
MNoC router pass through three router pipeline stages:
routing table look up, switch arbitration, and switch traversal.
Once switch access is granted by switch arbitration, a flit
enters the final pipeline stage where it traverses the crossbar
and enters the appropriate channel in the next router. The
priority channel is given preference during switch arbitration
to ensure the lowest possible priority channel latency. The
arbiter grants access to the regular data channel in a random
fashion.

D. Monitoring Subsystem Design
We view the design of the monitoring subsystem as an

action that can be performed in concert with the design of
main SoC resources. A high-level design flow for creating an
MNoC-based monitoring subsystem is shown in Fig. 4.
Initially, the designer specifies the parameters of the monitor
data including required bandwidth and latency and the
permissible area and power of the monitoring subsystem. An
initial series of parameters, including MNoC buffer size and
bitwidth, number of monitors per core, and number of MEPs
are selected. The performance of MNoC is then determined
via an interconnect simulator which takes network topology
and congestion into account. The results of monitor data use
can then be assessed with the use of an architectural
simulator. The evaluation of the monitoring subsystem can be

performed in an iterative loop until acceptable parameters are
located.

Identify and build
parameterizable

MNoC components

Building
MNoC

infrastructure

Validate
MNoC for
sample

monitoring
systems

Simulate, using Popnet simulator, a suitable
topology with monitor layout information

Parameter tuning
for different area
and performance

values

Assess system level
design constraints

using SESC and area
constraints using the

hardware model

Monitoring
requirements
(latency, BW,
area, power)

Fig. 4: System-level monitoring design approach

Although the steps shown in Fig. 4 could eventually be
automated, the examples in subsequent sections are
enumerated via user-guided experimentation. The parameters
used in this analysis are justified in the next section.

IV. EXPERIMENTAL PARAMETER ASSESSMENT

A. Experimental Approach
In an initial experiment, a series of simulation and

synthesis evaluations similar to the type illustrated in Fig. 4
have been performed. The Popnet interconnect simulator [18]
has been significantly modified to estimate bandwidth and
latency values for the heterogeneous MNoC interconnect. The
router pipeline and the routing protocol were modified and
additional support for an expanded set of interfaces (e.g. bus,
multiplexer) was provided. The simulator, in modified form,
allows for a complete evaluation of various MNoC topologies
and components.

To estimate the overhead of our MNoC approach, we
developed a synthesizable hardware model of the MNoC
router and MEP. The MNoC hardware model is
parameterizable and allows for evaluation of area for
different flit widths and buffer sizes. The hardware model,
which operates at 500 MHz, was synthesized by Synopsys
Design Compiler using a 90nm standard cell library [19].
Architectural simulations were performed using the SESC
architectural simulator [20] to quantify the benefits of
employing our monitor subsystem at a system level.

B. Parameter Evaluation
In an initial experiment to illustrate multicore MNoC

tuning tradeoffs, 64 thermal monitors (8 monitors per
processor core) are used to report temperature values from
various multicore locations at a variety of monitor data
injection rates. The processor core floorplan used for thermal
modeling is based on the AMD Athlon 64 processor [21]. A
mock-up of a layout of the eight core system including MNoC
is shown in Fig 5. One MNoC router per core collects

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

6

thermal data from the 8 thermal monitors using a
multiplexer. Thermal monitors [22] can be classified as low
bandwidth monitors. Justification for the per-core thermal
monitor and MNoC router count is given in Section V.

Fig. 5: Monitor network on chip layout for thermal monitors
on an 8 core processor

The MEP is attached to a dedicated router (Fig. 5) at a
location central to the routers. The resultant topology is an
irregular mesh. With this 9 router setup, deadlock-free
routing [14] was used to generate paths from the routers to
the MEP. Our interconnect simulator was used to evaluate
the latency of this network for different network parameters.

Fig. 6 shows a plot of network latency versus injection
rates for various buffer sizes for regular (non-priority) traffic.
A total of 95% of total traffic is assumed to be regular traffic
[8]. The X-axis, cycles between injections, indicates the
number of clock cycles between two sampling points for each
thermal monitor. The Y-axis, network latency, indicates the
average time required (in clock cycles) for data to travel from
a monitor to the MEP. Fig. 6 indicates a significant regular
channel dependence on input buffer storage for sizes less
than 4. No latency reduction is achieved by increasing buffer
size for buffer sizes greater than and equal to 4. For longer
delays between injections, the regular channel latency
becomes insensitive to buffer size. Although not shown in the
figure, latency remains roughly constant for the 5% of total
traffic which is priority traffic. Network latencies between 16
and 21 cycles were found for all injection rates.

Fig. 6: Regular channel latencies for different buffer sizes for
flit width = 24

Fig. 7 shows a plot of network latency versus injection rate
for different flit widths for regular traffic. As flit width

increases, the sampling rate which saturates the network
becomes higher.

Fig. 7: Regular channel latencies for different flit widths for
buffer size = 4

Overall, it can be inferred from the results that for higher
cycles between injection (lower sampling rates and lower
bandwidth) the latency of a non-saturated network is mostly
insensitive to network parameters such as buffer size and flit
width. At such low sampling rates, low network latency (less
than 20 clock cycles) can be achieved with minimal network
resources. Monitors with higher sampling rates have
latencies that are highly network dependent. These monitors
usually dictate the choice of network parameters.

Of course, larger flit and buffer size parameters require a
larger network area. Table 1 shows area results for the 9
router MNoC system estimated at a 90nm technology node.
MNoC router area has been determined via synthesis. MNoC
wire area has been estimated using a methodology based on
wire pitch and wire length [23].

As seen in Fig. 8, as MNoC size increases, the saturation

injection rate of a network with 24-bit flits and a buffer size

TABLE 1: MNOC AREA RESULTS FOR A 9 ROUTER SYSTEM

Buffer size = 2 Buffer size = 4
Flit

width Router
area in
mm2

Wire
area in
mm2

Total
area in
mm2

Router
area in
mm2

Wire
area in
mm2

Total
area in
mm2

12 0.408 0.035 0.443 0.438 0.035 0.473

14 0.445 0.041 0.486 0.481 0.041 0.522

16 0.482 0.047 0.529 0.523 0.047 0.570

18 0.519 0.053 0.572 0.566 0.053 0.619

20 0.556 0.058 0.614 0.610 0.058 0.668

24 0.602 0.070 0.672 0.693 0.070 0.763

Buffer size = 8 Buffer size = 16
Flit

width Router
area in
mm2

Wire
area in
mm2

Total
area in
mm2

Router
area in
mm2

Wire
area in
mm2

Total
area in
mm2

12 0.494 0.035 0.529 0.606 0.035 0.641

14 0.547 0.041 0.588 0.676 0.041 0.717

16 0.598 0.047 0.645 0.743 0.047 0.790

18 0.648 0.053 0.701 0.810 0.053 0.863

20 0.701 0.058 0.759 0.876 0.058 0.934

24 0.801 0.070 0.871 1.013 0.070 1.083

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

7

of 4 is reduced. However, network bandwidth increase by
30% leads to a higher saturation injection rate. This result
indicates that MNoC can be expanded to a larger number of
cores by increasing the network bandwidth via, for example,
more aggressive pipelining or signaling to retain a similar
saturation injection rate. For this experiment, a new MEP is
allocated per 16 cores, reducing the global distribution of
monitor data, although some congestion occurs at the borders
of different regions. No inter-MEP communication is
performed as part of the experiment.

Fig. 8: MNoC performance with increasing number of cores
and bandwidth for buffer size 4

Fig. 9: Average versus worst-case latency for MNoC for
buffer size = 4 and flit size = 24

Generally, the worst-case latency for MNoC does not vary
substantially from the measured average latency. As shown in
Fig. 9, the curve knees for both average and worst-case
latencies occur at roughly the same injection rates. Our
design methodology allows designers to consider both
latencies in developing an appropriate MNoC system.

V. APPLICATIONS OF DEDICATED MONITORING
To better justify the use of MNoC, two applications of

monitor data, dynamic frequency scaling (DFS) and voltage
droop recovery, are examined. MNoC is used to transfer
monitor data for each application based on monitoring
parameters obtained from previously-published results.

A. Experimental approach
These experiments use SESC to simulate multiple

processors and a central MEP, similar to the eight core
system shown in Fig. 5. Each core has a private L1 and L2
cache. In comparison to a commercial 8 core processor [24],

the area overhead of an MNoC with a buffer size of 4 and 24-
bit flits in the configuration shown in Fig. 5 is 0.763/378
mm2 = 0.20%. The power model that is used by SESC for
processors is based on Wattch. The cache power model is
based on CACTI and the temperature model for both (called
SESCSpot) is based on HotSpot [22]. SESCSpot calculates
the temperature of processor sub-blocks based on the power
trace of the architecture in a post-processing fashion. For the
DFS implementation, we integrated SESCSpot into the core
of the SESC simulator to dynamically obtain the temperature
readings. This approach enabled the MEP to sample the
temperature readings at a pre-determined interval and
execute the DFS and voltage droop recovery algorithms.

B. Dynamic Frequency Scaling
In a DFS experiment, a monitor subsystem that satisfies

system design constraints while providing a performance
benefit is demonstrated. Dynamic frequency scaling is
performed in response to on-chip thermal conditions.
Thermal monitor data is forwarded to a MEP which then
determines a specific processor’s frequency. Although some
contemporary DFS approaches support the use of thermal
data within a core, several recent efforts [25] have
determined the local and global effects of thermal data on
DFS.

To successfully evaluate the use of dedicated monitoring, a
realistic dispersal of monitors per core and a realistic
sampling rate to support DFS is needed. In the following
experiments, a total of 8 thermal monitors per processor core
are used for the Athlon cores. Previous work [26][27] has
shown that for an architecture and per-processor transistor
count (approximately 68 million transistors) similar to these
cores, 8 thermal monitors per core is appropriate. Numerous
contemporary thermal monitors generate eight-bit data [1],
the thermal monitor data width used here.

Previous DVFS experiments have used a temperature
gradient of finer than 0.1 degC/sec [2] for available monitors
to assess thermal activity. For example [22], temperature
values used for DVFS have been sampled every 10,000 cycles
for a 3GHz core to achieve a temperature resolution of less
than 0.1 degC. For the following experiment, a sampling
period of 1,600 cycles at 500 MHz is needed to match this
rate. To ensure a conservative result, sampling at each
thermal monitor is performed every 800 cycles. An MNoC
configuration with flit width of 24 bits and an input buffer
size of 4 was used to meet the required bandwidth and match
subsequent MNoC experiments described in Sections V.C
and VI. Data transfer requires a single flit. For this
experiment, all data paths shown in Figs. 1, 2, and 3 are 24
bits, unless explicitly marked otherwise in the figures.

Flit size can be justified as follows. The largest analyzed
system contains 17 routers and 128 total monitors and each
thermal data value includes 8 bits. Thus, the thermal data
packet contains 4 source router address bits, 4 destination
router address bits, 3 monitor select bits, and an 8-bit data

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

8

value (19 bits total). The 5 extra bits in the MNoC flit allow
for scalability to larger MNoC configurations, as discussed in
Section VI.

Dynamic frequency scaling of a processor system improves
system performance by operating cores within power
dissipation and temperature limits. Two trials were
performed on multicore systems to demonstrate the benefits
of DFS on a benchmark application. Three floating point
benchmarks [28], listed in Table 2, were used to conduct the
experiments for a total of at least 2 billion instructions. The
temperatures reported by the monitors are collected by MNoC
and transported to the MEP which uses the data for dynamic
frequency scaling.

In one scenario, the system was operated at a constant

frequency of 1GHz to meet pre-defined power and
temperature limits and the run time consumed was noted. In
this case, since the predefined temperature threshold is not
exceeded, it was not necessary to employ MNoC. In a second
scenario, MNoC is employed to transport monitor data which
is used by a MEP to perform DFS. In this case, the operating
frequency of the system is toggled between 2 GHz and a
lower frequency (1 GHz) to ensure that the same power and

temperature limits are not violated. The run time was again
noted and the resulting performance improvement was
calculated. The results of the evaluation for 4, 8, 12, and 16
core systems are shown in Table 2. The performance
advantage of employing DFS using MNoC is consistently
above 15% as the number of cores is increased, as shown in
the table. The resulting MNoC power for Whetstone in an
eight-core system was determined to be 122 mW.

For this experiment, MNoC latency does not notably affect
the amount of performance benefits that are achieved. The
thermal monitor sampling rate of one per 800 cycles is
sufficiently low to avoid MNoC congestion. The achieved
performance benefit results listed in the fourth column of
Table 2 are nearly the same (within 0.2%) for an interconnect
which could instantaneously transfer monitor data from
monitors to the MEP with zero latency. Experiments with a
standard master-slave bus also show similar results to MNoC.

C. Voltage Droop Recovery
In an additional experiment, the system-level benefits of

our monitor subsystem were determined for delay-based
voltage control. Real-time delay monitoring (using critical
path delay monitors) and control techniques were used to
offset voltage droops at system run time. The monitoring
setup involves 8 delay monitors per core [7] which report 12
bits of delay data [29]. Delay monitors (critical path
monitors) are placed next to microprocessor core thermal
monitors to maintain consistency with previous work [7].
Generally, regions which experience hotspots and high
current flow also experience a higher failure rate due to
voltage droops and transistor heating. These regions also tend
to contain processor critical paths and increased power
density [7]. Monitor data is transported to the MEP through a
multi-router MNoC, similar to the one shown in Fig. 5. The
delay monitors require higher network bandwidth than
thermal monitors since voltage values can change at a rate of
over an order of magnitude per second [30], motivating a
need for frequent sampling.

Fig. 10: Power savings in multicore processors using MNoC

TABLE 2: RUNTIMES FOR NON-MNOC (COLUMN 3) AND NON-MNOC (COLUMN
4) CASES. THE MNOC USES DFS TO TOGGLE CORE CLOCK FREQUENCIES
BETWEEN 2 AND 1 GHZ. THE NON-MNOC CASE USES A CONSTANT 1 GHZ
FREQUENCY

Core
number Test bench

Runtime for
Freq = 1 GHz

(sec)

Runtime for
Freq = 2/1 GHz

(sec)

Performance
benefit due to DFS

Whetstone 3.360 2.420 27.98%
Water-spatial 0.420 0.326 22.38% 4
Water-nsquared 0.424 0.328 22.64%
Whetstone 2.750 2.250 18.18%
Water-spatial 0.420 0.352 16.19% 8
Water-nsquared 0.424 0.356 16.04%
Whetstone 2.270 1.520 33.04%
Water-spatial 0.428 0.372 13.08% 12
Water-nsquared 0.428 0.374 12.62%
Whetstone 1.750 1.350 22.86%
Water-spatial 0.428 0.348 18.69% 16
Water-nsquared 0.432 0.354 18.06%

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

9

In an MNoC-based system, the MEP increases the
voltage of a core from 1.2V to 1.4V in response to a voltage
droop event at the core. In a non-MNoC system the supply
voltage is constant and is set conservatively to a 1.4V value
that accounts for the maximum voltage droop. The
experiment was conducted for 4, 8 and 16 processor cores.
Fig. 10 shows the percentage power savings for MNoC-
supported processor cores versus a system without voltage
droop recovery. The X-axis indicates the number of clock
cycles between two sampling points for each delay monitor.
As seen from the results, all three configurations result in
power savings versus the non-MNoC case for specific
sampling rates. The MNoC power consumption is included
in this analysis.

An additional set of data points is also included in Fig.
10 which represents power savings for a 16 core system
with a zero-latency monitor interconnect. These numbers
represent the power savings if monitor data could
immediately be moved from the monitors to the MEP rather
than passing through the MNoC. The difference between
the MNoC case and zero-latency case is about 15% for 16
cores. In general, as the number of cores and overall
monitor count increases, more bandwidth is required from
the network. This trend motivates the need for a more
distributed medium rather than buses or serial links.

Fig. 10 shows that certain sampling intervals yield a
negative result. In these cases, the sampling or the network
delays are so high that the system gains no benefit from
run-time monitoring. The exact combinations of sampling
intervals and MNoC configurations for a proposed
multicore can be determined during system design. An
additional approach to overcoming this issue for
substantially larger collections of processors would be to
dedicate one MEP per a fixed number of cores (e.g. 16).

Table 3 illustrates the average power savings for a series
of voltage monitor injection rates for a zero-latency
interconnect, MNoC and master-slave bus. Overall, MNoC

performs within 8% (8 core) and 15% (16 core) of the zero
latency case in terms of power savings. Similar bus cases
result in a 26% average reduction in power savings versus
the ideal case for 8 cores and a reduction of nearly 100%
for 16 cores. Fine-grained on-chip dynamic voltage scaling
typically uses a voltage sampling resolution of 200-400 ns
[15] which fits within the target injection rate range shown
in the table.

A. Error Recovery
The allocation and placement of error monitors barely

affects the performance of MNoC, since the injection rate of
error monitors is extremely low. Soft error rate is generally
below one per hundred thousand hours [31] and each error
requires a single bit error indicator. When a soft error
occurs, immediate system remediation is needed to prevent
the propagation of the error. In the monitoring system, soft
error monitor data has the highest priority and must be
transmitted in the priority channel. The expected error rate
did not impact the results of DFS or voltage droop
experiments.

VI. COMPARISON OF MNOC AND STANDARD NOC FOR
MONITOR DATA TRANSFER

The use of MNoC in a multicore system that already
includes a network-on-chip may seem redundant. In this
section, the benefit of including MNoC as a separate
network dedicated for monitor data traffic is contrasted with
using an existing NoC to transfer both monitor and
application traffic as a proof-of-concept implementation.

A. Experimental approach
In order to demonstrate the benefit of using MNoC as a

separate network in NoC-based multicore systems, a model
of a shared memory multicore system [32][33][34] based on
the TRIPS on-chip network (OCN) [13] architecture and a
processor architecture based on Tile64 [12] is used. The
shared-memory multicore system model has 16 cores

TABLE 3: COMPARISON OF MNOC AND BUS VERSUS A ZERO-LATENCY INTERCONNECT
Power savings (%)

4 cores 8 cores 16 cores Injection
rates

Zero-latency
interconnect

Bus MNoC Bus MNoC Bus MNoC
190 8.56 8.15 8.21 6.88 8.16 1.61 6.52
200 8.04 7.65 7.68 6.44 7.63 1.41 7.42
210 7.51 7.14 7.17 5.98 7.10 1.18 6.88
220 6.98 6.62 6.63 5.51 6.57 0.91 6.34
230 6.45 6.10 6.09 5.04 6.04 0.62 5.81
240 5.91 5.58 5.55 4.55 5.50 0.30 5.27
250 5.38 5.05 5.01 4.06 4.96 -0.04 4.72
260 4.84 4.52 4.48 3.56 4.41 -0.40 4.18
270 4.29 3.99 3.92 3.06 3.87 -0.77 3.63
280 3.74 3.45 3.37 2.55 3.32 -1.16 3.08
290 3.19 2.91 2.82 2.03 2.77 -1.57 2.53
300 2.64 2.36 2.26 1.51 2.21 -1.98 1.98

Average 5.63 5.29 5.27 4.26 5.21 0.01 4.86
Average. reduction in power
savings w.r.t. zero-latency
interconnect (%)

6.5% 7.4% 26.4% 8.5% 98.5% 14.6%

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

10

connected by a 4×4 mesh NoC with 4 virtual channels.
Each processor has its own L1 data and instruction cache.
The shared main memory is connected to a router on one
side of the mesh [11].

The NoC performs communication between the
processors and the shared memory. The NoC architecture
has a 256-bit flit width, 4 virtual channels with different
priority levels, and a buffer size of 2 flits [13]. All NoC
packets have 2 flit packet sizes. In the case of physical
routing channel contention, the crossbar selects the higher
priority channel.

As stated in Section V, according to our synthesis results
using 90nm technology, MNoC can operate at a speed of
500MHz. The hardware speed of TRIPS using 130nm
technology is 500MHz and the 90nm Tile64 processor
operates at 750 MHz. Thus, in this experiment, it is
assumed that the system model operates at 500MHz using
90nm technology.

1) Monitor and MNoC configurations
To evaluate monitor data transfer in this multicore

system fairly, the number, placement and data rate of
monitors is needed. In our evaluation, thermal monitors and
delay monitors (critical path monitors) are considered.
Similar to the configurations described in Section V, every
core in the multicore system contains eight thermal
monitors and eight delay monitors, which are placed in
hotspots [26][27]. The total system monitor count is 240.

2) MNoC configuration and experiment setup
Monitor sampling rate determines the injection rate of

monitor data into the monitor interconnect. Similar to the
experiment described in Section V.B, a thermal monitor
injection rate of 1 value every 800 cycles is used. Since
delay values can fluctuate rapidly, delay monitor sampling
should be performed about every 400 ns [15]. For an MNoC
frequency of 500MHz, a delay monitor sampling rate of 200
cycles is sufficient, leading to a per-monitor MNoC
injection rate of the same value.

For this series of multicore experiments, MNoC routers
have a 24-bit flit width, 2 virtual channels and buffer sizes
of 2 flits. All data paths shown in Figs. 1, 2, and 3 are 24
bits, unless explicitly marked otherwise in the figures. To
assess inter-monitor MNoC topology, the monitor data
injection rate of each router must be known. For simplicity,
each core is assigned one MNoC router and each monitor
packet is one 24-bit flit. A total of 12 bits (6-bit destination
address and 6-bit source address) are sufficient for router
addressing. The thermal monitors and delay monitors use
8-bit and 12-bit data, respectively [1][29]. Since the thermal
monitor injection rate is once every 800 cycles and the
delay monitor injection rate is once every 200 cycles and
there are 8 pairs of thermal and delay monitors per core, the
per-router monitor data injection is about (8/800+8/200) =
1 per 20 cycles.

Fig. 11: MNoC latency versus injection rate per core/router.
The solid line represents the minimum injection period per
core.

Fig. 11 illustrates MNoC latencies for different injection
rates determined via simulation for an MNoC with the flit
width, buffer size, and core count parameters noted earlier
in this section. Latency is less than 20 clock cycles if per-
router injection occurs less frequently than once every 17
clock cycles, as shown in Fig. 11.

3) Comparison test cases
To show the benefit of using MNoC as a separate

network, monitor data latency is compared in a variety of
monitor data collection environments. These specific cases
include:
1. NoC with MNoC – In this case, all monitor data is

transferred via MNoC. All other inter-processor traffic
(“application traffic”) is transferred using the multicore
NoC.

2. MT-NoC (mixed traffic NoC) – All monitor data and
application traffic is intermixed on the four virtual
channel (VC) NoC.

3. Iso-NoC (isolated channel NoC) – All monitor data is
allocated to one specific VC in the four VC channel
NoC. Application traffic uses the remaining three VCs.

Note that cases 2 and 3 do not include an MNoC. The
packet size of the monitor traffic is one 24-bit flit. Thermal
and delay monitors for these cases are connected to the NoC
router through a multiplexer. The processor in position (2,
2) of the mesh performs the functionality of the monitor
executive processor (MEP) by processing monitor data. In
the Iso-NoC case, monitor data is given priority over
application traffic, while all traffic has equal priority for
case 2. Cases 1, 2 and 3 use a four virtual channel NoC. In
the following section, the latencies and area overheads of
the NoC with MNoC and NoC-only implementations are
considered.

B. Comparison results
In this experiment, the Ocean.mips Splash benchmark is

used to generate network traffic traces. The traces are then
simulated using an enhanced version of Popnet to calculate
both NoC and monitor packet latencies. For case 1
simulations, two simulations are performed, one for MNoC

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

11

(MNoC-modified Popnet) and a second for the NoC
(standard Popnet). Other cases require only one Popnet
simulation.

Fig. 12 shows the latency for application traffic for a
range of injection rates for delay monitors. A constant
injection rate of one value per 800 cycles is assumed for
thermal monitors. The thermal monitor data was included
in generating the plots. Fig. 12 shows that the latency of
application data in mixed-traffic NoC (MT-NoC) for the 4
virtual channel NoC is higher than the data latency for
separated NoC and MNoC (NoC with MNoC). This latency
increase is expected since the transfer of monitor data on
the NoC increases resource contention. The isolation of
monitor data into a separate virtual channel helps latency
reduction somewhat, but contention for the router ports
eventually causes latency to spike once again. The best
channel latency for application traffic is achieved when
only application traffic (NoC with MNoC) is transferred on
the 4 virtual channel NoC infrastructure.

Fig. 12: Latency comparison for application traffic versus
delay monitor data injection period. A fixed thermal
monitor data injection rate of one value per 800 cycles is
also used. Application data is transferred with the lowest
latency using the NoC in a system which includes both an
MNoC and NoC.

Fig. 13: Latency comparison for monitor traffic versus
delay monitor data injection period. A fixed thermal
monitor data injection rate of one value per 800 cycles is
used. Although MT-NoC and NoC with MNoC cases
support the same monitor data transfer latencies, Fig. 12
showed that the application data latency for MT-NoC is
higher.

Fig. 13 shows monitor data latencies in the different
scenarios which include the thermal monitor data. Since a
dedicated, high-priority NoC virtual channel is used to
transmit monitor data in the MT-NoC case, its monitor data
latency performance matches MNoC, although as noted in
Fig. 12, its application data latency is worse.

The case 2 and case 3 plots in Figs. 12 and 13 represent
about 80% monitor traffic and 20% application traffic.
Table 4 indicates the performance change of the application
as NoC latency is increased. Not surprisingly, more
congested NoC channels lead to reduced application
performance.

Overall, the Ocean.mips application has a relatively low

amount of inter-processor traffic allowing for a higher
fraction of monitor traffic. As shown in Fig. 14, designers
could consider the tradeoffs between application and
monitor traffic injection rates which maintain a constant,
per-router NoC injection rate. MNoC is a reasonable choice
for NoC-based systems which cannot meet the application
data latencies with mixed traffic, as shown in Figs. 12 and
13. As noted earlier in this section, the per-router monitor
data injection rate used for these plots was about one
monitor data value every 20 cycles.

Fig. 14: Tradeoff between application and monitor injection
rates for constant NoC router injection rate of 1 value per
18 cycles.

TABLE 4: PERFORMANCE COMPARISON OF THE NOC SYSTEM WITH AND
WITHOUT MNOC

Delay monitor injection
rate (cyc. between inject.) 400 300 250

NoC with MNoC (cycles) 44,247,340
NoC latency
increase (cycles) 3 5 10

Performance
(cycles) 44,421,683 44,531,612 44,674,131 MT-

NoC
Performance
degradation (%) 0.39 0.64 0.96

NoC latency
increase (cycles) 5 10 23

Performance
(cycles) 44,531,612 44,674,131 45,068,956 Iso

NoC
Performance
degradation (%) 0.64 0.96 1.86

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

12

In a final experiment, the area of the monitor data
transfer cases was considered. The Synopsys Design
Compiler was used to synthesize MNoC and a 4 virtual
channel NoC in 90nm technology. The system speed was
confirmed to match 500MHz.

Table 5 shows the hardware cost of MNoC and 4 virtual

channel NoC. The entire MNoC router is about 7% of the
size of an entire NoC router.

VII. CONCLUSION
This work presents a dedicated and lightweight approach

for monitor data collection and processing. System level
performance benefits are obtained by using this monitor
data to scale processor frequency and voltage values.
Experiments show that the interconnect can be sized on a
per-application basis to obtain substantial performance
benefits. An area overhead of 0.20% was achieved for the
monitor interconnect when applied to an 8-core system
based on AMD Athlon processors. The new monitor data
transfer approach is directly contrasted with transfer using
an existing NoC, which also carries application data traffic.
Experimental results show that the use of MNoC lowers
both monitor data latency and application traffic in
multicores, especially when the monitor sampling rate is
high.

ACKNOWLEDGMENT
The authors would like to acknowledge the suggestions

of our SRC liaisons at Intel, AMD, and Freescale.

REFERENCES
[1] B. Datta and W. Burleson, “Low-power, process-variation tolerant on-

chip thermal monitoring using track and hold based thermal sensors,” in
Proc. ACM/IEEE Great Lakes Symposium on VLSI, pp. 145-148, May
2009.

[2] O. Khan and S. Kundu, “A framework for predictive dynamic
temperature management of microprocessor systems,” in Proc.
IEEE/ACM International Conference on Computer-Aided Design, pp.
258-263, Nov. 2008.

[3] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican, W. Parks
and S. Naffziger, “Power and temperature control on a 90nm Itanium
family processor,” in IEEE Journal on Solid State Circuits , vol. 41, no
1, pp. 229-237, Jan. 2006.

[4] M. Saen, K. Osada, S. Misaka, T. Yamada, Y. Tsujimoto, Y. Kondoh,
T. Kamei, Y. Yoshida, E. Nagahama, Y. Nitta, T. Ito, T. Kameyama
and N. Irie, “Embedded SoC resource manager to control temperature
and data bandwidth,” in Proc. IEEE International Solid-State Circuits
Conference, pp. 296-604, Feb. 2007.

[5] S. Velusamy, W. Huang, J. Lach, M. Stan and K. Skadron, “Monitoring
temperature in FPGA based SoCs,” in Proc. IEEE International
Conference on Computer Design, pp. 634-637, Oct. 2005.

[6] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” in ACM Computing Surveys, vol. 38, no.1, pp. 1-
51, Mar. 2006

[7] M. Floyd, S. Ghiasi, T. Keller, K. Rajamani, F. Rawson, J. Rubio and
M. Ware, “System power management support in the IBM Power6
microprocessor,” in IBM Journal of Research and Development, vol.
51, pp. 733-746, Nov. 2007

[8] S. Madduri, R. Vadlamani, W. Burleson and R. Tessier, “A monitor
interconnect and support subsystem for multicore processors,” in Proc.
IEEE/ACM Design Automation and Test in Europe Conference, pp.
761-766, Apr. 2009.

[9] P. Pande, C. Grecu, A. Ivanov, R. Saleh and G. De Micheli, “Design,
synthesis, and test of networks on chips,” in IEEE Design and Test of
Computers, vol. 22, no. 5, pp. 404-413, Sep. 2005.

[10] F. Moraes, N. Calazans, A. Mello, L. Möller and L. Ost, “HERMES: An
infrastructure for low area overhead packet-switching networks on
chip,” in Integration: The VLSI Journal, vol. 38, no. 1, pp. 69-93, Oct.
2004

[11] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, J. Brown and A. Agarwal, “On-chip
interconnection architecture of the Tile processor,” in IEEE Micro, vol.
27, no. 5, pp. 15-31, Sep. 2007.

[12] S. Bell, et. al, “TILE64 processor: A 64-Core SoC with mesh
interconnect,” in Proc. IEEE International Solid-State Circuits
Conference, pp. 88-598, Feb. 2008.

[13] P. Gratz, C. Kim, R. McDonald, S. Keckler and D. Burger,
“Implementation and evaluation of on-chip network architectures,” in
Proc. IEEE International Conference on Computer Design, pp. 477-
484, Oct. 2007.

[14] K. Chen and G. Chiu, “Fault-tolerant routing algorithm for meshes
without using virtual channels,” in Journal of Information Science and
Engineering., vol. 14, no. 4, pp. 765-783, Dec. 1998.

[15] W. Kim, M. Gupta, G. Wei and D. Brooks, “System level analysis of
fast, per-core DVFS using on-chip switching regulators,” in Proc. IEEE
International Symposium on High-Performance Computer
Architecture, pp. 123-134, Feb. 2008.

[16] W. Cheng and B. Baas, “Dynamic voltage and frequency scaling
circuits with two supply voltages,” in Proc. IEEE International
Symposium on Circuits and Systems, pp. 1236-1239, May 2008.

[17] Y. Tamir and G. L. Frazier, “High-performance multiqueue buffers for
VLSI communication switches,” in Proc. IEEE International
Symposium on Computer Architecture, pp. 343-354, Jun. 1988

[18] L. Shang, L. Peh and N. K. Jha, “Dynamic voltage scaling with links for
power optimization of interconnection networks,” in Proc. IEEE
International Symposium on High-Performance Computer
Architecture, pp. 91-102, Feb. 2003

[19] UMC’s 90nm 1P9M logic/mixed mode low-K SP-HVT process library
[Online]. Available: http://www.faraday-tech.com

[20] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K.
Strauss, S. Sarangi, P. Sack and P. Montesinos, “SESC simulator,”
[Online]. Available: http://sesc.sourceforge.net.

[21] G. Link and N. Vijaykrishnan, “Thermal trends in emerging
technologies,” in Proc. IEEE International Symposium on Quality
Electronic Design, pp. 625-632, Mar. 2006.

[22] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang , S. Velusamy
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” in ACM Transactions on Architecture and Code
Optimization, vol. 1 no. 1, pp. 94-125, Mar. 2004.

[23] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, “Cost considerations
in network on chip,” in Integration, the VLSI journal, vol. 38, no. 1, pp.
19-42, Oct. 2004.

[24] A. Leon, K. Tam, J. Shin, D. Weisner and F. Schumacher, “A power-
efficient high-throughput 32-thread SPARC processor,” in IEEE
Journal of Solid-State Circuits, vol. 42, no. 1, pp. 7-16, Jan. 2007.

[25] R. Jayaseelan and T. Mitra, “A hybrid local-global approach for multi-
core thermal management,” in Proc. IEEE/ACM International
Conference on Computer-Aided Design, pp. 314-320, Nov. 2009.

[26] R. Mukherjee and S. Memik, “Systematic temperature sensor allocation
and placement for microprocessors,” in Proc. ACM/IEEE Design
Automation Conference, pp. 542-547, July 2006.

[27] S. Memik, R. Mukherjee, M. Ni and J. Long, “Optimizing thermal
sensor allocation for microprocessors,” in IEEE Transactions on

TABLE 5: HARDWARE COMPARISON FOR 16 CORE SYSTEM

Name Flit
width

Virtual
channel
number

Buffer
size

Speed
(ns)

H/W area
in um2 (per

router)

Total H/W
area in um2

MNoC 24 2 2 2 69901 1118416
NoC 256 4 2 2 1064700 17035200

MNoC/4VC NoC (%)
6.565

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. xx, No. xx, February 2010.

13

Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 3, pp. 516-527, Mar. 2008.

[28] H. Curnow and B. Wichmann, “A synthetic benchmark,” in Computer
Journal, vol. 19, no. 1, pp. 43-49, Feb. 1976.

[29] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen,
N. James, M. Floyd and V. Pokala, “A distributed critical-path timing
monitor for a 65nm high-performance microprocessor,” in Proc. IEEE
International Solid-State Circuits Conference, pp. 398-399, Feb. 2007

[30] R. Joseph, D. Brooks, and M. Martonosi. “Control techniques to
eliminate voltage emergencies in high-performance processors,” in Proc.
IEEE International Symposium on High-Performance Computer
Architecture, pp. 79-90, Feb. 2003.

[31] P. Shivakumar, M. Kistler, S. Keckler, D. Burger and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proc. IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 389-398, Jun. 2002.

[32] S. Mukherjee, P. Bannon, S. Lang, A. Spink and D. Webb, “The Alpha
21364 network architecture,” in IEEE Micro, vol. 22, no. 1, pp. 26-35,
Jan. 2002.

[33] M. Monchiero, G. Palermo, C. Silvano and O. Villa, “Exploration of
distributed shared memory architectures for NoC-based
multiprocessors,” in Proc. IEEE International Conference on
Embedded Computer Systems: Architectures, Modeling and
Simulation, pp. 144-151, Jul. 2006.

[34] H. Freitas, D. Colombo, F. Kastensmidt and P. Navaux, “Evaluating
network-on-chip for homogeneous embedded multiprocessors in
FPGAs,” in Proc. IEEE International Symposium on Circuits and
Systems, pp. 3776-3779, May 2007.

Jia Zhao received the B.E degree in electrical
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2005 and the M.S. degree in
microelectronics from Fudan University, Shanghai,
China, in 2008. He is currently working toward the
Ph.D degree at the University of Massachusetts,
Amherst.
 His research interests include multiprocessor
architecture, VLSI design and reconfigurable
computing.

Sailaja Madduri received the B.E degree in
electrical and electronics engineering from Birla
Institute of Technology and Science, Pilani, India, in
2005 and the M.S degree in electrical and computer
engineering from the University of Massachusetts,
Amherst, in 2008.

She is currently with Intel Corporation, Hillsboro,
OR, where she is involved in the design of next generation microprocessors.

Ramakrishna Vadlamani received the B.E. degree
in electronics engineering from Veermata Jijabai
Technological Institute, Mumbai, India, in 2004 and
the M.S. degree in electrical and computer
engineering from the University of Massachusetts,
Amherst, in 2010.

He is currently with Qualcomm Inc., Boxborough,
MA, where he is involved in the design and
verification of next generation basestation modems.

Wayne Burleson (M’84–SM’01) received the B.S.
and M.S. degrees from the Massachusetts Institute of
Technology, Cambridge, and the Ph.D. degree from
the University of Colorado, Boulder, all in electrical
engineering.

He is a Professor of electrical and computer
engineering with the University of Massachusetts,
Amherst. His research interests include VLSI design,

reconfigurable computing, content-adaptive signal processing, embedded
security, and multimedia instructional technologies.

Russell Tessier (M’00-SM’07) received the B.S.
degree in computer and systems engineering from
Rensselaer Polytechnic Institute, Troy, NY, in 1989,
and the S.M. and Ph.D. degrees in electrical
engineering from the Massachusetts Institute of
Technology, Cambridge, MA, in 1992 and 1999,
respectively.

He is an Associate Professor in electrical and
computer engineering with the University of

Massachusetts, Amherst, where he also leads the Reconfigurable Computing
Group. His research interests include computer architecture, field-
programmable gate arrays, and system verification.

