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Incremental Compilation for Parallel Logic
Verification Systems

Russell Tessier, Member, IEEE,and Snigdha Jana

Abstract—Although simulation remains an important part
of application-specific integrated circuit (ASIC) validation,
hardware-assisted parallel verificationis becoming a larger part
of the overall ASIC verification flow. In this paper, we describe
and analyze a set ofincremental compilation steps that can be
directly applied to a range of parallel logic verification hardware,
including logic emulators. Important aspects of this work include
the formulation and analysis of two incremental design mapping
steps: the partitioning of newly added design logic onto multiple
logic processors and the communication scheduling of newly
added design signals between logic processors. To validate our
incremental compilation techniques, the developed mapping
heuristics have been integrated into the compilation flow for a
field-programmable gate-array-based Ikos VirtuaLogic emulator
[1]. The modified compiler has been applied to five large bench-
mark circuits that have been synthesized from register-transfer
level and mapped to the emulator. It is shown that our incremental
approach reduces verification compile time for modified designs
by up to a factor of five versus complete design recompilation
for benchmarks of over 100 000 gates. In most cases, verification
run-time following incremental compilation of a modified design
matches the performance achieved with complete design recom-
pilation.

Index Terms—Incremental compilation, incremental parti-
tioning, incremental routing, logic emulation.

I. INTRODUCTION

I N AN effort to provide complete functional coverage, ap-
plication-specific integrated circuit (ASIC) designers often

use hardware-assisted parallel verification platforms. These sys-
tems, such as logic emulators [1]–[3] and rapid prototyping sys-
tems [4], contain special-purpose logic processors or field-pro-
grammable gate arrays (FPGAs), which evaluate logic func-
tions and communicate results in parallel. Although the need
for mapping algorithms that can incrementally address design
changes is apparent in many areas of computer-aided design
(CAD), this need is particularly acute in the area of compila-
tion for hardware-assisted verification. Parallel verification sys-
tems often exhibit design-mapping times of hours rather than
minutes due to the need for the coordination of system-wide
communication and the individual compilation of netlists for
numerous logic processors. The integrated nature of the com-
pilation process for these systems limits the capability of de-
signers to incrementally recompile logic designs after small de-
sign changes. While these design changes can be integrated
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into workstation-based design simulation relatively straightfor-
wardly, modified designs targeted to parallel verification gener-
ally require long recompilation routines.

The need for incremental design support is a result of recent
interest in core-based design and system-on-a-chip integration.
Most ASIC verification flows involve numerous iterations of de-
sign test, debug, and recompilation. As design modifications are
evaluated and design errors are identified, the original design
is subjected to a series of minor modifications. Often, design
changes are confined to a subset of the original design and af-
fect only a small part of the overall design logic (often less than
15%). For example, a design change may be isolated to a single
or small number of register-transfer level (RTL) components
that are substantially smaller than the overall design but encom-
pass more logic than will fit in a single logic processor in the
verification system. If recompilation for the verification system
can be limited primarily to those logic processors that contain
logic affected by the design change, the incremental compilation
process can be greatly accelerated. The ability to support design
changes in this small set of processors is crucial to avoiding the
need to recompile all processors in the system from scratch. In
addition to providing fast design turnaround, the resulting ver-
ification run-time of the incrementally compiled design should
be the same as or nearly the same as the verification run-time of
the original design mapping.

Existing software systems for parallel verification typically
contain a number of automated steps to translate a gate-level or
RTL netlist to parallel processing hardware. Included in these
steps is a partitioning step to separate the user design into pieces
that will fit into each target logic processor, a placement step to
select the appropriate processor to hold each design partition,
a routing step to interconnect interpartition wires using board
wiring resources, and an individual processor compilation step
to schedule evaluation of logic expressions. By far the most
computationally expensive task of this design flow is individual
processor compilation (e.g., FPGA place and route), which can
require several hoursper devicegiven tight timing constraints
and logic capacity limitations. Initial compilation of a proto-
type design may require many hours at the individual processor
compilation stage, even if multiple compiles are performed in
parallel across a network of workstations.

In this paper, we formulate and develop incremental tech-
niques to identify changed design logic, partition it across
affected logic processors (FPGAs) in a parallel verification
system, and efficiently determine communication patterns
between affected processors. In following this incremental
path, attempts are made to limit the number of processors
that are affected while minimizing the affect of incremental

1063-8210/02$17.00 © 2002 IEEE



624 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

compilation on overall verification run-time. In an initial step,
design changes between the initial and modified design netlist
are noted and affected logic processors are determined. These
changes include design logic that isremovedfrom the original
netlist as a result of design modification and new logic that is
addedto the original design. After removed logic is extracted
from the original design mapping, added design logic is par-
titioned across a minimum number of logic processors using
a constrained partitioning algorithm. Partitioning is followed
by the scheduling of both intraprocessor computation and
interprocessor communication for added design logic. These
scheduled tasks are coordinated with logic evaluation and
communication for logic remaining from the original design.
As a final step, a minimum number of logic processors are
recompiled to finalize a complete parallel verification image in
a fraction of the time of complete system recompilation.

To prove the benefit of the incremental design approaches, we
have targeted incremental compilation techniques to an FPGA-
based logic emulation system available from Ikos Systems [1].
New partitioning and routing approaches are included in the de-
sign flow to augment initial from-scratch design mapping. Five
large RTL benchmarks are used to illustrate the compile-time
improvement for our approaches. The initial designs have been
substantially modified at the RTL level (approximately 10–15%
of each netlist was changed) to explore a range of feasible imple-
mentation choices. Following design mapping to a commercial
emulator, the effect of interprocessor topology on incremental
verification efficiency is evaluated.

The rest of this paper is structured as follows. Section II
discusses previous work in parallel verification and basic
parallel verification design flows. In Section III, the software
flow required to support incremental compilation is reviewed.
Our incremental approach to design mapping is discussed in
Section IV. Section V discusses our experimental methodology.
Experimental results that have been derived from our system are
described in Section VI. Finally, in Section VII, we summarize
this paper and make concluding remarks.

II. BACKGROUND

A. Parallel Logic Verification

Numerous parallel verification systems have been developed
to support ASIC designs containing millions of logic gates.
These systems generally contain a collection of processing
elements, such as logic processors or FPGAs, interconnected in
a fixed topology. Although early verification systems contained
a small number of processors [5], contemporary architectures
[1] contain hundreds of interconnected processing elements,
typically enclosed in specially designed cardcages. These
systems can obtain prototyping speeds that range from a few
megahertz to over 20–30 MHz [6]. Verification performance
is usually limited by the physical distribution of emulation
memory devices, which are used in verification systems to
verify on-chip memory resources, and the need to transport
intermediate data values between logic processors. Over the
past decade, the verification capacity of parallel verification
systems has kept pace with ASIC design sizes through the
phenomenon of Moore’s law. As design sizes have increased in

capacity and performance, so have the processor and memory
components that constitute verification systems.

Unlike traditional parallel processing, which often requires
time-varying computation and interprocessor communication
patterns, the structure of circuits under test is predictable
and static. As a result, both processor computation and inter-
processor communication can be completely determined at
compile timethrough intraprocessor computation and interpro-
cessor communication scheduling. This compile-time approach
to mapping has been demonstrated by a sizable collection of
contemporary logic emulators. The Quickturn Cobalt verifica-
tion system [7] contains up to eight boards with 64 processors
per board. Due to direct connections between processors, it
is possible for each processor to broadcast results to other
processors at time slots determined during compilation. The
Arkos emulation system [8] contains 14 logic ASICs per board,
each containing 32 processing elements. Logic evaluation
inside the ASICs and communication between the ASICs takes
place at compile-time determined time intervals. A similar
system that includes multiple logic processors interconnected
across multiple boards is the Tharas Hammer system [9].
Logic processors in this system have been specially designed
to allow for rapid, parallel evaluation of logic expressions.
For several systems, off-the-shelf FPGAs, rather than custom
logic processors, are used as processing elements. The Ikos
VirtuaLogic system [1] contains 64 FPGAs per board. These
FPGAs are interconnected in a direct-connect network. A stati-
cally scheduled interconnect multiplexing technique is used to
exchange data between the FPGAs. A similar technique for data
communication is employed by the Xtreme emulation system
[2] by Axis Systems. This system implements data computation
and communication using precompiled single-instruction
multiple-data communication patterns. Both inter-FPGA and
interboard communication are supported.

B. Parallel Verification Software Flow

Although parallel verification systems vary considerably in
terms of hardware architecture, many similarities exist in their
basic design mapping flows. Contemporary compilation soft-
ware for parallel verification systems has evolved significantly
as component logic processor capacities and system sizes have
increased. A typical parallel verification system software flow
for converting a structural or RTL netlist to a physical realization
appears in Fig. 1.Design translationconverts the original de-
sign netlist into the native technology of the verification system
[5]. Examples of design translation include RTL synthesis, tech-
nology mapping for FPGA-based logic emulators, and Boolean
reduction for time-sequenced logic processors. Following de-
sign translation, design logic ispartitionedinto pieces that will
fit within the logic and memory resources of the logic proces-
sors and assigned to specific system resources viaglobal place-
ment. Communication between logic processors is determined
through twoglobal routingsteps, which are shaded in Fig. 1.
First, feasible shortest paths between logic processors are deter-
mined using available board routing resources. Subsequently,
communication between processors is scheduled based on logic
dependencies and topology constraints. As a final step,pro-
cessor compilationfor each logic processor is performed. This



TESSIER AND JANA: INCREMENTAL COMPILATION FOR PARALLEL LOGIC VERIFICATION SYSTEMS 625

Fig. 1. Parallel verification software flow.

step includes FPGA place and route for FPGA-based logic em-
ulators and Boolean instruction scheduling for special-purpose
logic processors [8], [9].

C. Virtual Wires Emulation

The target system for this paper is an Ikos VirtuaLogic
emulation system that contains 64 Xilinx XC4036EX FPGAs.
Logic evaluation and communication in VirtuaLogic systems
is based on Virtual Wires technology [10], a heuristic list
scheduling approach. This technique pipelines multiple logical
signals calledvirtual wires across single inter-FPGA wires to
overcome FPGA pin limitations [10]. The derived communica-
tion schedule establishes a feasible space–time route for every
logical wire while guaranteeing that all FPGA combinational
dependencies are correctly ordered.

The design mapping steps for Virtual Wires systems follow
the basic software flow outlined in Fig. 1. In a typical system,
RTL synthesis and FPGA technology mapping are performed
during the design translation stage. This is followed by design
partitioning into logic blocks small enough to fit within FPGAs,
placement of logic blocks onto specific FPGAs, and scheduling
of both intra-FPGA logic evaluation and inter-FPGA commu-
nication. Babb [10] and Hauck and Agarwal [11] provide ad-
ditional detailed information on Virtual Wires compilation. A
distinctive aspect of parallel verification systems in general and
Virtual Wires systems in particular is computation and commu-
nication scheduling. The initial step in Virtual Wires scheduling
is the determination of all circuit combinational dependencies.
Logic can be scheduled for evaluation once all dependent in-
puts have reached a known value. After intermediate values have
been determined, the scheduling approach pipelines multiple
logical signals (virtual wires) across inter-FPGA wires to over-
come FPGA pin limitations. Sequential primitives (flip-flops)
and design primary outputs form combinational boundaries for

Fig. 2. Dependence calculation example [10]. Dependence is evaluated from
inputs to outputs.

logic evaluation in each design clock cycle. These values are
evaluated at the end of each design clock cycle after all combi-
national dependencies have been satisfied.

As first described by Babb [10], a key aspect of signal sched-
uling is the determination of signaldepthanddependence. Both
depth and dependence apply to interpartition wires. To analyze
input to outputdependence,we determine the set of outputs to
which a combinational path exists from each input. An output is
said to be a dependent (or a child) of an input if a change in that
input can combinationally change the output. In determining de-
pendence, we assume that all outputs of a combinational library
primitive are dependents of all the inputs of that primitive. Sim-
ilarly, no outputs are dependents of any of the inputs for sequen-
tial primitives.

Let Depend denote the set of outputs of a given partition
that are dependents of an input of the same partition connected
to an interpartition wire . Similarly, let represent the
set of inputs that are ancestors to an output driving an interpar-
tition wire . By our definition, inputs to storage elements and
external outputs will have no dependents—Depend —and
outputs of storage elements as well as external inputs will have
no ancestors— .

Fig. 2 shows an example circuit partition containing four in-
terconnected primitive logic elements with three inputs (not in-
cluding the clock) and three outputs. The dependence relation-
ships for this partition are as follows:

• DependIn Out ;
• Depend Out Out ;
• Depend Out Out .

Likewise, the ancestors are as follows:

• Out In In In ;
• Out In In ;
• Out (REG is a storage element).

Thedepthcalculations use the dependence relationships. The
depth of interpartition wire is the largest number of partitions
in a forward combinational path starting at that wire. Depth is
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Fig. 3. Depth calculation example. Dependence relations between partition
inputs and outputs are represented with dashed lines.

computed recursively from the wire dependence sets such that
for each wire

Depth
if Depend

Depend Depth otherwise. (1)

Fig. 3 shows an example design with three partitions and six
interpartition wires. The dashed lines denote input–output de-
pendence relationships. In this example, wires are at the fol-
lowing depths:

• depth 0: W4, W6;
• depth 1: W2, W3, W5;
• depth 2: W1.

Following dependency analysis, routing in systems using
virtual wires starts with the formation of a channel graph [11].
As shown in Fig. 4, this graph is derived from the emulation
system topology and each edge represents a unidirectional
routing channel. Each channel has a width representing the
number of physical wires in the channel. As routing resources
in a channel are consumed, the cost of using the channel
increases.

Routing for systems using virtual wires is simplified by the
abstraction of both time and space. Both logic evaluation and
signal communication in Virtual Wires systems are controlled
by a high-speed clock called avirtual clock [11]. This clock
serves as a discrete timebase, providing a reliable mechanism
for controlling the order of events at a fine granularity. Since
many combinational evaluations and signal transfers may occur
in a single design clock cycle, the virtual clock by necessity runs
at a much higher frequency than the design clock. Routing for
each interpartition wire produces a source–destinationpath in
both time and space. Signals that travel a multi-FPGA distance
in the system topology are pipelined into a set of intermediate
single-FPGA steps. Each signal is registered at FPGA bound-
aries in a flip-flop synchronous to the virtual clock and is com-
municated between a pair of FPGAs over a physical wire. As a
result, long combinational paths are broken into a series of dis-
crete time steps. Discretization of both time and space results
in reliable and predictable verification system operation. For
inter-FPGA communication, all partition inputs must be valid
before dependent partition outputs are routed to other points in

Fig. 4. Near-neighbor FPGA topology. Each arrow represents a unidirectional
inter-FPGA channel.

the verification system. All inter-FPGA signals are ordered so
that they may be routed as soon as precedence conditions are
met. This ordering results in an ordered list of inter-FPGA sig-
nals to be routed.

Although a number of routing algorithms exist for
time-scheduled verification systems [10], [12], [13], the
basic steps required to perform scheduled routing in each
are similar. Routing for each individual interpartition signal
in Virtual Wires systems involves a series of steps after the
signal is selected from the dependence-ordered signal list. The
capacity of an inter-FPGA channel can be measured on a
time-sliced basis as .

To illustrate route timing, routing notation from [11] is used
to indicate the fastest possible critical path routing via a series
of routing steps.

1) Each signal route starts at a source FPGA. The cor-
responding destination FPGA is the endpoint for the
route.

2) The shortest feasible path between partitions and
in terms of channels is determined.

3) Thesend time of the signal is determined. This is the
time slot at which a signal leaves FPGA.

4) The signal arrives at FPGA at thearrival time of
the signal. The arrival time is defined as

(2)

where is the number of FPGA chip boundaries (hops)
between source FPGA and destination FPGA .

After all dependent signals arrive at an FPGA, the evaluation
of combinational logic requires one virtual clock cycle.

The above routing steps are illustrated through the use of
an example. The circuit shown in Fig. 5 has been partitioned
onto the FPGA topology shown in Fig. 6, which supports
near-neighbor communication. Each inter-FPGA signal can
only travel between two FPGAs during each system (virtual)
clock cycle. In the figure, portions of the original circuit are left
unshaded while communication pipeline flip-flops controlled
by the virtual clock are darkly shaded. Note that signalpasses
unchanged through FPGA 3 on the path from FPGA 2 to FPGA



TESSIER AND JANA: INCREMENTAL COMPILATION FOR PARALLEL LOGIC VERIFICATION SYSTEMS 627

Fig. 5. Input circuit.

Fig. 6. Circuit mapping to FPGAs for the circuit shown in Fig. 5. Virtual
Wires pipeline flip-flops are darkly shaded. Signalb is transported from FPGA
2 through the pipeline flip-flop in FPGA 3 to FPGA 4.

4. This through-hopis necessary given the lack of a direct
FPGA 2 to FPGA 4 connection. Circuit communication in
terms of virtual clock cycles can be determined by evaluating
the critical path from signal to signal , as shown in Fig. 7.
In Fig. 7, virtual cycles are indicated with labels V1 through
V5; communication delays are indicated with notationequal
to a number, where is the number of virtual cycles required
for communication; and combinational evaluation in terms
of virtual cycles are indicated with a numeral (e.g., 1). After
virtual cycle V5, signal is latched into flip-flop , completing
the design clock cycle.

III. I NCREMENTAL COMPILATION SOFTWARE FLOW

Most design changes that are mapped to parallel verifica-
tion systems are localized to an isolated region of design logic
such as an RTL functional unit or IP core. Since attempts are
made to minimize interprocessor communication during initial
design mapping, many localized design changes can be isolated
to a small number of logic processors and communication paths.
Ideally, to support incremental compilation, mapping operations
such as partitioning can be isolated to only those logic proces-
sors affected by the change and routing can be restricted to a
minimum number of routing channels that interconnect the pro-
cessors. Since individual processor compilation is the dominant
component of system compile time, if incremental compilation
can be restricted to a minimum number of verification system
resources, the number of individual processor compilations can
be limited. Typically, when design changes are made to a user
design, some existing logic is replaced with new logic. As a re-
sult, the size and interconnect structure of the changed piece of
logic must fit within the available resources of the system logic

Fig. 7. Design clock cycle for the circuit mapping shown in Fig. 6.

processors. In our new design flow, steps to incrementally alter
verification system configuration are developed. These steps in-
clude the partitioning of added logic to a subset of system logic
processors (FPGAs) and the routing of new design nets across
routing resources that are no longer needed by removed logic
or that are unused in the initial design mapping. Whenever pos-
sible, the verification system configuration is kept unchanged
for design logic and signals that have not been modified from
the original design.

An incremental compilation flow for parallel verification sys-
tems is shown in Fig. 8. These steps can be characterized as fol-
lows and will be described in detail in Section IV.

1) Netlist comparison:The first step in the incremental com-
pilation process is to identify the disjoint set of logic and
interconnect associated with two distinct designs: theini-
tial designand the design created after the initial design
is modified, themodified design. Logic removed from the
initial design was assigned to a set of processors as a re-
sult of initial design mapping. Thesemodified processors
provide a possible destination for added logic.

2) Incremental path identification:Virtual Wires systems re-
quire scheduled data transport between source and desti-
nation FPGAs. As shown in Fig. 6, in a system topology
with less than direct point-to-point connectivity between
all logic processors, individual processors may serve as
both processing elements and through-hop steps for inter-
mediate routes. If full connectivity of modified processors
using only modified processors cannot be achieved, in-
termediateunmodifiedprocessors, that have had no logic
removed, may have to be included in incremental routing
paths. If used as through-hops, these processors require
recompilation to include routing changes. To limit com-
pile time, the number of unmodified processors selected
to perform through-hop routing should be minimized.

3) Incremental partitioning:Once the modified and re-
quired through-hop processors have been identified,
newly added design logic can be partitioned onto these
processors subject to processor logic and memory ca-
pacity constraints.

4) Incremental routing:Following incremental partitioning,
routing is performed to create a path for the added
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Fig. 8. Incremental compilation software flow.

design signals connecting the modified logic processors.
Since other logic processors surrounding the modified
logic processors are unaltered, this incremental routing
must be performed using board-level routing resources
that have not previously been consumed by unchanged
design routes. First, feasible shortest paths between logic
processors are evaluated. Subsequently, incremental
scheduling is used to form a communication pipeline.

5) Processor compilation:As a final step, processors that
have received new logic or have been modified to include
through-hops are recompiled to complete the remapping
process.

To date, few practical attempts have been made to integrate
incremental CAD algorithms into verification design flows. Al-
though graph algorithms such as bipartitioning and scheduling
have matured in recent years, few incremental versions of these
algorithms have been developed, and even fewer have been re-
duced to practice in a working verification system. Cong and
Sarrafzadeh [14] propose an incremental partitioning approach
based on Kernighan–Lin bipartitioning [15]. In that work, an
initially partitioned network is modified and new logic is dis-
tributed by an incremental partitioner across partitions that pre-

viously have had initial logic removed. The paper indicates that
not only should added logic be allowed to move between parti-
tions but also some portion of previously assigned logic should
be allowed to move. While the study formulates the incremental
partitioning problem, partitioning is not applied in the context of
other verification flow steps that can constrain logic placement.

Unlike incremental partitioning, incremental scheduling has
been developed previously in several areas of computer-aided
design. An incremental scheduling approach for parallel
processing [16] allows for run-time dynamic scheduling of
interprocessor communication based on computation results.
This run-time approach relies on data-dependent computation,
which is not necessary for parallel verification of static cir-
cuits. DeMicheli [17] and Patasman [18] apply incremental
scheduling algorithms to high-level synthesis to refine an
initial schedule. The approaches are based on hill-climbing
techniques and are appropriate only for limited problem sizes.
These iterative improvement algorithms have been extended for
low-level retiming [19] and integrated with value prediction.
Generally, schedule modifications are localized to a small part
of the overall schedule, which make the algorithms difficult to
apply to parallel verification. In an earlier version of the work
presented in this paper, Tessier presents a greedy incremental
scheduler for logic emulation [20]. Perhaps the most relevant
incremental scheduling work has been performed in regards
to land-based data transmission networks. Ma and Lloyd
present an incremental scheduling technique to assign new
communication to time-division multiplexed timeslots [21].
An optimal scheduling approach based on linear programming
is formulated to allocate additional bandwidth. Varma and
Chalasani introduce an incremental graph coloring approach to
determine broadcast time slots in an on-line fashion [22]. Nei-
ther of these two optimal approaches can scale to support the
number of wires typically required in incremental compilation
for parallel verification systems.

IV. I NCREMENTAL COMPILATION ALGORITHMS

Our incremental partitioning and incremental scheduling al-
gorithms are similar in nature to their initial-run counterparts
but are constrained to minimize perturbation of unchanged logic
that has previously been mapped to the verification system. Be-
fore describing specific design implementations, each design
problem is formulated and problem constraints are noted. Al-
though formulations are made from the perspective of an FPGA-
based logic emulation system (the testbed for this work), the ap-
proach can be applied to any parallel verification system that
follows the software flow shown in Fig. 1.

An initial user design under verification consists ofnodes
(gates or flip-flops) and edges (nets). As a result of the ini-
tial mapping flow described previously, a design is mapped to

partitions (FPGAs) in a parallel verification system. A subset
links of design edges is communicated between FPGA par-

titions. To create a modified design from an initial design,
nodes and edges are subtracted from the initial design and

nodes and edges are added to the design. As a result
of this design modification, FPGAs have logic removed
and routed links in the verification system are removed.
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TABLE I
PARAMETER DEFINITIONS FORINCREMENTAL COMPILATION

The goal of incremental partitioning is to assign nodes
to partitions so that inter-FPGA bandwidth is minimized.
A subset of edges must be scheduled for routing to
create a completed design. These links can be scheduled in free
time slots or in time slots previously used by . The determi-
nation of from is nontrivial and will be described in
Section V. Incremental compilation parameters are summarized
in Table I.

In some cases, it may be possible to contain all changed logic
inside one partition. Examples of these changes include a single
gate change or a design flip-flop insertion. For these trivial mod-
ifications, there is no need for incremental partitioning or sched-
uling since only the affected FPGA needs to be recompiled.
In this paper, we evaluate design changes that affect multiple
FPGAs.

A. Identification of Changed Logic (Netlist Comparison)

The first algorithmic step in the incremental compilation
process, represented by the top box in Fig. 8, is the identifica-
tion of deleted and added design logic and nets and associated
FPGAs affected by the change. This netlist comparison is
made in our system through application of depth-first matching
applied to both initial and modified design netlists. During the
search, the hierarchical names of logic and nets in the modified
design are matched against those in the original to identify
design changes. It is assumed that any added logic and nets will
have a different hierarchical name, which is consistent with the
insertion/deletion of an RTL module. Any FPGA that contains
logic from the initial design that has been removed requires
recompilation to support correct evaluation of the modified
circuit. As a result, these modified FPGAs make desirable
targets for added design logic. Added logic can be partitioned
into FPGAs that have been modified, as space permits.

B. Incremental Path Identification

Once added nodes have been identified through netlist
comparison, but before added nodes can be partitioned
onto verification system FPGAs, the specific set of destination
FPGAs must be determined. After analysis of the mod-
ified and original netlists to determine , the FPGAs with
removed logic can be straightforwardly determined.

Only FPGAs in set are ultimately recompiled. There-
fore, for routing links , it is necessary to ensure that there
is a path from every FPGA in to every other FPGA in
that only uses FPGAs in , forming acompletely connected
set. Ideally, would be limited to , the FPGAs with
removed logic. However, due to topology-related restrictions in
the verification system hardware, the FPGAs in may not
form a completely connected set for routing. As a result, FPGA
set may require augmentation with a minimum number of
unmodifiedFPGAs to form , a completely connected set
of FPGAs. Consider, for example, the circuits shown in Fig. 9.
It is apparent from the figure that the original inverter circuits
on the left have been replaced with a bufferand anOR gate

. Since FPGA 1 and FPGA 3 contain deleted logic, they form
. In the modified circuit, a routing path is required between

FPGA 1 and FPGA 3 to complete connectivity. As shown in the
figure, FPGAs are interconnected in a near-neighbor topology.
Even though FPGA 2 is not in , it must be recompiled to
accommodate the transfer of signalfrom FPGA 1 to FPGA 3.
As a result, must be augmented to include FPGA 2. Logic
previously assigned to these FPGAs that has not been removed
remains intact within these partitions.

The FPGAs in are determined through a heuristic eval-
uation of shortest paths between FPGAs in . A detailed
listing of the algorithm is shown in Fig. 10. In an attempt to
minimize overall distance, the search algorithm orders all FPGA
connections by Manhattan distance. Candidate paths between
the FPGAs are then evaluated based on FPGA cost:

, in paths
, in paths.

(3)

Modified FPGAs in make the most desirable path
candidates since they will be recompiled to include new design
logic. Unmodified FPGAs shared by many paths make the
second-most desirable candidates since they minimize the
total number of affected FPGAs. For each source–destination
connection, a cost-based queue of paths is formed to
hold candidate path FPGAs. At each search step, the lowest
cost FPGA in the shortest path is selected until a pathis
formed. The algorithm includes several search iterations for
each path to locate minimum cost paths. If two sequential
search iterations result in the same overall cost, the search is
terminated. Following the iterations, the unmodified FPGAs
located in the search are added to to form .

C. Incremental Partitioning

In assigning added logic to system FPGAs, the following ob-
jectives must be optimized.

1) New logic must be partitioned onto FPGAs
such that the sum of the number of links interconnecting

is minimized.
2) A number of links from the original design that were

routed during initial design mapping maydriveadded de-
sign logic. If possible, this logic should be assigned to

such that previously scheduled link communication
can be used.
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Fig. 9. An example of the need to identify incremental paths. In the subfigure on the right, FPGA 2 must be added toB to allow routing from FPGA 1 to
FPGA 3.

Fig. 10. Algorithm to identify minimum number of FPGAs forB . The set
of FPGAs with removed logic(B ) is augmented with the minimum set of
FPGAs needed to create completely connected routing paths.

3) A number of links from the original design that were
routed during initial design mapping may bedriven by
added design logic. If possible, this logic should be as-
signed to such that previously scheduled link com-
munication can be used.

These objectives can be met by constraining K-way parti-
tioning across partitions. Before describing the specific
steps involved in partitioning, objectives 2) and 3) above are de-
scribed in greater detail.

1) Prerouted Input and Output Links:Often, when logic is
replaced in a design, the signals that interface to the logic from
the rest of the circuit stay intact. For example, if an RTL core
is replaced, the internal structure of the new logic may differ
greatly from the old but the hierarchical interface of external
signal names and data bus widths remains the same. These in-
terface signals form a special case for incremental mapping. If
the interface signals span multi-FPGA boundaries, it may be
possible to use routing information from the scheduling of ini-
tial-design routing links, limiting the need for routing changes.

This routing optimization can only be performed if the route
destination (for driven logic that is added) and route source (for
signal sources that are added) are located in the same partitions
as original sinks and sources. This placement constraint can be
used to guide incremental partitioning. As will be shown in the
following example, the use of previously routed links avoids the
need to reroute preexisting signals and, in some cases, the need
to recompile FPGAs that contain no design changes.

As an example, consider the designs shown in Fig. 11. In the
original design shown on the left, two subcircuits have been par-
titioned across four FPGAs. Communication between FPGAs is
pipelined via shaded flip-flops inserted during design routing.
On the right, it can be seen that theORgate has been replaced
with inverter , and flip-flop and the subcircuit in FPGA 2
have been removed. Inter-FPGA linksand are present in both
designs. During the initial router pass for the original design, the
communication links and are scheduled. In the modified de-
sign, two FPGAs (FPGA 2 and FPGA 4) have had logic removed
and require recompilation. This gives two possible partitioning
destinations for the inverter and two possible routing paths for
and . These choices are shown with dashed lines in the figure.

If one takes previous routing into account, FPGA 4 is the
better target partition for inverter , since previously scheduled

and communication circuitry in FPGA 1 and FPGA 3 can
be used. If FPGA 2 is chosen as the destination for the inverter
during incremental partitioning, FPGA 1 will have to be recom-
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Fig. 11. An example illustrating the dependency of input and output links. The dashed lines in the mapping on the right illustrate potential paths for signalsa
andb.

piled to transmitsignal to FPGA 2, and FPGA 3 will have to
be recompiled toreceivesignal from FPGA 2.

For interfacelinks that remain the same after design modifi-
cation but interface to added logic, it is desirable to retain pre-
viously scheduled communication. Added design nodes that are
driven by previously scheduled links should beanchoredin an
FPGA that is a sink for the link. As a result, the link will not
have to be rescheduled and the source FPGA will not have to be
recompiled. The corresponding argument can be made for mod-
ules that drive interface links.

The process of anchoring the affected logic can be performed
in two stages: locating the affected nodes and assigning the
nodes to FPGA partitions. Added logic that interfaces to un-
changed links can be identified in a series of steps.

1) A depth-first search is performed on the modified design
to determine if nets associated with theoriginal link set

remain present in the design.
2) For each net found to be present in the modified design,

a check is made to determine if one of two conditions is
met: 1) the net is driven by a node in the original design
and fans out to an added node and 2) the net is driven by an
added node and fans out to a node in the original design.
These nets form a set .

3) All nodes in attached to nets in form a set .
After the affected set of nodes has been located, a placement

heuristic is used to determine the appropriate destination FPGA
for each node. The cost associated with placing a nodein
a specific FPGA is based on the number of interface links
attached to the node and the number of these links routed
to during initial design mapping. Specifically, this cost is

Cost (4)

After node cost has been determined for each FPGA, the node
is assigned to the min-cost FPGA with sufficient capacity. De-
tails of the node anchoring algorithm are shown in Fig. 12.

Fig. 12. Algorithm for anchoring interface nodes to FPGAs.

2) Partitioning Algorithm: Incremental partitioning of
added design logic onto modified FPGAs follows directly
from the basic Kernighan–Lin, Fiduccia–Mattheyses (KLFM)
[15] bipartitioning algorithm. To promote design quality, this
algorithm has been supplemented with several optimizations
to take unchanged logic and connections to the unchanged,
fixed-placement FPGAs into account.

The KLFM partitioner distributes modules across avail-
able FPGAs . Fig. 13, modified from [5], illustrates several
partitioning steps in italics that reflect changes for incremental
partitioning. These steps ensure that unchanged logic is reas-
signed to the same bin to which it was initially allocated by pre-
modified design partitioning. Anchor nodes, evaluated prior to
partitioning using the algorithm shown in Fig. 12, are assigned
to selected FPGAs. During partitioning, anchor nodes can only
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Fig. 13. Modified KLFM algorithm.

shift to other partitions with the same anchor cost, as specified
by (4). As a result of partitioning, each FPGA in receives
approximately the same amount of logic. Interconnect between
the FPGAs in minimized so that routing can be completed with
available inter-FPGA resources.

D. Incremental Routing

Once modified logic has been distributed to FPGAs in ,
links in are routed. Similar to initial-run routing, this
process starts with depth and dependency analysis of the entire
modified circuit using the approach described in Section II-C.
Depth and dependency information for the modified design is
used to supplement routing information from the initial design
such as link send and arrival times and .

1) Routing Constraints:An important aspect of depth anal-
ysis for modified circuits is the determination of which previ-
ously routed links from the initial design can remain in use. In
some cases, portions of previously routed inter-FPGA links may
need to be rerouted as a result of changed logic depth and de-
pendency. As an example, consider the circuit shown in Fig. 14.
The circuit is the same as that shown in Fig. 5 except thatOR

gate and signals and have been added to the design. One
potential incremental mapping for the modified circuit appears
in Fig. 15.

A design clock cycle associated with the scheduled route of
the circuit mapping in Fig. 15 is shown in Fig. 16. When these
waveforms are compared to those in Fig. 7, it can be seen that
an extra cycle of combinational delay has been added due to the
OR gate evaluation in FPGA 3, extending the number of virtual
cycles needed to evaluate the design. Closer examination of the
two sets of waveforms indicates that although signalhas pre-
viously been routed between FPGA 3 and FPGA 4 in the initial
design, it will have to be rerouted for the modified mapping.
For the initial design, signal has been routed between FPGA
3 and FPGA 4 on virtual cycle V4. As a result of the mapping
shown in Fig. 15, signal cannot be routed until virtual cycle
V5 due to combinational dependencies. This results in a need to
recompile both FPGA 3 to transmit the signal on cycle V5 and
FPGA 4 to receive the value on virtual cycle V5. In Section VI,
it is shown that few combinational paths cover more than a few
FPGAs, limiting the number of required fanout path ripups.

Although Fig. 15 showsORgate assigned to FPGA 3, since
both FPGA 2 and FPGA 3 are in , two possible targets ex-

Fig. 14. A circuit modified from the example shown in Fig. 5. AnOR gateF
has been added to create this circuit.

Fig. 15. An incremental mapping of the circuit in Fig. 14.

Fig. 16. Design clock cycle for the incremental mapping shown in Fig. 15.

isted during incremental partitioning. If theOR gate had been
assigned to FPGA 2, the routing waveform for the modified de-
sign would have been the same as the waveform shown in Fig. 7
since all intra-FPGA combinational paths can be evaluated in
one virtual cycle.

2) Routing Algorithm: The goal of incremental scheduling
is to minimize the number of virtual clock cycles needed to
transport added links between FPGAs in . The route
scheduler assigns links to specific inter-FPGA channel wires on
virtual clock cycles in which the resources are unused.

To support incremental routing, the channel graph from the
original design mapping is used. Prior to routing, the graph is
initialized to reflect the routing capacity consumed by the ini-
tial routes. Channel routing resources used by links in are
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Fig. 17. FPGA topology connections.

not included in the initialization since they are not present in the
modified design. A breadth-first analysis is performed on the en-
tire modified design to identify fanout paths in unmodified logic
that may be affected by depth or dependency changes, as de-
scribed in Section IV-D1. The routing schedule is determined so
that a minimum number of routes from initial mapping require
rerouting and only FPGAs in need to be recompiled.

Incremental routing involves both a check to determine if pre-
vious routes from the initial design mapping can still be used and
the assignment of new links to channel resources during
specific time slots. The evaluation of previously routed links
indicates whether initial virtual cycle designations can still be
met in the potential presence of added combinational depth, as
shown in Fig. 15. If previous send times cannot be met for
a previously routed link, the routed link is ripped up and desig-
nated for rerouting. The evaluation of previously routed links
takes place via dependency-checking for each link. Like ini-
tial-run routing, links are ordered for evaluation based on depth.
Specific links are evaluated when the arrival times of all combi-
national inputs have been determined. Thisready time [11]
indicates the earliest point at which the link can be sent to neigh-
boring FPGAs. If the link has been routed during initial-run
routing and is less than the send time of the original route,
the old link route and associated channel utilization can be pre-
served. Otherwise, the link is assigned to for rerouting and
previously used channel capacity is reclaimed.

After ordering via depth and dependency analysis, the spe-
cific steps needed to route links in are the following.

1) The shortest path from the source FPGA to the
destination FPGA via FPGAs in is determined.
Note that through prior determination of , it is known
that a feasible path exists.

2) The departure delay of the link is determined based on
available channel capacity. Due to channel congestion, it
may not be possible to route a link immediately at.
In the current route allocation approach, taken from [12],
once a route leaves , it is not delayed at any through-hop
FPGAs. If both ready time and departure time are taken
into account, the link leaves at the send time

.
3) As in initial-run routing, the arrival time at is ,

where is the number of routing hops for the link.
4) After routing is complete, channel utilizations along the

route path and ready times for dependent signals are up-
dated.

In performing routes, the scheduler treats wires with more
than one fanout as a set of two-terminal nets.

E. Processor Compilation

The last step in the incremental compilation process involves
the recompilation of affected FPGAs . In this work, re-
compilation of each individual FPGA was started from scratch;
no information from initial-design FPGA place-and-route was
used.

V. EXPERIMENTAL METHODOLOGY

A. The Effect of Interconnect Topology

To prove the practical benefits of the developed incremental
compilation system, experimental results were obtained
from mapping designs to both a commercial FPGA-based
emulator and hypothetical emulators with varied inter-FPGA
topologies. A set of experiments targeted an Ikos VirtuaLogic
emulation system, which contains 64 Xilinx XC4036EX
FPGAs. The FPGAs in this system are interconnected with
both near-neighbor channels (14 unidirectional signals in each
direction) between FPGAs and channels that connect to FPGAs
two hops away (12 unidirectional signals in each direction to
next-nearest neighbors). The developed compilation algorithms
have been integrated with the VirtuaLogic compilation system,
which performs initial design mapping. The result of both
initial and incremental compilation is a set of Xilinx XC4036
bitstreams, which are programmed into the emulator.

Hypothetical emulation topologies were limited to
inter-FPGA connectivity similar to the type shown in Fig. 17.
Interconnect channels can be present between near-neighbor
FPGAs and FPGAs separated by multiple hops. The effect of
interconnect topology on system performance has previously
been addressed in the context of FPGA-based logic emulation.
Hauck evaluated bandwidth tradeoffs between near-neighbor
connectivity and more distant connectivity [23]. It was found
that if a topology contains too much near-neighbor intercon-
nect, distant connections will require through-hops, potentially
lengthening the delay of the critical routing path. If the topology
contains insufficient near-neighbor bandwidth, local routes
may be delayed due to congestion, extending the time needed
to complete a user design cycle.

Increased connectivity between FPGAs provides a specific
benefit for incremental compilation. In Section IV-A, it was
noted that paths between FPGAs in may require the in-
clusion ofunmodifiedFPGAs. If more direct FPGA-to-FPGA
channels exist, fewer unmodified FPGAs may need to be recom-
piled, accelerating overall compile time. To evaluate the effect
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TABLE II
BENCHMARK DESIGN STATISTICS

of topology on incremental compilation, we mapped both ini-
tial and modified designs to emulation systems with a variety of
topologies consisting of near-neighbor, two-hop, and three-hop
interconnect. Results that show the benefit of non-near-neighbor
communication are presented in Section VI.

B. Benchmark Designs

To evaluate the limitations of incremental compilation, sev-
eral RTL benchmark circuits were first synthesized and then
mapped to the VirtuaLogic emulation system. Following initial
mapping, these benchmarks were modified at the RTL level and
were mapped to the emulation system using the algorithms de-
scribed in Section IV. Design statistics for the benchmarks are
summarized in Table II. Sources for the benchmarks include the
RAW [24] and Prep benchmark suites [25]. Subsequently, each
benchmark is described along with a discussion of how the ini-
tial design was modified. Many of these modified benchmarks
benefit from hardware specialization [26], the capability to di-
rectly customize a specific piece of hardware to perform a cer-
tain task. In several cases, the benchmark is specialized based
on the value of constant parameters to reflect an optimization
that can be integrated into the hardware.

DES is an established encryption standard that operates on
64-bit blocks of data and uses a 56-bit key [27]. Each 64-bit
input value is encrypted to form a 64-bit block of output cypher
text. Output data are the result of 16 stages ofXOR operations
involving intermediate results and the input key. Encryptions of
multiple input values can be performed in parallel. To evaluate
this design using logic emulation, an initial design was created
based on a fixed 56-bit key and mapped to the logic emulator.
The key value was then changed and a new, specialized hard-
ware implementation was created. Although much of the DES
circuit remains the same, important changes in structure occur
in selected key input blocks (S-blocks) in the design.

Finite impulse response filters are integral parts of many dig-
ital signal-processing systems. Multipliers that scale sampled
data by fixed constants are important components in many filter
implementations. To evaluate incremental compilation, a 20-tap
filter design requiring a fixed set of coefficients was synthesized
and mapped to the VirtuaLogic emulator. A modified design was
then created in RTL by changing the multiplier constant for two
of the taps and resynthesizing the design. The modified design
was then mapped to the emulator using incremental compila-
tion.

Reconfigurable hardware has been used extensively to pro-
totype hardware that can solve graph-based problems [28]. For
these applications, graph functionality is embedded directly in
hardware as a set of computational nodes and associated graph
interconnect topology. For many graph-based applications, such

as Boolean satisfiability, the embedded graph changes incre-
mentally from application to application both in terms of node
content and in terms of connectivity. To evaluate our system,
initial RTL implementations of both a standard shortest path
(ssp64)and multiplicative shortest path(spm16)graph were cre-
ated using tools from the RAW benchmark suite [24]. After
initial versions were synthesized and mapped to the emulator,
versions with modified graph functionality were created and
mapped to the emulator. To evaluate our system, both graph in-
terconnect and node functionality modifications were made.

Microprocessor design often requires an evaluation of a
number of different architectural choices. Part of this evaluation
involves the determination of arithmetic logic unit (ALU) func-
tionality. In an effort to evaluate the feasibility of performing
incremental compilation on a modified RISC processor de-
sign, a new instruction was added to the instruction set of an
existing, synthesizable RISC core. After initially mapping a
standard R4000 design from the Prep benchmark suite [25]
to the emulator, control logic and ALU support for anXNOR

function were added to the design. This modified design was
then synthesized and incrementally mapped to the emulator.

VI. RESULTS

Both initial and modified versions of the benchmarks listed
in Table II were mapped to the VirtuaLogic emulator. Results
appear in Table III for both original and incremental mappings.
Designs were initially partitioned onto the number of FPGAs
shown in theCompiled FPGAsrow in Table III. Following ini-
tial design mapping via the flow described in Section II-C, an
analysis of results was performed to determine the verification
behavior and emulation system utilization. FPGAs were com-
piled to run at a virtual clock speed of 34 MHz. Results listed in
Table III indicate the critical and average path lengths in number
of FPGAs, the number of virtual clocks per user design clock
cycle, and the achieved emulation speed.

After successful initial implementation, design changes,
as described in Section V, were made, and modified designs
were partitioned across a minimum number of FPGAs .
As seen in theCompiled FPGAsrow of Table III, fewer than
25% of FPGAs were recompiled for each design. For three
of five designs, the run-time performance of the recompiled
design matched the performance of the initial compilation.
Extra virtual clock cycles for designsssp64andspm16were a
result of routing congestion along critical paths consisting of
added design logic. The row markedRerouted linksindicates
the number of previously routed links that were rerouted due
to changes in dependencies, as described in Section IV-D.Ave.
VW I/O indicates the average number of pins used on each
FPGA, andAve. Hard I/O indicates the average number of
logic signals communicated for each partition.

The utilization of channel routing resources in a verification
system varies over virtual clock cycles of the user design clock
cycle. An example of channel utilization for design DES appears
in Fig. 18. The solid line in the figure shows average bandwidth
across all channels in the emulation system for the initial design,
while the dashed line shows average bandwidth only in chan-
nels that are subsequently changed by incremental routing. The
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TABLE III
RESULTS OFORIGINAL AND INCREMENTAL COMPILATION FOR BENCHMARK DESIGNS

Fig. 18. Channel utilization per virtual clock cycle for a design clock cycle
of DES. Note from Table III that the number of virtual clock cycles per design
clock cycle for both original and modified DES designs is 12.

dotted line indicates utilization in the same modified channels
after incremental routing. As shown in Fig. 18, unused initial
routing bandwidth can be used during incremental routing to
complete link routes. In all cases, bandwidth requirements per
virtual cycle are smaller as time passes due to signal dependen-
cies. Due to static scheduling, the bandwidth per virtual clock
cycle is the same for each user design clock cycle of a design.

Compile times for both initial and incremental design
compilation appear in Fig. 19. All compilation was performed
on a 360-MHz Sun SparcStation Ultra II with 512-MB RAM.
For each design, incremental mapping time takes less than
20% of initial mapping time. In both cases, FPGA compilation
takes the bulk of design mapping time. By limiting the number
of affected FPGAs during system partitioning and routing,
incremental compilation time can be kept to a minimum.
Although the absolute compilation times are generally less
for logic-processor-based versus FPGA-based parallel logic

Fig. 19. Emulation system compilation time—initial and incremental.

verification equipment, processor compilation time is still the
limiting factor in overall compilation time.

After mapping initial and modified designs to an existing
commercial logic emulator, the specified topology file used by
the mapping software was modified to allow for mapping to
emulation systems containing FPGAs with the same pin count
but with varied inter-FPGA topologies. Both initial and incre-
mental compilation were performed on each topology for de-
signsspm16andssp64. These experiments included topologies
with near-neighbor interconnect and two-hop, three-hop, and
four-hop interconnect in both horizontal and vertical dimen-
sions. The number of virtual clock cycles per user design clock
cycle for each design is shown in Table IV. The number of unidi-
rectional channel wires allocated for each inter-FPGA distance
is shown in the second row of the table. Channels in both hori-
zontal and vertical dimensions were allocated identically. From
the table, it can be seen that the topology used in the emulator
(14 near-neighbor signals, 12 two-hop signals) provided both
the best original and incremental design performance (minimal
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TABLE IV
VIRTUAL CLOCK CYCLES REQUIRED PERDESIGN CLOCK CYCLE FOR VARIED TOPOLOGIES

virtual clock count). Topologies with only near-neighbor con-
nections limit distant bandwidth to through-hop connections,
extended verification time. Topologies that support connections
between a larger collection of FPGAs limit available local band-
width. This limitation leads to local route congestion and ex-
tended verification time.

VII. CONCLUSIONS

In this paper, we have described and analyzed a set of com-
pilation steps that can be used to map incrementally modified
designs to parallel verification equipment. Important aspects of
this paper include the development of constrained partitioning
and routing algorithms optimized to map added design logic
to verification system resources, such as FPGAs. After deter-
mining affected FPGA processors and evaluating paths between
a minimum number of affected processors, a modified K-way
partitioner distributes added logic to processors in the system.
Subsequently, the interprocessor router creates connections be-
tween added logic such that original logic and routing are not
affected. Finally, a minimum number of system processors are
recompiled to form a working emulation model. To validate
the benefit of this approach, five benchmark circuits have been
mapped to a commercial FPGA-based Ikos VirtuaLogic em-
ulator. For modest design changes (less than 15% of design
logic), emulation system compile time has been reduced by at
least a factor of five.
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