
Fast Placement Approaches for FPGAs

Russell Tessier

University of Massachusetts, Amherst

Recent trends in FPGA development indicate a strong shift toward design reuse through the use of
intellectual property (IP). This design shift has motivated the development of Frontier, a timing-
driven FPGA placement system that uses design macro-blocks in conjunction with a series of
placement algorithms to achieve highly-routable and high-performance layouts quickly. In the first
stage of design placement, a macro-based floorplanner is used to quickly identify an initial layout
based on inter-macro connectivity. Next, FPGA routability and performance metrics are used to
evaluate the quality of the initial placement. Finally, if the floorplan is determined to be insufficient
from a routability or performance standpoint, a feedback-driven placement perturbation step is
employed to achieve a lower cost placement. For a collection of large reconfigurable computing
benchmark circuits our timing-driven placement system exhibits a 2.6× speedup in combined place
and route time versus commercial FPGA CAD software with improved design performance for
most designs. It is shown that floorplanning, placement evaluation, and back-end optimization
are all necessary to achieve high-performance placement solutions.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—
Gate arrays; B.7.2 [Integrated Circuits]: Design aids—Placement and routing; J.6 [Computer
Applications]: Computer-Aided Engineering

General Terms: Algorithms, Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Computer-aided design of VLSI, field-programmable gate
arrays, layout, synthesis

1. INTRODUCTION

Over the past decade field-programmable gate arrays (FPGAs) have revolution-
ized the way digital systems are designed and built. With architectures capable of
holding tens of millions of logic gates on the horizon and planned integration of re-
configurable logic into system-on-a-chip platforms, the versatility of programmable
devices is expected to increase dramatically.
When programmable logic first became available a decade ago the task of convert-
ing a high-level design into a high-performance physical implementation was fre-
quently a time-consuming, manually-driven process requiring many days or weeks.
While sizable development times are still tolerable for some applications of FPGA

This work was supported by National Science Foundation grant CCR-0081405.
Author’s address: R. Tessier, Department of Electrical and Computer Engineering, University of
Massachusetts, Amherst, MA 01003; email: tessier@ecs.umass.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, to redistribute to lists, or to use any component of this work in other works,
requires prior specific permission and/or a fee.
c© 2002 by the Association for Computing Machinery, Inc.

devices today, many uses of FPGA technology, such as reconfigurable computing
and ASIC prototyping, require compilation times on the order of minutes to al-
low for rapid design turnaround from high-level design to physical implementation.
Currently, a majority of FPGA compilation time is spent in device layout due pri-
marily to the assumption that each collection of new design elements must be placed
and routed from scratch. Given the exponential growth of FPGA logic capacity
expected in the next few years, place and route times using algorithms currently
employed in FPGA software systems can only be expected to get worse.
While early FPGA designers used low-level schematics to create new designs,
most FPGA implementations today start as RTL or procedural algorithm descrip-
tions. Typically, these high-level designs are synthesized to circuit structures with
the aid of pre-compiled macro-blocks that have predictable area and timing charac-
teristics. In general, these elements, such as adders, multipliers and multiplexers,
are much larger than the primitive logical elements of the FPGA device and are
used in multiple locations in a given design. While macro-blocks have been lever-
aged successfully for FPGA synthesis for some time, little work has been done in
integrating macro techniques into automated FPGA layout.
In this paper, Frontier, an integrated, timing-driven placement system that ag-
gressively uses macro-blocks and floorplanning to quickly converge to a high-quality
placement solution, is detailed. This system can be used in place of existing place-
ment approaches for macro-based designs targeted to devices with architectures
similar to the Xilinx Virtex [Xilinx Corporation 2001] and XC4000 [Xilinx Cor-
poration 1998] and Lucent Orca [Lucent Technologies 1996] families. Rather than
using a single algorithm, the new Frontier tool set relies on a sequence of interre-
lated placement steps. First, in a floorplanning step, macros are combined together
into localized clusters of fixed size and shape and assigned to device regions to mini-
mize placement cost. Following initial floorplanning, a routability and performance
evaluator, based on wire length and static timing information, is used to determine
if subsequent routing for a given target device is likely to complete successfully with
pre-specified timing constraints. If this evaluation is pessimistic, low-temperature
simulated annealing is performed on the contents of all soft macros in the design
to allow for additional placement cost reduction, enhanced design routability, and
improved design performance.
The organization of this paper is as follows. Section 2 provides a description
of the issues involved in FPGA placement and describes previous related work in
FPGA placement and floorplanning. In Section 3, our placement system is discussed
in detail and in Section 4 our experimental approach is described. Experimental
results obtained by applying Frontier to a collection of benchmark circuits are
presented in Section 5. Finally, Section 6 summarizes our research and outlines
directions for future work.

2. BACKGROUND

2.1 Problem Statement

The target FPGA architecture used for this research is the island-style architec-
ture commonly found in commercial FPGA devices such as the Xilinx Virtex and
XC4000 families and the Lucent Orca family. These architectures are characterized

G1

C1

F1

X

F4 C4 G4
YQ

Y

G3

F3

G2C2F2
XQ

C3

Double

Double

Single

Longline

Longline

Double

Single

Double

Longline

Longline

 Switch
 Matrix

Direct

Logic
Block

Fig. 1. Xilinx XC4000 logic and routing cell

by a regular two-dimensional array of logic and routing cells, such as the example
from the Xilinx XC4000 family shown in Figure 1. Each identical cell contains
a logic block consisting of a small number of programmable lookup tables and
flip flops and associated routing wires of differing segmentation lengths. Connec-
tions between logic blocks and routing resources are made through programmable
switches represented as small squares in the figure.
An FPGA design under placement consideration consists of Nblocks logic blocks
grouped into M instantiated macro-blocks. Each macro-block contains an RTL
component such as a datapath function or finite state machine and has a distinct
logic block capacity NMi

. Hard macros are groups of logic blocks with a fixed width
wi and height hi. Each logic block within a hard macro has a specific δx and δy
position relative to the macro origin. Although the macro can be located at many
positions throughout the logic array, the relative placement of hard macro logic
blocks with respect to the macro origin remains fixed throughout design placement.
Soft macros are more flexible than hard macros. Initially, like hard macros, soft
macros have hi and wi rectangular dimensions and each logic block within a soft
macro is assigned to a specific location relative to the macro origin. Unlike hard
macros, during placement a soft macro can be reshaped into a rectilinear shape
that has the same logic block area as the original rectangular shape.

The goal of our placement approach is to create a placement for Nblocks design
logic blocks encompassed by a set of M macro-blocks onto Ncells array logic blocks
such that subsequent routing may complete successfully and associated timing con-
straints are met. A set of NetsM inter-macro wires interconnect all macro-blocks
and Netsblocks wires interconnect all logic blocks inclusive of NetsM . In general,
placement progresses subject to the following constraints:

(1) Each hard macro-block is assigned a distinct placement rectangle Ri of dimen-
sions hi and wi so that no two macros overlap (Ri

⋂
Rj = φ).

(2) Placement is performed to maximize overall routability by minimizing over-
all routability-based placement cost subject to prespecified timing constraints.
Initially, floorplanning considers, among other criteria, minimizing the length
of all inter-macro nets NetsM and minimization of the design inter-macro crit-
ical path length. Subsequently, during placement refinement, the length of all
design wiring, Netsblocks, is considered for both routability and critical path
length determination.

2.2 Related Work

Compile time has recently been recognized as an important issue for FPGAs. Most
island-style FPGA placement algorithms used in commercial software packages as-
sume that a user design contains little or no hierarchy and can be considered as a
collection of logic components whose grain size matches the logic block of the target
device. Since the primary measure of routability and performance for array layout
is typically related to wire length, a flattened design provides maximum flexibility
in searching the placement space for reduced overall cost.
Most commercial FPGA placement packages use simulated annealing [Sechen
1988] to evaluate a series of logic block swaps based on a predefined cost function.
Annealing, started from an initial placement, typically achieves good placement
quality at the cost of long execution times that are exponentially bounded by the
number of design logic blocks [Tessier 1998]. In [Sankar and Rose 1999], recur-
sive clustering was used to identify circuit locality prior to annealing to reduce
subsequent annealing execution time. While this approach yielded a placement
time speedup of four in obtaining minimized FPGA placement cost, no mechanism
for supporting pre-placed macro-blocks was included. In performing hierarchical
clustering, substantial placement time is spent recreating locality information pre-
viously encompassed by RTL components. Additionally, this approach does not
deal with costs related to long-line alignment and near-neighbor logic block direct
connects through the use of hard macros.
A large amount of work in macro-based floorplanning has been applied to full
and semi-custom VLSI design styles including approaches based on mincut slic-
ing, simulated annealing, and force-directed placement, among others [Shahookar
and Mazumder 1991] [Sherwani 1992]. In general, the floorplanning problem for
island-style FPGAs is much harder than for non-programmable technologies since
for FPGAs the amount of available routing resources is fixed in preassigned chan-
nels that run through placed macro-block regions and additional resources cannot
be redistributed around macro borders. Several floorplanning efforts for island-
style FPGAs have relied on specific user design implementation styles to quickly

achieve a highly-routable placement. These systems [Callahan, Chong, Dehon,
and Wawrzynek 1998] [Gehring and Ludwig 1998] [Koch 1996] restrict target cir-
cuits to datapaths oriented in a left-to-right linear communication pattern. Design
regularity facilitates vertical bitwise abutment of macro-blocks and allows for a
rapid traversal of the one-dimensional topological search space. In general, one-
dimensional approaches cannot be easily modified for circuits with more irregular
communication patterns and larger Rent parameters.
Several floorplanning approaches for island-style FPGAs based on mincut slic-
ing have recently been developed and tested. In [Tessier 1998], it was shown that
while slicing floorplanning with hard macros achieves a placement solution quickly,
routability and performance may suffer due to increased wire length. In [Emmert,
Randhar, and Bhatia 1998], slicing with terminal propagation in conjunction with
the reshaping of soft macros, was shown to quickly generate high-utilization place-
ments for Xilinx XC4000 series devices. While a factor of two speedup was achieved
for placement versus Xilinx PPR software, no routing execution times were reported
so it is impossible to determine overall place and route speedup.
A floorplanning methodology based on hierarchical placement was recently de-
scribed in [Emmert and Bhatia 1999]. This floorplanner clusters macros together
into fixed sized bins and then optimizes bin placement using a two-step tabu
search. Several of the large benchmarks targeted by the system showed consid-
erable speedup in placement time but much more than a 100% increase in routing
time. In this paper we show that this routing time increase was likely caused by
the lack of a globally optimizing placement smoothing step following floorplanning
to minimize localized wire length inefficiencies.

2.3 Implementation Tradeoffs

The use of macro-blocks to accelerate placement for island-style FPGAs requires
accommodation of the following two competing placement goals:

—Locality information stored in pre-placed macro-block libraries should be used to
avoid the need to reconstruct local design structure from scratch and to better
take advantage of device features such as near-neighbor direct connection and
long-line alignment.
—The placement system should have the flexibility to minimize global wire length
by swapping individual logic blocks across the entire design. An approach that
is insufficiently flexible will lead to high wire length placements that are likely to
take additional time to route, eliminating the benefit of placement time speedup.

The placement system described in this paper is the first integrated approach
that addresses both of these competing concerns in one package. First, a macro-
based floorplanner based on clustering and shaping is used to quickly identify a
feasible floorplan that incorporates hard and soft macros and achieves high device
utilization. Once initial placement is complete, a routability estimator is applied
to determine if the placement is routable. If it is not routable, a low-temperature
annealing step is performed on the entire design to smooth out localized wire length
maxima while maintaining the basic structure of the floorplan. The diversity and
flexibility of this system makes it applicable not only to user designs which commu-

| | | | | | | | ||0.3

|0.4

|0.5

|0.6

|0.7

|0.8

 R
en

t
E

xp
o

n
en

t

Macro

Design

FFT16
MULT8

MERGE16
BHEAP5

JACOBI8
BSORT32

LIFE16

Fig. 2. Rent exponents for macros and designs

nicate as linear arrays and two dimensional meshes, but also to circuits exhibiting
irregular communication patterns.

2.4 Macro-based designs

Most large digital designs created today have a well-defined internal structure. This
structure frequently takes the form of large, tightly-connected macro-blocks which
can be created and stored in a library. It is possible to motivate floorplanning by
examining the circuit structure of reconfigurable computing designs. In general,
placement techniques, such as simulated annealing, are based on the notion that
wiring demands are roughly equal throughout the device and that minimizing over-
all wire length will lead to a routable design. Experimental analysis shows, however,
that this may not always be the case. For a given design, a known relationship ex-
ists between the amount of logic (or number of logic blocks) and the number of
wires associated with the design. This relationship is Rent’s Rule [Landman and
Russo 1971]:

Rent′s Rule : N = KGp (1)

where N is the number of wires emanating from a region, G is the number of
circuit components (or logic blocks), K is Rent’s constant, and p is Rent’s exponent.
The Rent exponent, p, can be used to characterize the routing density in a circuit
since it defines the growth requirements of the interconnect.
To determine variations in wiring density, all benchmark designs and component
macros were recursively bipartitioned using a mincut partitioner to determine their
Rent exponent. In Figure 2, it can be seen that the Rent exponents for the entire

 Macro−based Circuit

Set Bin Size

Cluster Increment
Bin Size

yes

no

Ncluster
> Nbins

Routable?

Low Temperature
 Annealing

no

yes

To Routing

Floorplanner

Bin Assignment

 Intra−bin
Placement

Fig. 3. Frontier placement flowchart

designs listed in Table I in Section 5 may vary significantly from the parameters of
individual component macros. Note that even though a macro may appear several
times in a design it is shown only once in the graph for each design. The Rent
exponent results impact floorplanning in two ways. First, the result indicates that
macros are likely to be tightly-connected so that the pre-placement of macros will
likely speed up the placement process. Second, the result shows that interconnect
resources may be used unevenly across the FPGA device due to placed macros,
thus necessitating a placement smoothing step to more equally distribute routing
globally. The multi-phase Frontier placement system has the capability to address
both of these needs though floorplanning and low-temperature annealing.

3. FRONTIER IMPLEMENTATION

3.1 System Overview

Our placement system progresses in a series of algorithmic steps by supplementing
new layout techniques with recent advances in FPGA routability analysis. As
illustrated in Figure 3, the layout process starts with a macro-based netlist of
soft and hard macros targeted to an FPGA device containing Ncells logic blocks.
Initially, to enhance locality, the FPGA device is decomposed into an array of
placement bins, each of the same physical dimension, as shown in Figure 4. To

Macros

Bins

Logic
Block

Fig. 4. Bin-based cluster assignment

determine bin contents, macros are grouped together into clusters, each of which
will accommodate the volume of macro logic blocks and the physical dimensions
of hard macros inside a bin. If, following clustering, an insufficient number of bins
is available to place all clusters, bin sizes are increased and clustering is restarted.
After clustering, each cluster is assigned to a physical bin location on the target
device and entire bin clusters are subsequently swapped between physical bins to
minimize inter-bin placement cost, including connectivity to device pins. Since the
number of bins allocated to a device is frequently much smaller than the number
of device logic blocks, this process proceeds rapidly. The annealing formulation
used in inter-bin swapping follows directly from logic block-level annealing used for
flattened designs and is easily incorporated into the software flow. Following bin
placement, hard and soft macro-blocks are placed within each bin in a space-filling
fashion. All intra-bin placement is based on inter and intra-bin connectivity. Soft
macros are resized at this point to meet bin shape constraints.
In Section 5, it is shown that while floorplanning alone is sufficient to provide
effective placements for many designs targeted to contemporary FPGA devices,
in some cases additional placement perturbation is required. In Frontier, follow-
ing floorplanning, a detailed estimate of the placement wire length and post-route
design performance is determined, taking into account the special features of the
FPGA device. As described previously in [Swartz, Betz, and Rose 1998], these
wire length and performance estimates can be used to evaluate whether subsequent
device routing will complete quickly, require a long period of time, or ultimately
fail. For floorplans that are impossible or difficult to route, low-temperature sim-
ulated annealing is performed on soft macros to smooth wire length inefficiencies.
Through a series of design examples, a set of annealing parameters that lead to the
best time versus performance and routability tradeoffs are determined.

3.2 Placement Cost

In order to achieve an efficient layout, placement cost must be efficiently mod-
eled during various placement steps. Traditionally, routability for island-style FP-
GAs has been modeled using bounding box wire length to determine the amount
of wiring needed to complete multi-sink connections [Marquardt, Betz, and Rose
2000]. To support timing-driven compilation, however, additional source-sink path
delay information is needed. From [Marquardt, Betz, and Rose 2000], overall sys-
tem placement cost can be represented linearly as:

Cost = λ × costwiring + (1 − λ) × costtiming (2)

where λ is a weighting factor determined experimentally to be approximately 0.5
for timing-driven layout an 1.0 for routability-driven layout. While the formulation
of the above equation remains the same across a number of Frontier placement
steps, the accuracy of the cost formulation varies and is described in detail in
Section 3.3 for each placement step. Initial placement steps model cost using coarse-
grained array distance and estimated critical-path measurements to achieve relative
positioning. This inexact metric, used to mitigate congestion and critical path delay
during coarse-grained steps, is refined in later fine-grained placement steps in which
delay is modeled much more accurately.
Timing cost plays an important role in the determination of timing-driven place-
ment. In order to minimize the critical path of a circuit, timing analysis must be
performed at various stages of the placement process. Over the course of placement
the critical path in the circuit may change, leading to a need for path re-evaluation.
Key aspects in determining timing cost include how often to evaluate path delay
and how accurately the timing cost is specified. While the accuracy of the modeled
delay may change from step to step, the basic formulation of the cost remains the
same. For Frontier, we follow a cost approach [Marquardt, Betz, and Rose 2000]
which repetitively evaluates critical path lengths at fixed intervals in determining
timing cost. In order to determine circuit delays, placement logic and wiring de-
lay may be represented with a timing graph with each edge given a specific delay.
By performing a depth-first search through this graph, it is possible to determine
the arrival time, Tarr, of each signal at destination points in the graph. Follow-
ing this analysis, critical paths which exceed the user-specified clock cycle can be
determined.
The next step in timing analysis is determining the time, Treq, when each signal
must arrive at its destination to meet required timing constraints. This can be de-
termined by performing a breadth-first backwards search from combinational path
sinks to sources. At each intermediate point in the search, the slack is determined
to be the difference between the required and actual arrival times:

slack = Treq − Tarr (3)

Timing cost can be determined by evaluating source-sink net delays. To ac-
curately reflect timing, the criticality of each source-sink delay must be weighted

M: Initial set of design macro-blocks.
C: Set of macros or macro clusters to be combined.
SizeC: Number of elements of C.
Add elements of M to C.
While SizeC can be reduced

Loop over all SizeC elements.
Select feasible combination Ci, Cj that maximizes Costij .

If feasible Ci, Cj found.
Remove Ci, Cj from C.
Add macro cluster Ci

⋂
Cj to C.

Update connectivity.
EndWhile

Fig. 5. Weighted clustering algorithm

based on slacks determined previously. From [Marquardt, Betz, and Rose 2000],
criticality can be determined to be:

criticality = 1 − slack

Dmax
(4)

where Dmax is the longest combinational delay in the circuit. In turn, this
criticality can be used to determine timing cost based on the relation:

costtiming = net delay × criticalitycrit exp (5)

where crit exp is a criticality exponent determined experimentally to be 1. This
cost, along with bounding box cost, costwiring, can be combined, as expressed in
Equation 2, to determine overall system cost.

3.3 Placement Steps

3.3.1 Bottom-Up Clustering. In the first step of placement, macros are clustered
together into placement bins of identical dimensions and logic block volume to
identify inter-macro design locality. While bins must be sized to support a range of
macro-block dimensions, needlessly large bins limit the number of bins available for
subsequent inter-bin swapping and may have a negative impact on final floorplan
quality. When floorplanning is started, bins are initially set to the X and Y di-
mensions of the largest hard macro-block or, if no hard macros exist, to the square
root of the logic block volume of the largest soft macro.
Given the fixed dimension of each bin, clustering must not only take into account
connectivity, but also size feasibility of the cluster under consideration. To smooth
macro-block size disparities, smaller macro-blocks should be clustered first with
other like-sized blocks so that the total number of created clusters is minimized. For
Frontier this is accomplished through the use of a cost function previously developed
in [Tessier 1998], [Yamanouchi, Tamakashi, and Kambe 1996] and [Emmert and

Bhatia 1999] that is weighted to take logic block counts and interconnectivity into
account:

Costij = feas(i, j) × Nblocks

NMi + NMj

× min(NMi , NMj)

max(NMi , NMj)
×

∑
Netsij (6)

where Nblocks is the total number of logic blocks in the circuit, NMi
and NMj

are
the number of logic blocks in the macro-blocksMi andMj under consideration and
Netsij are the nets connectingMi andMj . The first term in Equation 6 determines
if a candidate cluster can be feasibly shaped during intra-bin placement, using
criteria described in Section 3.3.3, to fit the physical dimensions of a target bin. Its
value is set to 1 if a shape is feasible and 0 if it is not. The second term in the cost
function prevents a specific cluster from becoming too large in relation to the rest
of the circuit. The third term prevents two macros with vastly different numbers
of blocks from being connected together thereby creating area inefficiencies, and
the last term measures connectivity. A detailed description of the O(M) clustering
algorithm appears in Figure 5.
If, following clustering, more clusters, Ncluster, than bins, Nbins, exist, bin di-
mensions are modified by increasing bin horizontal and vertical dimensions by 1
logic block and clustering is started again from scratch.
While Equation 6 takes cluster-cluster interconnect into account, its effect is
limited for timing-driven costs. To address this additional cost, the Netsij value
in the equation is scaled based on net slack. In general, it was found that the use
of simple adjacency rather than scaled adjacency was sufficient for clustering since
most design critical paths passed through at most two macros.

3.3.2 Bin Assignment. Following clustering, all macros are bound to a cluster
and the number of clusters is less than or equal to the number of available device
bins. The next step is to determine an assignment of clusters to specific device
bins. After initial random assignment of clusters to bins, simulated annealing is
used to evaluate cluster swaps based on both inter-bin and bin-to-pad wire lengths.
The dynamic annealing schedule described in [Betz and Rose 1997] with the cost
function described in Section 3.2 is used to reach a good quality placement quickly.
Given the small number of bins (typically less than 20), annealed swapping can
typically be completed in a few seconds.

3.3.3 Internal Bin Placement. Once each cluster of macro-blocks is assigned to
a specific bin, intra-bin placement is performed to assign logic blocks in macros
to specific device logic block locations. As a first step for each bin, all Nhard

hard macro-blocks and Nsoft soft macro-blocks in the assigned cluster are linearly
ordered in the horizontal dimension using a topological sort based on intra and inter-
bin connectivity. For soft macro-blocks, previously-determined library placements
are used to approximate final soft macro logic block positions and wire lengths.
Following ordering, exact X, Y logic block positions in each bin are determined
for hard macros by resolving inter-macro spacing. If the width of a bin is wbin

and the combined horizontal width of all hard macros in a bin is
∑

i wi, the
space between hard macros occupied by soft macros is determined to be Xsoft =

Bin Hard MacroSoft Macro

Fig. 6. Internal bin placement

�wbin−
∑

i
wi

Nsoft
�. This equation leads to an Xsoft value of 1 for the bin shown in

Figure 6. Following Xsoft determination, hard macros are assigned X coordinates
inside each bin in a left-to-right order with Xsoft spacing inserted for each soft
macro.
Subsequent to the positioning of hard macros, intra-bin X and Y locations for

soft macro logic blocks are determined. As shown in Figure 6, these locations
are determined by allocating bin space remaining after hard macro placement in a
snake-like fashion starting in the upper left-hand corner of the bin. Individual soft
macro logic blocks are assigned to specific locations within this shape by sequentially
selecting logic blocks that minimize placement cost outlined in Section 3.2. By
following this methodology, up to 100% logic block utilization can be achieved in
each bin. For timing-driven floorplanning, slack update within the bin is performed
iteratively after each logic block assignment given the small number of logic blocks
generally assigned to each bin.

3.3.4 Routability and Performance Estimation. Recently, a direct correlation has
been formulated between the number of routing tracks in an FPGA device, the
wire length of a design placement, and the amount of time needed to route a design
[Swartz, Betz, and Rose 1998]. Due to macro-block shape considerations and spe-
cific interconnection patterns of individual designs, a successful floorplanning step
provides no guarantee that a placement possessing close to the global minimum
cost has been achieved or that routing will subsequently succeed for a given target
device. To evaluate placement fitness, a wire length-based routability and perfor-
mance metric [Swartz, Betz, and Rose 1998] has been directly built into Frontier.
For a given placement, Wmin may be defined as the minimum track count per
FPGA routing channel required to successfully route a design. If the device track
count available in a target FPGA,WFPGA, exceeds 1.1×Wmin the routing problem
is defined to be low-stress and can be expected to complete quickly (e.g. within

several minutes). If Wmin < WFPGA < 1.1Wmin the routing problem is defined as
difficult and will likely require many minutes to complete. Generally, if WFPGA <
Wmin it is unlikely routing will complete successfully even after substantial routing
time.
Swartz [Swartz, Betz, and Rose 1998] noted that since a placement-only estimate
of routability is required, it is necessary to use an estimated rather than an exact
Wmin value to determine routability for a design. Through experimentation it was
determined that Wmin can be estimated from placement wire length as:

Wmin−est = �wirelength/(2 × Ncells × U)� (7)

where wirelength is the total estimated shortest-path wire length determined
from placement, Ncells are the number of logic blocks in the device and U is a
utilization factor determined to be architecture-specific. By using this equation for
estimation it was possible to determine needed device routing resources following
floorplanning for specific Xilinx XC4000XL devices exhibiting WFPGA of 32 tracks
per channel and U of 0.6.
Post-route performance can be predicted before routing by evaluating the critical
path in the placement determined by floorplanning. An estimation of routing delay
can be made by evaluating the shortest path from design sources to sinks along
wire segments, multiplexers, and look-up tables with a static timing analyzer. For
Frontier, a highly accurate model of a Xilinx XC4000XL device was used to deter-
mine delay values based on capacitance and resistance values derived from process
information.

3.3.5 Low-Temperature Annealing. As will be shown in Section 5, simply per-
forming floorplanning is often sufficient to create a placement in the low-stress
routing range that meets timing constraints for most designs. In some cases, how-
ever, routability and performance evaluation may reveal that the current placement
is difficult or impossible to route given available target device routing resources and
a desired clock rate. For these cases, additional placement perturbation is needed
to ensure subsequent fast routing.
To overcome placement inefficiency, Frontier employs low-temperature simulated
annealing of individual logic blocks. This approach allows for smoothing of wire
length across soft macros and bins without destroying the high-level placement
structure achieved by the floorplanner. While detailed discussions of the simu-
lated annealing algorithm for placement [Sechen 1988] and associated controlling
parameters [Betz and Rose 1997] [Marquardt, Betz, and Rose 2000] are available
elsewhere, a brief description of several important parameters needed for floorplan
refinement may be summarized as follows:

—Starting annealing temperature, Tinit - Starting temperature must be set high
enough so that the placement may be perturbed to a lower overall minimum, but
low enough to avoid destroying the basic hierarchy determined through floor-
planning. For our system, a number of experiments were performed to determine
Tinit values that lead to an effective quality versus time tradeoff.

—Range limit, Rlim - For annealing, the range limit indicates how far a particular
logic block can be moved in a linear dimension during a specific block swap.
Typically, this is set to include the entire chip initially and then reduced to
include only a small subset of blocks as the annealing temperature is reduced
[Betz and Rose 1997]. For low temperature annealing, our system experimentally
determined that Rlim should initially be set to a value of 0.2×

√
Ncells.

—Inner number, β - This value varies the number of swaps made at each anneal-
ing temperature [Sankar and Rose 1999]. In the annealing formulation used to
perturb logic block placement, the number of moves at each temperature is set
to β × N

4/3
blocks [Betz and Rose 1997]. In Section 5, quality-time tradeoffs for a

range of β values are considered and a β value of 1 is shown to exhibit the most
favorable quality-time characteristics.

4. EXPERIMENTAL APPROACH

To validate our approach, results from the newly-developed placement system were
compared against placement and routing results obtained using Xilinx PAR, ver-
sion M2.1 software. The experimental approach included internal macro-block
placement, Frontier placement, as described in Section 3, and PAR placement and
routing using both macro and logic block-based placement modes. The following
subsections describe specific experimental steps in detail.

4.1 Macro-block Creation

Prior to design placement, an RTL description of each macro-block was synthesized
and mapped to Xilinx XC4000 logic blocks by the Synopsys Design Compiler. Fol-
lowing designation of macro hi and wi dimensions, placement for each macro-block
was determined using the simulated annealing-based VPR tool set [Betz and Rose
1997]. The result of the macro-block creation step for each macro was the deter-
mination of a relative offset from the macro origin for each component logic block.
Each relationally-placed macro-block was treated as a single unit during subsequent
floorplanning, as described in Section 3. Both hard and soft macros were created
using this method.

4.2 Frontier Placement

In an initial set of design placement experiments, hierarchical designs containing
instantiations of the macro-blocks were placed, as described in Section 3. For each
design, following placement with Frontier, a Xilinx user constraints file (UCF) was
written specifying the exact array location of each design logic block in the target
FPGA array. This file was input to Xilinx PAR-M2.1 to set logic block positions
for subsequent PAR routing. For each design, a hierarchical XNF netlist containing
logic blocks mapped during the macro-block creation phase was used as input to
the PAR router to define logic mapping.

4.3 Xilinx PAR-M2.1 Macro-based Placement

The Xilinx PAR-M2.1 placement tool allows limited support for relationally-placed
macros. In a second set of design placement experiments, a hierarchical XNF netlist
was created for each design from a macro-level netlist and component macro-block
netlists consisting of logic blocks mapped by the Synopsys Design Compiler. Logic

Design Device CLBs Macros Device
Utilization

bheap5 4085XL 2715 30 87%
bubble32 4085XL 2608 63 83%

fft16 4085XL 3032 48 97%
jacobi8 4085XL 2624 64 84%
life16 4085XL 2560 32 82%

merge16 4085XL 2315 63 74%
spm8 4085XL 2425 23 77%
ssp32 4085XL 2370 79 76%

Table I. Macro-based design statistics

blocks in hard macros, defined in Section 2.1, were annotated with the relative
placement positions determined during the macro creation phase. For each design,
this annotated netlist was input to the Xilinx PAR-M2.1 placer. During subse-
quent PAR placement, the relative position of logic blocks in the hard macros was
fixed, although the macros could be placed anywhere in the array by the PAR soft-
ware. No relative positioning constraints were placed on the logic blocks of soft
macro-blocks; these were allowed to float around the array independently. Unlike
Frontier, which uses multiple placement algorithms and integrated routability and
timing estimators, the PAR-M2.1 placer uses a single algorithm, simulated anneal-
ing [Trimberger 1994], for both macro and individual logic block placement. Macros
and individual logic blocks are simultaneously placed in one annealing-based step.

4.4 Xilinx PAR-M2.1 Flat Placement

In a third set of design placement experiments, hierarchical netlists containing
macro instantiations were flattened to include only the logic blocks mapped by
Design Compiler during the macro creation stage. No placement information was
annotated in the resulting XNF netlists or in UCF constraint files. The flat logic
block netlists were subsequently placed and routed using Xilinx PAR-M2.1 tools.
No macro-block placement information was used during these experiments.

5. RESULTS

In order to show the effectiveness of the floorplanner, we compared its performance
to available commercial software operating in both timing-driven and routability-
driven mode. In both cases it was possible to achieve both compile time and
performance improvements versus off-the-shelf Xilinx PAR-M2.1 software.
The placement system outlined previously was applied to eight macro-based re-
configurable computing benchmarks from the RAW Benchmark Suite [Babb, Frank,
Lee, Waingold, and Barua 1997]. Macro-based netlists were input to both the Fron-
tier system and to Xilinx PAR-M2.1, as described in Section 4. Design statistics for
the benchmarks appear in Table I. All run time results for both Frontier and PAR
were obtained using a 140 MHz UltraSparc I with 288 MB of memory. Routing for
all designs was performed using Xilinx PAR-M2.1 software with default placement
and routing effort settings.

Execution times (s) Tracks
PAR-M2.1 - flat PAR-M2.1 - macro Floorplan Only Wmin

Design Place Rte Tot Place Rte Tot Fplan Rte Tot −est
bheap5 441 120 561 275 1034 1309 16 329 345 36

bubble32 428 138 566 195 240 435 28 120 148 31
fft16 537 90 627 120 92 212 10 83 93 22

jacobi8 242 41 283 108 73 181 18 40 58 18
life16 304 109 413 81 144 225 5 89 94 16

merge16 257 45 302 155 72 227 42 100 142 27
spm8 317 262 579 160 159 319 4 158 162 26
ssp32 344 102 446 180 106 286 38 76 114 22
total 48m 15m 63m 21m 32m 53m 3m 16m 19m

Table II. Design layout statistics - routability-driven

5.1 Routability-driven Results

To explore the efficiency of using the new Frontier placement system, a set of exper-
iments was performed without explicit specification of timing constraints. These
experiments focused on completing design place and route as quickly as possible
and used design wire length as the sole cost metric (λ = 1 in Equation 2). Following
floorplanning, the routability estimator was used to determine if low-temperature
simulated annealing was necessary to smooth the placement.
Execution times for Frontier floorplanning (without low temperature refinement),
PAR placement for a netlist with relationally-placed hard macros and PAR place-
ment for a flat netlist appear in Table II in seconds, unless otherwise noted. All
designs were routed using PAR with default settings. In general, Frontier provided
the fastest layout and PAR placement with relationally-placed hard macros pro-
vided the second-fastest. For all designs except one (bheap5), routing times for the
floorplanned designs were comparable to those found by the PAR-M2.1 placer that
required 7× longer. This is not suprising since for all designs except bheap5 the
estimated minimum track count per channel needed to route the circuit was less
than the 32 tracks per channel available in Xilinx XC4000XL devices, as shown in
Table II. Wmin−est values were determined by measuring the post-floorplan wire
lengths of designs and then directly correlating them to required track counts via
Equation 7. From Table II it can be seen that the minimum track count needed to
route the floorplanned version of bheap5 is significantly greater than the track count
available inside the XC4000XL device and route times (indicated in boldface in Ta-
ble II) reflect the disparity. Following floorplanning and routability determination,
it is apparent that placement refinement is needed.
To determine appropriate values for β, the annealing moves-per-iteration vari-
able, and Tinit, the annealing start temperature for low-temperature annealing, a
series of time-quality tradeoffs were evaluated for routability-based layout. Starting
from a floorplanned placement, each design underwent low-temperature annealing
with parameters indicated in Figure 7 and the resulting placement cost was de-
termined relative to the best cost that could be achieved by performing simulated
annealing from a random placement for many minutes. Each curve in Figure 7
represents the geometric average of all eight designs over a collection of parameter
values. Note that the absolute value of Tinit is dependent on the exact formulation

� T=0.1 (2%)
� T=0.3 (5%)

 T=0.5 (12%)
� T=1.0 (40%)

|
1

| | | | | | | | |
10

| | | | | | | | |
100

|1.0

|1.1

|1.2

|1.3

|1.4

|1.5

|1.6

 Time (in seconds)

 M
ea

n
 N

o
rm

al
iz

ed
 W

ir
e

L
en

g
th

 C
o

st
B=0.2

B=0.5

B=1

B=2

B=5

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

Fig. 7. Simulated annealing parameter variation

Execution times Performance
Flow PAR Fplan Low Temp Anneal Route Total (MHz)

PAR-flat 441s 0 0 120s 561s 10.5
PAR-macro 275s 0 0 1034s 1309s 5.8
Fplan Only 0 16s 0 329s 345s 11.5

Fplan/Anneal 0 16s 34s 177s 227s 12.8

Table III. Routability-driven layout execution time/performance comparison - design bheap5

of the cost function shown in Equation 2. As a means to promote comparison to
other annealing formulations, we have included the percentage of first-annealing-
iteration cost-increasing swaps caused by each start temperature in the legend of
Figure 7. It was found that constraining soft macro logic blocks within the bounds
of the soft macro determined during intra-macro placement or within bin bound-
aries resulted in worse results than allowing soft macro logic blocks to pass between
bins. All results shown in the figure were collected without block movement con-
straints. From the data collected, it was determined that for our system and cost
formulation the best time-quality tradeoff was achieved for β = 1 and Tinit = 0.3.
These parameter values were used to refine the initial floorplan for bheap5 to a
lower cost placement. A graph of relative placement cost versus time at various
points during execution is shown in Figure 8 for Tinit = 0.3 and β = 1. Cost points
associated with impossible, difficult and low-stress routing, as defined in Section
3.3.4, are labelled. It can be seen that as low-temperature annealing is performed,
placement cost is moved from the impossible-to-route range, through difficult, and
into the low-stress region. The effect of this modified placement is clear from the
results shown in Table III. Even though placement time has been extended by

� T=0.3, B=1

|
1

| | | | | | | | |
10

| | | | | | | | |
100

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

|2.2

|2.4

 Time (in seconds)

 N
o

rm
al

iz
ed

 W
ir

e
L

en
g

th
 C

o
st

impossible

difficult

�

�

�

�

�

�

�

�
�

Fig. 8. Placement versus design quality - bheap5

PAR-M2.1 - flat PAR-M2.1 - macro
Perf. Execution time Perf. Execution time

Design (MHz) Place Route Total (MHz) Place Route Total
bheap5 13.6 41m 125m 166m 8.2 19m 130m 149m

bubble32 14.9 50m 105m 155m 15.6 25m 35m 60m
fft16 24.3 37m 65m 102m 26.0 5m 9m 14m

jacobi8 29.4 16m 71m 87m 31.9 5m 6m 11m
life16 23.8 37m 142m 179m 26.6 2m 14m 16m

merge16 16.4 55m 78m 133m 16.7 27m 13m 40m
spm8 10.9 35m 128m 163m 11.5 11m 21m 32m
ssp32 15.1 46m 59m 105m 14.1 12m 30m 42m
total 16.8 317m 773m 1090m 18.8 106m 258m 364m

Table IV. Best possible timing-driven performance - Xilinx PAR-M2.1

34 seconds, routing time has now been significantly reduced due to the refined
placement.

5.2 Timing-driven Results

While the optimization of FPGA place and route time is important for some ap-
plications, for many others it is considerably more important to achieve specific
design performance objectives. In a set of timing-driven experiments, the cost
function described in Equation 2 is used to control floorplanning and subsequent
low-temperature annealing. For timing-driven experimentation the value λ in the
equation is set to 0.5 to balance the effect of wire length and delay.
Before timing-driven experiments with the Frontier system were performed, each
design was placed and routed using Xilinx PAR-M2.1 software for both flat and

Floorplan/Anneal
Design Perf. Fplan Anneal Route Total

(MHz)
bheap5 14.5 19s 78s 34m 36m

bubble32 15.6 26s 0s 15m 15m
fft16 25.0 11s 50s 10m 11m

jacobi8 33.3 19s 27s 9m 10m
life16 28.6 5s 0s 5m 5m

merge16 16.7 43s 21s 19m 20m
spm8 11.5 4s 0s 32m 32m
ssp32 16.4 35s 26s 10m 11m

ave/total 20.2 2.7m 3.4m 134m 140m

Table V. Best possible timing-driven performance - fplan/anneal

Xilinx PAR-M2.1 - flat Xilinx PAR-M2.1 - macro Floorplan/Anneal
Design Perf. Total Perf. Total Perf. Total

(MHz) (m) (MHz) (m) (MHz) (m)
bheap5 13.6 166m 8.2 149m 14.5 36m

bubble32 14.9 155m 15.6 60m 15.6 15m
fft16 24.3 102m 26.0 14m 25.0 11m

jacobi8 29.4 87m 31.9 11m 33.3 10m
life16 23.8 179m 26.6 16m 28.6 5m

merge16 16.4 133m 16.7 40m 16.7 20m
spm8 10.9 163m 11.5 32m 11.5 32m
ssp32 15.1 105m 14.1 42m 16.4 11m

ave/total 16.8 1090m 18.8 364m 20.2 140m

Table VI. Best possible timing-driven performance - summary

relationally-placed hard macro netlists, as described in Section 4. For each design,
timing constraints were set to a series of target clock cycles and the best possi-
ble clock cycle that successfully routed was determined. Resulting design clock
frequencies and place-and-route times appear in Table IV. Following this analy-
sis, the Frontier placement system in timing-driven mode was applied to the same
benchmark designs. As shown on the right side of Table V, timing-driven floorplan-
ning of each design was completed in less than one minute. Following floorplanning,
it was possible to determine if the designs would successfully route and meet post-
route performance requirements through the use of routability and performance
estimators described in Section 3. Based on performance and routability metrics
gained from initial placements, low-temperature annealing was performed on the
five designs that did not meet either routability or performance constraints. Of
the five benchmarks that required annealing, design bheap5 required adjustment
due to routability considerations, while the remaining four were adjusted due to
performance concerns.
Before performing low-temperature annealing, it was necessary to determine the
appropriate annealing start temperature for performance-driven low-temperature
annealing. The results of this experimentation for the five affected designs are
shown in Figure 9. As mentioned in the previous section, the absolute value of the

� T=0.0001 (15%)
� T=0.0005 (25%)

 T=0.001 (50%)
� T=0.005 (75%)

|
1

| | | | | | | | |
10

| | | | | | | | |
100

||55.0

|60.0

|65.0

|70.0

|75.0

|80.0

|85.0

 Time (in seconds)

 M
ea

n
 C

lo
ck

 P
er

io
d

 (
n

s)

B=0.2

B=0.5

B=1.0

B=2.0

B=5.0
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

Fig. 9. Timing-driven annealing parameter variation

Execution times Performance
Flow PAR Fplan Low Temp Anneal Route Total (MHz)

PAR-flat 41m 0 0 125m 166m 13.69
PAR-macro 19m 0 0 130m 149m 8.22
Fplan Only 0 19s 0 52m 52m 14.28

Fplan/Anneal 0 19s 78s 34m 36m 14.49

Table VII. Timing-driven layout execution time/performance comparison - design bheap5

start temperatures is dependent on the formulation of the cost function. As a result,
the percentage of cost-increasing swaps that are accepted during the first annealing
iteration are provided in the legend of the figure to promote comparison to other
annealing formulations. In general, the best results for performance improvement
were achieved for Tinit = 0.0005 and β = 1.
Overall, it was found that the Frontier system could create a layout with perfor-
mance characteristics similar to those created by the Xilinx PAR-M2.1 software in
a fraction of the time. A summary of total place-and-route time and design perfor-
mance for the three approaches appears in Table VI. In seven out of eight cases the
Frontier placement approach was able to match or better the design performance
result of PAR placement for both macro and flat netlists. Overall placement time
was accelerated by a factor of 17 and combined place-and-route time was improved
by a factor of 2.6 versus the PAR-M2.1 software in macro-based mode. Overall
placement time was accelerated by a factor of 50 and combined place-and-route
time was improved by a factor of 8 versus the PAR-M2.1 software for flattened
designs.

The importance of the low-temperature annealing step for timing-driven perfor-
mance improvement can be seen in Table VII. By performing a small amount of
low-temperature refinement on design bheap5 not only was the total place-and-route
time reduced, but also the design performance was improved.

6. CONCLUSION AND FUTURE WORK

In this paper a novel FPGA placement tool has been described that quickly achieves
high-quality placement by leveraging design regularity in the form of pre-compiled
macro-blocks. While placement achieved through initial macro-based floorplanning
steps are shown to be highly efficient in most cases, for some designs additional
placement refinement may be necessary to achieve a routable placement that meets
given timing constraints. The system that has been introduced exhibits this ca-
pability by first identifying if a design placement meets timing constraints and is
routable. If one of these conditions is not met, the initial floorplan is perturbed
with low-temperature simulated annealing.
In this work, algorithms were developed to address placement on existing FPGA
architectures. An alternate approach would be to consider modifying island-style
FPGA devices to include additional levels of routing hierarchy, effectively isolating
intra-macro routing from inter-macro routing. Placement could then be more ef-
fectively partitioned into local and global placement steps, much like contemporary
multi-FPGA systems.

References

Babb, J., Frank, M., Lee, V., Waingold, E., and Barua, R. 1997. The RAW bench-
mark suite: computation structures for general purpose computing. In Proceedings, IEEE
Workshop on FPGA-based Custom Computing Machines (Napa, Ca, Apr. 1997). 161–171.

Betz, V. and Rose, J. 1997. VPR: A new packing, placement, and routing tool for FPGA
research. In Proceedings, Field Programmable Logic, Seventh International Workshop (Ox-
ford, UK, Sept. 1997). 213–222.

Callahan, T., Chong, P., Dehon, A., and Wawrzynek, J. 1998. Fast module map-
ping and placement for datapaths in FPGAs. In International Symposium on Field Pro-
grammable Gate Arrays (Monterey, Ca., Feb. 1998). 123–132.

Emmert, J. and Bhatia, D. 1999. A methodology for fast FPGA floorplanning. In In-
ternational Symposium on Field Programmable Gate Arrays (Monterey, Ca., Feb. 1999).
47–56.

Emmert, J., Randhar, A., and Bhatia, D. 1998. Fast floorplanning for FPGAs. In Field-
Programmable Logic and Applications (FPL’98) (Tallinn, Estonia, Sept. 1998).

Gehring, S. and Ludwig, S. 1998. Fast integrated tools for circuit design with FPGAs. In
International Symposium on Field Programmable Gate Arrays (Monterey, Ca., Feb. 1998).
133–139.

Koch, A. 1996. Structured design implementation - a strategy for implementing regular
datapaths on FPGAs. In International Symposium on Field Programmable Gate Arrays
(Monterey, Ca., Feb. 1996). 151–157.

Landman, B. and Russo, R. 1971. On a pin versus block relationship for partitions of logic
graphs. IEEE Transactions on Computers C-20, 12 (Dec.), 1469–1479.

Lucent Technologies. 1996. Field-Programmable Gate Arrays Data Book. Lucent Technolo-
gies.

Marquardt, A., Betz, V., and Rose, J. 2000. Timing-driven placement for FPGAs. In
International Symposium on Field Programmable Gate Arrays (Monterey, Ca., Feb. 2000).
203–213.

Sankar, Y. and Rose, J. 1999. Trading quality for compile time: ultra-fast placement for
FPGAs. In International Symposium on Field Programmable Gate Arrays (Monterey, Ca.,
Feb. 1999). 157–166.

Sechen, C. 1988. VLSI Placement and Global Routing Using Simulated Annealing. Kluwer
Academic Publishers, Boston, Ma.

Shahookar, K. and Mazumder, P. 1991. VLSI cell placement techniques. ACM Comput-
ing Surveys 23, 2 (June), 145–220.

Sherwani, N. 1992. Algorithms for Physical Design Automation. Kluwer Academic Pub-
lishers, Boston, Ma.

Swartz, J., Betz, V., and Rose, J. 1998. A fast routability-driven router for FPGAs.
In 6th International Workshop on Field-Programmable Gate Arrays (Monterey, Ca, Feb.
1998). 140–149.

Tessier, R. 1998. Fast Place and Route Approaches for FPGAs. Ph. D. thesis, Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science. also available as MIT LCS TR-768.

Trimberger, S. 1994. Field-Programmable Gate Array Technology. Kluwer Academic Pub-
lishers, Boston, Ma.

Xilinx Corporation. 1998. The Programmable Logic Data Book. Xilinx Corporation.

Xilinx Corporation. 2001. Virtex II Data Sheet. Xilinx Corporation.

Yamanouchi, T., Tamakashi, K., and Kambe, T. 1996. Hybrid floorplanning based on
partial clustering and module restructuring. In Proceedings, IEEE International Conference
on Computer-Aided Design (Nov. 1996). 478–483.

