
A Dynamically-Reconfigurable, Power-Efficient Turbo Decoder

Jian Liang, Russell Tessier and Dennis Goeckel
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003

{jliang, tessier, goeckel}@ecs.umass.edu

Abstract

The development of turbo codes has allowed for near-
Shannon limit information transfer in modern communica-
tion systems. Although turbo decoding is viewed as supe-
rior to alternate decoding techniques, the circuit complex-
ity and power consumption of turbo decoder implementa-
tions can often be prohibitive for power-constrained sys-
tems. To address these issues, we have developed a reduced-
complexity turbo decoder specifically optimized for contem-
porary FPGA devices. Our key power-saving technique is
the use of decoder run-time dynamic reconfiguration in re-
sponse to variations in the channel conditions. If less favor-
able channel conditions are detected, a more powerful, less
power-efficient decoder is swapped into the FPGA hard-
ware to maintain a fixed bit error rate. More favorable
channel conditions result in the opposite effect. Through ex-
perimentation on a Stratix-based NIOS Development Board
we show that dynamic reconfiguration can result in a 52%
power reduction versus a static decoder implementation.
Comparisons with contemporary microprocessors illustrate
a 100× performance improvement.

1 Introduction

Turbo codes [6] are widely known to provide error-
correction capability within 1 dB of the Shannon limit. A
limiting aspect of turbo code usage is the complexity of
its hardware implementation. Typical implementations of-
ten require 2× to 5× more arithmetic operations [5, 16]
than competing Viterbi techniques. Additionally, the pa-
rameters associated with turbo coding in a wireless environ-
ment (signal-to-noise ratio, available power, etc.) can fre-
quently change, requiring a hardware implementation that
offers both flexibility and parallelism. For many mobile
communication systems, power and performance are the
most important system design issues. Although FPGAs
are often considered to be power inefficient compared to

their ASIC counterparts, the reconfiguration capabilities of-
fered by FPGA devices provide an opportunity to match ap-
plication power consumption to existent operating parame-
ters. Contemporary microprocessors and DSPs provide run-
time power flexibility for turbo decoders via voltage scaling
[12, 16], but the functional parallelism present in these de-
vices is likely to be insufficient for computation as the need
for decoder accuracy increases.

To address this need we have developed an FPGA-based
turbo decoder architecture which matches the decoder ar-
chitecture to available FPGA resources. Power reduction
is achieved through the use of run-time decoder reconfig-
uration in response to changing channel conditions. Our
Adaptive Soft Output Viterbi Architecture (ASOVA) turbo
decoder has been derived from an existing SOVA decoder
[10] and provides reduced computational complexity and a
competitive bit error rate (BER) for decoders with the same
operating parameters. Computationally-expensive on-chip
memory updates have been customized to match the on-chip
memory structures of contemporary FPGAs. The architec-
ture and power-consumption of the decoder are dynamically
varied in response to channel signal-to-noise (SNR) varia-
tions while maintaining a fixed BER. Dynamic reconfigu-
ration is used to ensure that the lowest-power decoder that
meets the required BER is present in the FPGA.

The benefits of our decoding approach have been verified
via experimentation. Following simulation to determine de-
coder parameters, a series of ASOVA turbo decoders were
designed and mapped to an Altera Stratix FPGA on a NIOS
Development Board [2]. Experimental results show that by
using dynamic reconfiguration, the ASOVA decoder con-
sumes 52% less power when compared to a static decoder
while providing a fixed BER. Performance comparisons for
a software version of ASOVA using an NIOS microproces-
sor [2] and a Pentium IV showed a performance improve-
ment of over 100×. A power reduction of 30% is achieved
for the hardware decoder versus a NIOS software imple-
mentation.



The rest of the paper is organized as follows. Section
2 introduces turbo codes and the existing SOVA decoding
algorithm. Our new ASOVA decoding algorithm and as-
sociated parameter exploration is described in Section 3.
Section 4 presents the architecture of our ASOVA turbo de-
coder and the tradeoffs required for FPGA implementation.
The experimental approach used for simulation and hard-
ware test are described in Section 5 and experimental re-
sults and analysis are provided in Section 6. In Section 7,
we describe related work. Section 8 summarizes our efforts
and offers directions for future work.

2 Background

2.1 Turbo Codes

Turbo codes [6] are error-correction codes that rely upon
redundant data transmission. By adding parity bits to trans-
mitted data, turbo codes allow the receiver to correct errors
caused by the channel. The architecture of a turbo encoder
at the transmitter influences the decoder architecture at the
receiver. The most important parts of a typical turbo en-
coder are component encoders which accept input data and
generate encoded symbols. As shown in Figure 1, a com-
ponent encoder consists of a shift register augmented with
generator functions (AND and XOR gates). Each input bit
uk is augmented with one or more parity bits pk. The param-
eter input vectors to the generator AND gates are often spec-
ified as octal values (or codes). For example, if (g10,g11,g12

= 1,1,1) and (g20,g21,g22 = 1,0,1) in Figure 1, a (7, 5)
code-based encoder is specified. In our work, previously-
determined codes with high performance, (15,13), (31,27),
and (65,57) are used [13, 18]. The constraint length K for
the encoder indicates the number of times each input bit in
the shift chain influences a parity output. For the example
in Figure 1, K is 3. Note that the number of flip flops in
the encoder can be deduced from both K and the generator
code.

In general, turbo encoders contain two component en-
coders. For the turbo encoders considered in this work, both
component encoders generate a single parity bit, resulting in
the transmitted values (u, p1, and p2) for each encoder in-
put bit (code rate 1/3). The data stored in the flip flops of
a component encoder can be regarded as an encoder state,
with state changes defined via a state machine which starts
from state 0. The state machine inputs a bit uk and outputs
the parity bit pk together with uk at each time step.

After u, p1, and p2 are sent through a transmission chan-
nel, they ultimately arrive at the turbo decoder as received
values y, p and q. Due to channel noise, the received values
may not match their transmitted counterparts. The turbo de-
coder attempts to reconstruct transmitted u values through
a series of decoding steps. As shown in Figure 2, a typical

D D
ku

p k

ku

s0 s1 s2

g10
g20 g21 g22

g11

g12

Figure 1. Component encoder architecture

Interleaver

De−
Interleaver

Interleaver

Decide
Output

From Channel

Decoder
Component

Component
Decoder

y
p
q

D1

D2

L1

L2
y’

F1

F2

Figure 2. Turbo decoder architecture

turbo decoder [6] consists of two identical component de-
coders,D1 and D2, interleaver/de-interleaver blocks, and
an output decision block. The interleavers permute the
data bits to support the error correction algorithm. The
output from one decoder is fed into the other through an
interleaver/de-interleaver to help the latter decoder make
a better decoding decision in subsequent decoding itera-
tions. Multiple iterations are required before the decoder
converges to a final result. After a pre-specified number of
decoding iterations, the final decision is made in theDecide
block by combining the outputs from both decoders.

Several algorithms have been implemented for thecom-
ponent decoder in turbo decoders. MAP [4] and Log-MAP
[13] algorithms are optimal with respect to bit error proba-
bility but exhibit significant computational complexity due
to extensive searching and memory accesses. The Max-
Log-MAP algorithm [9] reduces complexity by replac-
ing logarithm computations with comparisons. The Soft-
Output Viterbi Algorithm (SOVA) [13] significantly re-
duces complexity over other approaches by limiting search-
ing and overall memory accesses. For a BER of 10−4, the
performance of SOVA is approximately 0.7 dB worse than
that of MAP [13]. We choose to base our decoder on SOVA
because it requires half the computation of Max-Log-MAP
[23] and maintains competitive bit error performance.



2.2 Soft Output Viterbi Algorithm

Although a full description of the SOVA algorithm is be-
yond the scope of this paper (interested readers may con-
sider [13]), we provide the algorithm basics necessary to un-
derstand our turbo decoder architecture. Like better known
Viterbi algorithm decoders [8], a SOVA decoder determines
a corrected output bit sequence by using an approxima-
tion of the encoder state, shown in the flip flops in Figure
1, and received channel values. To distinguish decoder-
approximated values from encoder variables(uk, pk), the
symbols(ûk, p̂k) are used. Successive evaluation of state
over time leads to the trellis diagram shown in Figure 3.
The diagram is a time-ordered mapping of encoder state
with each state represented by a point on the vertical axis
(noteK = 3 for this trellis). The horizontal axis represents
time steps. Each edge emanating from each state node in-
dicates a specific encoder bituk for the state and leads to
thenext state to be held in the flip flops. The edge leaving
a state node represents auk value of 0 or 1. A more de-
tailed discussion of a similar trellis diagram can be found
in [25]. A cost, called abranch metric, is associated with
each trellis edge. For a turbo decoder, this cost represents
the likelihood that the decoder inputsy and p were gener-
ated by the specificuk indicated by the branch. For turbo
decoders, a high cost metric represents a close match.

To reconstruct a sequence of receiveduk values, a path
of multiple trellis stages can be followed in the trellis dia-
gram. The accumulated branch metrics along a path form
thepath metric for a specific terminal state node and repre-
sent the likelihood that a sequence of received bits matches
bits transmitted by the decoder. The concepts of branch and
path metrics are illustrated by the trellis in Figure 3. The
path metric of each state appears above the state in the fig-
ure. When multiple paths converge into the same node, the
path with the maximum path metric is retained and its path
metric is marked on the node.

For SOVA-based turbo decoder implementations, the
completion of a time step requires awrite phase to store
path metrics and ˆuk bits associated with path trellis edges
to path storage memory. After a series of steps, referred
to as thetruncation length (TL), the path with the largest
path metric is determined, identifying the Maximum Like-
lihood (ML) path and its associated bit sequence ˆuML

k is the
decoded output. A typical value of the truncation length is
five times the constraint length [21]. In Figure 3, theML
path is shown with dashed lines. In SOVA, the path met-
ric represents the likelihood that a path is the decoded path,
and a larger metric implies an increased likelihood. The de-
coded bit sequencêu is obtained by atraceback along the
T L edges of theML path for the bits ˆuML

k associated with
the edges.

In addition to obtaining the decoded bit sequence, the

S 0 S 1 S S S2 3 4

3

2

1

0
state 0

−0.5

0.5

−1.0

1.0

0.0

0.0

1.0

2.0

1.0

0.0

1.5

2.5

2.0

−0.5

ML Path Competitive Path

Figure 3. Trellis for SOVA component decoder

SOVA algorithm determines reliability information ∆ (also
called soft output) for each decoded bit. Each ∆ is deter-
mined by calculating the difference between the two path
metrics that converge at each state node. Note that the sur-
viving path metric becomes the path metric for the code
while the lower-metric path (also called the competitive
path) is eliminated. In most SOVA implementations (in-
cluding ours), branch metric, path metric, and soft output
(∆) values are stored as two’s complement integer values.
In Figure 3, ∆ is equal to (2.5 - 1.0 - branch metric for path
from state 0 to state 2). The competitive path is shown with
dotted lines.

An important phase of the SOVA algorithm is the dy-
namic update of ∆ in earlier trellis stages as later stages are
reached [13]. As shown in Figure 4, after tracing back T L
stages from trellis state i, the next U stages are checked for
∆ update via the following equation.

∆t = min
ûML(t) �=ûcmp(t)

(∆i−T L,∆t), t = i−T L, ..., i−T L−U (1)

where t is the stage index, ûML and ûcmp are the decoded bits
of the ML path and the competitive path at a trellis stage,
and U is a parameter. Through experimentation, we con-
firmed that U = 1

2 T L [15] provides the best decode result.

3 Adaptive Soft-Output Viterbi Algorithm

Although a SOVA component decoder exhibits lower
computational complexity than competing MAP, Log-MAP,
and Max-Log-Map approaches, the total number of path
metric evaluations per state for SOVA is still proportional
to 2K−1. To facilitate the subsequent implementation of
turbo decoders in FPGAs, we consider new algorithmic
techniques to reduce the complexity of SOVA while pre-
serving the BER of the resulting decoded bit stream. Rather
than preserving all 2K−1 state path metrics for each trellis
stage, this new adaptive SOVA (ASOVA) approach attempts



...
ML Path

Competitive Path

Survivor Path

Update Traceback Write

ii−TL i−1i−TL−U

Figure 4. Traceback and update SOVA phases

S 0 S 1 S S S2 3 4

3

2

1

0
state 0

−0.5

0.5

−1.0

1.0

0.0

0.0

1.0

2.0

1.0

0.0

1.5

2.5

2.0

−0.5

Figure 5. Trellis diagram for an ASOVA com-
ponent decoder (T = −2.0,Nmax = 3)

to eliminate intermediate trellis paths during processing that
are least likely to lead to the decoded output bit sequence.
Like the Simmons T-algorithm [24] variant of the Viterbi
algorithm, path reduction for ASOVA is accomplished by
considering the following criteria in evaluating path met-
rics.

• A threshold T (≤ 0) is used to evaluate path metrics.
If the path metric of a path is less than dm + T , where
dm is the maximum path metric of the previous trellis
stage, the path is discarded.

• A total of at most Nmax paths are retained at each trel-
lis stage. If more than Nmax paths survive path metric
pruning with T , the Nmax paths with the highest path
metrics are retained.

Since it is unlikely for a low metric path to become the
ML path later, path pruning has a low likelihood of chang-
ing the ML path. As a result, ASOVA generates the cor-
rect decoding sequence û with a smaller number of metric
paths, reducing the decoding complexity and memory us-
age. An example is given in Figure 5, where the numbers
on top of each node represents paths metrics, T = −2.0,
and Nmax = 3. The node obstructed by a cross represents
a path pruned using threshold T . The nodes encircled by
an open circle indicate paths pruned using Nmax. For exam-
ple, consider the bottom node in stage S2. The maximum
path metric in stage S1 is 0.5, so dm is set to this value and
dm +T =−1.5. Since all path metrics in stage S2 are greater

10-6

10-5

10-4

10-3

10-2

10-1

100

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

SNR

BER

Nmax=10
Nmax=13
Nmax=16

Figure 6. BER performance versus SNR for
ASOVA decoders using varying Nmax and T =
−10

than -1.5, the state with the smallest path metric is pruned
so that only Nmax = 3 survivors remain. In stage S4, the path
metric for state 1 (-0.5) is less than the dm value for stage S3

(2.0) plus -2.0 so the path is pruned due to T .
The BER versus SNR performance of a turbo decoder

using ASOVA for several Nmax values is shown in Figure
6. The experiment uses a (31,27) code with blocks of 1024
data bits. It can be seen that more than 0.8 dB will be lost
at a BER of 10−4 when the survivor number is restricted to
Nmax = 13.

3.1 ASOVA Algorithm Enhancements

Like SOVA, the soft output ∆ of ASOVA is generated by
the metric difference between the ML path and its competi-
tor path. When the paths with low path metrics are pruned,
it is likely that competitors will also be discarded since they
often have similar metrics. The loss of competitors can re-
sult in inaccurate soft outputs.

To compensate for this potential loss, two new algorith-
mic techniques were developed. The first approach deter-
mined an expected value for soft outputs along intermediate
paths that have been pruned. The second approach involves



BMU
Add−

bm11

path valid

Write/
Traceback/

Update
control

Decoded

path index

bits
valuesCompare−

Select

Next
State

Present
State

Next
State

Soft
Output

BM select

Control

bm00

bm01

bm10

y

p
F

Figure 7. Component decoder architecture

the application of a scaling factor α < 1 to ASOVA soft out-
put values. As mentioned in Section 2.2, the soft output ∆ is
the path metric difference at the state node with the highest
path metric. The path difference is created by subtracting
the path metrics of the paths that converge on the state, the
ML path and the competitive path. In cases when the com-
petitive path for an ML output has been pruned, an estima-
tion of the path metric can be used in its place. For ASOVA,
this value was determined through analysis to be 2

σ2 [17],
where σ is the standard deviation of the transmission chan-
nel noise. Since a number of intermediate competitive paths
may be pruned during ASOVA processing and repeated use
of estimated path metrics may be necessary, resulting soft
outputs for ASOVA are often larger than the corresponding
values determined using SOVA. Through experimentation
we have determined that this increase can be characterized
via a fixed scaling factor α < 1. Multiplication of each soft
output by α compensates for the use of estimation.

4 ASOVA Hardware Architecture

A turbo decoder based on our ASOVA component de-
coder architecture was developed and tested in an Altera
Stratix FPGA. The basic components of the decoder follow
the blocks shown in Figure 2. To allow for pipelined decod-
ing, the interleaver and de-interleaver each include two data
buffers. While one buffer receives new data, stored data can
be read from the other. An entire 1024 bit code word can be
stored in each buffer.

The component decoder is the key unit of the turbo de-
coder. As shown in Figure 7, the component decoder con-
sists of four parts: the branch metric unit (BMU), the add-
compare-select (ACS) unit, the survivor memory, and the
control path. BMU and ACS are used to generate the new
path metrics for each trellis stage. The survivor memory
stores decoded bit uk and soft output ∆k values and performs
write, traceback, and update operations. The control path
determines next state values and controls data flow between
the other three units. Detailed architectural descriptions are
provided in the following sections.

1
2
3

Nmax

1
2
3

Nmax

>T

Threshold

Path Metrics
Next State

(a) Architecture of ACS unit

ACS
BlockPM1

Survivor
Memory

Index from BM

Subtract

Compare

PM0
BM0

PM1
BM1

(b) ACS Block

PMout

PMout

PM0

Values
Present State
Path Metrics

Look−Up
Table

Index from
Survivor
Memory

Figure 8. Add-Compare-Select components

4.1 Branch Metric Unit

The BMU generates the branch metrics for all four pos-
sible encoder output pairs ûk, p̂k. Received decoder input
values y and p and the soft output feedback F from the al-
ternate component decoder, (e.g. F1 and F2 in Figure 2)
are used to generate the branch metric for each ûk, p̂k com-
bination. For soft output decoders, channel values y and p
are quantized to multi-bit values while ûk and p̂k are sin-
gle bits. For ASOVA, the branch metric of a given ûk,p̂k at
trellis stage k with a soft output feedback F is:

bm(ûk p̂k) =
1
2

ûkF +
Lc

2
(yûk + pp̂k) (2)

where Lc is equivalent to 2
σ2 , and σ is the standard deviation

of the transmission channel noise. Since ûk and p̂k are bi-
nary numbers, each BMU output requires two adders and a
multiplier. The DSP blocks inside the Altera Stratix FPGA
are used for multiplication.

4.2 Add-Compare-Select Unit

The goal of the add-compare-select unit is to add the
branch metric for a trellis edge to the path metric of the



present trellis state to create a new path metric for a next
state in the next trellis stage. This metric is then compared
to the computed path metric from the competitive path to
determine the survivor for the next state. The ACS opera-
tion must be performed for at most Nmax present state path
metrics for each trellis stage.

The hardware architecture used to perform this ACS
computation for each path is shown in Figure 8a. The cor-
rect index into the present state path metric array is ob-
tained from the survivor memory and is used to select path
metric PM0. This index is also used as an input to a pre-
programmed look-up table to select the path metric PM1
for the competitive path. As shown in Figure 8b, the branch
metric BM0, BM1 for each path is added to the appropriate
path metric to create new path metrics for the next state. A
subtractor takes the difference of the new metrics to gener-
ate the needed soft output ∆ value for the next state. A com-
parator selects the largest of the two path metrics PMout for
survival.

As shown in Figure 8, the ACS unit employs the thresh-
old dm +T to prune low cost paths. Only those paths whose
metrics fulfill the threshold requirement are subsequently
stored in the next state path metric array. The array index
used to store the next state path metric is stored in the sur-
vivor memory. If more than Nmax paths survive, the thresh-
old T is dynamically increased and ACS computation is re-
performed with the new T .

4.3 Survivor Memory Unit

The survivor memory is a two dimensional memory ar-
ray with Nmax rows and 2*T L columns. The memory uses
traceback pointers [8] so that data movement is limited.
Each word in the survivor memory stores the decoded bit
ûk, metric difference ∆, and pointers to the previous trellis
stage survivor memory values along the saved and compet-
itive paths. As described in Section 2.2, the survivor mem-
ory supports three operations for up to Nmax trellis states for
each decoded input value: write, traceback and update.
For a single trellis stage, a memory write requires a write
port, traceback requires a read port, and the update phase
requires two read ports to read ML and competitive path ∆
values, and a write port for new ∆ values. As a result, the
survivor memory requires a total of 2 write ports and 3 read
ports.

To facilitate FPGA implementation, our ASOVA mem-
ory is partitioned into banks. As shown in Figure 4, survivor
memory traceback and write operations occur in portions
of the memory that are isolated from the update phase. As
a result, the survivor memory is partitioned vertically into
eight separate banks. To save power, four banks store the
two path indices and ûk values and the other four banks
store the ∆ values. The memory can be implemented us-

ing general two-port RAM blocks. A single memory read
and write operation is performed in one clock cycle.

5 Experimental Approach

5.1 Test Platform

To test the practicality of our reconfigurable ASOVA-
based architecture, a hardware implementation of the de-
coder was tested as part of a communication system. This
system contains blocks for data generation, encoding, trans-
mission, and decoding. A random bit generator creates a bit
sequence to model transmitted data. A turbo encoder, also
shown in Figure 1, then encodes the data for transmission.
A modulator converts the coded bits into real numbers: 0 ->
1, 1 -> -1 for the binary phase-shift keyed (BPSK) system
employed. The output of the modulator is input to a AWGN
channel simulator. This block simulates a noisy channel
where white Gaussian noise is added to the transmitted sig-
nal. The amount of noise depends on the signal-to-noise
ratio preset by the user. The symbols obtained from the
AWGN channel model are quantized before being sent to
the decoder as its input. On receiving the input, the de-
coder attempts to recover the original sequence. All soft-
ware modeling of the communication system (except for the
FPGA-based decoder) was performed using a 1.6 GHz Pen-
tium IV PC.

5.2 Hardware Implementation

The ASOVA-based decoder architecture was mapped to
a Stratix EP1S10 FPGA located on an Altera NIOS Devel-
opment Board [2]. This mapping allowed for in-field testing
of turbo decoder designs for constraint lengths up to K=6.
An RTL level description of the turbo decoder was written
in Verilog so that it could be mapped to FPGA devices. The
Verilog code was simulated using Altera Quartus II simula-
tion tools. All designs were synthesized and mapped using
Quartus II with timing constraints. The maximum operating
frequencies of the FPGA were obtained following Quartus
II compilation. Overall communication system decode rates
were measured through profiling with the time utility on the
PC.

Power consumption values for the turbo decoders were
determined using the Quartus II power analyzer. To ac-
count for power consumption during EP1S10 reconfigu-
ration, the power associated with reading the configura-
tion bitstream from SDRAM and storing it in the FPGA
was calculated. It was determined that approximately 125
mW of power are needed during reconfiguration to read
the 3,534,640 EP1S10 configuration bits from 4M×32 Mi-
cron MT48LC4M32B2 SDRAM [19]. This value was de-
termined by scaling the specified maximum power dissipa-



K Nmax SNR LUTs MEM FFs
(dB) (Kbit)

6 32 0-1.5 4611 135.0 2523
6 28 1.5-2.0 4407 133.0 2347
6 18 2.0-2.5 3814 126.0 1907
6 12 2.5-3.0 3100 65.0 1503
6 9 3.0-4.0 2851 63.1 1371
6 7 4.0-4.5 2524 37.2 1143
6 6 4.5-5.5 2406 36.6 1099
6 5 5.5-6.0 2317 36.0 1055
6 4 >6.0 1972 25.1 871

5 16 0-1.5 2809 67.6 1293
5 12 1.5-2.0 2587 65.0 1133
5 9 2.0-2.5 2392 63.1 1013
5 8 2.5-3.0 2202 37.9 897
5 6 3.0-4.0 2074 36.6 817
5 5 4.0-5.0 1996 26.0 777
5 4 5.0-6.5 1768 25.1 661
5 3 >6.5 1722 24.4 621

4 7 0-2.0 1896 26.8 687
4 6 2.0-2.5 1831 26.5 651
4 5 2.5-4.0 1752 26.2 615
4 4 4.0-5.5 1563 20.7 535
4 3 >5.5 1541 20.4 499

Table 1. ASOVA decoder statistics for
BER=10−4 and T=-10

tion at 200 MHz by the required FPGA configuration speed.
Negligible power (5 mW) is consumed by the SDRAM af-
ter the FPGA is configured. The amount of power required
to reconfigure the EP1S10 was approximated by assuming
the use of an on-chip reconfiguration shift chain. The power
dissipated by the shift chain was determined by calculating
the energy dissipated by a single shift in 0.13 µm technology
with SPICE. This shift chain energy value was scaled by the
required 3,534,640 shifts and divided by configuration time
to calculate FPGA reconfiguration power. It was calculated
that 54.8 mW are required to reprogram the configuration
bits of the EP1S10. Total EP1S10 reconfiguration time is
35 ms [3].

6 Experimental Results

6.1 ASOVA Parameter Evaluation

Prior to implementing the ASOVA component decoder
in hardware, a set of simulations were performed to eval-
uate appropriate T and Nmax values for our ASOVA-based
decoders. Via simulation it was determined that a T = −10

10-5

10-4

10-3

10-2

10-1

100

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
SNR=Eb/N0 (dB)

BER

SOVA
Max-Log-MAP

ASOVA
Log-MAP

Figure 9. ASOVA performance for a (31,27)
code versus competing decoder algorithms

value and the associated Nmax values shown in Table 1 were
best suited for our decoders for a fixed BER of 10−4. The
signal-to-noise ratio (SNR) range supported by each tested
decoder is shown in Table 1. For a constraint length K = 4,
code (15, 13) was used, for K = 5, code (31,27) was used,
and for K = 6, code (65,57) was used. When the SNR is
high, a reduced Nmax can be used to obtain the required
BER.

Parameter values were used to evaluate the ASOVA
decoders error-correcting performance versus competing
component decoders. For comparison purposes, software
versions of turbo decoders based on SOVA, Log-MAP,
and Max-Log-MAP component decoders were also written.
Figure 9 indicates that the BER performance of ASOVA is
superior to SOVA and approaches the performance of the
computationally more expensive Log-MAP algorithm for
the (31,27) code (K = 5). Other codes demonstrated sim-
ilar results.

6.2 ASOVA Turbo Decoder Implementation

To test the power consumption and decoding speed of
our ASOVA-based turbo decoders, a parameterizable de-
coder was written in Verilog. Decoders for a variety of
K and Nmax values were synthesized to an Altera Stratix
EP1S10 FPGA and downloaded to a NIOS Development
Board [2]. In the following experiments, turbo decoders
were tested with 1024 bit data blocks and 6 decode iter-
ations. The survivor memory was constructed from eight
memory banks with the capacity to hold 10 × K trellis
columns of ûk and ∆ information (5 × K for traceback,
2.5×K for update, 2.5×K for rotating spare storage).

Table 1 illustrates the hardware resource usage of the de-
coders. Table 2 shows the decode rate and power consump-



50 MHz Max speed
K Nmax Power Speed fmax Power Speed

(mW) (Kbps) (MHz) (mW) (Kbps)

6 32 447.7 173.4 52.9 469.1 183.4
6 28 431.3 193.6 56.7 485.1 219.4
6 18 306.9 228.2 59.3 431.3 270.5
6 12 232.6 288.6 60.0 279.6 346.5
6 9 212.8 410.9 67.1 292.9 551.4
6 7 177.9 447.1 66.1 233.0 590.2
6 6 173.8 450.2 68.7 228.4 619.5
6 5 168.4 501.3 67.4 215.8 677.9
6 4 147.3 469.2 77.8 159.1 728.6

5 16 205.8 312.2 70.5 280.5 440.0
5 12 193.0 301.0 70.4 250.4 424.0
5 9 148.3 411.3 73.7 206.1 606.4
5 8 169.6 444.8 74.6 246.5 663.5
5 6 130.1 468.6 79.7 181.9 746.9
5 5 134.3 470.1 80.7 198.9 758.5
5 4 110.4 472.6 82.8 163.4 782.2
5 3 100.1 471.7 82.3 143.4 776.2

4 7 134.3 487.8 81.2 248.9 792.5
4 6 125.9 515.6 81.8 204.1 851.2
4 5 113.0 622.8 80.2 198.0 851.2
4 4 106.7 688.2 84.1 176.5 1216.0
4 3 98.6 734.6 89.0 185.2 1178.0

Table 2. ASOVA performance on a Stratix
EP1S10 FPGA

tion of the decoders for a range of K and Nmax values. Two
sets of power and decode rate values were determined: val-
ues at 50 MHz, the clock speed of the NIOS board, and
values for the maximum possible clock rate for the decoder.
Clock speeds of nearly 90 MHz were found for smaller de-
coders. For a 50 MHz decoder it can seen from the table that
for K = 5, a 51% power reduction takes place across Nmax

values of 16 to 3, and for K = 6, a 67% power reduction
takes place across Nmax values from 32 to 4.

6.3 ASOVA Dynamic Reconfiguration

A second set of experiments were used to determine
power savings that could be achieved if the entire FPGA
decoder was reconfigured at run-time to support existent
channel SNR requirements. Depending on the SNR, power
savings are achieved by using a lower Nmax, lower-power
decoder for high SNR and a higher Nmax, higher-power de-
coder for low SNR. The three constraint lengths K offered
three separate SNR ranges for testing.

A set of 10,000 SNR values were generated for each K

K Avg. Reconfigs Avg. Power
Speed required (mw)
(Kbps)

6 359.1 8369/10000 216.2
5 429.4 6306/10000 131.7
4 598.6 6925/10000 111.6

Table 3. Dynamic reconfiguration statistics

using a log-normal shadowing distribution [22] for a total
transmission length of 2.5 billion bits. Based on the as-
sumption that SNR can be sampled successfully every 250K
bits [21], the FPGA was periodically reconfigured during
the transmission process. Table 3 shows the number of
required reconfigurations, the resulting decode rates at 50
MHz, and the average power dissipated. The average power
consumption for the (31,27) code (K = 5) is 131 mW, a 36%
improvement over a fixed Nmax = 16 decoder. For a (65,57)
code (K = 6), the average power of 216 mW is 52% less
than the power of the fixed Nmax = 32 decoder, 448 mW.
Power and decode rate numbers include the time and power
needed for FPGA reconfiguration and the time and power
needed to read associated configuration bits from SDRAM,
as described in Section 5.

Derived power numbers are based on common
standards-based assumptions [20] regarding commu-
nication systems. The circuitry required to determine
existent SNR and associated decoder K and Nmax values
is assumed to be located external to the decoder in a
power-rich operating environment. Upon detection of an
SNR change, this circuitry sends new K and Nmax values to
the decoder to initiate FPGA reconfiguration.

6.4 Performance Comparison to Microprocessor
Implementations

Although the parallelism and memory structure of turbo
decoders make efficient implementation on a microproces-
sor difficult, we contrasted the software performance of
ASOVA on two microprocessors versus FPGA hardware
implementations. Software results were determined using
the 1.6 GHz Pentium IV PC (the host for the NIOS board)
and the 50 MHz NIOS processor running on the FPGA
board. The results for K = 4, 5, and 6 are shown in Table 4.
For a given K and Nmax, the 50 MHz FPGA decoder outper-
formed software implemented on the Pentium IV by over
two orders of magnitude. The NIOS processor power con-
sumption of approximately 630 mW for all decoders is 30%
larger than the highest power consumption for an FPGA de-
coder (447 mW).

In a hardware experiment we performed a direct com-
parison between FPGA decode rates on the NIOS board



K Nmax Pentium IV NIOS FPGA
HW

(Kbps) (Kbps) (Kbps)

6 32 0.784 0.003 173.4
6 18 1.344 0.005 228.2
6 12 2.064 0.007 288.6
6 9 2.730 0.009 410.9
6 7 3.382 0.011 447.1
6 6 3.615 0.013 450.2
6 5 4.227 0.015 501.3
6 4 5.294 0.019 469.2
6 3 6.239 0.024 471.4

5 16 1.589 0.006 312.2
5 12 2.048 0.008 301.0
5 9 2.661 0.010 411.3
5 8 3.013 0.012 444.8
5 6 4.160 0.015 468.6
5 5 4.899 0.019 470.1
5 4 5.824 0.022 472.6

4 7 3.177 0.014 487.8
4 6 3.404 0.017 515.6
4 5 4.193 0.020 622.8
4 4 5.241 0.024 688.2
4 3 7.381 0.030 734.6

Table 4. Decoding speed of FPGA ASOVA de-
coder versus microprocessors

(including PC-to-board transfer overheads) and Pentium IV
PC decode rates. When 100 Mbps Ethernet PC-to-board de-
lays are considered, the overall decode speed for a K = 6,
Nmax = 18 decoder is 211.1 Kbps and the overall decoder
speed for a K = 5, Nmax = 12 decoder is 229.7 Kbps. These
values are still more than two orders of magnitude faster
than corresponding Pentium IV PC decode rates of 1.3 Kbps
and 2.1 Kbps, respectively.

6.5 Comparison to Commercial Cores

In a final experiment, we compared our ASOVA decoder
to comparable commercial FPGA turbo code cores avail-
able from Xilinx [26] and Altera [1]. All results in Table
5 are for a (15,13) code with 5 iterations. Xilinx and Al-
tera values were taken from respective data sheets. A power
value for the Altera core was unavailable.

7 Related Work

Although some reduced-complexity turbo coding ap-
proaches have been explored, published implementation re-

sults are scarce. Several path pruning algorithms, simi-
lar to ASOVA, evaluate the possibility of eliminating low
cost paths. The Soft-output Adaptive Viterbi Algorithm [7]
adapts SOVA to include a flexible T value to prune low-
cost paths while maintaining BER performance. At each
stage, only those paths whose path metrics are higher than
the threshold are preserved. As a result, the number of sur-
vivor paths is reduced, limiting required computations and
memory size. Path pruning approaches based on T and Nmax

have been presented for MAP-based turbo decoders [11].
The M-BCJR algorithm preserves a fixed number of the best
paths at each trellis stage. The T-BCJR algorithm preserves
all paths with a path metric above a threshold, T . Results
show that the latter approach is more efficient and preserves
more paths across iterations. No hardware implementation
results for these algorithms have been reported.

A reconfigurable turbo decoder based on MAP was im-
plemented in a ReConfigurable Processor Board (RCP)
[14], a PCI board consisting of six Altera FLEX 10K70 FP-
GAs and SRAM units. The implementation allows for con-
figuration based on constraint length K, interleaver length,
and decoding iterations. Run-time dynamic reconfiguration
was not used with this system. The reported decoding speed
for a K = 4 configuration using six iterations is 700 cy-
cles/bit, a decode rate of 71 Kbps at 50 MHz. Another im-
plementation [5] mapped a MAP-based turbo decoder onto
a PC-based card. Reported data rates varied between 4.8
Kbps and 128 Kbps.

8 Conclusion

In this paper we have presented a dynamically recon-
figurable FPGA-based turbo decoder which has been op-
timized for power consumption. The component decoding
algorithm, ASOVA, has been derived from an existing de-
code algorithm to provide the reduced complexity necessary
for efficient hardware implementation. Parameters for the
decoder have been determined via simulation. The key to
power savings is decoder reconfiguration based on chang-
ing channel noise conditions. Through experimentation it is
shown that up to a 52% power savings can be achieved by
reconfiguring the decoder at run time rather than requiring a
static implementation of a higher-complexity, higher power
decoder. Our decoder has been verified in hardware using
an Altera NIOS Development Board containing a Stratix
FPGA.

In the future, we plan to contrast our decoder to soft-
ware implementations on low power DSPs that employ volt-
age scaling. It is possible that noise-based reconfigura-
tion of voltage levels may be possible for both DSP and
FPGA-based implementations. We also plan to consider ap-
proaches to make the turbo decoder partially reconfigurable.



Model FPGA LUTs MEM (Kbit) fmax (MHz) Power (mW) Speed (Mbps)

Xilinx [26] XC2V500 5390 360 66 970 2.0
Altera [1] EP1S10 5644 400 50 N/A 2.0

ASOVA EP1S10 2066 65 76 248 1.4

Table 5. Comparison of ASOVA core and commercial cores for a (15,13) code

9 Acknowledgments

The work was funded in part by National Science Foun-
dation grants CCR-9875482, CCR-9988238, EIA-0080119
and ECS-0300130 and a grant from M/A-COM. The au-
thors wish to thank Altera for the donation of the NIOS De-
velopment Board and Quartus II software.

References

[1] Altera Corporation. MegaCore Function User Guide Turbo
Encoder/Decoder, 2003.

[2] Altera Corporation. Nios Stratix Development Kit, 2003.
[3] Altera Corporation. Stratix Data Sheet, 2003.
[4] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decod-

ing of linear codes for minimizing symbol error rate. IEEE
Transactions on Information Theory, IT-20:284–287, Mar.
1974.

[5] S. A. Barbulescu, W. Farrell, P. Gray, and M. Rice. Band-
width Efficient Turbo Coding For High Speed Mobile Satel-
lite Communications. In Proceedings, International Sympo-
sium on Turbo Codes and Related Topics, pages 119–126,
Brest, France, Sept. 1997.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shan-
non Limit Error-Correcting Coding and Decoding: Turbo-
Codes. In Proceedings, International Conference on Com-
munications, pages 1064–1070, Geneva, Switzerland, May
1993.

[7] F. Chan. Adaptive Viterbi decoding of turbo codes with
short frames. In Proceedings, Communication Theory Mini-
Conference, pages 47–51, Vancouver, BC, June 1999.

[8] G. C. Clark and J. B. Cain. Error-Correction Coding for
Digital Communications. Plenum Publishing, New York,
NY, 1981.

[9] J. A. Erfanian, S. Pasupathy, and G. Gulak. Reduced
complexity symbol detectors with parallel structures for
ISI channels. IEEE Transactions on Communications,
42(2/3/4):1661–1671, Feb/Mar/Apr 1994.

[10] M. Fossorier, F. Burkert, S. Lin, and J. Hagenauer. On the
equivalence between SOVA and Max-Log-MAP decodings.
IEEE Communications Letters, 2(5):137–139, May 1998.

[11] V. Franz and J. B. Anderson. Concatenated decoding with a
reduced-search BCJR algorithm. IEEE Journal on Selected
Areas on Communication, 16(2):186–195, Feb. 1998.

[12] F. Gilbert, A. Worm, and N. Wehn. Low Power Implemen-
tation of a Turbo-Decoder on Programmable Architectures.
In Proceedings, Asia South Pacific Design Automation Con-
ference, pages 400–403, Yokohama, Japan, Jan. 2001.

[13] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of
binary block and convolutional codes. IEEE Transactions
on Information Theory, 42(2):429–445, Mar. 1996.

[14] S. Halter, M. Oberg, P. M. Chau, and P. H. Siegel. Recon-
figurable Signal Processor for Channel Coding & Decoding
in Low SNR Wireless Communications. In Proceedings,
IEEE Workshop on Signal Processing Systems, pages 260–
274, Cambridge, MA, Oct. 1998.

[15] O. J. Joerssen, M. Vaupel, and H. Meyr. Soft-output Viterbi
Decoding: VLSI Implementation Issues. In Proceedings,
IEEE Vehicular Technology Conference, pages 941–944, Se-
caucus, NJ, May 1993.

[16] O. Y.-H. Leung, C.-W. Yue, and C.-Y. Tsui. Reducing Power
Consumption of Turbo Code Decoder Using Adaptive Iter-
ation with Variable Supply Voltage. In Proceedings, Inter-
national Symposium on Low-Power Electronics and Design,
pages 36–41, San Diego, CA, Aug. 1999.

[17] J. Liang. Development and Verification of a System-on-a-
Chip Communication Architecture. PhD thesis, Department
of Electrical and Computer Engineering, University of Mas-
sachusetts, Amherst, May 2004. Also available as UMass
ECE Technical Report TR-04-CSE-04.

[18] S. Lin and D. J. Costello. Error Control Coding: Funda-
mentals and Applications. Prentice Hall, Englewood Cliffs,
NJ, 1983.

[19] Micron Technology, Inc. MT48LC4M32B2 SDRAM Data
Sheet, 2003.

[20] S. Nanda, K. Balachandran, and S. Kumar. Adaptation tech-
niques in wireless packet data services. IEEE Communica-
tions Magazine, 38(1):54–64, Jan. 2000.

[21] J. Proakis. Digital Communications. McGraw-Hill, New
York, NY, 1995.

[22] T. S. Rappaport. Wireless Communications: Principles and
Practice. Prentice Hall, Upper Saddle River, NJ, 1996.

[23] P. Robertson, E. Villebrun, and P. Hoeher. A Comparison of
Optimal and Sub-Optimal MAP Decoding Algorithms Op-
erating in the Log Domain. In Proceedings, International
Conference on Communications, pages 1009–1013, Seattle,
WA, June 1995.

[24] S. J. Simmons. Breadth-first trellis decoding with adaptive
effort. IEEE Transactions on Communications, 38(1):3–12,
Jan. 1990.

[25] S. Swaminathan, R. Tessier, D. Goeckel, and W. Burleson.
A Dynamically Reconfigurable Adaptive Viterbi Decoder.
In Proceedings, International Symposium on Field Pro-
grammable Gate Arrays, pages 227–236, Monterey, CA,
Feb. 2002.

[26] Xilinx, Inc. 3GPP Turbo Decoder Data Sheet, 2001.


