
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. Y, MONTH 2004 1

An Architecture and Compiler for Scalable
On-Chip Communication

Jian Liang, Student Member, IEEE, Andrew Laffely, Sriram Srinivasan, and Russell Tessier, Member, IEEE

Abstract—
A dramatic increase in single chip capacity has led to a

revolution in on-chip integration. Design reuse and ease-of-
implementation have became important aspects of the design pro-
cess. This paper describes a new scalable single-chip communi-
cation architecture for heterogeneous resources, adaptive System-
On-a-Chip (aSOC), and supporting software for application map-
ping. This architecture exhibits hardware simplicity and opti-
mized support for compile-time scheduled communication. To il-
lustrate the benefits of the architecture, four high-bandwidth sig-
nal processing applications including an MPEG-2 video encoder
and a Doppler radar processor have been mapped to a prototype
aSOC device using our design mapping technology. Through ex-
perimentation it is shown that aSOC communication outperforms
a hierarchical bus-based system-on-chip (SoC) approach by up to
a factor of five. A VLSI implementation of the communication
architecture indicates clock rates of 400 MHz in 0.18 micron tech-
nology for sustained on-chip communication. In comparison to
previously-published results for an MPEG-2 decoder, our on-chip
interconnect shows a run-time improvement of over a factor of
four.

I. INTRODUCTION

Recent advances in VLSI transistor capacity have led to dra-
matic increases in the amount of computation that can be per-
formed on a single chip. Current industry estimates [1] indicate
mass production of silicon devices containing over one billion
transistors by 2012. This proliferation of resources enables the
integration of complex system-on-a-chip (SoC) designs con-
taining a wide range of intellectual property cores. To provide
high performance, SoC integrators must consider the design of
individual intellectual property (IP) cores, their on-chip inter-
connection, and application mapping approaches. In this paper,
we address the latter two design issues through the introduction
of a new on-chip communications architecture and supporting
application mapping software. Our communications architec-
ture is scalable to tens of cores and can be customized on a
per-application basis.

Recent studies [1] have indicated that on-chip communica-
tion has become the limiting factor in SoC performance. As
die sizes increase, the performance effect of lengthy, cross-chip
communication becomes prohibitive. Future SoCs will require
a communication substrate that can support a variety of diverse
IP cores. Many contemporary bus-based architectures are lim-
ited in terms of physical scope by the need for dynamic arbitra-

This work was supported in by part by the National Science Foundation un-
der grants CCR-0081405 and CCR-9988238. J. Liang and R. Tessier are with
the Department of Electrical and Computer Engineering, University of Mas-
sachusetts, Amherst, MA, 01003 USA. E-mail: tessier@ecs.umass.edu . A.
Laffely is with the US Air Force, Hanscom AFB, MA, 01731 USA. S. Srini-
vasan is with Advanced Micro Devices, Austin, TX, 78741 USA.

tion of communication resources. Significant amounts of arbi-
tration across even a small number of components can quickly
form a performance bottleneck, especially for data-intensive,
stream-based computation. This issue is made more complex
by the need to compile high-level representations of applica-
tions to SoC environments. The heterogeneous nature of cores
in terms of clock speed, resources, and processing capability
makes cost modeling difficult. Additionally, communication
modeling for interconnection with long wires and variable arbi-
tration protocols limits performance predictability required by
computation scheduling.

Our platform for on-chip interconnect, adaptive System-On-
a-Chip (aSOC), is a modular communications architecture. As
shown in Fig. 1, an aSOC device contains a two-dimensional
mesh of computational tiles. Each tile consists of a core and
an associated communication interface. The interface design
can be customized based on core datawidths and operating fre-
quencies to allow for efficient use of resources. Communication
between nodes takes place via pipelined, point-to-point con-
nections. By limiting inter-core communication to short wires
with predictable performance, high-speed communication can
be achieved. A novel aspect of the architecture is its support
for both compile-time scheduled and run-time dynamic trans-
fer of data. While scheduled data transfer has been directly
optimized, a software-based mechanism for run-time dynamic
routing has also been included.

To support the aSOC architecture, an application mapping
tool, AppMapper, has been developed to translate high-level
language application representations to aSOC devices. Map-
ping steps, including code optimization, code partitioning,
communication scheduling, and core-dependent compilation
are part of the AppMapper flow. Although each step has been
fully automated, design interfaces for manual intervention are
provided to improve mapping efficiency. Mapping algorithms
have been developed for both partitioning and scheduling based
on heuristic techniques. A system-level simulator allows for
performance evaluation prior to design implementation.

Key components of the aSOC architecture, including the
communication interface architecture, have been simulated and
implemented in 0.18 micron technology. Experimentation
shows a communication network speed of 400 MHz with an
overhead added to on-chip IP cores that is similar to on-chip
bus overhead. The AppMapper tool has been fully imple-
mented and has been applied to four signal processing appli-
cations including MPEG-2 encoding. These applications have
been mapped to aSOC devices containing up to 45 cores via
the AppMapper tool. Performance comparisons between aSOC
implementations and other more traditional on-chip communi-

North

West

Xbar

Communication
 Interface

South
Core

East
Ctrl uProc

Mul

FPGA FPGA

Mem

Tile

uProc

Fig. 1. Adaptive System-on-a-Chip (aSOC)

cation substrates, such as an on-chip bus, shows an aSOC per-
formance improvement of up to a factor of five.

This paper presents a review of SoC-related communication
architectures in Section II. Section III reveals the design philos-
ophy of our communication approach and describes the tech-
nique at a high level. The details of our communication archi-
tecture are explained in Section IV. Section V demonstrates the
application mapping methodology and describes component al-
gorithms. Section VI describes the benchmarks used to evalu-
ate our approach and our validation methodology. In Section
VII, experimental results for aSOC devices with up to 49 cores
are presented. These results are compared against the perfor-
mance of alternative interconnect approaches and previously-
published results. Section VIII summarizes our work and offers
suggestions for future work.

II. RELATED WORK

Numerous on-chip interconnect approaches have been pro-
posed commercially as a means to connect intellectual prop-
erty cores. These approaches include arbitrated buses [2], [3],
[4] and hierarchical buses connected via bridges [5], [6], [7].
In general, all of these architectures have similar arbitration
characteristics to master/slave off-chip buses with several new
features including data pipelining [2], replacement of tri-state
drivers with multiplexers [3], and separated address/data buses
due to the elimination of off-chip pin constraints. These ap-
proaches, while flexible, have limited scalability due to the ar-
bitrated and capacitive nature of their interconnection. Other
notable, common threads through on-chip interconnect archi-
tectures include the simplicity of the logic needed on a per-node
basis to support communication, their diverse support for nu-
merous master/slave interconnection topologies [8], and their
integrated support for on-chip testing. Several current on-chip
interconnects [3], [7] support the connection of multiple buses
in variable topologies (e.g. partial crossbar, tree). This sup-
port provides users flexibility in coordinating on-chip data paths
amongst heterogeneous components.

Recently, several network-on-chip communication architec-
tures have been suggested. Researchers at Stanford Univer-
sity propose an SoC interconnect using packet-switching [9].
The idea of performing on-chip dynamic routing is described

although not yet implemented. MicroNetwork [10] provides
on-chip communication via a pipelined interconnect. A rotat-
ing resource arbitration scheme is used to coordinate inter-node
transfer for dynamic requests. This mechanism is limited by the
need for extensive user interaction in design mapping.

Packet-switched interconnect based on both compile-time
static and run-time dynamic routing has been used effectively
for multiprocessor communication for over 25 years. For iWarp
[11], inter-processor communication patterns were statically
determined during program compilation and implemented with
the aid of programmable, inter-processor buffers. This concept
has been extended by the NuMesh project [12] to include col-
lections of heterogeneous processing elements interconnected
in a mesh topology. Although pre-scheduled routing is ap-
propriate for static data flows with predictable communication
paths, most applications rely on at least minimal run-time sup-
port for data-dependent data transfer. Often, this support takes
the form of complicated per-node dynamic routing hardware
embedded within a communication fabric. A recent example of
this approach can be found in the Reconfigurable Architecture
Workstation (RAW) project [13]. In our system, we minimize
hardware support for run-time dynamic routing through the use
of software.

III. ASOC DESIGN PHILOSOPHY

Successful deployment of aSOC requires the architectural
development of an inter-node communication interface, the cre-
ation of supporting design mapping software, and the success-
ful translation of target applications. Before discussing these
issues, the basic operating model of aSOC interconnect is pre-
sented.

A. Design Overview

As shown in Fig. 1, a standardized communication struc-
ture provides a convenient framework for the use of intellectual
property cores. A simple core interface protocol, joining the
core to the communication network, creates architectural mod-
ularity. By limiting inter-core communication to short wires
exhibiting predictable performance, high-speed point-to-point
transfer is achieved. Since heterogeneous cores can operate at a
variety of clock frequencies, the communication interface pro-
vides both data transport and synchronization between process-
ing and communication clock domains.

Inter-core communication using aSOC takes place in the
form of data streams [12] which connect data sources to des-
tinations. To achieve the highest possible bandwidth, our ar-
chitecture is targeted towards applications, such as video, com-
munications, and signal processing, that allow most inter-core
communication patterns to be extracted at compile time. By us-
ing the mapping tools described in Section V, it is possible to
determine how much bandwidth each inter-core data stream re-
quires relative to available communication channel bandwidth.
Since stream communication can generally be determined at
compile time [12], our system can take advantage of minimized
network congestion by scheduling data transfer in available data
channels.

Tile A Tile B Tile C

Tile D Tile FTile EStream 1

0.5

Stream 2 0.25

Fig. 2. Multi-core data streams 1 and 2. This example shows data streams
from Tile A to Tile E and from Tile D to Tile F. Fractional bandwidth usage is
indicated in italics.

Core Core Core

Core Core Core

Cycle 3

Cycle 2

Cycle 1

Cycle 0

CICI

Tile E

Tile BTile A

Tile D Tile F

Tile C

Fig. 3. Pipelined stream communication across multiple communication in-
terfaces

As seen in Fig. 2, each stream requires a specific fraction
of overall communication link bandwidth. For this example,
Stream 1 consumes 0.5

1 of available bandwidth along links it
uses and Stream 2 requires 0.25

1 . This bandwidth is reserved for
a stream even if it is not used at all times to transfer valid data.
At specific times during the computation, data can be injected
into the network at a lower rate than the reserved bandwidth,
leaving some bandwidth unused. In general, the path taken by a
stream may require data transfer on multiple consecutive clock
cycles. On each clock cycle, a different stream can use the same
communication resource. The assignment of streams to clock
cycles is performed by a communication scheduler based on re-
quired stream bandwidth. Global communication is broken into
a series of step-by-step hops that is coordinated by a distributed
set of individual tile communication schedules. During com-
munication scheduling, near-neighbor communication is coor-
dinated between neighboring tiles. As a result of this band-
width allocation, the dynamic timing of the core computation is
decoupled from the scheduled timing of communications.

The cycle-by-cycle behavior of the two example data streams
in Fig. 2 is shown in Fig. 3. For Stream 2, data from the
core of Tile D is sent to the left (West) edge of Tile E during
communication clock cycle 0 of a four-cycle schedule. During
cycle 1, connectivity is enabled to transfer data from Tile E to
the West edge of Tile F. Finally, in cycle 2 the data is moved
to its destination, the core of Tile F. During four consecutive
clock cycles, two data values are transmitted from Tile A to Tile
E in a pipelined fashion forming Stream 1. Note that the data

Cycle Tile A Tile D Tile E Tile F

0 core to core to
South East

1 core to North to West to
South East East

2 North to West to West to
East core core

3 West to
core

TABLE I
COMMUNICATION SCHEDULES FOR TILES IN FIG. 3

.

stream is pipelined and the physical link between Tile D and
Tile E is shared between the two streams at different points in
time. Stream transfer schedules are iterative. At the conclusion
of the fourth cycle, the four-cycle sequence re-starts at cycle 0
for new pieces of data. The communication interface serves as
a cycle-by-cycle switch for stream data. Switch settings for the
four-cycle transfer in Fig. 3 are shown in Table I.

Stream-based routing differs from previous static routing net-
works [11]. Static networks demand that all communication
patterns be known at compile time along with the exact time
of all data transfers between cores and the communication net-
work. Unlike static routing, stream-based routing requires that
bandwidth be allocated but not necessarily used during a spe-
cific invocation of the transfer schedule. Communication is set
up as a pipeline from source to destination cores. This approach
does not require the exact timing of all transfers, but rather,
data only needs to be inserted into the correct stream by the
core interface at a communication cycle allocated to the stream.
Computation can be overlapped with communication in this ap-
proach since the injection of stream data into the network is
decoupled from the arrival of stream data.

B. Flow Control

Since cores may operate asynchronously to each other, in-
dividual stream data values must be tagged to indicate validity.
When a valid stream data value is inserted into the network by a
source core at the time slot allocated for the stream, it is tagged
with a single valid bit. As a result of communication schedul-
ing, the allocated communication cycle for stream data arrival
at a destination is predefined. The data valid bit can be exam-
ined during the scheduled cycle to determine if valid data has
been received by the destination. If data production for a stream
source temporarily runs ahead of data consumption at a desti-
nation, data for a specific stream can temporarily back up in the
communication network. To avoid deadlock, data buffer stor-
age is required in each intermediate communication interface
for each stream passing through the interface. With buffering,
if a single stream is temporarily blocked, other streams which
use the affected communication interfaces can continue to op-
erate unimpeded. A data buffer location for each stream is also
used at each core-communication interface boundary for inter-
mediate storage and clock synchronization.

The use of flow control bits and local communication inter-
face buffering ensures data transfer with the following charac-
teristics:

• All data in a stream follows the same source-destination
path.

• All stream data is guaranteed to be transfered in order.
• In the absence of congestion, all stream data requires the

same amount of time to be transfered from source to des-
tination

• Computation is overlapped with communication.

C. Run-time Stream Management

For a number of real-time applications, inter-core communi-
cation patterns may vary over time. This requirement necessi-
tates the capability to invoke and terminate streams at various
points during application execution and, in some cases, to dy-
namically vary stream source and destination cores at run-time.
In developing our architecture, we consider support for the fol-
lowing two situations: (1) all necessary streams required for ex-
ecution are known at compile-time but are not all active simul-
taneously at run-time and, (2) some stream source-destination
pairs can only be determined at run-time.

1) Asynchronous Global Branching: For some applications,
it is desirable to execute a specific schedule of stream commu-
nication for a period of time, and then in response to the arrival
of a data value at the communication interface, switch to a com-
munication schedule for a different set of streams. This type of
communication behavior has the following characteristics:

• All stream schedules are known at compile time.
• The order of stream invocation and termination is known,

but the time at which switches are made is determined in a
data-dependent fashion.

• A data value traverses all affected communication inter-
faces (tiles) over a series of communication cycles to allow
for a global change in communication patterns.

This asynchronous global branching technique [14] across
predetermined stream schedules has been shown [15] to support
many stream-based applications that exhibit time-varying com-
munication patterns. The aSOC communication interface ar-
chitecture supports these requirements by allowing local stream
schedule changes based on the arrival of a specific data value at
the communication interface. Depending on the value of the
data, which is examined on a specific communication cycle,
the previous schedule can be repeated or a new schedule, al-
ready stored in the communication interface, can be used. This
technique does not require the loading of new schedules into
the communication interface at run-time. Although our archi-
tecture supports run-time update of the schedule memory, our
software does not currently exploit this capability. As a result,
all required stream schedules must be loaded into the interface
prior to run-time via an external interface and a shift chain.

The use of these branching mechanisms can be illustrated
through the use of a data transfer example. Consider a transfer
pattern in which Tile D in Fig. 4 is required to first send a fixed
set of data to Tile A and then send a different fixed set of data to
Tile E. To indicate the need for a change in data destination, the
Tile D core iteratively sends a value to its communication inter-
face. When this value is decremented by the core to a value of

Core Core Core

Core Core Core

CICI

Tile ETile D

Tile A Tile B Tile C

Tile F

Fig. 4. Example of distinct stream paths for two communication schedules
which send data from a source to different destinations.

Instr. interface next possible comment
connection instr. branch?

0x0 core to North 0x1/- N data to North
0x1 core to 0x0/0x2 Y test count

interface
0x2 core to East 0x3/- N data to East
0x3 core to 0x2/0x0 Y test count

interface

TABLE II
DATA-DEPENDENT COMMUNICATION CONTROL BRANCHING FOR TILE D

IN FIG. 4

0, control for the communication schedule is changed to reflect
a change in data destination. The two communication interface
schedules for Tile D which supports this behavior are shown in
Table II. Each communication cycle is represented in the in-
terface with a specific communication instruction. For cycles
when data dependent schedule branching can take place, the
target instruction for a taken branch is listed second under the
next instr. heading. In these cycles, data is examined by the
interface control to determine if branching should occur. The
Tile D - Tile A stream schedule uses instructions 0 and 1. The
Tile D - Tile E stream schedule uses instructions 2 and 3.

2) Run-time Stream Creation: Given the simplicity of rout-
ing nodes and our goal to primarily support stream-based rout-
ing, communication hardware resources are not provided to
route data from stream sources to destinations that have not
been explicitly extracted at compile time (dynamic data). How-
ever, as we will show in Section VII, often streams extracted
from the user program require only a fraction of the over-
all available stream bandwidth. As a result, a series of low-
bandwidth streams between all nodes can be allocated at com-
pile time via scheduling in a round robin fashion in otherwise
unused bandwidth. Cores can take advantage of these out-of-
band streams at run time by inserting dynamic data into a stream
at the appropriate time so that data is transmitted to the desired
destination core.

Interface
Crossbar

West East

PC

NSEWNSEW

Instruction

North

to Coreport

to CDM

Memory
Controller

Flow Control Bits

Instruction
Schedule

Decoder

PC logic

Flow Control

Interface

South

Coreport

IP Core

CDM CDM

CDM

CDM

Fig. 5. Core and communication interface

IV. ASOC ARCHITECTURE

The aSOC architecture augments each IP core with commu-
nication hardware to form a computational tile. As seen in Fig.
5, tile resources are partitioned into an IP core and a communi-
cation interface (CI) to coordinate communication with neigh-
boring tiles. The high level view of the communication inter-
face reveals the five components responsible for aSOC commu-
nications functionality:

• Interface Crossbar - allows for inter-tile and tile-core
transfer.

• Instruction Memory - contains schedule instructions to
configure the interface crossbar on a cycle-by-cycle basis.

• Interface Controller - control circuitry to select an in-
struction from the instruction memory.

• Coreport - data interface and storage for transfers to/from
the tile IP core.

• Communication Data Memory (CDM) - buffer storage
for inter-tile data transfer.

The interface crossbar allows for data transfer from any input
port (North, South, East, West, and Coreport) to any out-
put port (five input directions and the port into the controller).
The crossbar is configured to change connectivity every clock
cycle under the control of the interface controller. The con-
troller contains a program counter and operates as a microse-
quencer. If, due to flow control signals, it is not possible to
transfer a data word on a specific clock cycle, data is stored
in a communication data memory (CDM). For local transfers
between the local IP core and its communication interface, the
coreport provides data storage and clock synchronization.

A. Communication Interface

A detailed view of the communication interface appears in
Fig. 6. The programmable component of the interface is a 32-

Coreport

Nout[31:0]
Sout[31:0]

Wout[31:0]

Cout[31:0]
Iout[31:0]

Eout[31:0]
Win[31:0]

Ein[31:0]

Sin[31:0]

Nin[31:0]

Cin[31:0]

Addr

CESN W I

CDM

Decoder

Coreport
Control

PC

Branching
Control

PC
Logic

Instruction
Memory

Crossbar

Fig. 6. Detailed communication interface

word SRAM-based instruction memory that dynamically con-
figures the connectivity of the local interface crossbar on a
cycle-by-cycle basis based on a pre-compiled schedule. This
programmable memory holds binary code that is created by ap-
plication mapping tools. Instruction memory bits are used to
select the source port for each of the six interface destination
ports (Nout, Sout, Eout, Wout, Cout for the core, Iout for the
interface control). CDM Addr indicates the buffer location in
the communication data memory, which is used to store inter-
mediate routed values as described in Section IV-C. A program
counter PC is used to control the instruction sequence. Branch
control signals from the instruction memory determine when
data dependent schedule branching should occur. This control
can include a comparison of the Iout crossbar output to a fixed
value of 0 to initiate branching.

B. Coreports: Connecting Cores to the Network

The aSOC coreport architecture is designed to permit inter-
facing to a broad range of cores with a minimum amount of
additional hardware, much like a bus interface. Both core-
to-interface and interface-to-core transfer are performed us-
ing asynchronous handshaking to provide support for differing
computation and communication clock rates. Both input and
output coreports for a core contain dual-port memories (one in-
put port, one output port). Each memory contains an address-
able storage location for each individual stream, allowing multi-
ple streams to be targeted to each core for both input and output.

The portion of the coreport closest to the core has been de-
signed to be simple and flexible, like a traditional bus interface.
This interface can easily be adapted to interact with a variety of
IP cores. Since coreport reads and writes occur independently,
the network can operate at a rate that is different than that of
individual cores. Specific core interfacing depends on the core.
For example, as described in Section VI-B, a microprocessor
can be interfaced to the coreport via a microprocessor bus. For
simpler cores, a state machine can control coreport/core inter-
action.

0

1 0

1

D
A
T
A

A
D
D
R

W
E

From West

From Core
From East
From South

DeMux

S
N

E
From North

PC

West

CDM Addr

CDM
 from West)

Flow Control
Bit

Read Addr
CLK

Interconnect

Interface CI (receiver)
CommunicationCommunication

Interface CI (transmitter)

Input F/FWest
Data from

ValidBit

Data

Interconnect Memory

ValidBit

CLK

Read Addr

CDM

ValidBit

Data

Write AddrValidBit
Crossbar Config

Flow Control

Bit

West

(for input

Input F/FData from

Fig. 7. Flow control between neighboring tiles

C. Communication Data Memory

As described in Section III-B, due to network congestion
or uneven source and destination core data rates, it may be
necessary to buffer data at intermediate communication inter-
faces. As shown in Fig. 7, the communication data mem-
ory (CDM) provides one storage location for each stream that
passes through a port of the communication interface. To fa-
cilitate interface layout, the memory is physically distributed
across the N , S, E, W ports. On a given communication clock
cycle, if a data value cannot be transfered successfully, it is
stored in the CDM. The flow control bits that are transfered
with the data can be used to indicate valid data storage.

In aSOC devices, near-neighbor flow control and buffering is
used. Fig. 7 indicates the location of the communication data
memory in relation to inter-tile data paths. On a given commu-
nication clock cycle, the stream address for each port indicates
the stream that is to be transfered in the next cycle. Concur-
rently, the crossbar is configured by instruction memory signals
(N ..C) to transfer the value stored in the crossbar register. This
value is transfered to the receiver at the same time the receiver
valid bit is sent to the transmitter. This bit indicates if the CDM
at the receiver already has a buffered value for the transmitted
stream. If a previous value is present at the receiver, the trans-
mitted value is stored in the transmitter CDM using the write
signals shown entering the CDM on the left in Fig. 7. A mul-
tiplexer at the input to the crossbar register determines if the
transmitted or previously-stored value is loaded into the cross-
bar register on subsequent transfer cycles.

V. ASOC APPLICATION MAPPING TOOLS

The aSOC application mapping environment, AppMapper,
builds upon existing compiler infrastructure and takes advan-
tage of user interaction and communication estimation during
the compilation process. AppMapper tools and methodology
follow the flow shown in Fig. 8. Individual steps include:

• Preprocessing/conversion to intermediate format - Fol-
lowing parsing, high-level C constructs are translated to

a unified abstract syntax tree format (AST). After prop-
erty annotation, AST representations are converted to
the graph-based Stanford University Intermediate Format
(SUIF) [16] that represents functions at both high and low
levels.

• Basic block partitioning and assignment - An
annealing-based partitioner operates on basic blocks
based on core computation and communication cost mod-
els. The partitioner isolates intermediate-form structures
to locate inter-core communication. The result of this
phase is a refined task graph where the nodes are clustered
branches of the syntax tree assigned to available aSOC
cores and the inter-node arcs represent communication.
The number and the type of nodes in this task graph
match the number and type of cores found in the device.
Following partitioning and assignment to core types, core
tasks are allocated to individual cores located in the aSOC
substrate so that computation load is balanced.

• Inter-core synchronization - Once computation is as-
signed to core resources, communication points are deter-
mined. The blocking points allow for synchronization of
stream-based communication and predictable bandwidth.

• Communication scheduling - Inter-core communication
streams are determined through a heuristic scheduler. This
list-scheduling approach minimizes the overall critical
path while avoiding communication congestion. Individ-
ual instruction memory binaries are generated following
communication scheduling.

• Core compilation - Core compilation and communica-
tion scheduling are analyzed in tandem through the use of
feedback. Core functionality is determined by native core
compilation technology (e.g. field-programmable gate ar-
ray (FPGA) synthesis, reduced instruction set computer
(RISC) compiler). Communication calls between cores
are provided through fine-grained send/receive operations.

• Code generation - As a final step, binary code for each
core and communication interface is created.

These steps are presented in greater detail in subsequent sub-
sections.

Communication
Scheduling

Core
Compilation

Generation

Enhanced IF

Core IF

Synchronization
Inter−core

Dependencies

CodeStream schedules

Stream assignment

R4000 Bitstreams Communication
instructions

Basic Block

Run time

Partition/Assignment

Graph−based IF

Estimation
Run−time

instructions

Code

SUIF
optimization

parse

Annotate

Front−end

C/C++

Preprocess

AST

Fig. 8. aSOC application mapping flow

A. SUIF preprocessing

The AppMapper front-end is built upon the SUIF compiler
infrastructure [16]. SUIF provides a kernel of optimizations and
intermediate representations for high-level C code structures.
High-level representations are first translated into a language-
independent abstract syntax tree format. This approach allows
for object-oriented representation for loops, conditionals, and
array accesses. Prior to partitioning, AppMapper takes advan-
tage of several scalar SUIF optimization passes including con-
stant propagation, forward propagation, constant folding, and
scalar privatization [16]. The interprocedural representation
supported in SUIF facilitates subsequent AppMapper partition-
ing, placement, and scheduling passes. SUIF supports inter-
procedural analysis rather than using procedural inlining. This
representation allows for rapid evaluation of partitioning and
communication cost and the invocation of dead-code elimina-
tion. Data references are tracked across procedures.

B. Basic Block Partitioning and Assignment

Following conversion to intermediate form, high-level code
is presented as a series of basic blocks. These blocks represent
sequential code, loop-level parallelism, and subroutine func-
tions. Based on calling patterns, dataflow dependency between
blocks is determined through both forward and reverse tracing
of inter-block paths [17]. As a result of this dependence analy-
sis, coarse-gained blocks can be scheduled to promote parallel
computation. As shown in Fig. 9(b) for an infinite impulse re-
sponse (IIR) filter, subfunction dependency forms a flowgraph
of computation that can be scheduled. The most difficult part
of determining this dependency is estimating the computation
time of basic blocks across a range of cores to determine the
core best suited for evaluation. The overall run time attributed
to each basic block is determined by parameters of the compu-
tation. These include:

MAC3

MAC2

w2 (y)

w0 (data) w3 (y)

FPGA2

w1 (x)

FPGA3

 x = RECEIVE FPGA1;
 data = RECEIVE MEM1;

 y = data + x*a;

 Send y To MEM2;
 Send y To MAC1;

CompBlock (20);

 }
}

R4000() {
 for (i=0; i<Length; i=i+1) {

R4000

FPGA1

(b) Data streams of IIR application

MAC1

MEM1

(a) Code for R4000 with
communication primitives

MEM2

Fig. 9. Inter-core synchronization

• β - run time - execution time of a single invocation of a
basic block on a specific core. Valueβ is based on the
number of clock cycles, the speed of the core clock, and
the amount of available parallelism.

• λ - invocation frequency - the number of times each basic
block is invoked.

The parameters lead to an overall core run time ofβ × λ
for each function. Core run-time estimates,β, are determined
through instruction counts or through simulation, prior to com-
pilation using techniques described in Section VI-B. Clock
rates, which vary from core to core, are taken into account dur-
ing this determination. A goal of design mapping is to maxi-
mize the throughput of stream computation while minimizing
ctotal, the inter-core transport time for basic block data. For a
specific core, this value measures the shortest distance to an-
other core of a different type.

Assignment of basic blocks to specific cores requires a cost
model which takes both computation and communication into
account. For AppMapper, this cost is represented as:

cost = x × Tcompute + y × 1
Toverlap

+ z × ctotal (1)

whereTcompute indicates combined computation time of all
streams,Toverlap indicates computational parallelism,ctotal in-
dicates combined stream communication time andx, y, andz
are scaling constants. Minimization of this cost function forms
the basis for basic block assignment. The valueTcompute is de-
termined fromβ parameters for each core. Prior to basic block
assignment, small code blocks are clustered using Equation 1 in
an effort to minimize inter-core transfer. To support placement,
a set ofN bins are created, one per target core. During the clus-
tering phase, communication time is estimated by the distance
of the shortest path between the two types of target cores. At
the end of clustering, a collection ofN block-based clusters re-
mains. Dataflow dependency is tracked through the creation of
basic block data predecessor and successor lists.

For core assignment, clustered blocks are assigned to unoc-
cupied cores so that the cost expressed in Equation 1 is mini-
mized. AppMapper provides a file-based interface for users to
manually assign basic blocks to specific cores, if desired. Fol-
lowing greedy basic block assignment to cores, a swapping step
is used to exchange tasks across different types of cores subject
to the cost function in Equation 1. This step attempts to mini-

mize system cost and critical path length by load balancing par-
allel computation across cores. Load balancing is supported by
the second term in Equation 1. Basic block assignment is com-
plicated by the presence of multiple cores with the same func-
tionality in an aSOC device. Following basic block assignment
to a specific type of core, it is necessary to match the block to a
specific core at a fixed location. Given the small number of each
type of core available (typically less than 5), a full enumeration
of all core assignments is possible. For later generation devices
it may be possible to integrate this search with the basic block
to core assignment phase.

C. Inter-core Synchronization

Synchronization between cores is required to ensure that data
is consumed based on computational dependencies. Once ba-
sic blocks have been assigned to specific cores in the aSOC
device, communication primitives are inserted into the inter-
mediate form to indicate when communication should occur.
These communications are blocking based on the transfer rate
of the communication network. As shown in Fig. 9(a), the data
transfer call to multiply-accumulate unitMAC1 follows an as-
signment toy. As a result,R4000 processing can be overlapped
with MAC1 processing. Each inter-core communication repre-
sents a data stream, as indicated byw-labeled arcs in Fig. 9(b).

D. Communication Scheduling

Following basic block assignment, the number of streams
and their associated sources and destinations are known. Given
a set of streams, communication scheduling assigns streams to
communication links based on a fixed schedule. Inter-tile com-
munication is broken into a series of time steps, each of which
is represented by a specific instruction in a communication in-
terface instruction memory. Schedule cycle assignment is made
so that the schedule length does not exceed the instruction stor-
age capacity of each communication interface instruction mem-
ory (32 instructions). Each unidirectional inter-tile channel can
transmit one data value on each communication clock cycle.
Only one stream can use a channel during a specific clock cy-
cle. In general, the length of a schedule must be at least as long
as the longest stream Manhattan path. During schedule execu-
tion, multiple source-destination data transfers may take place
per stream. For example, two stream transfers take place per
schedule in the example shown in Fig. 3. To allow for flow
control, all transfers for a stream must follow the same source-
destination path.

Our communication scheduling algorithm forms multi-tile
connections for all source-destination pairs inspace through the
creation of multi-tile routing paths. Sequencing intime is made
by the assignment of data transfer to specific communication
clock cycles. This space-time scheduling problem has been an-
alyzed previously [14] in terms of static, but not stream-based
scheduling. For our scheduler, the schedule lengthL is set to
the longest Manhattan source-destination path in terms of tiles.
Streams are ordered by required stream bandwidth per tile. The
following set of operations are performed to create a source-
destination path for each stream prior to scheduling transfers
along the paths:

• The shortest source-destination path for each stream is de-
termined via maze routing using a per-tile cost function of
gi = gi−1 + ci. In this equation,ci is the cost of using a
tile communication channel,gi−1 is the cost of the route
from the path source to tilei, andgi is the total cost of
the path including tilei. The ci cost value represents a
combination of the amount of channel bandwidth required
for the path in relation to the bandwidth available and the
distance from the channel to the stream destination.

• For multi-fanout streams, a Steiner tree approximation is
used to complete routing. After an initial destination is
reached, maze routes to additional destinations are started
from previously-determined connections.

Following the assignment of streams to specific paths, the
assignment of stream data transfers to specific communication
clock cycles is performed. Each transfer must be scheduled
separately within the communication schedule. Scheduling is
performed via the following algorithm:

1) Set the length of the schedule to the length of the longest
Manhattan path distance,L. Specific schedule time slots
range from0 to L − 1.

2) Order streams by required channel bandwidth.
3) For each stream:

a) Set start time slots to 0.
b) For each transfer:

i) Determine if inter-tile channels along source-
destination path are available duringn consec-
utive communication clock cycles, wheren is
the stream path length.

ii) If bandwidth available, schedule transfer com-
munication, increment start times, and go to
step 3.b to schedule next transfer.

iii) Else increment start times and go to step 3.b.i.
If any stream cannot fit into the length of the stream schedule

L, the schedule length is incremented by one and the scheduling
process is restarted.

In Section III-C.1, a technique is described which allows run-
time switching between multiple communication schedules. To
support multiple schedules, the communication scheduling al-
gorithm must be invoked multiple times, once per schedule, and
the length of thecombined schedules must fit within the com-
munication interface instruction memory.

E. Core Compilation and Code Generation

Following assignment of basic blocks to cores and schedul-
ing, basic block intermediate form code is converted to repre-
sentations that can be compiled by tools for each core. Back-
end formats include assembly-level code (R4000 processor)
and Verilog (FPGA, multiplier). These tools also provide an in-
terface to the simulation environment described in Section VI-
B. The back-end step in AppMapper involves the generation of
instructions for the R4000 and bitstreams for the FPGA. Each
communication interface is configured through the generation
of communication instructions.

F. Comparison to Previous Mapping Tools

To date, few integrated compilation environments have been
created for heterogeneous systems-on-a-chip. The MESCAL

system [18] provides a high-level programming interface for
embedded SOCs. Though flexible, this system is based on a
communication protocol stack which may not be appropriate
for data stream-based communication. Several projects [19]
[20] have adapted embedded system compilers to SOC envi-
ronments. These compilers target bus-based interconnect rather
than a point-to-point network. Cost-based tradeoffs between
on-chip hardware, software, and communication were evalu-
ated by Wan et al. [8]. In Dick and Jha [21], on-chip task par-
titioning was followed by a hill-climbing based task placement
stage.

Our mapping system and these previous efforts have simi-
larities to software systems which map applications to a small
number of processors and custom devices (hardware/software
co-design [22]), and parallel compilers which target a uniform
collection of interconnected processors. Most codesign efforts
[22] involve the migration of operational or basic block tasks
from a single processor to custom hardware. The two pri-
mary operations performed in hardware/software codesign are
the partitioning of operations and tasks between hardware and
software and the scheduling of operations and communications
[22]. The small number of devices involved (usually one or two
processors and a small number of custom devices) allows for
precise calculation of communication and timing requirements,
facilitating partitioning and scheduling.

Our partitioning approach, which is based on task profiling
and simulated annealing, extends earlier task-based codesign
partitioning approaches [23], [24] to larger numbers of tasks
and accurately models target processors and custom chips. Al-
though all of these efforts require modeling of execution time,
our approach addresses a larger number of target models and
requires tradeoffs between numerous hardware/software parti-
tions. This requires high-level modeling of both performance
and partition size for a variety of different cores. Our ap-
proach to partition assignment of basic block tasks is slightly
more complicated than typical codesign assignment. In general,
the bus structure employed by codesign systems [23] limits the
need for cost-based assignments. In contrast, our swap-based
assignment approach for heterogeneous targets is simpler than
the annealing based technique used to assign basic blocks to
a large homogeneous array of processors [13]. Since blocks
are assigned to specific target cores during partitioning, the as-
signment search is significantly more constrained and can be
simplified.

Our stream-based scheduling differs from previous codesign
processor/custom hardware communication scheduling [22].
These scheduling techniques attempt to identify exact commu-
nication latency between processors and custom devices to en-
sure worst-case performance across a variety of bus transfer
modes (e.g. burst/non-burst) [19]. Often instruction scheduling
is overlapped with communication scheduling to validate tim-
ing assumptions [22]. In contrast, our communication schedul-
ing approach ensures stream throughput over a period of com-
putation.

VI. EXPERIMENTAL METHODOLOGY

To validate the aSOC approach, target applications have been
mapped to implemented aSOC devices and architectural mod-

6

2

5

1

13

MEM
0

4

12

MEM
3

7

8 9 10

FPGA FPGA

FPGA FPGA

MAC MAC

MAC MAC MAC MAC

11

1514

(b) 16−Core aSOC Topology

R4000

R4000

R4000

R4000

MEM

FPGA R4000

MEM

FPGA

0

3

6

2

4

7

R4000

1
MAC

8
MAC

5
FPGA

(a) 9−Core aSOC Topology

Fig. 10. aSOC topologies: 9 and 16 cores

Array Configuration R4000 FPGA Mem MAC

3 × 3 2 3 2 2
4 × 4 4 4 2 6
5 × 5 9 2 4 10
6 × 6 13 2 6 15
7 × 7 18 3 8 20

TABLE III
ASOC DEVICE CONFIGURATIONS

els containing up to 49 cores. Parameters associated with the
models are justified via a prototype aSOC device layout, de-
scribed in Section VII. Examples of 9 and 16 core models are
shown in Fig. 10. The models consist of R4000 micropro-
cessors [25], FPGA blocks, 32Kx8 SRAM blocks (MEM), and
multiply-accumulate (MAC) cores. The same core configura-
tions were used for all benchmarks. The FPGA core contains
121 logic clusters, each of which consists of four 4-input look-
up tables (LUTs) and flip flops [26]. The core population of all
aSOC configurations are shown in Table III.

A. Target aSOC Applications

Four applications from communications, multimedia, and
image processing domains have been mapped to the aSOC de-
vice models using the AppMapper flow described in Section V.
Mapped applications include MPEG-2 encoding [27], orthog-
onal frequency division multiplexing (OFDM) [28], Doppler
radar signal analysis [29], and image smoothing (IMG). An IIR
filter kernel was used for initial analysis.

1) MPEG-2 Encoder: An MPEG-2 encoder was paral-
lelized from sequential code [27] to take advantage of con-
current processing available in aSOC. Three 128×128 pixel

Buffer

IDCT

MAC2 MAC1 DCT

MAC4 MAC0

Control

(b) Mapping Results

Ref.

Motion
Est.

Input
Buffer

MAC3

Quantizer
DCT

I−Quantizer
IDCT

Buffer
Reference

Controller Buffer
Input

MEM

Motion
Estimation

MAC4

MEM
R4000

R4000

R4000

(a) Flow

Block

SourceData

Reconstructed
Data

Reconst.

Motion Error

Source
Frame

Reconst.
Frame

R4000

Errors between 4 pairs of data

MAC0

MAC1

MAC2

MAC3

Fig. 11. Partitioning of MPEG-2 encoder to a 4×4 aSOC configuration

x(0)

x(2)

x(4)

x(6)

x(1)

x(5)

x(3)

x(7)

Core0

Core1

Core2

Core3

Core4

Core5

Core6

Core7

R4000

R4000

R4000

R4000

FPGA

FPGA

FPGA

FPGA

Stage 2 Stage 3Stage 1 Stage 4

MEM

MAC

MAC

MAC

MAC

Fig. 12. OFDM mapped to 16 core aSOC model

frames, distributed with the benchmark, were used for aSOC
evaluation. For the 4×4 aSOC configuration, MPEG-2 compu-
tation is partitioned as shown in Fig. 11. Thick arrows indicate
video data flow and thin arrows illustrate control signal flow.
Frame data blocks (16×16 pixels in size) in the Input Buffer
core are compared against similarly-sized data blocks stored in
the Reference Buffer and streamed into a series of multiply-
accumulate cores via an R4000. These cores perform motion
estimation by determining the accumulated difference across
source and reconstructed block pixels, which is encoded by the
discrete cosine transform (DCT) quantizer, implemented in an
adjacent R4000. The data is then sent to the controller and Huff-
man coding is performed in preparation for transfer via a com-
munication channel. Another copy of the DCT encoded data
is transferred to the inverse discrete cosine transform (IDCT)
circuit, implemented in an R4000 core. The reconstructed data
from the IDCT core is then stored in the Reference Buffer core
for later use. Data transfer is scheduled so that all computation
and storage is pipelined.

2) Orthogonal Frequency Division Multiplexing: OFDM is
a wireless communication protocol that allows data to be trans-
mitted over a series of carrier frequencies [28]. OFDM provides
high communication bandwidth and is resilient to RF interfer-
ence. Multi-frequency transmission using OFDM requires mul-
tiple processing stages including inverse fast Fourier transform
(IFFT), normalization, and noise-tolerance guard value inser-

tion. As shown in Fig. 12, a 2048 complex-valued OFDM
transmitter has been implemented on an aSOC model. The
IFFT portion of the computation is performed using four R4000
and four FPGA cores. Resulting complex values are normalized
with four MAC and four R4000 cores. A total of 512 guard
values are determined by R4000 cores and stored along with
normalized data in memory. The OFDM application exhibits
communication patterns which change during application exe-
cution, as shown in the four stages of computation illustrated in
Fig. 12. The run-time branching mechanism of the communi-
cation interface is used to coordinate communication branching
for the four stages.

3) Doppler Radar Signal Analysis: A stream-based
Doppler radar receiver [29] was implemented and tested using
an aSOC device. In a typical Doppler radar system, a sinu-
soidal signal is transmitted by an antenna, reflects off a target
object, and returns to the antenna. As a result of the reflec-
tion, the received signal exhibits a frequency shift. This shift
can be used to determine the speed and distance of the target
through the use of a Fourier analysis unit. The main compo-
nents of the analysis include a fast Fourier transform (FFT) of
complex input values, a magnitude calculation of FFT results
and the selection of the largest frequency magnitude value. For
the 16 core aSOC model, a 1024 point FFT, magnitude calcu-
lation, and frequency selection were performed by four R4000
and four FPGA cores. All calculation was performed on 64
bit complex values. Like OFDM, the Doppler receiver requires
communication patterns which change during application exe-
cution. The run-time branching mechanism of the communica-
tion interface is used to coordinate communication branching
for the four stages.

4) Image Smoothing: A linear smoothing filter was imple-
mented in multi-core aSOC devices for images of size 800×600
pixels. The linear filter is applied to the image pixel matrix
in a row-by-row fashion. The scalar value of each pixel is re-
placed by the average of the current value and its neighbors,
resulting in local smoothing of the image and reducing the ef-
fects of noise. To take advantage of parallelism, each image
is partitioned into horizontal slices and processed in separate
pipelines. Data streams are sent from memory (MEM) cores to
multiple R4000s, each accepting a single data stream. Inside
each MAC, each pixel value is averaged with its eight neigh-
bor values resulting in nine intermediate values. Later in the

Phase 1

Phase 2

Core
simulation

System activity

events
comm.

simulation
Network C representation

of cores

System performance

(Quartus)
FPGA simulation

MEM simulation MAC simulationR4000 simultion
(SimpleScalar)

Topology
Core speed

Core location
CI instructions

Core code from AppMapper

Verilog Core
Config

Core
Config

C code

R4000 architecture

Computation delays

Combined
evaluation

System
statistics

aSoC System SimulatorConfiguration

Simulator Lib.

Fig. 13. aSOC system simulator

stream, an FPGA-based circuit sums the values to generate av-
eraged results. These results are buffered in a memory core.
This application was mapped to aSOC models ranging in size
from 9 to 49 cores by varying the number of slices processed in
parallel.

5) IIR Filter: A three-stage and a six-stage IIR filter were
implemented using the 9 and 16 core aSOC models, respec-
tively. The data distribution and collection stages of the fil-
ter use R4000s. MACs and FPGA cores are used to execute
the middle stages of multiplication and accumulation. SRAM
cores (MEM) buffer both source data and computed results.
The overall application data rate is limited by aSOC commu-
nication speed.

B. Simulation Environment

To compare aSOC to a broad range of alternative on-chip
interconnect approaches, including flat and hierarchical buses,
a timing-accurate interconnect simulator was developed. This
simulator is integrated with several IP core simulators to pro-
vide a complete simulation environment. The interaction be-
tween the computation and communication simulators provides
a timing-accurate aSOC model that can be used to verify a spec-
trum of SoC architectures.

A flowchart of the simulator structure appears in Fig. 13.
For our modeling environment, simulation takes place in two
phases. In phase 1, simulation determines the exact number
of core clock cycles between data exchanges with the commu-
nication network coreport interface. In phase 2, core compu-
tation time is determined between send and receive operations
via core simulation which takes core cycle time into account.
Data communication time is simultaneously calculated based
on data availability and network congestion. Both computation
and communication times are subsequently combined to deter-
mine overall run time.

During the first simulation phase, core computation is repre-
sented by C files created by AppMapper or user-created library

Speed Area (λ2)

Comm. interface 2.5 ns 2500 × 3500
MIPs R4000 (w/o cache) 5 ns 4.3 × 107 [25]
MAC 5 ns 1500 × 1000
FPGA 10 ns 27500 ×26500
MEM 5 ns 7500 × 6500

TABLE IV
COMPONENT PARAMETERS

files in C or Verilog. This compute information is used to deter-
mine the transfer times of core-network interaction. The execu-
tion times of core basic blocks are determined by invocation of
individual core simulators. Cycle count results of these simu-
lators are scaled based on the operating frequency of the cores.
Specific simulators include:

• Simplescalar - This processor simulator [30] models in-
struction level execution for the R4000 architecture. The
simulator takes C code as input and determines the access
order and number of execution cycles between coreport
accesses. Cycle counts are measured through the use of
breakpoint status information.

• FPGA block simulation - Unlike other cores, FPGA core
logic is first created by the designer at the register-transfer
level. The Verilog-XL simulator is then used to determine
cycle counts between coreport transfers. To verify tim-
ing accuracy, all cores have been synthesized to four-input
LUTs and flip flops using Synplicity Synplify.

• Multiply-accumulate - The multiply-accumulate core is
modeled using a C-based simulator. Given the frequency
of an input stream, the simulator determines the number of
cycles between coreport interactions.

• SRAM memory cores (MEM) - SRAM cores are mod-
eled using a C-based cycle-accurate simulator.

Layouts, described in Section VII, were used to deter-
mine per-cycle performance parameters of the FPGA, multiply-
accumulate, and memory cores.

The second stage of the simulator determines communica-
tion delay based on core compute times and instruction mem-
ory instructions. Following core timing determination, aSOC
network communication ordering and delay is evaluated via the
communication simulator. The instruction memory instructions
are used to perform simulation of each tile’s communication in-
terface. This part of the simulator takes in multiple interconnect
memory instruction files. High-level C code represents core and
communication interfaces. As shown in Fig. 9(a), core com-
pute delay is replaced with compute cycle (CompBlock) delays
determined from the first simulation stage. The second input
file to the simulator is a configuration file, previously gener-
ated by AppMapper. This file contains core location and speed
information, the details of the inter-core topology and the in-
terconnection memory instructions for each communication in-
terface. These files are linked with a simulator library to gen-
erate an executable. When the simulator is run, multiple core
and communication interface processes are invoked in an event-
driven fashion based on data movement, production, and con-

Design No. No. Max CI Max. Streams Ave. Streams Max. CPort Ave. CPort
cores Streams Instruct. per CI per CI Mem. Depth Mem. Depth

IIR 9 11 2 5 3.5 2 2.0
IIR 16 20 2 5 3.5 4 2.7
IMG 9 8 2 3 2.0 2 1.5
IMG 16 15 4 4 3.5 4 1.9
IMG 25 20 4 7 2.0 4 2.1
IMG 36 28 4 7 1.8 4 1.5
IMG 49 36 4 7 2.6 4 1.5
Doppler 16 32 8 6 2.1 4 1.6
OFDM 16 39 9 6 2.2 4 1.5
MPEG 16 19 4 8 3.6 4 2.3
MPEG 25 37 5 8 3.2 4 3.0
MPEG 36 55 5 8 2.1 4 3.1
MPEG 49 73 5 8 5.3 4 3.0

TABLE V
BENCHMARK STATISTICS USED TO DETERMINE ASOC PARAMETERS

sumption. CDM and coreport storage is modeled to allow for
accurate evaluation of inter-tile storage.

The simulator can model a variety of communications archi-
tectures based on the input parameter file. Architectures include
the aSOC interconnect substrate, the IBM CoreConnect on-chip
bus [7], a hierarchical CoreConnect bus, and a dynamic router.
Parameters associated with aSOC, such as the core type, loca-
tion, speed, and the communication interface configuration, can
be set by the designer to explore aSOC performance on appli-
cations.

VII. RESULTS

To evaluate the benefits of aSOC versus other on-chip com-
munication technologies, design mapping, simulation, and lay-
out were performed. Benchmark simulation of aSOC models
were used to determine architectural parameters. Core model
assumptions were subsequently validated via layout. Our aSOC
benchmark implementations were compared to implementa-
tions using alternative on-chip interconnect approaches and as-
sessed versus previously-published work. As a final step, the
communication scalability of aSOC was evaluated.

A. aSOC Parameter Evaluation and Layout

The benchmarks described in Section VI were evaluated us-
ing the aSOC simulator to determine aSOC parameters such
as the required number of instructions per instruction mem-
ory. The cores listed in Table IV were used in configura-
tions described in Section VI. R4000 performance and area
were obtained from MIPs [25]. Multiply-accumulate, memory,
and FPGA performance numbers were determined through core
layout using TSMC 0.18um library parameters [31].

Benchmark run-time statistics determined via simulation are
summarized in Table V. These statistics illustrate usage of var-
ious CI resources across a set of applications. The values were
determined with parameters set to values which led to best-
performance application mapping. Statistics which were used

Core
Interface

FPGA Core

C
or

e
Po

rt
s

PC Control

Instruction Memory

Data Memory

Fig. 14. Layout of FPGA core and communication interface

for CI architectural choices are highlighted in boldface. Al-
though the maximum number of instructions per CI was rela-
tively small for these designs (9), a depth of 32 was allocated in
the aSOC prototype to accommodate expansion for future ap-
plications. Since the maximum total number of streams per CI
is 8, each of the four CDM buffers per CI could be restricted to
a depth of 2 in the prototype. The coreport memory depth was
set to four, the maximum value in terms of streams across all
benchmarks.

A prototype SoC device, including aSOC interconnect,
was designed and implemented based on experimentally-
determined parameters. The 9-tile device layout in a 3×3 core
configuration contains lookup-table based FPGA cores with
121 clusters of 4 four-input LUTs, a complete communication
interface, and clock and power distribution. Each tile fits a size
of 30, 000 × 30, 000λ2 with 2, 500 × 3, 500λ2 assigned to the
communication interface and associated control and clock cir-
cuitry (about 6% of device area). An H-tree clock distribution

9-Core Model 16-Core Model
Execution Time (mS) IIR IMG IIR IMG MPEG Doppler OFDM

R4000 0.049 327.0 0.350 327 152 0.80 4.40
CoreConnect 0.012 22.0 0.016 30.5 173 0.13 0.21
CoreConnect (burst) 0.012 18.9 0.015 24.3 172 0.13 0.21
aSOC 0.006 9.6 0.006 7.3 83 0.11 0.18
aSOC Speed-up vs. burst 2.0 2.0 2.5 3.3 2.1 1.2 1.2

Used aSOC links 8 8 33 27 41 26 45
aSOC max. link usage 10% 8% 37% 28% 25% 2% 4%
aSOC ave. link usage 7% 7% 22% 25% 5% 2% 3%
CoreConnect busy (burst) 91% 100% 100% 99% 67% 32% 37%

TABLE VI
COMPARISON OF ASOC AND CORECONNECT PERFORMANCE

FPGA

FPGA FPGA

FPGA

MAC

Interface

MEM

R4000

Fig. 15. Non-uniform aSOC core configuration

network is used to reduce clock skew between tiles. Layout was
implemented using TSMC 0.18um library parameters resulting
in a communication clock speed of 400 MHz. The critical path
of 2.5 ns in the communication interface involves the transfer
of a flow control bit from a CDM buffer to the read control
circuitry of a neighboring CDM buffer, as shown in the right-
to-left path in Fig. 7. A layout snapshot of a communication
interface, coreport, and a single FPGA cluster appears in Fig.
14.

The layouts of the communication interface and associated
cores support the creation of a non-uniform mesh structure
which is populated to optimize space consumption. As shown
in Fig. 15, tile sizes range from 10, 000 × 10, 000λ2 to
30, 000×30, 000λ2. From data in Table IV it can be determined
that the communication interface incurs about a 20% area over-
head for the R4000 processor. For comparison, an embedded
Nios processor core [32] and its associated AMBA bus inter-
face [6] were synthesized. A total of 206 out of 2904 total logic
cells (7%) were required for the AMBA interface, with addi-
tional area required for bus wiring. This result indicates that
the aSOC communication interface is competitive with on-chip
bus architectures in terms of core overhead.

B. Performance Comparison with Alternative On-Chip Inter-
connects

A series of experiments were performed to compare aSOC
performance against three alternative on-chip communication
architectures: a standard CoreConnect on-chip bus, a hierarchi-
cal CoreConnect bus, and a hypothetical network based on run-
time dynamic routing [33]. Performance was evaluated using
the aSOC simulator described in Section VI-B. In these exper-
iments, the IP cores with parameters shown in Table IV were
aligned in the 9 and 16 configurations shown in Fig. 10. For
each interconnect approach, the relative placement of cores and
application partitioning was kept intact. Only the communica-
tion architecture which connects them together was changed for
comparative results.

To evaluate aSOC bandwidth capabilities, a benchmark-
based comparison is made for aSOC versus the IBM CoreCon-
nect processor local bus (PLB) [7]. The PLB bus architecture
allows for simultaneous 32-bit read and write operations at 133
MHz. When necessary, bus arbitration is overlapped with data
transfer. The architecture requires two cycles to complete data
transfer: one cycle to submit the address and a second cycle to
transport the data. CoreConnect PLB supports burst transfers
up to 16 words. The maximum possible speedup for a burst
transfer versus multiple single-word transfers is about 2×.

It can be seen in Table VI that aSOC performance improve-
ment over CoreConnect increases with a larger number of cores.
Run times on a single 200 MHz R4000 are provided for ref-
erence. Relative aSOC improvement over CoreConnect burst
transfer is indicated in the row labelled aSOC speedup. For
most designs the CoreConnect implementation leads to satu-
rated or nearly-saturated bus usage (as indicated by the row la-
belled CoreConnect busy).

A limiting factor for shared on-chip buses is scalability. To
provide a fairer comparison to aSOC, a set of experiments
was performed using a hierarchical version of the CoreCon-
nect bus. Three separate CoreConnect PLBs connect rows of
cores shown in Fig. 10. A CoreConnect OPB bridge [7] joins
three subbuses (for 9 cores) or four subbuses (for 16 cores).
When a cross-subbus transfer request is made, the OPB bridge
serves as a bus slave on the source subbus and a master for the

9-Core Model 16-Core Model
Execution Time (mS) IIR IMG IIR IMG MPEG Doppler OFDM

Hier. CoreConnect 0.013 26.0 15.7 37.4 178 0.15 0.22
aSOC 0.006 9.6 7.0 7.3 83 0.11 0.18
aSOC Speed-up 2.1 2.7 2.2 5.1 2.2 1.4 1.2

subbus 0 busy 85% 97% 99% 100% 94% 30% 30%
subbus 1 busy 72% 83% 99% 61% 94% 12% 27%
OPB bridge busy 40% 65% 81% 60% 93% 16% 36%

TABLE VII
COMPARISON OF ASOC AND HIERARCHICAL CORECONNECT PERFORMANCE

9-Core Model 16-Core Model
Time (mS) IIR IMG IIR IMG MPEG OFDM

Dynamic 0.008 14.4 8.7 9.7 162.0 0.19
aSOC 0.006 9.6 7.0 7.3 82.5 0.18
Speedup 1.3 1.5 1.3 1.3 2.0 1.1

TABLE VIII
COMPARISON OF ASOC AND DYNAMIC NETWORK PERFORMANCE

destination subbus. As shown in Tables VI and VII, for all but
one design, aSOC speedup versus the hierarchical CoreConnect
bus is larger than speedup versus the standard CoreConnect bus.
This effect is due to the overhead of setting up cross-bus data
transfer.

In a third set of experiments, the aSOC interconnect approach
was compared to a hypothetical on-chip dynamic routing ap-
proach. This dynamic routing model applies oblivious dynamic
routing [33] with one 400 MHz router allocated per IP core.
Tile topology for the near-neighbor dynamic network is the
same as shown in Fig. 10. For each transmitted piece of data, a
header indicating the coordinates of the target node is injected
into the network, followed by up to 20 data packets. To allow
for a fair comparison to aSOC flow control, the routing buffer in
each dynamic router is set to be the maximum size required by
an application. The results in Table VIII indicate that the aSOC
is up to 2 times faster than the dynamic model. Performance
improvements are based on the removal of header processing
and compile-time congestion avoidance through scheduling.

C. Comparison to Published Results

Several experiments were performed to compare the results
of aSOC interconnect versus previously-published on-chip in-
terconnect results. An MPEG-2 decoder, developed from four
Motorola PowerPC 750 cores interconnected with a CoreCon-
nect bus, was reported in [34]. The four 83 MHz compute nodes
require communication arbitration and contain an associated
on-chip data and instruction cache. During decoding, frames
of 16×16 pixels are distributed to all processors and results are
collected by a single processor. To provide a fair performance
comparison to this MPEG-2 decoder, our aSOC simulator was
supplemented with SimpleScalar 3.0 for PowerPC [30] and ap-

MPEG-2 Decoder Throughput (Mbps)
CoreConnect [34] 0.68
aSOC 2.88

OFDM Throughput (Mbps)
CoreConnect [35] 2.19
aSOC 5.67

TABLE IX
COMPARISON TO PUBLISHED WORK

plied to four PowerPC 750 core tiles interconnected with com-
munication interfaces. The partitioning of computation was de-
rived from [34], following consultation with the authors. In the
experiment, the PowerPC cores run at 83 MHz and the aSOC
communication network runs at 400 MHz. Table IX compares
our results to previously published work. Unlike the 64-bit, 133
MHz CoreConnect model, aSOC avoids communication con-
gestion by avoiding arbitration and providing a faster transfer
rate (32 bits at 400 MHz) due to point-to-point transfers.

In previously published work [35], OFDM was also imple-
mented using four 83 MHz PowerPC 750 cores interconnected
with a 64-bit, 133 MHz CoreConnect bus. Each packet of
OFDM data contains a 2048-complex valued sample and a
512-complex valued guard signal. This application was par-
titioned into four stages: initiation, inverse FFT, normalization
and guard signal insertion. Each stage was mapped onto a sepa-
rate processor core. Like the MPEG-2 decoder described above,
the same mapping of computation to 83 MHz PowerPC 750
cores was applied to aSOC and modeled using SimpleScalar
and aSOC interconnect simulators. Results are shown in Table
IX. The aSOC implementation achieves improved performance
for this application by providing high bandwidth and pipelined
transfer.

Unlike the results for MPEG-2 and OFDM shown in Tables
V through VIII, communication is not overlapped with com-
putation during execution of the applications. This approach
is consistent with the method used to obtain the previously-
published results [34], [35].

D. Architectural Scalability

An important aspect of a communication architecture is scal-
ability. For interconnect architectures, a scalable interconnect

Threads Core Used Comm. Throughput
Config. Cores Cycles pixel/uS Mbps

1 4 × 4 12 33,002,480 0.60 7.15
2 5 × 5 23 34,906,796 1.13 13.51
3 6 × 6 34 34,916,246 1.69 20.27
4 7 × 7 45 35,311,402 2.23 26.72

TABLE X
SCALABILITY OF THE MPEG2 ENCODER ON ASOC

Slices Core Used Execution
Configuration Cores Time (mS)

2 3 × 3 8 9.61
4 4 × 4 14 7.27
6 5 × 5 20 4.84
9 7 × 7 38 4.75

TABLE XI
SCALABILITY OF IMAGE SMOOTHING FOR 800X600 PIXEL IMAGE

can be defined as one that provides scalable bandwidth with rea-
sonable (e.g. linear) latency increase as the number of process-
ing nodes increase and as the computing problem size increases
[36]. Under this definition, aSOC provides scalable bandwidth
for many applications, including MPEG-2 encoding and image
smoothing.

The MPEG-2 encoder is Fig. 11 can be scaled by replicating
core functionality, allowing for multiple frames to be simul-
taneously processed in separate threads. A bottleneck of this
approach is a common Input Buffer and data collection buffer
at the input and output of the encoder. Since the communica-
tion delay of distributing the data to threads can be overlapped
with computation, communication congestion and data buffer
contention can lead to performance degradation as design size
scales. Table X illustrates scalable performance improvement
for multiple MPEG-2 threads implemented on aSOC. Device
sizes ranging between 16 and 49 cores were considered. Total
communication cycles increased marginally to accommodate
routing and Input Buffer contention.

Using a similar multiprocessing technique, the image
smoothing application was parallelized across a scaled num-
ber of cores using multiple threads applied to a fixed image
size. Each 3-pixel high slice is handled by an R4000, a MAC
and an FPGA. Table XI illustrates the scalability of the ap-
plication across multiple simultaneously-processed slices. The
image source and destination storage buffers are shared across
slices. Application execution time scales down with increased
core count until contention inside the storage buffers eliminates
further improvement.

In a final demonstration of architectural scalability, a number
of multi-point Doppler evaluations were implemented on a 16
core aSOC model. Execution time results of the Doppler appli-
cation using CoreConnect and aSOC interconnect approaches
are shown in Table XII. The benefits of aSOC over CoreCon-
nect are due to the elimination of bus arbitration.

N 32 64 128 256 512 1024

R4000 50.0 89.0 176.0 263 792 1900
CoreConnect 3.7 7.4 28.2 60 130 340
aSOC 2.7 6.6 18.3 46 110 260

TABLE XII
DOPPLER RUN TIME FOR N POINTS (TIMES IN US)

VIII. CONCLUSIONS AND FUTURE WORK

A new communication substrate for on-chip communication
(aSOC) has been designed and implemented. The distributed
nature of the aSOC interconnect allows for scalable bandwidth.
Supporting mapping tools have been developed to aid in design
translation to aSOC devices. The compiler accepts high-level
design representations, isolates code basic blocks, and assigns
blocks to specific cores. Data transfer times between cores are
determined through heuristic scheduling. An integrated core
and interconnect simulation environment allows for accurate
system modeling prior to device fabrication. To validate aSOC,
experimentation was performed with four benchmark circuits.
It was found that the aSOC interconnect approach outperforms
the standard IBM CoreConnect on-chip bus protocol by up to
a factor of five and compares favorably to previously-published
work. A nine-core prototype aSOC chip including both FPGA
cores and associated communication interfaces was designed
and constructed.

We plan to extend this work by considering the addition
of some dynamic routing hardware to the communication in-
terface. The use of stream-based programming languages for
aSOC also provides an opportunity for further investigation.

REFERENCES

[1] The International Technology Roadmap for Semiconductors, Semicon-
ductor Industry Association, 2001.

[2] IDT Peripheral Bus: Intermodule Connection Technology Enables Broad
Range of System-Level Integration, IDT, Inc., 2000.

[3] Wishbone: System-on-Chip (SoC) Interconnect Architecture for Portable
IP Cores, Revision B.3, Silicore, Inc., Sept. 2002.

[4] Silicon Micronetworks Technical Overview, Sonics, Inc., Jan. 2002.
[5] P. J. Aldworth, “System-on-a-Chip bus architecture for embedded appli-

cations,” in Proc. IEEE Int. Conf. on Computer Design, Austin, TX, Oct.
1999, pp. 297–298.

[6] D. Flynn, “AMBA: Enabling reusable on-chip design,” IEEE Micro, vol.
17, no. 1, pp. 20–27, July 1997.

[7] The CoreConnect Bus Architecture, International Business Machines,
Inc., Sept. 1999.

[8] M. Wan, Y. Ichikawa, D. Lidsky, and J. Rabaey, “An energy-conscious
exploration methodology for heterogeneous DSPs,” in Proc. IEEE Cus-
tom Integrated Circuits Conf., Santa Clara, CA., May 1998, pp. 111–117.

[9] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in Proc. ACM/IEEE Design Automation Conference,
Las Vegas, NV., June 2001, pp. 684–689.

[10] D. Wingard, “MicroNetwork-based integration for SOCs,” in Proc.
ACM/IEEE Design Automation Conference, Las Vegas, NV., June 2001,
pp. 673–677.

[11] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine,
B. Moore, W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski, and
J. Webb, “Supporting systolic and memory communication in iWarp,” in
Proc. 17th Int. Symp. Computer Architecture, June 1990, pp. 70–81.

[12] D. Shoemaker, C. Metcalf, and S. Ward, “NuMesh: An architecture op-
timized for scheduled communication,” Journal of Supercomputing, vol.
10, no. 3, pp. 285–302, Aug. 1996.

[13] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to software: Raw Machines,” IEEE Computer, vol. 30, no.
9, pp. 86–93, Sept. 1997.

[14] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe, “Space-time scheduling of instruction-level parallelism
on a RAW machine,” in Proc. Eighth ACM Conf. on Architectural Sup-
port for Programming Languages and Operating Systems, San Jose, CA,
Oct. 1998, pp. 46–57.

[15] J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank, R. Barua, and
S. Amarasinghe, “Parallelizing applications to silicon,” in Proc. IEEE
Symp. on Field-Programmable Custom Computing Machines, Napa, CA,
Apr. 1999, pp. 70–80.

[16] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjing,
S. Liao, C. W. Tseng, M. Hall, M. Lam, and J. Hennessy, “SUIF: An in-
frastructure for research on parallelizing and optimizing compilers,” ACM
SIGPLAN Notices, vol. 29, no. 12, pp. 31–37, Dec. 1994.

[17] J. Babb, R. Tessier, M. Dahl, S. Hanono, and A. Agarwal, “Logic emu-
lation with Virtual Wires,” IEEE Trans. Computer-Aided Design, vol. 16,
no. 6, pp. 609–626, June 1997.

[18] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System-level design: Orthogonalization of concerns and
platform-based design,” IEEE Trans. Computer-Aided Design, vol. 19,
no. 12, pp. 1523–1543, Dec. 2000.

[19] P. Knudsen and J. Madsen, “ Integrating communication protocol selec-
tion with hardware/software codesign,” IEEE Trans. Computer-Aided De-
sign, vol. 18, no. 8, pp. 1077–1095, Aug. 1999.

[20] K. Lahiri, A. Raghunathan, and S. Dey, “Performance analysis of systems
with multi-channel communication,” in Proc. Int. Conf. on VLSI Design,
Calcutta, India, Jan. 2000, pp. 530–537.

[21] R. Dick and N. K. Jha, “MOCSYN: Multiobjective core-based single-
chip system synthesis,” in Proc. European Conf. Design, Automation and
Test, Munich, Germany, Mar. 1999, pp. 263–270.

[22] G. DeMicheli and R. Gupta, “Hardware/Software Codesign,” Proc. IEEE,
vol. 85, no. 3, pp. 349–365, Mar. 1997.

[23] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hard-
ware/software partitioning based on simulated annealing and tabu search,”
Design Automation for Embedded Systems, vol. 2, no. 1, pp. 5–32, Jan.
1997.

[24] R. Ernst, J. Henkel, and T. Benner, “Hardware software cosynthesis for
microcontrollers,” IEEE Design and Test of Computers, vol. 10, no. 4, pp.
64–75, Dec. 1993.

[25] MIPS R4000 Product Specification, MIPS Corporation, 2000.

[26] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, Kluwer Academic Publishers, Norwell, MA, 1999.

[27] M. Ghanbari, Video Coding: An Introduction to Standard Codecs, The
Institution of Electrical Engineers, London, England, 1999.

[28] D. Kim and G. Stuber, “Performance of multiresolution OFDM on
frequency-selective fading channels,” IEEE Trans. Vehicular Technology,
vol. 48, no. 5, pp. 1740–1746, Sept. 1999.

[29] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, Inc., Upper Saddle River, NJ, 1999.

[30] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version
2.0,” University of Wisconsin, Madison, Department of Computer Sci-
ence Technical Report 1342, June 1997.

[31] T. Schaffer, A. Stanaski, A. Glaser, and P. Franzon, “The NCSU design
kit for IC fabrication through MOSIS,” in Int. Cadence User Group Conf.,
Austin, TX, Sept. 1998, pp. 71–80.

[32] Altera NIOS Processor Handbook, Altera Corporation, 2003.

[33] W. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer
networks using virtual channels,” IEEE Trans. Parallel and Distributed
Systems, vol. 4, no. 4, pp. 466–475, April 1993.

[34] K. Ryu, E. Shin, and V. Mooney, “A comparison of five different multi-
processor SoC bus architectures,” in Proc. EUROMICRO Symp. on Digi-
tal Systems Design, Warsaw, Poland, Sept. 2001, pp. 202–209.

[35] K. Ryu and V. Mooney, “Automated bus generation for multiprocessor
SoC design,” in Proc. European Conf. Design, Automation and Test, Mu-
nich, Germany, Mar. 2003, pp. 282–287.

[36] D. Culler, J. Pal Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach, Morgan Kaufman, San Francisco, CA,
1999.

PLACE
PHOTO
HERE

Jian Liang received the B.S. and M.S. degree in elec-
trical engineering from Tsinghua University, Beijing,
China, in 1996 and 1999, respectively. He is currently
pursuing the Ph.D. degree at the University of Mas-
sachusetts, Amherst. His research interests include
reconfigurable computing, system-on-a-chip design,
digital signal processing and communication theory.

PLACE
PHOTO
HERE

Andrew Laffely received the M.S. degree in electri-
cal engineering from the University of Maine and the
Ph.D. in electrical and computer engineering from the
University of Massachusetts, Amherst. Dr. Laffely
currently is involved in the operational test of various
aircraft platforms for the United States Air Force. He
has previously taught at the United States Air Force
Academy.

PLACE
PHOTO
HERE

Sriram Srinivasan received the B. Tech. degree
in electrical engineering from the Indian Institute of
Technology, Madras, India, in 2000 and the M.S. de-
gree from the University of Massachusetts, Amherst
in 2002. He is currently working as a design engineer
for Advanced Micro Devices (AMD), involved in the
design of next generation microprocessors. His cur-
rent research interests include VLSI circuit design for
low-power and high-speed applications.

PLACE
PHOTO
HERE

Russell Tessier is an assistant professor of electri-
cal and computer engineering at the University of
Massachusetts, Amherst. He received the B.S. de-
gree in computer engineering from Rensselaer Poly-
technic Institute, Troy, N.Y. in 1989 and S.M. and
Ph.D. degrees in electrical engineering from the Mas-
sachusetts Institute of Technology in 1992 and 1999,
respectively. Dr. Tessier was a founder of Virtual
Machine Works, a logic emulation company currently
owned by Mentor Graphics. Prof. Tessier leads the
Reconfigurable Computing Group at UMass. His re-

search interests include computer architecture, field-programmable gate arrays,
and system verification.

