
1

A Reconfigurable, Power-Efficient Adaptive Viterbi
Decoder

Russell Tessier, Sriram Swaminathan, Ramaswamy Ramaswamy,
Dennis Goeckel and Wayne Burleson

Abstract—Error-correcting convolutional codes provide a proven mech-
anism to limit the effects of noise in digital data transmission. Although
hardware implementations of decoding algorithms, such as the Viterbi al-
gorithm, have shown good noise tolerance for error-correcting codes, these
implementations require an exponential increase in VLSI area and power
consumption to achieve increased decoding accuracy. To achieve reduced
decoder power consumption, we have examined and implemented de-
coders based on the reduced-complexity adaptive Viterbi algorithm (AVA).
Run-time dynamic reconfiguration is performed in response to varying
communication channel noise conditions to match minimized power con-
sumption to required error-correction capabilities. Experimental calcu-
lations indicate that the use of dynamic reconfiguration leads to a 69%
reduction in decoder power consumption over a non-reconfigurable field-
programmable gate array (FPGA) implementation with no loss of decode
accuracy.

I. INTRODUCTION

As the error-correcting capability of convolutional codes is im-
proved by employing codes with larger constraint lengths K, the com-
plexity of decoders [1] is increased. The Viterbi algorithm [1], which
is the most extensively employed decoding algorithm for convolu-
tional codes, is effective in achieving noise tolerance, but the cost is an
exponential growth in memory, computational resources, and power
consumption. To address this issue, the reduced-complexity adaptive
Viterbi algorithm (AVA) [2], [3] has been developed. The average
number of computations per decoded bit for this algorithm is substan-
tially reduced versus the Viterbi algorithm, while comparable bit-error
rates (BER) are preserved.

SRAM-based FPGA devices offer both hardware-level specializa-
tion and the capability to dynamically modify decoder hardware func-
tionality at run-time. For power-sensitive systems, this flexibility can
be exploited to achieve desired decoding accuracy, while minimizing
decoder power consumption. During system operation, the constraint
length of the convolutional encoder (and corresponding decoder) em-
ployed in the system is updated every few seconds based on channel
noise characteristics. At the same time, the decoder parameters are
optimized. Both the constraint length of the encoder and the decoder
are chosen to maintain a prespecified decoder accuracy (bit error rate)
and decoding rate with minimum power consumption at the receiver.
This slow adaptation fits the target application of wireless communica-
tions, where current values of the channel path-loss and shadowing can
be fed back to the transmitter with high reliability [4]. Additionally,
power consumption due to FPGA decoder reconfiguration is amortized
across thousands of received data values. Through experimentation, it
is shown that when dynamic reconfiguration is applied to decoders
mapped to Xilinx XC4036 and XCV1000 devices, a power savings
of 27% and 69%, respectively, is achieved versus non-reconfigurable
implementations.

In Section II, an overview of communication coding and the adap-
tive Viterbi algorithm is provided. Our AVA architecture is outlined
in Section III and the experimental approach used to evaluate it is de-
scribed in Section IV. The benefits of our AVA architecture are high-
lighted by experimental results presented in Section V. Section VI
summarizes our efforts and offers directions for future work.

The authors are with the Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA 01003.

II. BACKGROUND

Numerous reduced complexity decoding methods have been intro-
duced over the past 40 years, and many of these can result in reduced
decoder power consumption in communication systems employing
trellis-based codes [1]. These methods range from techniques that sim-
plify the receiver trellis in a fixed manner for a given complexity (e.g.
[5], [6]) to those that modify trellis searching in some way based on the
specific received values [7]. Here, our interest is in the path-pruning
techniques of [2], [3], which fall in the latter category. The adaptive
Viterbi algorithm was introduced with the goal of reducing the average
computation and path storage required by the Viterbi algorithm. In-
stead of computing and retaining all 2K−1 possible paths, only those
paths which satisfy certain path cost conditions are retained at each
stage, where a path’s “cost” is defined as the Euclidean distance be-
tween the path and the received sequence. Path retention is based on
the following criteria [2].

1) A threshold T indicates that a path is retained if its path cost
is less than dm + T , where dm is the minimum cost among all
surviving paths in the previous trellis stage.

2) The total number of survivor paths per trellis stage is limited
to a fixed number, Nmax, which is pre-set prior to the start of
communication.

The first criterion allows high-cost paths that likely do not represent
the transmitted data to be eliminated from consideration early in the
decoding process. In the case of many paths with similar cost, the sec-
ond criterion restricts the number of paths to Nmax, which is important
architecturally. At each stage, the minimum cost of the previous stage
dm, threshold T , and maximum survivors Nmax are used to prune the
number of surviving paths. Careful calculation of T and Nmax is the
key to effective use of the AVA algorithm. If threshold T is set to a
small value, the average number of paths retained at each trellis stage
will be reduced. This can result in an increased BER since the deci-
sion on the most likely path has to be taken from a reduced number of
possible paths. Alternately, if a large value of T is selected, the aver-
age number of survivor paths increases and results in a reduced BER.
As a result, increased decode accuracy comes at the expense of addi-
tional computation and a larger path storage memory. The maximum
per-trellis stage number of survivor paths, Nmax, has a similar effect
on BER as T . As a result, an optimal value for T and Nmax should
be chosen so that BER is within allowable limits while matching the
resource capabilities of the hardware. In previous work [8], we have
experimentally determined appropriate values for T and Nmax for a
range of K values.

Several power-sensitive implementations of adaptive Viterbi archi-
tectures have been proposed. In Henning and Chakrabarti [9], a high-
level architectural model of an adaptive Viterbi decoder is described.
The threshold T and truncation length TL of the decoder is varied
based on the desired BER, SNR, and code transmission rate. Al-
though the authors mention potential power savings of up to 97% for
their high-level architecture versus standard Viterbi decoders, a de-
tailed hardware implementation of the approach is not described. The
architecture does not take advantage of survivor path limits, Nmax, or
dynamic reconfiguration in determining potential power savings.

A second proposed high-level AVA implementation [10] uses a sys-
tolic architecture with a strongly-connected trellis. This architecture
provides storage for up to 2K−1 paths, but only calculates and stores
paths whose costs meet threshold T . Power savings are achieved
through reduced storage and computation. Since a detailed discussion
of a potential hardware implementation is not provided, it is not possi-
ble to evaluate the scalability and feasibility of the approach for other
K values. An earlier discussion of the AVA architecture described in
this manuscript was presented in [8]. Although the basic architecture

2

Branch
Metric
Generator

Add −
Compare −
Select

from
Channel

b 00

b

b

b

01

10

11

...........

...........

...........

...........

...........

...........

...........
Decision
 Bits

Decoded
 Output

Survivor
MemoryStorage

Indices

New Path
Metrics

Saved
Path
Metrics

0

Nmax −1

Path Metric
 Control

BM
Select

Path
Valid

Control Path

0

Nmax −1

 Path
Metric
 Array

Fig. 1. Adaptive Viterbi decoder architecture

.

.

.

.

.

.

Discard path

Yes

No

Yes

No

Discard path

Number
of paths
=count

T = T − 2

Yes

Determine
Decision
Bits

.

.

.

.

Decision bits
to Survivor
Memory

Path
Valid

Count
 < Nmax

No

b 00

b

b

b

01

10

11
Adder

Path Metric 0

BM Select 0

b 00

b

b

b

01

10

11

.

.

.

.

.

.

.

.

.

.

.

2Nmax
 units

BM Select 2Nmax

Path Metric 2Nmax

Adder m2Nmax
d < d + T

i m
d < d + T

Fig. 2. ACS unit of adaptive Viterbi decoder

of the AVA decoder is the same, this earlier work focused on decoder
performance improvement rather than power reduction. Unlike pre-
vious AVA approaches [2], the standard operation of eliminating the
largest-metric path when two survivor paths enter the same trellis state
was not implemented in the approach outlined in this manuscript due
to hardware complexity. The implemented algorithm more closely re-
sembles a predecessor of the AVA known as the Simmons T-algorithm
[3].

III. AVA ARCHITECTURE

To explore the power benefits of AVA use we have developed a hard-
ware implementation of the algorithm. This architecture exhibits sig-
nificant parallelism and supports dynamic reconfiguration to adapt de-
coder hardware to changing channel noise characteristics. Hardware
reconfiguration provides the key mechanism to achieve decoder power
savings.

A high-level view of the implemented adaptive Viterbi decoder ar-
chitecture is shown in Figure 1. The decoder contains a datapath and
an associated control path. Like most Viterbi decoders [11], the dat-
apath is split into four parts: the branch metric generators (BMG),
add-compare-select (ACS) units, the survivor memory unit, and path
metric storage and control. A BMG unit determines distances between
received and expected symbols. The ACS unit determines path costs
and identifies lowest-cost paths. The survivor memory stores lowest
cost bit-sequence paths based on decisions made by the ACS units and

the path metric array holds per-state path metrics. The flow of data
in the datapath and the storage of results is determined by the control
path.

Two distinctive features of our decoder are the parallel computation
of all ACS units and the per-symbol dynamic adjustment of T . In the
implemented decoder, the expected symbol value (BMselect) is used
to select the appropriate branch metric from the BMG, as shown at
the left in Figure 2. This branch metric value is combined with the
path metric of its parent present state to form a new path metric, di.
At each trellis stage, the minimum-value surviving path metric among
all path metrics for the preceding trellis stage, dm, is computed. New
path metrics are compared to the sum dm + T to identify path metrics
with excessive cost. Comparators are then used to determine the life of
each path based on the threshold, T . If the threshold condition is not
satisfied by path metric dm + T , the corresponding path is discarded.

Once the paths that meet the threshold condition are determined, the
lowest-cost Nmax paths are selected. Sorting circuitry is eliminated by
allowing feedback adjustments to the parameter T for each received
symbol. If the number of paths that survive the threshold is less than
Nmax, no iteration is required. As show in Figure 2, for stages when
the number of paths surviving the threshold condition is greater than
Nmax, T is iteratively reduced by 2 for the current trellis stage until
the number of paths surviving the threshold condition is equal to or
less than Nmax. The T value is reset to its original value prior to
the processing of the next trellis stage. Appropriate values for T and
Nmax were determined in previous work [8], so that T reduction is
needed infrequently (for less than 5% of symbols). The output of the
ACS units includes path valid signals which indicate which of the 2
* Nmax paths have survived pruning. Details regarding other decoder
components can be found in [8].

Most communication systems desire links with predictable perfor-
mance, which is usually specified by a fixed BER. Although desired
decoder accuracy remains constant, channel signal-to-noise ratios can
vary widely due to factors such as the propagation distance and the
shadowing of the transmitted signal by large objects. In the presence of
increased noise power (equivalently, a decreased SNR due to a weaker
signal), a higher constraint length code is required to maintain a con-
stant BER. As will be shown in Section V, AVA decoders for higher
constraint-length codes require a larger amount of logic resources and
consume more power than decoders for codes with smaller constraint
lengths. If the encoder and decoder hardware can be reconfigured to
exactly match the constraint length required at a specific time instant,
power consumption can be minimized. In the presence of increased
noise, a high-constraint length encoder and decoder (larger K) can
be swapped in at the cost of increased power consumption. If the
noise power is reduced, a low-constraint length encoder and associ-
ated lower-power AVA decoder can be used in its place. If swapping
is not allowed, a high-constraint length decoder must always be used.
Since channel noise statistics do not generally change instantaneously,
reconfiguration based on channel noise statistics can be performed at
a coarse timescale, once every few seconds.

IV. EXPERIMENTAL APPROACH

A. Test Platform

To test the practicality of our reconfigurable AVA architecture, a
hardware implementation of the decoder was tested as part of a com-
munication system. The communication system model used for exper-
imentation is shown in Figure 3. The Random Bit Generator is a C
module that generates a randomized bit sequence to model transmit-
ted data. The convolutional encoder, can be parameterized to assorted
constraint lengths. The modulator converts a coded bit to a real num-
ber: 0 -> 1, 1 -> -1 for the binary phase-shift keyed (BPSK) system

3

AWGN
Channel
Model

Output
Sequence

Compare

Bits

3−bit quantizer

Viterbi

Adaptive

Decoder
On FPGA

Bit Generator
 Bits Convolutional

Encoder
Random Bits Point

Floating

Modulator

Floating
Point

On Processor

Input
Sequence

Fig. 3. System model

employed. The output of the modulator is input to the AWGN channel
simulator. This block simulates a noisy channel where Gaussian noise
is added to the transmitted signal. The amount of noise depends on the
signal-to-noise ratio preset by the user. The symbols obtained from the
AWGN channel model are quantized before being sent to the decoder
as its input. On receiving the input, the decoder attempts to recover
the original sequence. All software modeling of the communication
system was performed using a 366 MHz Celeron PC.

B. Hardware Implementation

The AVA decoder architecture was mapped to a Xilinx XC4036XL-
08 FPGA located on an Annapolis Micro Systems WildOne board [12].
This mapping allowed for in-field testing of AVA designs for constraint
lengths up to K=9. An RTL level description of the adaptive Viterbi
decoder was written in VHDL that could be mapped to FPGA devices.
The VHDL code was simulated using Cadence Affirma tools. All de-
signs were synthesized using Synplicity Synplify and mapped to Xilinx
hardware using Xilinx Foundation M2.1 tools with timing constraints.
The operating frequencies of the FPGA were obtained from the Xilinx
TRACE timing analyzer tool.

Power consumption values for the AVA decoders implemented in
the XC4036XL were determined with the following equation from
[12]:

Power = ((0.02 ∗ f) + 0.09) ∗ A ∗ V (1)

where f is the design frequency, A is the percentage of used device flip
flops and I/Os multiplied by their switching activity, and V is the sup-
ply voltage. A switching activity of 30% [13] was used with a supply
voltage of 5 V. To account for power consumption during XC4036XL
reconfiguration, the power associated with reading the configuration
bitstream from SDRAM and storing it in the FPGA was calculated. It
was determined that approximately 5 mW of power are needed dur-
ing reconfiguration to read the 832,480 XC4036XL configuration bits
from 2Mx32 Micron MT48LC2M32B2 SDRAM [14]. This value was
determined by scaling the specified maximum power dissipation at 200
MHz by the required 4 MHz FPGA configuration speed. The amount
of power required to reconfigure the XC4036XL using the on-chip re-
configuration shift chain was determined by calculating the energy dis-
sipated by a single chain shift in 0.35 µm technology with SPICE. This
value was scaled by the required 832,480 shifts and divided by config-
uration time to calculate FPGA reconfiguration power. It was calcu-
lated that 1.9 mW are required to reprogram the configuration bits of
the XC4036XL at 4 MHz. Total XC4036XL reconfiguration time is
40 ms [15].

XC4036XL-08 XCV1000-04
K Nmax T TL CLBs FFs CLB Slices FFs
4 4 14 20 553 278 436 278
5 7 14 25 1194 540 922 540
6 8 18 30 1206 724 1260 724
7 8 17 35 1215 756 1401 756
8 8 17 40 1284 788 1443 788
9 9 18 45 1296 820 1469 819

10 21 20 50 NA NA 3371 1911
11 25 23 55 NA NA 3643 2137
12 25 23 60 NA NA 3668 2170
14 41 24 70 NA NA 6741 2446

TABLE I
FPGA RESOURCE UTILIZATION FOR THE ADAPTIVE VITERBI DECODER

FOR BER OF 10−5

To test larger AVA implementations, decoders with constraint
lengths up to K=14 were mapped to a Xilinx XCV1000-04 FPGA.
Although the XCV1000 designs were not physically implemented in
hardware, cycle periods from TRACE were used in conjunction with
cycle counts from HDL simulation to estimate decode speed. Power
consumption values for the AVA decoders mapped to the XCV1000
were determined using the Xilinx XPower tool [16]. These values and
a switching activity value of 30% were used by XPower to determine
XCV1000 operational power for each AVA decoder. It was determined
that approximately 62.5 mW of power are needed during reconfigura-
tion to read the 6,127,744 XCV1000 configuration bits from 2Mx32
Micron MT48LC2M32B2 SDRAM [14]. This value was determined
by scaling the specified maximum power dissipation at 200 MHz by
the required 50 MHz FPGA configuration speed. The amount of power
required to reconfigure the XCV1000 using the on-chip reconfigura-
tion shift chain was determined by calculating the energy dissipated
by a single chain shift in 0.22 µm technology with SPICE. This value
was scaled by the required 6,127,744 shifts and divided by configura-
tion time to calculate FPGA reconfiguration power. It was calculated
that 27.4 mW are required to reprogram the configuration bits of the
XCV1000 at 50 MHz. Total XCV1000 reconfiguration time is 15.3 ms
[17].

V. EXPERIMENTAL RESULTS

A. FPGA Resource Usage and Non-Reconfigurable Performance

The logic resources used by the adaptive Viterbi decoder architec-
ture described in Section III was measured in terms of logic block
(CLB) usage. Table I summarizes the resource utilization of the adap-
tive Viterbi decoder on an XC4036XL for constraint lengths K = 4 to
9 and on an XCV1000 for constraint lengths K = 4 to 14. An adaptive
Viterbi decoder with K=9 utilized 100% of XC4036 CLB resources
(85% LUT utilization), while a K=14 AVA decoder fits in a single
XCV1000 device (52% LUT utilization). For the AVA hardware, im-
plementation size is affected by T via the comparison between path
costs, di and the sum dm + T . Optimum values of T range between 14
and 24, as determined in [8] and shown in Table I. This narrow range
of variation in T does not substantially affect comparator size. Since
the number of comparators is directly related to Nmax, the impact of
T is limited. If T is selected to be optimal, the number of surviving
paths will almost always be close to Nmax.

In most communication systems, both decode rate and maximum
BER are fixed across all decoder constraint lengths. We have followed
these guidelines in evaluating the decode rate for the XC4036-based
decoders. As shown in Table II, due to an increase in required cycles
per decoded bit and increased critical path length, maximum decode

4

Decode Rate - 105.9 Kbps Max Decode Rate
K XC4036XL SNR Power XC4036XL SA-1100

clock range (mW) (Kbps) (Kbps)
(MHz) (dB)

4 12.9 6.3-6.5 45.7 333.7 22.2
5 13.0 6.1-6.3 56.2 164.2 17.4
6 13.0 5.5-6.1 79.8 162.3 10.3
7 13.0 3.9-5.5 125.1 160.8 9.4
8 13.0 3.7-3.9 130.4 143.6 8.7
9 13.0 3.1-3.7 135.7 141.1 7.0

TABLE II
PERFORMANCE AND POWER CONSUMPTION FOR A XC4036XL-08 AND A

STRONGARM SA-1100 AT A BER OF 10−5 .

Decode Rate - 61.7 Kbps Max Decode Rate
K XCV1000 SNR Power XCV1000

clock range (mW) (Kbps)
(MHz) (dB)

4 7.5 6.3-6.5 241 415.0
5 7.5 6.1-6.3 287 303.2
6 7.5 5.5-6.1 319 300.0
7 7.5 3.9-5.5 331 283.6
8 7.6 3.7-3.9 336 277.9
9 7.6 3.1-3.7 339 240.3

10 15.5 3.0-3.1 853 101.5
12 16.1 2.8-3.0 937 94.9
14 17.2 2.5-2.8 1611 82.3

TABLE III
PERFORMANCE AND POWER CONSUMPTION FOR A XCV1000-04 AT A

BER OF 10−5 .

rate capability per decoder decreases with increasing decoder con-
straint length. As a result, for our analysis the fixed decode rate of all
decoders is set to be 75% of the maximum decode rate of the K=9 de-
coder (105.9 Kbps). This 25% rate overhead is sufficient to account for
non-infinite queueing of received samples and PCI-bus data transfer
overhead. The FPGA clock rates required to achieve this fixed decode
rate are shown in the second column of Table II. The SNR column in
the table indicates the range of channel noise statistics over which a
given decoder is the minimum constraint length decoder that achieves
the target BER of 10−5. In column 4 of Table II, for a fixed decode
rate, decoder power consumption increases with constraint length due
primarily to increased circuit size.

In comparison to an XC4036XL implementation, the maximum pos-
sible decode rate of a software AVA implementation on a 206 MHz
StrongARM SA-1100 microprocessor is nearly 5× slower than the de-
sired 105.9 Kbps rate (Table II). Additionally, SA-1100 power values,
calculated with JouleTrack [18], range between 350 and 400 mW for
the constraint lengths listed in Table II, more than 2× greater than the
most power-hungry FPGA decoder. The SA-1100 is implemented in
the same technology (0.35 µm) as the XC4036XL-08 and uses a lower
supply voltage (1.5 V versus 3.3 V).

Table III summarizes the performance and power dissipated by AVA
decoders in the XCV1000-04 FPGA for a fixed decode rate. In this
experiment, the fixed decode rate is set to 61.7 Kbps, 75% of the max-
imum K = 14 FPGA decode rate. Like the XC4036XL decoders,
power consumption increases with increased K, as BER and decode
rate remains fixed. Maximum possible decode rates for each decoder
are listed for reference.

B. Dynamic Reconfiguration

In the second set of experiments, channel noise, as indicated by
SNR, was used to indicate when the encoder and decoder could be re-
configured to match a fixed BER of 10−5. Power savings is achieved
by using a lower constraint length encoder and, hence, lower constraint
length and lower-power decoder for high SNR, and a higher constraint
length encoder and, hence, higher constraint length and higher-power
decoder for low SNR. In all evaluations, it is assumed that the current
channel SNR is perfectly fed back from the receiver to the transmit-
ter with zero delay. Such feedback of the path-loss and shadowing is
commonly done in modern wireless communication systems [4].

Experiments requiring reconfiguration of the XC4036XL were per-
formed by varying the SNR of transmitted data and reconfiguring
the AVA hardware based on (K, Nmax) values that were required
to achieve the desired BER and decode rate. A set of 10,000 SNRs
were generated using a log-normal shadowing distribution [1] for a
total transmission length of 2.5 billion bits. Based on the assump-
tion that SNR can be sampled successfully every 250,000 bits [1],
FPGA hardware was periodically reconfigured during the transmission
process. Channel SNR values were varied between 3.1 and 6.5 dB
(requiring K values between 4 and 9) and AVA configurations based
on Table II were chosen. The power consumption for a dynamically-
reconfigured versus a static XC4036XL decoder for a fixed decode rate
(105.9 Kbps) and BER (10−5) appears in Table IV. For the generated
set of SNRs, FPGA reconfiguration was performed 7065 out of 10,000
possible times leading to a total reconfiguration time of 282.6 seconds.
To maintain a decode rate of 105.9 Kbps while taking into account the
282.6 seconds of decode inactivity, each individual decoder was run at
a clock rate 2% higher than the value listed in Table II. For the static
decoder case, a K=9 decoder must be used at all times to maintain
the desired BER. The use of dynamic reconfiguration leads to a 27%
reduction in power consumption over the duration of the decoding pe-
riod.

The benefits of coarse-grained dynamic reconfiguration for a con-
straint length of K = 4 to 14 was considered by targeting an XCV1000-
04 FPGA. The sequence of 2.5 billion bits applied to the XC4036XL
was re-evaluated for the XCV1000. Channel SNR values were varied
between 2.5 and 6.5 dB, requiring K values between 4 and 14 and AVA
configurations from Table III. For the generated set of SNRs, FPGA
reconfiguration was performed 7007 out of 10,000 possible times lead-
ing to a total reconfiguration time of 107.2 seconds. To maintain a de-
code rate of 61.7 Kbps while taking into account the 107.2 seconds of
decode inactivity, each individual decoder was run at a clock rate 1%
higher than the value listed in Table III. If reconfiguration is not used, a
static, K=14, decoder must be used at all times to maintain the desired
BER. The use of dynamic reconfiguration leads to a 69% reduction
in power consumption over the duration of the decoding period. It is
apparent that as a broader range of constraint lengths is considered,
the amount of possible power savings due to dynamic reconfiguration
increases.

VI. CONCLUSION AND FUTURE WORK

The use of error-correcting codes has proven to be an effective way
to overcome data corruption in digital communication channels. In this
manuscript, a power-efficient implementation of an adaptive Viterbi
decoder has been described. To measure its power consumption, the
AVA architecture has been implemented in two contemporary FPGA
architectures for a range of constraint lengths. For a given, fixed bit-
error and decode rate, power savings is achieved by adapting the con-
straint length of the convolutional code employed, with the goal of em-
ploying a lower-power decoder when allowable. The dynamically re-

5

Avg. Decode Reconfigs. Reconfig. Avg.
Speed time required Overhead Power

(Kbps) (sec) (out of 10,000) (sec) (mW)
XC4036XL-08
Static 105.9 23617 0 0 135.7
Dynamic 105.9 23617 7065 282.6 98.8

XCV1000-04
Static 61.7 40521 0 0 1611.0
Dynamic 61.7 40521 7007 107.2 505.3

TABLE IV
STATIC DECODER VERSUS DYNAMICALLY-RECONFIGURABLE DECODER

POWER CONSUMPTION

configurable FPGA implementation is shown to consume significantly
less power than a static FPGA implementation.

In the future, we plan to consider the decoding benefits of using
a hybrid microprocessor and FPGA device. The tight integration of
sequential control with parallel decoding may provide further run-time
power benefits.

VII. ACKNOWLEDGMENTS

This work was sponsored by National Science Foundation grants
CCR-0081405, CCR-9988238, NCR-9714597 and CCR-9875482.
The authors wish to thank Frank Honoré for providing the JouleTrack
software.

REFERENCES

[1] J. Proakis, Digital Communications. New York, N.Y.: McGraw-Hill,
1995.

[2] F. Chan and D. Haccoun, “Adaptive Viterbi decoding of convolutional
codes over memoryless channels,” IEEE Transaction on Communica-
tions, vol. 45, no. 11, pp. 1389–1400, Nov. 1997.

[3] S. J. Simmons, “Breath-first trellis decoding with adaptive effort,” IEEE
Transactions on Communications, vol. 38, no. 1, pp. 3–12, Jan. 1990.

[4] S. Nanda, K. Balachandran, and S. Kumar, “Adaptation techniques in
wireless packet data services,” IEEE Communications Magazine, vol. 38,
no. 1, pp. 54–64, Jan. 2000.

[5] D. Matolak and S. Wilson, “Variable-complexity trellis decoding of
binary convolutional codes,” IEEE Transactions on Communications,
vol. 44, no. 2, pp. 121–126, Feb. 1996.

[6] S. Simmons, “An error bound for reduced-state Viterbi decoding of TCM
codes,” IEEE Communications Letters, vol. 3, no. 9, pp. 266–268, Sept.
1999.

[7] J. Anderson and S. Mohan, “Sequential coding algorithms: A survey and
cost analysis,” IEEE Transactions on Communications, vol. 32, no. 2, pp.
169–176, Feb. 1984.

[8] S. Swaminathan, R. Tessier, D. Goeckel, and W. Burleson, “A dy-
namically reconfigurable adaptive Viterbi decoder,” in Proceedings,
ACM/SIGDA International Symposium on Field Programmable Gate Ar-
rays, Monterey, CA, Feb. 2002, pp. 227–236.

[9] R. Henning and C. Chakrabarti, “Low power approach to decoding con-
volutional codes with adaptive Viterbi algorithm approximations,” in Pro-
ceedings, IEEE/ACM International Symposium on Low Power Electron-
ics and Design, Monterey, CA, Aug. 2002, pp. 68–71.

[10] M. Guo, M. O. Ahmad, M. Swamy, and C. Wang, “An adaptive Viterbi
algorithm based on strongly connected trellis decoding,” in Proceedings,
IEEE International Symposium on Circuits and Systems, Scottsdale, AZ,
May 2002, pp. 137–140.

[11] G. Fettweis and H. Myer, “High-speed parallel Viterbi decoding: Algo-
rithm and VLSI-architecture,” IEEE Communications Magazine, vol. 29,
no. 5, pp. 46–55, May 1991.

[12] WILD-ONE Reference Manual, Annapolis Microsystems, Inc., 1999.
[13] L. Shang, A. Kaviani, and K. Bathala, “Dynamic power consumption in

Virtex-II FPGA family,” in Proceedings, ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, Monterey, Ca., Feb. 2002,
pp. 157–164.

[14] MT48LC2M32B2 SDRAM Data Sheet, Micron Technologies, Inc., 2003.

[15] Xilinx XC4000 Data Sheet, Xilinx Corporation, 2001,
http://www.xilinx.com.

[16] ISE Manual, Xilinx Corporation, 2001, http://www.xilinx.com.
[17] Xilinx Virtex Data Sheet, Xilinx Corporation, 2001,

http://www.xilinx.com.
[18] A. Sinha and A. Chandrakasan, “JouleTrack - a web based tool for soft-

ware energy profiling,” in Proceedings, ACM/IEEE 35rd Design Automa-
tion Conference, June 2001, pp. 220–225.

