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Incremental Compilation for Parallel Logic
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Abstract—Although simulation remains an important part into workstation-based design simulation relatively straightfor-

of application-specific integrated circuit (ASIC) validation, wardly, modified designs targeted to parallel verification gener-
hardware-assisted parallel verificatios becoming a larger part ally require long recompilation routines

of the overall ASIC verification flow. In this paper, we describe . . .
and analyze a set ofincremental compilation steps that can be _ 1he need for incremental design support is a result of recent
directly applied to a range of parallel logic verification hardware,  interest in core-based design and system-on-a-chip integration.
including logic emulators. Important aspects of this work include  Most ASIC verification flows involve numerous iterations of de-
the formulation and analysis of two incremental design mapping  sign test, debug, and recompilation. As design modifications are
fggﬂs‘;::)e(:gssrgtrfn;?% otfhge\évcl)ym?gl(jﬁg &iieosrllgr; Jﬁg'é:uﬁg;o cr)nfulr:gvlﬁy evaluated and design errors are identified, the original design
added design signals between logic processors. To validate ourlS Subjected to a series of minor modifications. Often, design
incremental compilation techniques, the developed mapping changes are confined to a subset of the original design and af-
heuristics have been integrated into the compilation flow for a fect only a small part of the overall design logic (often less than
ﬁle'd_'rF;]rggr;%';‘i?;jb'gogrlﬁ‘tﬁjrg)g%aes‘;d;koﬁe\gr:gafklzgligre;”‘ég% 15%). For example, a design change may be isolated to a single
En!slrk circuits that havg been synthesiggd from registe?-transfer or small number_ of register-transfer level (RTL)_ components
level and mapped to the emulator. It is shown that our incremental  that are substantially smaller than the overall design but encom-
approach reduces verification compile time for modified designs pass more logic than will fit in a single logic processor in the
by up to a factor of five versus complete design recompilation verification system. If recompilation for the verification system
for benchmarks of over 100 000 gates. In most cases, verification can be limited primarily to those logic processors that contain
run-time following incremental compilation of a modified design logic affected by the design change, the incremental compilation
matches the performance achieved with complete design recom- . -
pilation. process can b_e greatly accelerated. Thg ab|I|ty_ to suppqrt. design
Index Terms—incremental compilation, incremental parti changes in this §mal| set of processors is crucial to avoiding the
tioning, incremental routing, logic emulation. need to recompile all processors in the system from scratch. In
addition to providing fast design turnaround, the resulting ver-
ification run-time of the incrementally compiled design should
be the same as or nearly the same as the verification run-time of
N AN effort to provide complete functional coverage, apthe original design mapping.
plication-specific integrated circuit (ASIC) designers often EXisting software systems for parallel verification typically
use hardware-assisted parallel verification platforms. These sggntain a number of automated steps to translate a gate-level or
tems, such as logic emulators [1]-[3] and rapid prototyping sy8TL netlist to parallel processing hardware. Included in these
tems [4], contain special-purpose logic processors or field-praieps is a partitioning step to separate the user design into pieces
grammable gate arrays (FPGAs), which evaluate logic furidvat will fit into each target logic processor, a placement step to
tions and communicate results in parallel. Although the neé&élect the appropriate processor to hold each design partition,
for mapping algorithms that can incrementally address desigrrouting step to interconnect interpartition wires using board
changes is apparent in many areas of computer-aided desigfing resources, and an individual processor compilation step
(CAD), this need is particularly acute in the area of compildo schedule evaluation of logic expressions. By far the most
tion for hardware-assisted verification. Parallel verification sysomputationally expensive task of this design flow is individual
tems often exhibit design-mapping times of hours rather thanocessor compilation (e.g., FPGA place and route), which can
minutes due to the need for the coordination of system-widlequire several hourger devicegiven tight timing constraints
communication and the individual compilation of netlists foand logic capacity limitations. Initial compilation of a proto-
numerous logic processors. The integrated nature of the cdype design may require many hours at the individual processor
pilation process for these systems limits the capability of deempilation stage, even if multiple compiles are performed in
signers to incrementally recompile logic designs after small dearallel across a network of workstations.
sign changes. While these design changes can be integratdd this paper, we formulate and develop incremental tech-
niques to identify changed design logic, partition it across
Manuscript received June 19, 2001; revised March 3, 2002. affected logic processors (FPGASs) in a parallel verification
R. Tessier is with the Department of Electrical and Computer Engsystem, and efficiently determine communication patterns
neering, University of Massachusetts, Amherst, MA 01003 USA (e-maljetween affected processors. In following this incremental
tessier@ecs.umass.edu). -
S. Jana is with Intel Corporation, Hillsboro, OR 97124 USA. path, attempts are made to limit the number of processors
Digital Object Identifier 10.1109/TVLSI.2002.801614 that are affected while minimizing the affect of incremental

I. INTRODUCTION

1063-8210/02$17.00 © 2002 IEEE



624 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

compilation on overall verification run-time. In an initial stepcapacity and performance, so have the processor and memory
design changes between the initial and modified design netistmponents that constitute verification systems.
are noted and affected logic processors are determined. Theddnlike traditional parallel processing, which often requires
changes include design logic thatr@novedrom the original time-varying computation and interprocessor communication
netlist as a result of design modification and new logic that atterns, the structure of circuits under test is predictable
addedto the original design. After removed logic is extractednd static. As a result, both processor computation and inter-
from the original design mapping, added design logic is pgorocessor communication can be completely determined at
titioned across a minimum number of logic processors usiltgmpile timethrough intraprocessor computation and interpro-
a constrained partitioning algorithm. Partitioning is followe@dessor communication scheduling. This compile-time approach
by the scheduling of both intraprocessor computation amol mapping has been demonstrated by a sizable collection of
interprocessor communication for added design logic. Thesentemporary logic emulators. The Quickturn Cobalt verifica-
scheduled tasks are coordinated with logic evaluation atidn system [7] contains up to eight boards with 64 processors
communication for logic remaining from the original designper board. Due to direct connections between processors, it
As a final step, a minimum number of logic processors aig possible for each processor to broadcast results to other
recompiled to finalize a complete parallel verification image iprocessors at time slots determined during compilation. The
a fraction of the time of complete system recompilation. Arkos emulation system [8] contains 14 logic ASICs per board,
To prove the benefit of the incremental design approaches, ee&ch containing 32 processing elements. Logic evaluation
have targeted incremental compilation techniques to an FPGAside the ASICs and communication between the ASICs takes
based logic emulation system available from Ikos Systems [pJace at compile-time determined time intervals. A similar
New partitioning and routing approaches are included in the dg/stem that includes multiple logic processors interconnected
sign flow to augment initial from-scratch design mapping. Fivacross multiple boards is the Tharas Hammer system [9].
large RTL benchmarks are used to illustrate the compile-tinh@gic processors in this system have been specially designed
improvement for our approaches. The initial designs have beenallow for rapid, parallel evaluation of logic expressions.
substantially modified at the RTL level (approximately 10-15%or several systems, off-the-shelf FPGAs, rather than custom
of each netlist was changed) to explore arange of feasible implegic processors, are used as processing elements. The Ikos
mentation choices. Following design mapping to a commerchidirtuaLogic system [1] contains 64 FPGAs per board. These
emulator, the effect of interprocessor topology on incremenf@PGAs are interconnected in a direct-connect network. A stati-
verification efficiency is evaluated. cally scheduled interconnect multiplexing technique is used to
The rest of this paper is structured as follows. Section éixchange data between the FPGAs. A similar technique for data
discusses previous work in parallel verification and bas@ommunication is employed by the Xtreme emulation system
parallel verification design flows. In Section Ill, the softwarg2] by Axis Systems. This system implements data computation
flow required to support incremental compilation is reviewe@&nd communication using precompiled single-instruction
Our incremental approach to design mapping is discussednltiple-data communication patterns. Both inter-FPGA and
Section IV. Section V discusses our experimental methodologyterboard communication are supported.
Experimental results that have been derived from our system are
described in Section VI. Finally, in Section VII, we summariz8. Parallel Verification Software Flow

this paper and make concluding remarks. Although parallel verification systems vary considerably in
terms of hardware architecture, many similarities exist in their
Il. BACKGROUND basic design mapping flows. Contemporary compilation soft-

ware for parallel verification systems has evolved significantly
as component logic processor capacities and system sizes have
Numerous parallel verification systems have been developeadreased. A typical parallel verification system software flow
to support ASIC designs containing millions of logic gategor converting a structural or RTL netlist to a physical realization
These systems generally contain a collection of processiagpears in Fig. 1Design translationconverts the original de-
elements, such as logic processors or FPGAs, interconnecteslign netlist into the native technology of the verification system
a fixed topology. Although early verification systems containgj®]. Examples of design translation include RTL synthesis, tech-
a small number of processors [5], contemporary architectureslogy mapping for FPGA-based logic emulators, and Boolean
[1] contain hundreds of interconnected processing elementduction for time-sequenced logic processors. Following de-
typically enclosed in specially designed cardcages. Thesign translation, design logic rtitionedinto pieces that will
systems can obtain prototyping speeds that range from a fiwithin the logic and memory resources of the logic proces-
megahertz to over 20-30 MHz [6]. Verification performancsors and assigned to specific system resourcegloizl place-
is usually limited by the physical distribution of emulatiorment Communication between logic processors is determined
memory devices, which are used in verification systems through twoglobal routing steps, which are shaded in Fig. 1.
verify on-chip memory resources, and the need to transpéitst, feasible shortest paths between logic processors are deter-
intermediate data values between logic processors. Over thimed using available board routing resources. Subsequently,
past decade, the verification capacity of parallel verificatiocommunication between processors is scheduled based on logic
systems has kept pace with ASIC design sizes through ftihependencies and topology constraints. As a final e,
phenomenon of Moore’s law. As design sizes have increasect#ssor compilatioffior each logic processor is performed. This

A. Parallel Logic Verification
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Fig. 1. Parallel verification software flow. logic evaluation in each design clock cycle. These values are
evaluated at the end of each design clock cycle after all combi-

step includes FPGA place and route for FPGA-based logic eRitional dependencies have been satisfied. .
ulators and Boolean instruction scheduling for special-purposeAs first described by Babb [10], a key aspect of signal sched-

logic processors [8], [9]. uling is the determination of signdkpthanddependenceBoth
depth and dependence apply to interpartition wires. To analyze
C. Virtual Wires Emulation input to outputdependenceye determine the set of outputs to

. . . which a combinational path exists from each input. An output is
The target system for this paper is an Ikos VirtualLogiC . . . : ;
. . - said to be a dependent (or a child) of an input if a change in that
emulation system that contains 64 Xilinx XC4036EX FPGAS, L >
Ihput can combinationally change the output. In determining de-

Logic evaluation and communication in Virtual.ogic Sys'temsendence, we assume that all outputs of a combinational library

IS baseq on Virtual W|r_es techpology_ [lQ]’ a hel_Jrlstlc I!Sl?nmnwe are dependents of all the inputs of that primitive. Sim-
scheduling approach. This technique pipelines multiple logical :
) ) . : . ; ifarly, no outputs are dependents of any of the inputs for sequen-
signals calledsirtual wires across single inter-FPGA wires to,. oo
overcome FPGA pin limitations [10]. The derived communice{lal primitives. . -
Let Dependi] denote the set of outputs of a given partition

tion schedule establishes a feasible space—time route for ey, Y . .
. : : : o tFI t are dependents of an input of the same partition connected
logical wire while guaranteeing that all FPGA combination

dependencies are correctly ordered. % an interpartition wirei. Similarly, let D—*[¢] represent the

The design mapping steps for Virtual Wires systems folloset of inputs that are ancestors to an output driving an interpar-

the basic software flow outlined in Fig. 1. In a typical system\ﬁlt'on wire 7. By our definition, inputs to storage elements and

RTL synthesis and FPGA technology mapping are performgétemaI outputs will have no dependents—Defgnd )—and

during the design translation stage. This is followed by desiggrg tgl:::se(s)l‘osrts_rggf[zle_mg nts as well as external inputs will have

partitioning into logic blocks small enough to fit within FPGAs, Fig. 2 shows an example circuit partition containing four in-

placement of logic blocks onto specific FPGAs, and SChe(jUIirt1(£.’rconnected rimitive logic elements with three inputs (not in-
of both intra-FPGA logic evaluation and inter-FPGA commu- b 9 P

nication. Babb [10] and Hauck and Agarwal [11] provide aqc_lqding the_clock)_ gnd three outputs: The dependence relation-
ditional detailed information on Virtual Wires compilation. AShIpS for this partition are as follows:

distinctive aspect of parallel verification systems in general and * Dependini] = {Outl};

Virtual Wires systems in particular is computation and commu- * Deépendin2] = {Outl, Out};

nication scheduling. The initial step in Virtual Wires scheduling * Dependin3] = {Outl, Out}.

is the determination of all circuit combinational dependenciesikewise, the ancestors are as follows:

Logic can be scheduled for evaluation once all dependent in-+ D~![Outl] = {In1,In2,In3};

puts have reached a known value. After intermediate values haves D~![Out2] = {In2,In3};

been determined, the scheduling approach pipelines multiples D~1[Out3] = # (REG is a storage element).

logical signals (virtual wires) across inter-FPGA wires to over- Thedepthcalculations use the dependence relationships. The
come FPGA pin limitations. Sequential primitives (flip-flops)depth of interpartition wiré is the largest number of partitions
and design primary outputs form combinational boundaries fior a forward combinational path starting at that wire. Depth is
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Fig. 3. Depth calculation example. Dependence relations between partition
inputs and outputs are represented with dashed lines.

. . ig. 4. Near-neighbor FPGA topology. Each arrow represents a unidirectional
computed recursively from the wire dependence sets such thgk-FPGA channel.

for each wire;
the verification system. All inter-FPGA signals are ordered so

Deptifi] it . that they may be routed as soon as precedence conditions are
= { 0, . Depe_nd[z] =0 (1) met. This ordering results in an ordered list of inter-FPGA sig-
1+ max;cpepeng Depts]. - otherwise. nals to be routed.

. . . . . Although b f ti Igorith ist f
Fig. 3 shows an example design with three partitions and('z(l; ough & number of routing -aigorithms —exist for

fhe-scheduled verificati t 10], [12], [13], th
interpartition wires. The dashed lines denote input—output de- e-scheduled verification systems [10], [12], [13], the
pendence relationships. In this example, wires are at the fg

Fsic steps required to perform scheduled routing in each
lowing depths:

e similar. Routing for each individual interpartition signal
in Virtual Wires systems involves a series of steps after the

* depth 0: W4, W6; signal is selected from the dependence-ordered signal list. The
* depth 1: W2, W3, W5; capacity of an inter-FPGA channél® can be measured on a
* depth 2: W1. time-sliced basis a€™ (t).

Following dependency analysis, routing in systems usingTg jllustrate route timing, routing notation from [11] is used

virtual wires starts with the formation of a channel graph [11}4 jngicate the fastest possible critical path routing via a series
As shown in Fig. 4, this graph is derived from the emulatiog¢ routing steps.

system topology and each edge represents a unidirectiona
routing channel. Each channel has a wi@th representing the
number of physical wires in the channel. As routing resources
in a channel are consumed, the cost of using the chafifiel
increases.

Routing for systems using virtual wires is simplified by the
abstraction of both time and space. Both logic evaluation and
signal communication in Virtual Wires systems are controlled
by a high-speed clock called\artual clock [11]. This clock
serves as a discrete timebase, providing a reliable mechanism
for controlling the order of events at a fine granularity. Since T, =T, +n (2)
many combinational evaluations and signal transfers may occur
in a single design clock cycle, the virtual clock by necessityruns ~ wheren is the number of FPGA chip boundaries (hops)
at a much higher frequency than the design clock. Routing for  between source FPG#y and destination FPGA;.
each interpartition wire produces a source—destingiath in After all dependent signals arrive at an FPGA, the evaluation
both time and space. Signals that travel a multi-FPGA distanckcombinational logic requires one virtual clock cycle.
in the system topology are pipelined into a set of intermediateThe above routing steps are illustrated through the use of
single-FPGA steps. Each signal is registered at FPGA bourat example. The circuit shown in Fig. 5 has been partitioned
aries in a flip-flop synchronous to the virtual clock and is comanto the FPGA topology shown in Fig. 6, which supports
municated between a pair of FPGAS over a physical wire. Asaar-neighbor communication. Each inter-FPGA signal can
result, long combinational paths are broken into a series of d@ily travel between two FPGAs during each system (virtual)
crete time steps. Discretization of both time and space resudtsck cycle. In the figure, portions of the original circuit are left
in reliable and predictable verification system operation. Fonshaded while communication pipeline flip-flops controlled
inter-FPGA communication, all partition inputs must be valithy the virtual clock are darkly shaded. Note that signaasses
before dependent partition outputs are routed to other pointsiinchanged through FPGA 3 on the path from FPGA 2 to FPGA

h) Each signal route starts at a source FPGAThe cor-
responding destination FPG#y is the endpoint for the
route.

2) The shortest feasible path; between partitions; and
dy in terms of channels is determined.

3) Thesend timeT’, of the signal is determined. This is the
time slot at which a signal leaves FPGA.

4) The signal arrives at FPG#y at thearrival time 1), of

the signal. The arrival time is defined as
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Fig. 7. Design clock cycle for the circuit mapping shown in Fig. 6.

processors. In our new design flow, steps to incrementally alter
verification system configuration are developed. These steps in-
clude the partitioning of added logic to a subset of system logic
processors (FPGASs) and the routing of new design nets across
routing resources that are no longer needed by removed logic
or that are unused in the initial design mapping. Whenever pos-
Fig. 6. Circuit mapping to FPGAs for the circuit shown in Fig. 5. VirtuaISible' the verification system configuration is kept unchanged
Wires pipeline flip-flops are darkly shaded. Sighais transported from FPGA for design logic and signals that have not been modified from
2 through the pipeline flip-flop in FPGA 3 to FPGA 4. the original design.

An incremental compilation flow for parallel verification sys-

4. This through-hopis necessary given the lack of a directems is shown in Fig. 8. These steps can be characterized as fol-

terms of virtual clock cycles can be determined by evaluating
the critical path from signat to signald, as shown in Fig. 7.

In Fig. 7, virtual cycles are indicated with labels V1 through
V5; communication delays are indicated with notatioequal

to a number, where is the number of virtual cycles required
for communication; and combinational evaluation in terms
of virtual cycles are indicated with a numeral (e.g., 1). After
virtual cycle V5, signall is latched into flip-flopE, completing

the design clock cycle. 2)

1) Netlist comparisonThe first step in the incremental com-
pilation process is to identify the disjoint set of logic and
interconnect associated with two distinct designsirire
tial designand the design created after the initial design
is modified, themodified designLogic removed from the
initial design was assigned to a set of processors as a re-
sult of initial design mapping. Theseodified processors
provide a possible destination for added logic.
Incremental path identificatiorVirtual Wires systems re-
quire scheduled data transport between source and desti-
nation FPGAs. As shown in Fig. 6, in a system topology
Most design changes that are mapped to parallel verifica-  with less than direct point-to-point connectivity between
tion systems are localized to an isolated region of design logic  all logic processors, individual processors may serve as
such as an RTL functional unit or IP core. Since attempts are  both processing elements and through-hop steps for inter-
made to minimize interprocessor communication during initial mediate routes. If full connectivity of modified processors
design mapping, many localized design changes can be isolated using only modified processors cannot be achieved, in-
to a small number of logic processors and communication paths. termediatainmodifiedprocessors, that have had no logic
Ideally, to supportincremental compilation, mapping operations  removed, may have to be included in incremental routing
such as partitioning can be isolated to only those logic proces- paths. If used as through-hops, these processors require
sors affected by the change and routing can be restricted to a recompilation to include routing changes. To limit com-
minimum number of routing channels that interconnect the pro-  pile time, the number of unmodified processors selected
cessors. Since individual processor compilation is the dominant  to perform through-hop routing should be minimized.
component of system compile time, if incremental compilation 3) Incremental partitioning:Once the modified and re-
can be restricted to a minimum number of verification system  quired through-hop processors have been identified,
resources, the number of individual processor compilations can  newly added design logic can be partitioned onto these
be limited. Typically, when design changes are made to a user processors subject to processor logic and memory ca-
design, some existing logic is replaced with new logic. Asare-  pacity constraints.
sult, the size and interconnect structure of the changed piece oft) Incremental routingfollowing incremental partitioning,
logic must fit within the available resources of the system logic ~ routing is performed to create a path for the added

[ll. I NCREMENTAL COMPILATION SOFTWARE FLOW
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Original viously have had initial logic removed. The paper indicates that
Logic Netlist not only should added logic be allowed to move between parti-
tions but also some portion of previously assigned logic should
be allowed to move. While the study formulates the incremental

Netlist - Modified partitioning problem, partitioning is not applied in the context of
Comparator Logic Netlist other verification flow steps that can constrain logic placement.
Unlike incremental partitioning, incremental scheduling has

Added been developed previously in several areas of computer-aided
Logic design. An incremental scheduling approach for parallel

processing [16] allows for run-time dynamic scheduling of
interprocessor communication based on computation results.
This run-time approach relies on data-dependent computation,
which is not necessary for parallel verification of static cir-
J, cuits. DeMicheli [17] and Patasman [18] apply incremental
scheduling algorithms to high-level synthesis to refine an
gg{ﬁﬁgﬁg&al initial_schedule. The approgches are br_als_ed on hiII-cIim_bing
techniques and are appropriate only for limited problem sizes.
These iterative improvement algorithms have been extended for
low-level retiming [19] and integrated with value prediction.

Incremental Path
Identifier

Incremental Generally, schedule modifications are localized to a small part
of the overall schedule, which make the algorithms difficult to
Incremental apply to parallel verification. In an earlier version of the work
Router presented in this paper, Tessier presents a greedy incremental
Incremental scheduler for logic emulation [20]. Perhaps the most relevant
Route Scheduler incremental scheduling work has been performed in regards

to land-based data transmission networks. Ma and Lloyd
present an incremental scheduling technique to assign new

. communication to time-division multiplexed timeslots [21].
Proc. Compller An optimal scheduling approach based on linear programming
is formulated to allocate additional bandwidth. Varma and
l Chalasani introduce an incremental graph coloring approach to
Altered Verification determine broadcast time slots in an on-line fashion [22]. Nei-
System Configuration ther of these two optimal approaches can scale to support the
number of wires typically required in incremental compilation
Incremental compilation software flow. for parallel verification systems.

design signals connecting the modified logic processors.
Since other logic processors surrounding the modified
logic processors are unaltered, this incremental routingOur incremental partitioning and incremental scheduling al-
must be performed using board-level routing resourcgerithms are similar in nature to their initial-run counterparts
that have not previously been consumed by unchangledt are constrained to minimize perturbation of unchanged logic
design routes. First, feasible shortest paths between lotliat has previously been mapped to the verification system. Be-
processors are evaluated. Subsequently, incremeritak describing specific design implementations, each design
scheduling is used to form a communication pipeline. problem is formulated and problem constraints are noted. Al-
Processor compilatiodis a final step, processors thathough formulations are made from the perspective of an FPGA-
have received new logic or have been modified to includesed logic emulation system (the testbed for this work), the ap-
through-hops are recompiled to complete the remappipgoach can be applied to any parallel verification system that
process. follows the software flow shown in Fig. 1.

IV. INCREMENTAL COMPILATION ALGORITHMS

To date, few practical attempts have been made to integraté\n initial user design under verification consists/éfnodes
incremental CAD algorithms into verification design flows. Al{gates or flip-flops) and” edges (nets). As a result of the ini-
though graph algorithms such as bipartitioning and schedulitigl mapping flow described previously, a design is mapped to
have matured in recent years, few incremental versions of thé3@artitions (FPGAS) in a parallel verification system. A subset
algorithms have been developed, and even fewer have beenirénks of £ design edges is communicated between FPGA par-
duced to practice in a working verification system. Cong artdions. To create a modified design from an initial desigyp,,
Sarrafzadeh [14] propose an incremental partitioning approaubdes and”,,,;, edges are subtracted from the initial design and
based on Kernighan—Lin bipartitioning [15]. In that work, anV,q4q nodes andv, 44 edges are added to the design. As a result
initially partitioned network is modified and new logic is dis-of this design modificationBs,;, FPGAs have logic removed
tributed by an incremental partitioner across partitions that pr@ad L, routed links in the verification system are removed.
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TABLE | Only FPGAs in setB,4q are ultimately recompiled. There-
PARAMETER DEFINITIONS FORINCREMENTAL COMPILATION fore, for routing linksL a4, it is necessary to ensure that there
\ Initial Design Parameters is a path from every FPGA iB,q4 to every other FPGA i3, 4q
N Number of initial logic nodes that only uses FPGAs iB.4q, forming acompletely connected
£ Number of initial design nets set. Ideally,B,qq Would be limited toBsy;,, the FPGAs with
B Number of design partitions removed logic. However, due to topology-related restrictions in
L Number of links to be routed L g ’ ! pology
- the verification system hardware, the FPGAsHgR,;, may not
Incremental Design Parameters .
Naus | No. of nodes subtracted from initial design forma completely. connected set for routing. As aresult, FPGA
E.up | No. of design nets subtracted from init. design setBg,1, may require augmentation with a minimum number of
Bsub | No. of design partitions with removed logic unmodifiedFPGASs to formB,q4, @ completely connected set
Loup | No. of routed links to be removed of FPGAs. Consider, for example, the circuits shown in Fig. 9.
Ngdd | No. of nodes added to initial design It i tf the fi that th iqinal i ¢ . it
E. 35 | No. of design nets added to initial design is apparent from the figure that the original inverter circuits
Boaa | No. of target partitions for added logic on the left have been replaced with a bufférand anor gate
Lada | No. of added links to be routed Y. Since FPGA 1 and FPGA 3 contain deleted logic, they form

Bsup- Inthe modified circuit, a routing path is required between
FPGA 1 and FPGA 3 to complete connectivity. As shown in the
The goal of incremental partitioning is to assighqq nodes figure, FPGAs are interconnected in a near-neighbor topology.
to partitionsB,qq SO that inter-FPGA bandwidth is minimized.Even though FPGA 2 is not iBsy, it must be recompiled to
A subsetl 44 Of F,qq €dges must be scheduled for routing teaccommodate the transfer of sigadfom FPGA 1 to FPGA 3.
create a completed design. These links can be scheduled in fisex result,Bs,,;, must be augmented to include FPGA 2. Logic
time slots or in time slots previously used by,;,. The determi- previously assigned to these FPGAs that has not been removed
nation of B,qq from By is nontrivial and will be described in remains intact within these partitions.
Section V. Incremental compilation parameters are summarized’he FPGAs inB,q4 are determined through a heuristic eval-
in Table I. uation of shortest paths between FPGAsHR,,. A detailed
In some cases, it may be possible to contain all changed loiting of the algorithm is shown in Fig. 10. In an attempt to
inside one partition. Examples of these changes include a singl@imize overall distance, the search algorithm orders all FPGA
gate change or a design flip-flop insertion. For these trivial modennections by Manhattan distance. Candidate paths between
ifications, there is no need for incremental partitioning or schethe FPGAs are then evaluated based on FPGAC(s):
uling since only the affected FPGA needs to be recompiled.

In this paper, we evaluate design changes that affect multiple 0, k€ B _
FPGAs. C(k) =< L, k& By, inn paths ()
1, k¢ Bsu, inJ paths.

A. ldentification of Changed Logic (Netlist Comparison) Modified FPGAs in B.,;, make the most desirable path

The first algorithmic step in the incremental compilatiorcandidates since they will be recompiled to include new design
process, represented by the top box in Fig. 8, is the identifidagic. Unmodified FPGAs shared by many paths make the
tion of deleted and added design logic and nets and associatedond-most desirable candidates since they minimize the
FPGAs affected by the change. This netlist comparison tiztal number of affected FPGAS. For each source—destination
made in our system through application of depth-first matchirmpnnection, a cost-based queue of pathq is formed to
applied to both initial and modified design netlists. During thkold candidate path FPGAs. At each search step, the lowest
search, the hierarchical names of logic and nets in the modifiedst FPGA in the shortest path is selected until a géthis
design are matched against those in the original to identfigrmed. The algorithm includes several search iterations for
design changes. It is assumed that any added logic and nets @aith path to locate minimum cost paths. If two sequential
have a different hierarchical name, which is consistent with tisearch iterations result in the same overall cost, the search is
insertion/deletion of an RTL module. Any FPGA that containterminated. Following the iterations, the unmodified FPGAs
logic from the initial design that has been removed requiréscated in the search are addeddq,, to form B,4a.
recompilation to support correct evaluation of the modified
circuit. As a result, these modified FPGAs make desirab{. Incremental Partitioning

.targ?:t;éo'g adhdei design Iogic.dﬁ(.jdded logic can be partitionedln assigning added logic to system FPGAs, the following ob-
into s that have been modified, as space permits. jectives must be optimized.

1) New logic N,qq must be partitioned onto FPGAS, 44
such that the sum of the number of links interconnecting
Once added nodes, 44 have been identified through netlist B,qa IS minimized.

comparison, but before added nod€g;q can be partitioned  2) A number of links from the original design that were

onto verification system FPGAs, the specific set of destination  routed during initial design mapping mdyive added de-

FPGAs B,qq must be determined. After analysis of the mod- sign logic. If possible, this logic should be assigned to

ified and original netlists to determin¥,,;,, the FPGAs with B.q4 such that previously scheduled link communication

removed logicB,,;, can be straightforwardly determined. can be used.

B. Incremental Path Identification
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Incremental Mapping

Initial Mapping
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Fig. 9. An example of the need to identify incremental paths. In the subfigure on the right, FPGA 2 must be aidedttwallow routing from FPGA 1 to

FPGA 3.

i, j: FPGAsin Bgyp

PT(i,j): list of FPGAs in ¢ to j path.

PQ(,j): Candidate FPGAs for inclusion in PT.
C(k): Cost of FPGA k.

CostT: ),y ppiasCk)-

Order all 7, j connections by Manhattan distance.
For each ¢, 7
Identify shortest path with Dijkstra’s algorithm.
EndFor
Set CostT to oco.
‘While CostT can be reduced.
For each i, j pair.
Rip up PT(%,j) and update assoc. C(k) values.
Initialize PQ(3,j) with source i.
While 7 not reached
Remove lowest cost FPGA k from PQ(z, j).
Add k to PT(i,j) and update C(k).
Update CostT
Put neighbors of k in PQ with cost
from Eq. (3)
Endwhile
Update FPGA costs in PT(3, j) using Eq. (3).
EndFor
Update CostT
EndWhile
Add selected FPGAs for i, j paths to Bggq.

Fig. 10. Algorithm to identify minimum number of FPGAs f&t, 44. The set
of FPGAs with removed logi€B...;,) is augmented with the minimum set of

FPGAs needed to create completely connected routing paths.

1) Prerouted Input and Output LinksOften, when logic is
replaced in a design, the signals that interface to the logic from
the rest of the circuit stay intact. For example, if an RTL core
is replaced, the internal structure of the new logic may differ
greatly from the old but the hierarchical interface of external
signal names and data bus widths remains the same. These in-
terface signals form a special case for incremental mapping. If
the interface signals span multi-FPGA boundaries, it may be
possible to use routing information from the scheduling of ini-
tial-design routing links, limiting the need for routing changes.

This routing optimization can only be performed if the route
destination (for driven logic that is added) and route source (for
signal sources that are added) are located in the same partitions
as original sinks and sources. This placement constraint can be
used to guide incremental partitioning. As will be shown in the
following example, the use of previously routed links avoids the
need to reroute preexisting signals and, in some cases, the need
to recompile FPGAs that contain no design changes.

As an example, consider the designs shown in Fig. 11. In the
original design shown on the left, two subcircuits have been par-
titioned across four FPGAs. Communication between FPGAs is
pipelined via shaded flip-flops inserted during design routing.
On theright, it can be seen that the gateF’ has been replaced
with inverter X, and flip-flop B and the subcircuit in FPGA 2
have been removed. Inter-FPGA linkandb are presentin both
designs. During the initial router pass for the original design, the
communication links andb are scheduled. In the modified de-

3) A number of links from the original design that wereSign, two FPGAs (FPGA 2 and FPGA 4) have had logic removed

routed during initial design mapping may beiven by ~and require recompilation. This gives two possible partitioning

added design logic. If possible, this logic should be agestinations for the inverter and two possible routing paths for
signed toB,qq such that previously scheduled link comandb. These choices are shown with dashed lines in the figure.

munication can be used.

If one takes previous routing into account, FPGA 4 is the

These objectives can be met by constraining K-way parbetter target partition for inverte¥, since previously scheduled
tioning acrossB,qq partitions. Before describing the specifica andb communication circuitry in FPGA 1 and FPGA 3 can
steps involved in partitioning, objectives 2) and 3) above are dge used. If FPGA 2 is chosen as the destination for the inverter

scribed in greater detail.

during incremental partitioning, FPGA 1 will have to be recom-
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Initial Mapping Incremental Mapping

FPGA 1 FPGA 4

D A 9

DD0—>DO—>DEO

FPGA 2 FPGA 3

Fig. 11. An example illustrating the dependency of input and output links. The dashed lines in the mapping on the right illustrate potentialigatisdor s
andb.

piled totransmitsignala to FPGA 2, and FPGA 3 will have to . ] ]
be recompiled taeceivesignalb from FPGA 2. w: (Siﬁfv‘;;:ngxg E“i‘i‘gi ge;;%n which
. . . . . €s.

Forinterfacelinks that remain the same after design modifi-p, ge; of nodes in Na:d connected to nets in W.
cation but interface to added logic, it is desirable to retain pre
viously scheduled communication. Added design nodes that éCost(i): Cost of assigning a node to FPGA ¢
driven by pr_ewou_sly schedul_ed links should duaachqredln_an For each link in the original design.
FPGA that is a sink for the link. As a result, thg link Will nOt ™ 1£ Jink drives or is driven by a node in Nagq.
have to be rescheduled and the source FPGA will not have to Assign associated net to W.
recompiled. The corresponding argument can be made for mc Add node to P.
ules that drive interface links. EndFor

. i For each node n in P.
The process of anchoring the affected logic can be performi  For each FPGA i in Bgyq.

in two stages: locating the affected nodes and assigning t Costs (1) = 0.
nodes to FPGA partitions. Added logic that interfaces to ur FOrI"f‘*Cht“;t in Wtz‘ﬁr‘iaCthi to f;?:le n I/0.
changed links can be identified in a series of steps. “%o;zjs(;)“; T e
1) A depth-first search is performed on the modified desig EndFor
to determine if nets associated with theginal link set EndFor

. . . Select FPGA with minimum cost, Cost (3).
L remain present in the design. . -~ . Assign node to FPGA with minimum cost, Cost (z).
2) For each net found to be present in the modified desigEndFor

a check is made to determine if one of two conditions i
met: 1) the net is driven by a node in the original design
and fans outto an added node and 2) the netis driven byrgn 12.  Algorithm for anchoring interface nodes to FPGAs.
added node and fans out to a node in the original design.
These nets form a sét’. 2) Partitioning Algorithm: Incremental partitioning of
3) All nodes inN,qq4 attached to nets il form a setP. added design logic onto modified FPGAs follows directly
After the affected set of nodes has been located, a placemiam the basic Kernighan—Lin, Fiduccia—Mattheyses (KLFM)
heuristic is used to determine the appropriate destination FP@E&] bipartitioning algorithm. To promote design quality, this
for each node. The cost associated with placing a node algorithm has been supplemented with several optimizations
a specific FPGA is based on the number of interface linkgo take unchanged logic and connections to the unchanged,
attached to the nodg, and the number of these links routedixed-placement FPGAs into account.
to 7 during initial design mapping. Specifically, this cost is The KLFM partitioner distributes modulég, 44 across avail-
able FPGASB,q4. Fig. 13, modified from [5], illustrates several
partitioning steps in italics that reflect changes for incremental
Cost; (i) =1, — I. (4) partitioning. These steps ensure that unchanged logic is reas-
signed to the same bin to which it was initially allocated by pre-
After node cost has been determined for each FPGA, the nodedified design partitioning. Anchor nodes, evaluated prior to
is assigned to the min-cost FPGA with sufficient capacity. Dgartitioning using the algorithm shown in Fig. 12, are assigned
tails of the node anchoring algorithm are shown in Fig. 12. to selected FPGAs. During partitioning, anchor nodes can only
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Assign unchanged nodes to previously assigned bins.
Add anchored nodes to represent interface links.
Randomly assign remaining new design nodes to
balance bins.
While cutsize is reduced.
Unlock new design nodes. Fig. 14. A circuit modified from the example shown in Fig. 5. AR gateF
While valid moves exist has been added to create this circuit.
Find unlocked node that most improves cutsize.
Move whichever node most improves cutsize.
Lock moved node. FPGA 1 FPGA 4
Update affected nets and node.
endwhile
Backtrack to point with minimum cutsize.
endwhile :

Fig. 13. Modified KLFM algorithm.

shift to other partitions with the same anchor cost, as specified
by (4). As a result of partitioning, each FPGA R4 receives
approximately the same amount of logic. Interconnect between
the FPGAs in minimized so that routing can be completed with
available inter-FPGA resources.

D. Incremental Routing

Once modified logic has been distributed to FPGABif4,
links in L,qq are routed. Similar to initial-run ro_uting, thisFi_g_ 15.  An incremental mapping of the circuit in Fig. 14.
process starts with depth and dependency analysis of the entire
modified circuit using the approach described in Section 1l-(pegign J | [—
Depth and dependency information for the modified design Clock
used to supplement routing information from the initial desig v, v, Vg vV, Vs Vs
such as link send and arrival tim&s and7,. Virtual

1) Routing Constraints:An important aspect of depth anal-Clock S [ I [ B
ysis for modified circuits is the determination of which previ-
ously routed links from the initial design can remain in use. 1Signal a
some cases, portions of previously routed inter-FPGA links mi T T
need to be rerouted as a result of changed logic depth and
pendency. As an example, consider the circuit shown in Fig. 159na! f
The circuit is the same as that shown in Fig. 5 except dmat

[=1=
T n=1 1  FPGA3->FPGA4
s a

gateF and signalg and f have been added to the design. On +
potential incremental mapping for the modified circuit appeassignal b | =1 ’TIT:,’T|
in Fig. 15. s a

A design clock cycle associated with the scheduled route
the circuit mapping in Fig. 15 is shown in Fig. 16. When thessignal d
waveforms are compared to those in Fig. 7, it can be seen that
an extra cycle of combinational delay has been added due to i 16. Design clock cycle for the incremental mapping shown in Fig. 15.
OR gate evaluation in FPGA 3, extending the number of virtual
cycles needed to evaluate the design. Closer examination ofifted during incremental partitioning. If ther gate had been

=1~

two sets of waveforms indicates that although sidgnias pre- assigned to FPGA 2, the routing waveform for the modified de-
viously been routed between FPGA 3 and FPGA 4 in the initialgn would have been the same as the waveform shown in Fig. 7
design, it will have to be rerouted for the modified mappingince all intra-FPGA combinational paths can be evaluated in
For the initial design, signdl has been routed between FPG/Ane virtual cycle.
3 and FPGA 4 on virtual cycle V4. As a result of the mapping 2) Routing Algorithm: The goal of incremental scheduling
shown in Fig. 15, signal cannot be routed until virtual cycle is to minimize the number of virtual clock cycles needed to
V5 due to combinational dependencies. This results in a needriansport added links 44 between FPGAS iB,q44. The route
recompile both FPGA 3 to transmit the signal on cycle V5 argtheduler assigns links to specific inter-FPGA channel wires on
FPGA 4 to receive the value on virtual cycle V5. In Section Vlirtual clock cycles in which the resources are unused.
it is shown that few combinational paths cover more than a fewTo support incremental routing, the channel graph from the
FPGAs, limiting the number of required fanout path ripups. original design mapping is used. Prior to routing, the graph is
Although Fig. 15 showsRr gateF assigned to FPGA 3, sinceinitialized to reflect the routing capacity consumed by the ini-
both FPGA 2 and FPGA 3 are 8,44, two possible targets ex- tial routes. Channel routing resources used by links4ip, are
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Three-hop

Two-hop
Fig. 17. FPGA topology connections.

not included in the initialization since they are not presentin thi& Processor Compilation
modified design. A breadth-first analysis is performed on the en-
tire modified design to identify fanout paths in unmodified logi
that may be affected by depth or dependency changes, as
scribed in Section 1V-D1. The routing schedule is determined

The last step in the incremental compilation process involves
?Hg_recompilation of affected FPGAB,44. In this work, re-
g8mpilation of each individual FPGA was started from scratch;

that a minimum number of routes from initial mapping requir@o information from initial-design FPGA place-and-route was

rerouting and only FPGAs iB,4q need to be recompiled. sed.

Incremental routing involves both a check to determine if pre-
vious rqutes fromthe initial qesign mapping can still be useq and V. EXPERIMENTAL METHODOLOGY
the assignment of new, 44 links to channel resources during
specific time slots. The evaluation of previously routed link8. The Effect of Interconnect Topology
indicates whether initial virtual cycle designations can still be

met in the potential presence of added combinational depth,c% pilation system, experimental results were obtained

shown in Fig. 15. If previous send timg§ cannot be met for.from mapping designs to both a commercial FPGA-based

a previously routed link, the routed link is ripped up and desI%_mulator and hypothetical emulators with varied inter-FPGA

n for rerouting. The evaluation of previously r lin : . i .
ated for rerouting. The evaluation of previously routed l&lopolog|es. A set of experiments targeted an lkos Virtualogic

takes place via dependency-checking for each link. Like ini: 4 : ) .
tial-run routing, links are ordered for evaluation based on depﬁmu'at'on system, which contains 64 Xilinx XC4036EX

Specific links are evaluated when the arrival times of all combj.~ GAS- The FPGAs in this system are interconnected with
national inputs have been determined. Treiady timeT,, [11] both near-neighbor channels (14 unidirectional signals in each

indicates the earliest point at which the link can be sent to neighr€ction) between FPGAs and channels that connect to FPGAs
boring FPGASs. If the link has been routed during initial-ruiWo hops away (12 unidirectional signals in each direction to
routing andZ,, is less than the send tinfg of the original route, Next-nearest neighbors). The developed compilation algorithms
the old link route and associated channel utilization can be pfave been integrated with the Virtual.ogic compilation system,
served. Otherwise, the link is assigned:gq for rerouting and Which performs initial design mapping. The result of both

To prove the practical benefits of the developed incremental

previously used channel capacity is reclaimed. initial and incremental compilation is a set of Xilinx XC4036
After ordering via depth and dependency analysis, the sgitstreams, which are programmed into the emulator.
cific steps needed to route links in4q are the following. Hypothetical emulation topologies were limited to

1) The shortest patif,, from the source FPGA; to the inter-FPGA connectivity similar to the type shown in Fig. 17.
destination FPGA&l; via FPGAS inB, 4 is determined. Interconnect channels can be present between near-neighbor
Note that through prior determination Bf.qq, it is known FPGAs and FPGAs separated by multiple hops. The effect of
that a feasible path exists. interconnect topology on system performance has previously

2) The departure delds); of the link is determined based onbeen addressed in the context of FPGA-based logic emulation.
available channel capacity. Due to channel congestionHguck evaluated bandwidth tradeoffs between near-neighbor
may not be possible to route a link immediatelyZat ~ connectivity and more distant connectivity [23]. It was found
In the current route allocation approach, taken from [12fhat if a topology contains too much near-neighbor intercon-
once aroute leaves, itis not delayed at any through-hopnect, distant connections will require through-hops, potentially
FPGAs. If both ready time and departure time are takéengthening the delay of the critical routing path. If the topology

into account, the link leaves, at the send timgd, = contains insufficient near-neighbor bandwidth, local routes

T, + Ty. may be delayed due to congestion, extending the time needed
3) Asininitial-runrouting, the arrival timé, atd; isTs+n, to complete a user design cycle.

wheren is the number of routing hops for the link. Increased connectivity between FPGAs provides a specific

4) After routing is complete, channel utilizations along thgenefit for incremental compilation. In Section IV-A, it was
route path and ready times for dependent signals are yted that paths between FPGAsHQ,;, may require the in-
dated. clusion ofunmodifiedFPGAs. If more direct FPGA-to-FPGA

In performing routes, the scheduler treats wires with momhannels exist, fewer unmodified FPGAs may need to be recom-

than one fanout as a set of two-terminal nets. piled, accelerating overall compile time. To evaluate the effect
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TABLE I as Boolean satisfiability, the embedded graph changes incre-
BENCHMARK DESIGN STATISTICS mentally from application to application both in terms of node
Design | Source | Imitial Gates | Modified Gates content and in terms of connectivity. To evaluate our system,
DES | RAW 124512 124581 initial RTL implementations of both a standard shortest path
firl2 | RAW 124585 124769 (ssp64)rnd multiplicative shortest patepm16)yraph were cre-
sspb4 | RAW 96577 96860 : .
ated using tools from the RAW benchmark suite [24]. After
spml6 RAW 127011 127992 C .. . .
4000 Prep 11826 12073 initial versions were synthesized and mapped to the emulator,

versions with modified graph functionality were created and
mapped to the emulator. To evaluate our system, both graph in-
of topology on incremental compilation, we mapped both interconnect and node functionality modifications were made.

tial and modified designs to emulation systems with a variety of Microprocessor design often requires an evaluation of a
topologies consisting of near-neighbor, two-hop, and three-hapmber of different architectural choices. Part of this evaluation
interconnect. Results that show the benefit of non-near-neighlolves the determination of arithmetic logic unit (ALU) func-

communication are presented in Section VI. tionality. In an effort to evaluate the feasibility of performing
_ incremental compilation on a modified RISC processor de-
B. Benchmark Designs sign, a new instruction was added to the instruction set of an

To evaluate the limitations of incremental compilation, seXisting, synthesizable RISC core. After initially mapping a
eral RTL benchmark circuits were first synthesized and th&tndard R4000 design from the Prep benchmark suite [25]
mapped to the VirtuaLogic emulation system. Following initidlo the emulator, control logic and ALU support for anoR
mapping, these benchmarks were modified at the RTL level aftinction were added to the design. This modified design was
were mapped to the emulation system using the algorithms &éen synthesized and incrementally mapped to the emulator.
scribed in Section IV. Design statistics for the benchmarks are
summarized in Table Il. Sources for the benchmarks include the
RAW [24] and Prep benchmark suites [25]. Subsequently, each
benchmark is described along with a discussion of how the ini-Both initial and modified versions of the benchmarks listed
tial design was modified. Many of these modified benchmarls Table Il were mapped to the VirtuaLogic emulator. Results
benefit from hardware specialization [26], the capability to dappear in Table Ill for both original and incremental mappings.
rectly customize a specific piece of hardware to perform a cébesigns were initially partitioned onto the number of FPGAs
tain task. In several cases, the benchmark is specialized bageolvn in theCompiled FPGAsow in Table Ill. Following ini-
on the value of constant parameters to reflect an optimizatital design mapping via the flow described in Section II-C, an
that can be integrated into the hardware. analysis of results was performed to determine the verification

DES is an established encryption standard that operateshbatavior and emulation system utilization. FPGAs were com-
64-bit blocks of data and uses a 56-bit key [27]. Each 64-htled to run at a virtual clock speed of 34 MHz. Results listed in
input value is encrypted to form a 64-bit block of output cypherable Ill indicate the critical and average path lengths in number
text. Output data are the result of 16 stages@Rk operations of FPGAs, the number of virtual clocks per user design clock
involving intermediate results and the input key. Encryptions ef/cle, and the achieved emulation speed.
multiple input values can be performed in parallel. To evaluate After successful initial implementation, design changes,
this design using logic emulation, an initial design was createg described in Section V, were made, and modified designs
based on a fixed 56-bit key and mapped to the logic emulatarere partitioned across a minimum number of FPGBS4a).

The key value was then changed and a new, specialized hakd-seen in theCompiled FPGAsow of Table IlIl, fewer than

ware implementation was created. Although much of the DEXS% of FPGAs were recompiled for each design. For three
circuit remains the same, important changes in structure ocairfive designs, the run-time performance of the recompiled
in selected key input blocks (S-blocks) in the design. design matched the performance of the initial compilation.

Finite impulse response filters are integral parts of many digxtra virtual clock cycles for desigrssp64andspml6were a
ital signal-processing systems. Multipliers that scale samplegbult of routing congestion along critical paths consisting of
data by fixed constants are important components in many filiilded design logic. The row mark&erouted linksndicates
implementations. To evaluate incremental compilation, a 20-ttlee number of previously routed links that were rerouted due
filter design requiring a fixed set of coefficients was synthesized changes in dependencies, as described in Section MA.
and mapped to the VirtuaLogic emulator. A modified design wadW 1/O indicates the average number of pins used on each
then created in RTL by changing the multiplier constant for twBPGA, andAve. Hard I/Oindicates the average number of
of the taps and resynthesizing the design. The modified desiggic signals communicated for each partition.
was then mapped to the emulator using incremental compila-The utilization of channel routing resources in a verification
tion. system varies over virtual clock cycles of the user design clock

Reconfigurable hardware has been used extensively to pegele. An example of channel utilization for design DES appears
totype hardware that can solve graph-based problems [28]. foFig. 18. The solid line in the figure shows average bandwidth
these applications, graph functionality is embedded directly &cross all channels in the emulation system for the initial design,
hardware as a set of computational nodes and associated grapike the dashed line shows average bandwidth only in chan-
interconnect topology. For many graph-based applications, sungis that are subsequently changed by incremental routing. The

VI. RESULTS
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TABLE Il
RESULTS OFORIGINAL AND INCREMENTAL COMPILATION FOR BENCHMARK DESIGNS
ssp64 spml6 DES fir12 r4000
orig. | increm. orig. | increm. orig. | increm. orig. | increm. orig. | increm.
Total gates 96577 96860 | 127011 127992 | 124512 124581 | 124585 124769 | 11826 12073
Deleted gates 1825 3218 2534 1815 565
Added gates 2108 4199 2603 1999 812
Compiled FPGAs 16 3 32 4 32 4 32 3 16 3
Routed links 2273 44 2277 67 6552 67 2133 68 1280 45
Rerouted links 10 8 0 5 0
Crit. path (FPGAs) 5 5 5 5 4 4 14 14 14 12
Ave. path (FPGAS) 1.67 1.68 1.70 1.69 1.79 1.78 1.52 1.55 1.62 1.64
Ave. VW 1/0O 63 64 66 66 75 75 50 49 49 49
Ave. Hard I/O 473 478 242 243 410 405 133 130 160 152
VW virtual clks 15 17 12 14 12 12 21 21 19 19
Emul. speed (MHz) 2.27 2.00 2.83 2.43 2.83 2.83 1.62 1.62 1.79 1.79
S 70 ——  Original DES, all channels ’g‘
3 - — — Original DES, altered channels 5 800 | FPGA Routing I
S ] Modified DES, altered channels é FPGA Placement '
3 E 700 } Tech. Mapping |
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Fig. 18. Channel utilization per virtual clock cycle for a design clock cyclEi9- 19-  Emulation system compilation time—initial and incremental.
of DES. Note from Table Ill that the number of virtual clock cycles per design

clock cycle for both original and modified DES designs is 12. L . o . . .
verification equipment, processor compilation time is still the

limiting factor in overall compilation time.

dotted line indicates utilization in the same modified ChanneISAfter mappn‘]g initial and modified designs to an existing
after incremental routing. As shown in Fig. 18, unused initiddommercial logic emulator, the specified topology file used by
I’OUting bandW|dth can be Used during incremental routing fﬁe mapp|ng software was modified to allow for mapp|ng to
complete link routes. In all cases, bandwidth requirements pgfulation systems containing FPGAs with the same pin count
virtual cycle are smaller as time passes due to signal dependgiix with varied inter-FPGA topologies. Both initial and incre-
cies. Due to static SChedU“ng, the bandwidth per virtual ClO(F‘henta] Comp“ation were performed on each t0p0|ogy for de-
cycle is the same for each user design clock cycle of a desiggignsspm16andssp64 These experiments included topologies

Compile times for both initial and incremental desigmvith near-neighbor interconnect and two-hop, three-hop, and
compilation appear in Fig. 19. All compilation was performetbur-hop interconnect in both horizontal and vertical dimen-
on a 360-MHz Sun SparcStation Ultra Il with 512-MB RAM.sions. The number of virtual clock cycles per user design clock
For each design, incremental mapping time takes less tt@yle for each design is shown in Table IV. The number of unidi-
20% of initial mapping time. In both cases, FPGA compilatiorectional channel wires allocated for each inter-FPGA distance
takes the bulk of design mapping time. By limiting the numbés shown in the second row of the table. Channels in both hori-
of affected FPGAs during system partitioning and routingontal and vertical dimensions were allocated identically. From
incremental compilation time can be kept to a minimunthe table, it can be seen that the topology used in the emulator
Although the absolute compilation times are generally le$$4 near-neighbor signals, 12 two-hop signals) provided both
for logic-processor-based versus FPGA-based parallel logie best original and incremental design performance (minimal
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TABLE IV
VIRTUAL CLOCK CYCLES REQUIRED PERDESIGN CLOCK CYCLE FOR VARIED TOPOLOGIES
Design [near] [near, 2-hop] | [near, 2-hop, 3-hop] | [near, 2-hop, 3-hop, 4-hop]
26 wires | 14,12 wires 12, 10, 4 wires 10, 8, 4, 4 wires |
spml6-original 18 12 24 24
spm16-modified 18 14 24 24
ssp64-original 18 15 24 24
ssp64-modified 19 17 24 24
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