
BDD-based Logic Synthesis for LUT-based FPGAs

Navin Vemuri

Intel Corporation, Hillsboro, OR

and

Priyank Kalla

University of Utah, Salt Lake City, UT

and

Russell Tessier

University of Massachusetts, Amherst, MA

Contemporary FPGA synthesis is a multi-phase process which involves technology independent
logic optimization followed by FPGA-specific mapping to a target FPGA technology. Conven-
tional technology-independent transformations target standard cells and are unable to optimize
circuits with constraints and goals specific to FPGA architectures. This paper describes an FPGA-
specific logic synthesis approach, which unites multi-level logic transformation, decomposition, and
optimization techniques into a single synthesis framework. This system performs network trans-
formation, decomposition and optimization at an early stage to generate a network which can be
directly mapped onto FPGAs. Our techniques are built upon a BDD-based logic decomposition
system. With this system, both AND-OR decompositions and AND-XOR decompositions can be
identified, resulting in large area savings for synthesized XOR-intensive circuits.

To induce good decompositions, a maximum fanout free cone (MFFC) based partial clustering
and collapsing technique is used. This step is followed by an area-minimizing variable partitioning
heuristic which decomposes collapsed nodes into LUT-feasible sub-functions. As a post-processing
step, a performance-driven re-synthesis phase is performed to alleviate increased delay caused by
excessive logic sharing. We compare the quality of results obtained using our techniques with those
of academic (BoolMap, SIS) and industry (Altera Quartus) FPGA synthesis tools. Experimental
results indicate that the circuits generated by our techniques are not only smaller, but are also
significantly faster than those synthesized by conventional FPGA synthesis tools. Furthermore,
the computation times required by our techniques are significantly smaller than those of previous
techniques.

Categories and Subject Descriptors: B.6.3 [Hardware]: Logic Design

General Terms: Algorithms, Design

Additional Key Words and Phrases: FPGA, logic synthesis, BDD, decomposition

This work was performed at the University of Massachusetts, Amherst. P. Kalla and R. Tessier
were supported by National Science Foundation grants CCR-0081405 and CCR-9901254.
Author’s address: R. Tessier, Department of Electrical and Computer Engineering, University of
Massachusetts, Amherst, MA 01003; email: tessier@ecs.umass.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2002 by the Association for Computing Machinery, Inc.

2 ·
1. INTRODUCTION

In this paper, a logic synthesis approach for LUT-based FPGA architectures is
presented. This approach encompasses a complete FPGA-specific logic synthesis
system, which includes network transformations, technology-dependent logic decom-
position, optimization and technology mapping. Earlier FPGA synthesis research
[Murgai et al. 1990] [Babba and Crastes 1992] advocated technology-independent
logic synthesis followed by technology mapping onto FPGA architectures. This ap-
proach generates minimized multi-level logic nodes and maps nodes to LUTs as a
post-processing step [Murgai et al. 1995]. A number of FPGA technology mapping
approaches have been proposed in the literature [Murgai et al. 1990][Francis et al.
1990] [Francis et al. 1995] [Filo et al. 1991] [Sawkar and Thomas 1992] [Cong and
Ding 1994]. Although many techniques demonstrate robustness [Chen et al. 1992]
and optimality [Cong and Ding 1994] in mapping circuits to FPGAs, they are used
subsequent to, and in isolation with, logic optimization. The resulting area/delay
characteristics of the circuits may not be satisfactory, especially for large designs.
Following these earlier efforts, an attempt was made to restructure/optimize logic

to facilitate mapping onto FPGA architectures. Karplus [Karplus 1991] proposed
Xmap, which uses an if-then-else (ITE) DAG to represent functions and uses
cofactoring for functional decomposition. Subsequent bin-packing techniques are
used for technology mapping. Recent techniques [Legl et al. 1996] [Eckl et al.
1996][Jiang et al. 1997] [Stanion and Sechen 1995] follow a three step approach:
First, circuit optimization using conventional technology independent optimization
tools such as SIS [Sentovich et al. 1992] is performed. Architecture specific network
transformation heuristics are then used to reduce the logic depth and create k-
feasible supernodes, where k is the input count of each LUT. Finally, mapping
algorithms are used to realize the circuits in the desired FPGA architecture.
A common feature of the above techniques is the initial technology indepen-

dent optimization step. The implications of performing conventional technology
independent optimization, with tools such as SIS, prior to and in isolation with
FPGA-specific restructuring and subsequent mapping are as follows:

(1) Conventional synthesis tools perform a variety of network transformations and
optimizations which are geared specifically towards standard cell architectures.
Knowledge of FPGA architectures is not used in the optimization process.
The goal of standard cell-based, multi-level logic optimization is literal count
minimization. For LUT-based FPGAs, resource consumption depends on the
the number of look-up table inputs. When mapped to LUTs, a literal-minimized
network may lead to a suboptimal implementation.

(2) Larger nodes need to be decomposed into smaller, less complex, subfunctions.
Logic optimization techniques rely extensively on algebraic factoring and de-
composition. Conventional AND-OR intensive factoring heuristics are unable
to efficiently generate subfunctions that can be directly mapped onto LUTs.

(3) Conventional logic synthesis tools resort to aggressive factoring (kernel extrac-
tion) to reduce the number of literals, often resulting in high-fanout nodes.
Although this may be acceptable for standard cell implementations, FPGAs
suffer from limited resources; often resulting in routing difficulties. Addition-
ally, aggressive extraction often creates excess nodes, which results in resource

· 3

consumption and a degradation in area and delay characteristics.

Recently, [Chen and Cong 2001] reported that the impact of logic decomposition
on delay and area cannot be forecast accurately. As a result, they suggest that
mapping be performed simultaneously over a set of decompositions so that a single,
best solution may be chosen. This approach combines technology decomposition
with technology mapping. However, initial logic optimization is still conventional
(e.g. based on SIS), rather than technology-specific. Our approach takes the target
technology (k-input LUTs) into consideration during the technology-independent
logic optimization and decomposition phase.

1.1 Research Contributions

To overcome the limitations of previous FPGA synthesis techniques, we have devel-
oped a LUT-based FPGA synthesis approach that unifies technology-independent
logic optimization with LUT-based logic restructuring. We guide network transfor-
mation and subsequent logic decomposition and optimization to generate a network
which can be efficiently mapped to LUT-based FPGAs. To facilitate transforma-
tions, our approach makes extensive use of binary decision diagrams (BDDs).
BDDs have been exploited by CAD engineers for FPGA synthesis [Legl et al.

1996] [Chang et al. 1996] [Sawada et al. 1995] [Lai et al. 1993] [Jiang et al. 1997],
primarily in the logic decomposition phase. Recently, a generic BDD-based func-
tional decomposition approach, BDS [Yang 2000], was presented which can effi-
ciently identify both algebraic and Boolean (AND-OR and AND-XOR) decomposi-
tions. Using a functional decomposition engine similar to that of BDS, we present
a comprehensive logic synthesis system to specifically target logic decompositions
for k-feasible LUTs. Binary decision diagrams [Bryant 1986] are used to represent
Boolean functions and to aid in the creation of logic decompositions. To induce
good decompositions, a maximum fanout free cone (MFFC) based partial collapse
technique is applied in the Boolean domain. Efficient BDD-based variable partition-
ing heuristics are subsequently used to decompose all collapsed nodes into k-LUT
feasible subfunctions. These transformations are performed to achieve minimized
LUT area. When combined, the FPGA-specific optimizations form the heart of our
synthesis framework, BDS-pga (BDD-based decomposition system for FPGAs).
Our synthesis process is completed with FlowMap [Cong and Ding 1994], an

academic technology mapping tool. FlowMap uses a max-flow, min-cut algorithm
for depth optimal mapping of k-feasible nodes on k-input LUTs and incorporates
heuristics to perform area-minimal mapping. The tool pre-processes the optimized
network by performing a two-input AND-OR decomposition on each network node.
Such restructuring can potentially undo the decompositions performed by BDS-pga.
Since BDS-pga already creates a k-feasible network, this two-input AND-OR de-
composition feature of FlowMap is disabled, so that BDS-pga’s logic decomposition
is not destroyed.
To reduce critical-path delay, a performance-driven re-synthesis step is incorpo-

rated into BDS-pga. Circuit delay can be reduced by minimizing the level count
topologically using 1) controlled clustering and collapsing, 2) re-decomposition, 3)
logic simplification and 4) technology re-mapping. Experiments using area mini-
mization and subsequent delay re-synthesis indicate that circuits generated using

4 ·
our techniques are not only smaller, but are also significantly faster than those
synthesized using conventional FPGA synthesis approaches.
The remainder of the paper describes our logic synthesis infrastructure. Section

2 introduces the terminology used in this paper and reviews logic decomposition
using BDS. In Section 3, an MFFC-based iterative partial collapse approach is pre-
sented. Section 4 describes two decomposition algorithms which are based on vari-
able partitioning of BDD graphs. Section 5 focuses on delay-reduction strategies.
Experimental results are presented in Section 6 and the benefits and limitations of
BDS-pga are analyzed. Section 7 discusses possible future work and concludes the
paper.

2. PRELIMINARIES

A combinational Boolean network η can be represented by a directed acyclic graph
η = (V,E), where each node v ∈ V represents an arbitrary logic gate and each
directed edge (u, v) ∈ E represents a connection from the output of the node u
to the input of node v. The depth of a node v is the number of edges on the
longest path from a primary input (PI) to v. In this paper, we define the depth of
each PI as one. The depth of a network is the largest depth amongst all nodes in
the network. Let input(v) and fanout(v) represent the set of fanins and the set
of fanouts of node v, respectively. The support of a Boolean expression F is the
set of variables, SF , that F explicitly depends on, i.e. the fanin of that node. For
example, if F = xy+x′y′, SF =‖(x, y)‖ = 2. A binary decision diagram (BDD) is a
rooted, directed acyclic graph (DAG) representing a switching function [DeMicheli
1994] with an unconstrained number of in-edges and two out-edges, one each for
the one and zero decision paths of a given variable.
A fanin cone Cv rooted at v is a connected subnetwork consisting of v and its

predecessors. A fanout free cone (FFC) is a subnetwork where no node in the cone
is connected to a node not in the cone. A maximum fanout free cone (MFFC) is
the largest possible FFC in terms of node count. A k-feasible node has no more
than k inputs. All nodes in a k-feasible network are k-feasible.
In a network η, the topologically longest path(s) are considered to be critical.

Nodes on the critical path(s) are critical nodes. In this paper, we refer to ε-critical
paths as those paths whose topological lengths are within ε of the longest path. L
refers to the longest critical path, while LΥ refers to the set of all longest paths.
Lε is the set of paths that are ε-critical.

2.1 Review of BDD-based Logic Optimization

In this subsection, basic BDD-based logic decomposition theory presented in [Yang
2000], is described in the context of our work. For a detailed description of theBDS
decomposition system, the reader is referred to [Yang et al. 1999] [Yang 2000].
BDD-based Functional Decomposition: In our synthesis framework, BDDs

[Bryant 1986] are the functional representation of choice. First, a Reduced Or-
dered Binary Decision Diagram (ROBDD) is built for a function. BDDs for certain
classes of functions are exponential in the number of variables and cannot be con-
structed. To overcome this problem, partitioned-ROBDDs with intermediate vari-
ables [Narayan et al. 1996] are used to further partition the functions. Since each
function partition (a subfunction in itself) is represented by a BDD, partitioned

· 5

Table 1. Dominators and their corresponding decompositions

Type BDD Structure Decomposition

1 1-dominator algebraic AND
2 0-dominator algebraic OR
3 x-dominator algebraic XNOR

4 generalized dominator Boolean AND/OR
5 generalized x-dominator Boolean XNOR

6 cof. wrt. single node simple MUX
7 cof. wrt. supernode functional MUX

ROBDDs present an initial circuit partitioning for decompositions.
The theory of dominators [Yang et al. 1999] forms the basis for BDD-based

decomposition. A BDD traversal (scan) is performed using a depth-first search to
identify dominators, structural features that indicate the convergence of positive
and negative BDD edges at a particular node. After dominator identification, a
cut is performed on the BDD which divides the BDDs into two parts, creating
a decomposition. A list of dominators and their corresponding decompositions
appears in Table 1.
The decomposition engine performs a search for efficient BDD decompositions,

from the most efficient (algebraic) to less efficient decompositions (Boolean). The
engine first searches for a simple disjunctive (algebraic) decomposition. These de-
compositions are based on 1,0 and x-dominators, which are critical points on the
BDD where simple decompositions (AND, OR and XOR decompositions, respec-
tively) can be performed. A 1-dominator lies on all paths from the root node to
the constant 1 node. When disjunctive decomposition fails, the BDDs are decom-
posed using generalized dominators. As a last resort, the BDD is decomposed by
cofactoring with respect to the top variable.
As shown in Fig. 1, the bound set corresponds to the divisor D during decom-

position. The free set constitutes the variables below the cut. D is a generalized
dominator since it does not necessarily lead to an algebraic (disjoint) decomposi-
tion. All dangling solid edges are tied to leaf node 1, as shown in Fig. 1(b). The
quotient of this division is obtained from F by setting the off-set of the divisor D
to be a don’t care, and performing don’t care minimization. The restrict algorithm
[Coudert and Madre 1990] is used for this purpose. F is then minimized with this
don’t care in Fig. 1(c). The minimized function is the quotient Q of the division.
This decomposition is a case of non-disjoint Boolean decomposition.
Prior to decomposition, network transformation procedures such as sweep, elim-

inate and re-substitution are used as BDD operations. These operations are an
essential part of logic synthesis systems and help in restructuring and optimizing
the Boolean network.

2.2 A case for using BDD-based decomposition for FPGA synthesis

An important part of BDS is the decomposition engine that can identify both
AND/OR and AND/XOR decompositions efficiently. XOR identification can sig-
nificantly reduce implementation resources if efficient XOR implementations are

6 ·

 F = e + bd

 e

 d

 b

 0 1

 (a)

 T edge
 E edge

b

0 1

b

0 1

 e

d

 e

Q =e+b Q

 e

d

0

 D

1

 D

 e

d

0 1 0 1

 e

d

DC

D =e+d

(b)

(c)

1

Fig. 1. A simple example of Boolean division.

Table 2. Preliminary Experiments: # of LUTs
Ckt. sc.rug+FlowMap BDS+FlowMap
9sym 135 8
C499 66 70
C880 110 139
alu2 153 94
alu4 236 193
apex6 235 200
b9 51 42
clip 103 62
des 1291 983
duke2 163 187
f51m 32 14
rot 302 259
t481 401 5

available. Unlike standard cell designs, where decomposition significantly depends
upon the type (functionality) of cells present in the technology library, decompo-
sition for LUT-based FPGAs depends upon the number of inputs to, and not the
functionality of, the decomposed nodes. These features, combined with the speed
of BDD-based decomposition (a by-product of simple graph traversal), makes it a
natural choice for LUT-based FPGA synthesis.
Prior to creating new BDD-based algorithms, we carried out comparative exper-

iments for SIS and BDS and produced optimized networks to be mapped onto FP-
GAs. For technology mapping, we used the RASP tool suite (FlowMap, FlowSyn)
[Cong et al. 1996]. The LUT area of circuits synthesized using SIS (with script
script.rugged) and FlowMap were compared against those generated by using
BDS and FlowMap. Results in the last column of Table 2 indicate a 31% improve-

· 7

Blif N/W

Build BDDs

Sweep

Mark critical nodes

MFFC−based iterative
eliminate

by variable partitioning
Greedy/Heuristic decomposition

Decomposed nodes
k feasible?

Simplify logic

Collapse critical path

All BDDs
Decomposed?

Tech MappingYesNo

Delay re−synthesis

Fig. 2. The synthesis flow for BDS-pga.

ment in area for BDS and FlowMap over results obtained using SIS and FlowMap.
The BDS and FlowMap circuits were on average 8% faster than those obtained
using SIS and FlowMap.
Although BDS produces good results for FPGAs, it is desirable to optimize

BDD-based functional decomposition specifically for k-input LUT-based FPGAs.
The synthesis flow for BDS-pga, our BDD-based FPGA logic synthesis system, is
shown in Fig. 2. Shaded blocks indicate the modifications and enhancements to
the contemporary logic synthesis flow for FPGAs. Our new approach incorporates
the following steps:

MFFC-based Eliminate. The eliminate procedure collapses the network within
its maximum fanout-free cone to create a cluster of variable partition size. This
step clusters and collapses nodes into supernodes to induce good decompositions.
Decomposition. Two decomposition schemes which generate area-minimal k-feasible

networks are presented: A greedy variable partitioning based decomposition algo-
rithm and an area-driven variable partitioning decomposition algorithm.
Performance directed delay optimization. A result of area-driven decompositions

can be increased circuit delay. Delay re-synthesis techniques are applied on delay
critical paths to reduce circuit delay. Critical paths are collapsed into nodes which
are then simplified and re-decomposed.

3. PARTIAL COLLAPSE

To reduce logic minimization complexity, a large circuit can be clustered into a
smaller set of blocks. Each block consists of a number of collapsed functions, a
supernode. Clustering allows individual clusters to be easily decomposed. In our
approach, partitioning is used to reduce the number of network nodes.
Maximum fanout free cone (MFFC) based partitioning [Chen et al. 1992] [Cong

et al. 1994] is a natural way of clustering nodes in a combinational Boolean network.

8 ·

inputs inputs

outputs outputs

(a) (b)outputs

inputs

(c)

Fig. 3. (a) The new iterative collapse routine, (b) non-iterative MFFC-based collapse, and (c)
the final network.

Figure 3(b) illustrates the construction of a MFFC, with the collapsed network
shown in Fig. 3(c). For our system, cone input count is used as a collapsing
constraint. The number of BDD nodes representing the collapsed node can be
used to limit its complexity. Collapsing is performed iteratively until the process
converges.

3.1 MFFC based Iterative Eliminate Procedure
Algorithm 1. MFFC-based eliminate
require network (logic network)
begin
topologically order network nodes from PIs to POs;
build BDDs for each node; /*partitioned ROBDD for the network*/
identify MFFCs and identify eliminatable nodes
while number of collapsible nodes �= 0
while traversed until end of linked list �= TRUE
if (node == collapsible)
collapse node into its immediate fanout;

end while
update network and re-identify all eliminatable nodes

end while
end

Algorithm 1 lists the main operations in the identification and subsequent collapse
of nodes. The network is first topologically ordered and traversed from primary
inputs to primary outputs. A partitioned ROBDD is then constructed for each node
in the network. MFFCs are identified and network nodes that can be collapsed into
immediate fanouts are marked and collapsed. These steps are performed iteratively

· 9

Table 3. Number of local BDDs to be decomposed for BDS and BDS-pga
BDS BDS-pga

Circuit #BDDs #BDDs % Reduction
C1355 98 78 20.4
C1908 108 58 46.3
C3540 343 200 41.7
C432 65 41 37.0
C499 60 46 23.3
C5315 393 326 17.0
C6288 727 524 28.0
C7552 506 487 4.0
C880 136 80 41.2
dalu 254 223 12.2
des 539 294 45.5
mult32 2494 1066 57.3
pair 446 274 38.6
Total 6169 3697 40.0

until no additional collapsible nodes are found in the network. No gate duplication
is performed.
Node collapsing is performed at a Boolean level. Since a BDD is built for each

node in the network, node collapsing is reduced to a variable substitute operation
(the bdd compose operator is used for this purpose). This collapsing operation can
be controlled by user defined limits on BDD size (number of nodes in the BDD)
and by the number of cluster inputs.
The use of an iterative MFFC-based iterative eliminate procedure further en-

hances BDS-pga’s optimization capability for large circuits. Table 3 compares
results of the new MFFC based eliminate algorithm with those of the original
non-iterative implementation in BDS [Yang 2000]. A average reduction of 40%
in the number of network nodes (= no. of BDDs) to be decomposed has been
achieved. As the number of BDDs is reduced, the size of each BDD increases, al-
though not significantly. Good decompositions are induced by searching through a
larger implementation space. This space corresponds to more BDD variables, but
fewer overall BDDs. There is no significant execution time increase for the new
eliminate algorithm.

4. GREEDY AND HEURISTIC VARIABLE PARTITIONING BASED DECOMPOSI-

TION

Following MFFC-based eliminate, supernodes are decomposed into a minimum
number of k-feasible nodes. First, a greedy variable partitioning technique is used.
Subsequently, a variable swapping-based decomposition technique, based on an area
cost function, is applied.
Decomposition is the process of breaking a function into subfunctions with smaller

fanin. A function, f(X), which depends on n variables, X = x1, x2, . . . xn, can be rep-
resented as a new composition function g(g1 (Xb), . . . gm(Xb),Xf). Xb is the bound
set (BS) and Xf is the free set (FS). Variable partitioning involves computation of
the bound and free sets. This partitioning is equivalent to performing a cut on the
BDD, using the variables above the cut as the bound set and the variables below
the cut as the free set. The number of edges intersecting the cut line represents the

10 ·
F

C

1 0

B

D

E

F

1 0

S

B

C

D

E

F

1 0

R

(a)
(b)

Cost = 0.75

Cost = 0.75

Cost = 0.75

0−dominator

A A

Fig. 4. An example of decomposition with BDS: (a) Algebraic decomposition (disjunctive), (b)

subtrahend S and remainder R after the first cut.

number of equivalence classes in Roth-Karp decomposition.
Previously, [Ashenhurst 1959] detailed a procedure for finding a set of variables

which cause a simple disjunctive decomposition of a function. [Roth and Karp 1962]
proposed a memory efficient algorithm to perform Ashenhurst decompositions and
[Lai et al. 1993] described a faster Roth-Karp implementation, using the EVBDD.
Stanion and Sechen’s method [Stanion and Sechen 1995] implicitly enumerates all
BDD cut sets to determine the bound and free sets. They demonstrate that any
cut in a BDD can induce a certain function decomposition. Jiang [Jiang et al.
1997] proposed solving the variable partitioning problem with BDDs by selecting
lambda set variables in the Roth-Karp decomposition for better LUT utilization.
SIS [Sentovich et al. 1992] employs a SOP-based functional decomposition method
which greedily selects a non-trivial decomposition of bound set size k. In contrast,
Eckl [Legl et al. 1996] proposed a variable partitioning heuristic which selects a
good bound set size from a number of bound set sizes.
An efficient variable partitioning heuristic must choose a bound and free set such

that the smallest number of equivalent classes and subfunctions result from the
decomposition. In BDD terms, this approach is equivalent to enumerating all of
the cuts possible on the DAG. There are 2n -1 possible cuts for a function with Sf

= n. For computational efficiency, only a subset of cuts, such as cuts with ≤ k
variables in the bound set, are considered. We describe greedy and area-minimal
decomposition in the following three subsections.

4.1 Functional Decomposition using BDS

Although the following analysis is for 3-input LUTs (k = 3), any value of k could
be used. The ROBDD of the function f(a, b, c, d, e, f) = ab+ cd+ ad+ be+ e+ f

· 11

is shown in Fig. 4(a). BDS decomposes BDDs by searching for the most efficient
decomposition. First, it attempts to perform the algebraic decompositions closest
to the center. In the absence of algebraic decompositions, Boolean decompositions
are performed at the level which yields the least cost, according to the following
cost function [Yang 2000],

cost = αN + (1− α)V (1)

where N is the ratio of the sum of BDD nodes in the decomposed functions to the
number of BDD nodes in the original function; V is the ratio of the number of
shared variables to the number of variables in the original function and α = 0.5.
The BDS decomposition engine scans the BDD and finds a 0-dominator located

at node E, resulting in an algebraic disjunctive decomposition. The resulting sub-
functions are R = e + f and S = ab + cd + ad, where F = S + R. BDS then
decomposes S = ab + cd + ad. In Fig. 4(b), the decomposition cost (Eqn. 1) for
each level on S has been marked. All decompositions invoke equal cost such that
resulting subfunctions from each decomposition are either SR = 2 and SS = 3, or
vice-versa. BDS decomposes S at the center, below B. The resulting circuit, when
mapped using FlowMap, consists of four 3-LUTs and a depth of 2.

4.2 Greedy Variable Partitioning Algorithm

The greedy decomposition engine decomposes the BDD for each internal node into
two subfunctions. k-infeasible subfunctions are recursively decomposed until k-
feasibility is achieved. The greedy algorithm marks the levels at which decompo-
sition can be performed by visiting each BDD node in a depth-first manner. The
algorithm allows decompositions at only those levels which are multiples of k. If
k = 5, decompositions can be performed at levels {0, 5, . . . , etc.}. The BDD
support size (number of variables) determines the level at which the greedy de-
composition is performed. For a BDD with support size ≤ k, no decomposition is
performed and the BDD is preserved. When BDD support size ≤ 2k, 2k + 1, the
BDD is decomposed with bound set size = k. For a BDD with support size ≤ 3k,
3k + 1, the BDD can be decomposed with bound set size = no levels

2 (via a cut at
the center) or n× k, where n is an integer of 1 or greater. For BDDs with support
≥ 3k + 2, decomposition is performed at the center (i.e. no levels

2).
The next decomposition step involves the decomposition of a function into two

subfunctions. Boolean decompositions result in subfunctions with shared variables (
non-disjoint decomposition). The sum of the fanin of each decomposed subfunction
may greatly exceed the original fanin, leading to an inefficient decomposition. The
cost function,

cost = SG + SH ≤ SF + SF ×B (2)

where F is the original function, G and H are subfunctions and B = 0.5, limits
such inefficient decompositions. If a decomposition fails this test, the function is
decomposed by cofactoring with respect to the top variable. Experimentation has
shown that Boolean decompositions which result in large subfunction fanin lead to
a larger number of subsequent decompositions and larger overall area.
Decomposition example: An example of greedy decomposition for k = 3

is shown in Figure 5. In Fig 5(a), a cut is greedily performed at level 3. The

12 ·

A

B

C

D

E

F

1 0

A

B

A

C

D

E

F

1 0

01

(a)

q = d(a + c)

p = a + b

r = e + f

(c)

O = p + q + r

a
b

a
c
d

e
f

O = ab + cd + ad + e + f

O S

Q

(b)

cut

cut

Fig. 5. Greedy decomposition with k = 3: (a) the initial cut for SO = 6, (b) subtrahend S and

remainder Q after the first cut, and (c) the final decomposition.

bound set size is 3, ensuring that at least one subfunction of the decomposition
is 3-feasible. The decomposition shown in Fig. 5(b) is Boolean, resulting in a
subtrahend S = ab (SS=‖(a, b)‖ = 2), and a remainder Q = cd + ad + e + f
(SQ =‖(a, c, d, e, f)‖ = 5). The 3-infeasible function (Q) is further decomposed
algebraically with the 0-dominator at node e, and the final decomposition is shown
in Fig. 5(c). The result is a network with four 3-LUTs and a topological depth of
2.

4.3 Heuristic Variable Partitioning for Area

The goal of heuristic variable partitioning decomposition for a k-infeasible function
is to create a minimum number of k-feasible subfunctions by re-ordering variables
around a fixed partition or cut k (i.e. a fixed bound set). This result is achieved
by selectively swapping a pair of variables, one variable each from the bound set
and the free set. After each swap, an area cost function (ACF) is evaluated to
determine the number of subfunctions that would be required for a decomposition
at k, with the current variable order. The variable ordering which results in the
smallest ACF is chosen.
An FS variable directly connected to a cut edge is a cut-node. In Fig. 6, the

BS variables are A and B and the FS variables are C and D. Variables C and
0 are cut-nodes. The cardinality of the cut-node-set, n, is equal to the number
of distinct columns in the Ashenhurst/Roth-Karp decomposition chart and the
number of encoding bits (variables) required. Thus, the number of subfunctions

· 13

bound

cut

A

B

CC

D

1 0

F

free
set

set

Fig. 6. Illustration of a cut, cut-nodes, and free and bound sets.

resulting from a decomposition can be determined by identifying the cut-node-set
of the BDD. The number of variables (factored subfunctions) required to encode a
given function is �log2(n)�. For the circuit in Fig. 6, the ACF is 1.
Each iteration of the variable partitioning heuristic involves two steps. First, the

BDD is scanned using a depth-first search to identify those variables which will
most likely lead to a swap reduction in n. The second step involves the calculation
of the ACF after the swap. Swapped variables are locked and cannot be swapped
until all other variables have been swapped in succeeding iterations. This process
continues until all variables are locked or until n decreases. If n does not decrease
before all variables are locked, the swapping process is performed for an additional
set of iterations. A maximum of ‖ BS ‖ + ‖ FS ‖ swaps are required to get a good
decomposition. After the swaps have taken place, the variable order that has the
least ACF is selected.
Identifying the best swap variables: The choice of the FS and BS variables

to be swapped is determined by the potential swaps effect on the cardinality of
the cut-node-set. Intuitively, a FS variable which lies on a large number of paths
from the root to the terminals has a large number of incoming edges. This variable
generally appears in a large number of function minterms. A swap of this FS
variable with any BS variable would generally lead to a reduction in the size of
the cut-set. In general, the dependence of the function on the FS variable is not
significant.

Definition 1. A FS swap variable is the unswapped variable with the most
incident edges which resides closest to the cut.

This result corresponds to a lower column multiplicity in the Ashenhurst/Roth-
Karp decomposition chart and leads to fewer encoding variables in the decomposi-
tion.

Definition 2. A BS swap variable is the unswapped variable with the fewest
incident edges which resides closest to the cut.

14 ·

Table 4. Minterm variable counts measured before the first swap

Variable Minterms Incident edges

a 14 –

b 14 2

c 10 2

d 9 3

e 9 4

f 5 2

a a a

b b b

b

c c

c c

d d d d d d

e e

e e

f f

0 1 0 1 0 1

ff

e e

(a) (b) (c)

|Cut−set|=3
Nodes = 10

|Cut−set|=2
Nodes = 8

|Cut−set|=2
Nodes = 9

Fig. 7. An illustration of variable swapping. Arrows indicate the swapped variables.

The function log2(n) is used in Roth-Karp decomposition to determine the number
of encoding variables. This measure is highly suitable for a BDD-based decompo-
sition environment. The area cost function is defined as:

ACF = �log2(n)� (3)

where n is the cardinality of the cut-set. This cost function is an indication of the
number of subfunctions that may result from decomposition.
In our heuristic, a cut is placed after the third BDD variable (level) (Fig. 7(a)),

so that BS = {a, b, c} and FS = {d, e, f}. The BDD in Fig. 7(a) represents the
same function as the BDD in Fig. 4. The function has not been reduced, to reflect
the swapping mechanism of the decomposition engine. The shaded nodes are the
cut set nodes, and in Fig. 7(a), ‖cut set‖ = 3. Thus, ACF = �log2(3)� = 2, which
indicates that a minimum of two subfunctions would result from this decomposition.
In the next step, the best BS and FS variables for swapping are determined. The

· 15

Table 5. Minterm variable counts measured after the first swap

Variable Minterms Incident edges

a 8 –

b 4 1

e 6 2

d 2 2

c 1 1

f 2 3

F = e + f + H

H = (a + c)G

G = ab + d

F = ab + ad + cd + e + f

c

a b d

a

e f

Fig. 8. The final result of decomposition using swapping for the example in Fig. 7.

FS variable with the largest number of incident edges and the BS variable with the
smallest number of incident edges are swapped. In the event that more than one
variable has the same number of incident edges, the BS and FS variables closest
to the cut are swapped. From Table 4, it can be seen that node c is the BS node
that appears in the fewest number of minterms (10) of the function in Fig. 7(a)
and has the fewest number of incident edges. Additionally, node e is the FS node
that appears in the most minterms (9) and has the most incident edges. As shown
in Fig. 7(a), node e in the FS and node c in the BS are chosen for swapping.

16 ·
Algorithm 2. Heuristic variable partitioning (decomposition) for area
require logic network, feasibility factor k
produce k-feasible optimized, decomposed network
begin
MFFC-based iterative eliminate
for each BDD in the network do
place a cut across a BDD such that bound set
size = k or (no. of levels)/2
repeat
compute n = cardinality of cut-node-set;
Select FS swap var as one with most incident edges
Select BS swap var as one with least incident edges
Swap the variables and lock them
compute ACF = �log2(n)�

until (all vars swapped or n improves)
if n does not decrease then
repeat the above process at a different cut across the BDD

end if
end for

end

After swapping, a BDD with an ACF of 1 is created. As illustrated in Fig. 7(b),
nodes e and c are now locked and cannot be swapped. Nodes f and b are swapped in
the next iteration. As shown in Table 5, BS node b appears in the fewest minterms
and FS node f appears in the most minterms and has the most incident edges. The
new BDD, with an ACF of 1, is shown in Fig. 7(c). The first two variable-pair
swaps identify a subfunction, e + f . The BDD in Fig. 7(c) is then selected for
decomposition, resulting in: f(a, b, c, d, e, f) = D + H, where D = f + f

′
e is the

Boolean divisor and H = ab + ad + cd is the quotient. D can be implemented in
a 3-LUT, while H requires further decomposition. After iterative decomposition
with our approach, the H implementation shown in Fig. 8 is created.
Using the area-driven variable partitioning heuristic, it was possible to map the

function onto three 3-LUTs with an overall depth of 3. The ACF was reduced from
2 to 1 in 2 iterations. Using the SIS decomposition command xl k decomp -n 3,
this function is mapped onto 7 LUTs with an overall depth of 3. The algorithm is
formally presented in Algorithm 2.

4.4 Comparative Analysis of BDS, Greedy and Area-Minimal Decomposition

Three decomposition heuristics were applied to the function in Fig. 4(a): BDS,
greedy decomposition, and area-minimal variable partitioning. Each decomposition
approach was followed by technology mapping with FlowMap. Results for each
approach were four 3-LUTs (BDS), four 3-LUTs (greedy), and three 3-LUTs (area-
minimal). The evaluation of Eqn. 1 for the decompositions performed on Fig. 4(a),
Fig. 5(a) and Fig. 7(c) yields decomposition costs: costBDS = 0.5, costgreedy =
0.67 and costarea−minimal = 0.33. To perform a thorough comparison of the greedy

· 17

Table 6. A comparison of greedy and area-minimal heuristics

Ckt. Greedy Area-minimal

LUTs delay LUTs delay

5xp1 16 2 14 2

9sym 7 3 7 3

9symml 7 3 7 3

C499 154 6 64 4

C880 114 9 108 8

alu2 50 4 41 4

apex6 217 6 186 4

apex7 86 4 71 3

b9 47 5 40 3

count 34 4 26 5

misex1 14 2 14 2

rot 263 9 218 9

C1908 204 12 119 7

C5315 460 11 447 7

Total 1673 80 1362 64

and area-minimal algorithms, 14 MCNC benchmarks were first optimized using the
greedy and area-minimal algorithms and then mapped onto 5-LUT architectures
using FlowMap. The results of this experiment are shown in Table 6.
From these results, we conclude:

(1) The BDS decomposition scheme does not account for the eventual implemen-
tation of decomposed functions on k-LUTs. In contrast, our greedy imple-
mentation restricts decompositions to a bound set size of k. While the greedy
approach may lead to inefficient Boolean decompositions, the operation is very
fast, due to a small decomposition search space. The greedy method generated
more area-efficient circuits than BDS. The bound set size is restricted to k
for the area-driven variable partitioning heuristic. A novel variable swapping
method coupled with an efficient cost function (ACF) generates BDDs which
lead to efficient k-LUT implementations.

(2) The BDS implementation cost (Eqn. 1) is measured on an optimized BDD
[Yang 2000]. Although BDD size increases during area-minimal decomposition
(as shown in Figs. 7(b) and 7(c)), the implementation cost (using Eqn.1) is
reduced from 0.52 to 0.33. This result indicates that a non-reduced BDD (initial
representation or final candidate) with more nodes may not necessarily result
in a poorer decomposition, especially for FPGAs.

(3) The evaluation of the BDS cost function is carried out on optimized BDDs,
achieved by time-intensive variable reordering. This time-consuming evaluation
involves decompositions performed at each level, since results depend on the
relative sizes of the generated subfunctions. In constrast, the ACF determines
eventual decomposition cost and the dependence of variables in the BS and
FS by a simple BDD traversal. This traversal has a time complexity of O(n),

18 ·
where n is the number of levels in the BDD.

(4) The results in Table 6 indicate that synthesis with the area-minimal heuristic
consistently results in circuits that are, on average, 19% smaller and 20% faster
than the greedy approach. This is a result of the intelligent variable swapping
technique present in the area-minimal approach. All further results are based
on the area-minimal heuristic decomposition technique.

5. DELAY RE-SYNTHESIS

After initial optimization, re-synthesis techniques can be applied to circuits to im-
prove circuit delay. Speed-up [Singh et al. 1988] was one of the first delay re-
duction approaches for combinational networks which combined sub-network col-
lapsing with subsequent decomposition. A number of similar performance directed
re-synthesis techniques for FPGAs [Murgai et al. 1995][Lai et al. 1993][Legl et al.
1996] [Cong and Ding 1993] have also been studied.

5.1 The Delay Algorithm

The input to our delay-based algorithm is a circuit that has been optimized for
area in the area-minimization pass of BDS-pga. Starting at the primary outputs,
the algorithm identifies critical paths, depending on the depth of the transitive
fanin.1 Collapsing is limited to the critical path since indiscriminate collapsing
can potentially increase the fanin of the resulting nodes and increase the final
implementation cost after technology mapping. Although node collapsing reduces
the depth of the primary output node, the collapsed node may become k-infeasible.
To generate k-feasible nodes, the collapsed node is simplified with Espresso [Brayton
et al. 1984], a heuristic two-level logic minimizer. The simplified node is then re-
decomposed, based on our variable partitioning decomposition algorithm.

5.1.1 Determining Critical Paths. After the area-optimized network is parsed
and depths are assigned, L is determined. Starting at the primary output(s) with
the largest depth(s), a post-order traversal to the primary inputs is performed. Fig-
ure 9(a) illustrates the critical path from primary output PO1. Nodes are assigned
character names; integers represent the depths at inputs/outputs. To determine
LΥ, all primary outputs with largest depth are considered.
During LΥ evaluation, a node n that has been previously marked as critical may

be encountered. Instead of traversing the ε-critical paths from this node, the critical
path L is followed, avoiding the sub-critical paths in proximity to the critical one
in question. For example, Fig. 9(c) depicts the critical path marked in a previous
iteration. The arrow at the left in Fig. 9(c) indicates the sub-critical path that
must be traversed and marked. This issue is resolved by either traversing the next
most critical path Lε−eps from node n, or by exiting from the routine at this point.

5.1.2 Level Reduction by Partial Collapse. After the determination of critical
paths, nodes are partially collapsed into their critical fanouts. A partially collapsed
circuit is shown in Fig. 9(b). Since nodes are collapsed into others on the critical

1Although false path identification is not currently included in BDS-pga, it could be easily

incorporated into our synthesis framework.

· 19

g

2

4h

a b c d

fe

j

i

5

e f

a b
j

h
i

a b

c d

3
PO1

PO1

4

5

PO2

7

8

7

6

PO1

critical
section

section
critical

collapsing
partially

(b)

(c)5,6,7 = depth

(a)

depth(a,b,c,d,e,f,h,i) = 1

j

n

Fig. 9. Examples of (a) critical path determination, (b) collapsing, and (c) sub-critical path

determination.

path, the duplication of multiple-fanout nodes is required. In Fig. 9(a), the depth
of node PO1 is 5. In Fig. 9(b), after partial collapse, the largest depth at the input
of PO1 (j) is 2. The depth at the output of node PO1 is 3.

5.1.3 Simplification of collapsed nodes using Espresso. After the collapse phase,
supernodes are simplified using the two-level minimizer, Espresso. Logic simplifica-
tion aims to reduce the fanin (support size) of supernodes to induce a delay-efficient
decomposition. BDS does not have an efficient logic minimization capability using
don’t cares. Although the BDD restrict [Bryant 1986] algorithm has been proposed
for this purpose [Yang et al. 1999], the results have not been satisfactory. Due to
the relatively small size of the supernodes, two-level logic minimization techniques,
like Espresso, can be used to generate simplified supernodes with fewer minterms.
The resulting k-feasible node is preserved, resulting in a decrease in critical path
depth.

5.1.4 Re-decomposition. After simplification, the simplified k-infeasible nodes are
re-decomposed using heuristic variable partitioning. A decomposed sub-network of
k-feasible subfunctions with minimum delay is created.

6. RESULTS

Our BDS-pga system has been implemented and tested using benchmark circuits
from the ISCAS 89 [ISCAS 1989] and MCNC [MCNC 1991] benchmark suites. To
illustrate the benefits of our approach, BDS-pga area and delay results are compared
to results generated by SIS and BoolMap [Legl et al. 1996], two academic synthesis
packages, and Quartus, version v2000.02, a commercial synthesis tool.

20 ·

Table 7. Area results for BoolMap-Area, SIS optimization and BDS-pga decomposition.

Ckt. BoolMap-Area scr.rug+FlowMap BDS-pga+FlowMap

LUTs delay CPU (s) LUTs delay CPU (s) LUTs delay CPU (s)

5xp1 13 2 0.6 40 8 8 14 3 1.1

9sym 8 3 0.4 108 6 44 7 3 1.2

9symm 8 3 0.3 9 6 33 7 3 1.3

C499 98 5 40.4 66 4 50 70 5 1.2

C880 121 11 5.4 136 9 18 103 8 2.0

alu2 46 5 126.0 134 13 164 41 4 4.1

alu4 150 11 101.0 235 11 1614 190 7 25.2

apex6 152 6 12.5 214 9 30 186 4 7.8

apex7 61 5 8.0 70 5 8 71 3 3.3

b9 43 3 0.4 53 4 9 40 3 2.3

clip 15 2 0.6 90 7 43 30 4 12.5

count 31 7 1.6 31 5 4 26 5 1.9

des 1462 9 86.8 1396 8 595 909 4 55.7

duke2 187 8 199.0 169 6 36 173 8 6.9

misex 13 2 0.2 17 4 2 14 2 7.1

rd84 10 2 2.0 146 6 71 13 3 3.3

rot 347 19 86.2 250 11 46 223 10 10.6

vg2 31 4 9.3 40 5 17 12 3 5.0

z4ml 5 2 0.2 5 2 3 5 2 1.4

t481 5 3 30.1 177 8 116 5 2 2.6

C1355 80 6 4.9 66 4 53 64 4 5.2

C1908 130 12 40.5 115 10 64 123 7 7.3

C5315 545 13 37.2 522 9 100 435 7 23

Total 3561 143 1098.4 3651 160 3065.0 2761 95 191.8

Norm 0.98 0.89 0.36 1 1 1 0.75 0.59 0.062

6.1 Experimental Results: Area Optimization

Synthesis experiments using SIS, BoolMap, and BDS-pga were conducted using
multi-level optimization followed by technology mapping. The RASP script [Cong
et al. 1996], which includes FlowMap [Cong and Ding 1994] and FlowSYN [Cong
and Ding 1993], was used for technology mapping in all cases. LUT input size
k was set to 5 for these experiments. All experiments were run on a 633 MHz
Celeron-based PC with 128 MB of memory.
For experiments using the TOS synthesis system (BoolMap) [Legl et al. 1996],

area was measured in terms of the number of LUTs, and the delay was measured in
terms of LUT critical path depth. MCNC benchmarks were first collapsed and then
decomposed to k-feasible networks with the optimization script mmap h a 5.scr
[Eckl et al. 1996] [Legl et al. 1996]. ISCAS benchmarks, which could not be fully
collapsed, were initially decomposed using the smap h a 5.scr script, followed by
the reduce depth procedure. The multi-output decomposition and mapping script
mmap h a 5.scr was then used to generate an optimized, mapped network. Results
from these experiments are shown under the BoolMap-Area column in Table 7.
For SIS, the benchmark circuits were first optimized using the script script.rugged.

The resulting optimized netlists were subsequently mapped onto FPGAs using

· 21

Table 8. Delay re-synthesis results for BoolMap-Delay, SIS optimization and BDS-pga re-

decomposition

Ckt. BoolMap-d scr.rug + BDS-pga+

scr.delay+FlowMap FlowMap

LUTs delay CPU(s) LUTs delay CPU(s) LUTs delay

5xp1 13 2 0.9 31 4 9 15 2

9sym 7 3 0.4 74 6 21 7 3

9symml 7 3 0.3 89 6 27 7 3

C499 102 4 107.1 92 4 40 64 4

C880 134 8 13.3 174 10 105 108 8

alu2 50 5 62.7 168 10 91 41 4

apex6 188 4 12.5 210 6 41 186 4

apex7 78 3 8.0 68 4 10 71 3

b9 41 3 0.4 43 3 4 40 3

clip 15 2 0.6 70 7 22 30 4

count 42 2 1.6 50 4 7 26 5

duke2 192 5 199.0 200 6 37 169 7

misex1 15 2 0.2 6 2 2.2 14 2

rd84 10 2 2.0 99 5 36 13 3

rot 244 6 - 300 6 97 218 9

vg2 30 4 9.3 41 4 10 12 3

z4ml 5 2 0.2 6 2 2 5 2

t481 5 3 30.1 160 7 616 5 2

C1355 98 5 10.7 4 114 17 65 4

C1908 137 7 97.0 186 9 99 119 7

C5315 672 9 154.0 711 10 184 447 7

C7552 729 9 102.6 602 11 114 631 12

Total 2814 103 813 3482 130 1591 2293 93

Norm 0.81 0.79 0.51 1 1 1 0.66 0.72

FlowMap. SIS results are shown under the scr.rug+FlowMap column in Ta-
ble 7.
For BDS-pga, circuits were partially collapsed to produce clusters of supernodes

using the MFFC-based approach described in Section 3. Logic decomposition was
performed using the heuristic variable partitioning technique to produce a k-
feasible network. Following logic optimization, technology mapping was performed
using FlowMap. BDS-pga results are shown under the BDS-pga+FlowMap
column in Table 7.
The RASP script (FlowMap) has been modified to preserve the nature of the

decompositions obtained by BDS-pga. RASP decomposes network nodes into 2-
feasible AND/OR gates as a pre-processing step. This step can potentially undo
the optimization characteristics of BDS-pga. Additionally, BDS-pga identifies
AND/XNOR decompositions. These decompositions could be undone by RASP,
since it decomposes all complex gates into a network of AND-OR gates. To pre-
serve AND/XNOR decompositions, the RASP technology decomposition routine

22 ·

Table 9. Unsynthesizable circuits for BoolMap and SIS

Ckt. BoolMap-Area scr.rug BDS-pga+FlowMap

+ FlowMap

LUT delay LUTs delay LUTs delay

Area Oriented Synthesis

C3540 - - 678 17 311 15

C7552 696 13 671 13 631 12

Delay Oriented Synthesis

alu4 264 7 - - 190 7

des 594 3 1582 7 909 4

C3540 - - 542 12 324 13

pdc - - 4605 11 4012 11

was disabled.2

Table 7 shows results for 23 MCNC and ISCAS benchmarks. Comparison of
LUT area results for BDS-pga in Table 7 to those for BDS in Table 2 indicates
a 11.8% area improvement for BDS-pga over BDS. The results demonstrate that
the optimization provided by BDS-pga is significant. Overall, BDS-pga generates
circuits with fewer LUTs than SIS and BoolMap. For almost all benchmarks,
circuit delay (topological depth in LUTs) is smallest when BDS-pga is used. For
most benchmarks, BDS-pga CPU times are an order of magnitude smaller than
for either SIS and BoolMap. SIS was unable to optimize C7552, while BoolMap
failed to synthesize C3450 in acceptable time (almost 5 hrs). As shown in Table 9,
BDS-pga was able to efficiently synthesize both circuits in a matter of seconds.

6.2 Experimental Results: Delay Optimization

After area-based comparison, BDS-pga was compared to SIS and BoolMap using
delay-synthesis techniques for all tool suites. For SIS, script script.delay was applied
after script.rugged to generate delay-optimal circuits. FlowMap was then used to
complete technology mapping. For BoolMap, delay-optimization scripts [Eckl et al.
1996] were used to generate delay-optimized circuits. For BDS-pga, resynthesis
along delay critical paths was performed for the area-optimized circuits from the
previous experiment. As described in Section 5, this approach partially collapses
the critical path. FlowMap completes technology mapping. Results for all three
approaches are shown in Table 8.
It can be seen from the table thatBDS-pga outperforms SIS for delay-optimization

and compares favourably with BoolMap. As shown in Table 9, under the delay
heading, several benchmarks could not be synthesized for delay by BoolMap and
SIS, but were handled successfully by BDS-pga. A comparison of delay results
in Table 7 and Table 8 shows that the delay resynthesis step in BDS-pga almost
always reduces delay. In no case did delay resynthesis increase the delay of the
network. Also, it can be noted that generally delay improvement is not achieved at

2In experiments with scr.rug+FlowMap, the 2-input AND/OR decomposition feature of

FlowMap was not disabled.

· 23

Table 10. Area results for Quartus and BDS-pga for the Apex architecture (k = 4).

Ckt. Quartus BDS-pga+FlowMap

LUTs delay CPU time (s) LUTs delay CPU time (s)

des 1501 9 436 1592 5 50

C1355 98 6 44 94 4 9

C1908 223 8 69 162 8 3

C5315 640 14 271 582 8 14

C3540 426 18 154 556 11 28

C7552 788 15 372 769 11 19

Table 11. Delay results for Quartus and BDS-pga for the Apex architecture (k = 4)

Ckt. Quartus BDS-pga+FlowMap

LUTs delay CPU time (s) LUTs delay CPU time (s)

des 2055 8 502 1590 5 53

C1355 86 5 45 90 4 4

C1908 294 7 73 163 7 3

C5315 833 12 253 588 7 14

C3540 575 18 198 556 11 28

C7522 1013 14 394 770 10 19

the expense of area. The circuits synthesized by our approach deliver better area
and performance than previous approaches.

6.3 Comparative Results for BDS-pga and Quartus

Comparative area minimization results for FPGA and Quartus are presented in
Table 10. For these experiments, the value of k, the LUT input count, was kept to
4, the LUT size in Altera’s Apex series of devices. Similar to previous experiments,
FlowMap’s two-input AND/OR decomposition was disabled to preserve BDS-pga’s
k-feasible decomposition. From the table, it can be noted that for benchmarks
C1355, C1908, C5315 and C7522, BDS-pga produces better area optimized results
than Quartus. Moreover, the delay of all circuits synthesized using BDS-pga and
FlowMap is less than delay for circuits synthesized by Quartus and the CPU times
for BDS-pga and FlowMap combined are orders of magnitude smaller than those
required by Quartus3. Delay resynthesis results shown in Table 11 indicate that
the combination of BDS-pga and FlowMap produces improved or equal delay for
all circuits versus Quartus. Additionally, LUT area is reduced by BDS-pga for all
circuits, except one.

3Time utilized by Quartus consists of the time required to build the circuit database and perform

logic synthesis and mapping. For our experiments, only the time required for logic synthesis and

mapping is reported to provide a fair comparison with BDS-pga.

24 ·
7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented BDS-pga, a BDD-based, FPGA-specific logic
synthesis system. This approach unites multi-level logic transformation techniques
with FPGA-specific logic decomposition to form a novel synthesis framework. De-
cisions are made earlier in the synthesis process to promote mapping to LUT-based
FPGAs. The resulting synthesized circuits exhibit superior area and performance
characteristics when compared to circuits synthesized by conventional FPGA syn-
thesis tools. By using an efficient BDD-decomposition engine, we are able to de-
compose large designs quickly, without sacrificing the quality of the resulting im-
plementation.
One of the limitations of our tool is the lack of support for logic simplification

with don’t care sets using BDDs. While restrict and constrain operators have been
proposed to simplify a specific BDD with respect to another, no satisfactory solution
has been found. This limitation has forced us to use Espresso. Although this tool
robustly handles relatively large designs, it often requires significant computation
time. We are currently investigating several implicit logic minimization schemes for
incorporation within our synthesis framework. Although our approach attempts to
decompose logic into k-feasible networks, technology mapping is ultimately carried
out as a post-processing step. Analogous to the approach presented in [Chen and
Cong 2001], it would be desirable to analyze a set of k-feasible decompositions
during technology mapping to derive a better mapped solution.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Maciej Ciesielski (Univ of Massachusetts,
Amherst) and Congguang Yang (Chameleon Systems) for providing their logic syn-
thesis tool, BDS, for use in our work. The authors would also like to thank Klaus
Eckl at the Technical Institute of Munich for granting us a license to use BoolMap.

REFERENCES

Ashenhurst, R. L. 1959. The decomposition of switching functions. In Proc. International

Symp. Theory of Switching Functions, 74–116.

Babba, B. and Crastes, M. 1992. Automatic synthesis on table lookup-based FPGAs. In

Proc. Euro-ASIC (May), 25–31.

Brayton, R., Hachtel, G., McMullen, C., and Sangiovanni-Vincentelli, A. 1984.

Logic Minimization Algorithms for VLSI Synthesis. Kluwer, Boston.

Brayton, R., Rudell, R., Sangiovanni-Vincentelli, A., and Wang, A. 1987. MIS: A

multiple-level logic optimization system. IEEE Trans. Computer-aided Design. 6, 6 (Nov.),

1062–1081.

Brglez, F., Bryan, D., and Kozminski, K. 1989. Combinational profiles of sequential

benchmark circuits. In Proc. IEEE International Symp. Circuits and Systems (May), 1929–

1934.

Bryant, R. 1986. Graph-based algorithms for boolean function manipulation. IEEE Trans.

Comput. C-35, 8 (Aug.), 677–691.

Chang, S., Marek-Sadowska, M., and Hwang, T. 1996. Technology mapping for TLU

FPGA’s based on decomposition of binary decision diagrams. Proc. IEEE Trans. Computer-

aided Design. 15, 10 (Oct.), 1226–1236.

· 25

Chen, G. and Cong, J. 2001. Simultaneous logic decomposition with technology mapping

in FPGA designs. In Proc. International Symposium on Field Programmable Gate Arrays

(Monterey, Calif., Feb), 48–55.

Chen, K., Cong, J., Ding, Y., Kahng, A., and Trajmar, P. 1992. DAG-Map: Graph-

based FPGA technology mapping for delay optimization. IEEE Design and Test of Com-

puters. (Sept.), 7–20.

Cong, J. and Ding, Y. 1993. Beyond the combinatorial limit in depth minimization for

LUT-Based FPGA designs. In Proc. IEEE/ACM International. Conf. on CAD (Santa

Clara, CA, Nov.), 110–114.

Cong, J. and Ding, Y. 1994. FlowMap: An optimal technology mapping algorithm for

delay optimization in lookup-table based FPGA designs. IEEE Trans. Computer-Aided

Design 13, 1 (Jan.), 1–12.

Cong, J., Li, Z., and Bagrodia, R. 1994. Acyclic multi-way partitioning of boolean net-

works. In Proc. IEEE/ACM Design Automation Conference (June), 670–675.

Cong, J., Peck, J., and Ding, Y. 1996. RASP: A general logic synthesis system for SRAM-

based FPGAs. In Proc. International Symposium on Field Programmable Gate Arrays

(Monterey, Calif., Feb.), 137–143.

Coudert, O. and Madre, J. 1990. A unified framework for the formal verification of

sequential circuits. In Proc. International Conference on Computer Aided Design, 126–

129.

DeMicheli, G. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill, High-

tstown, NJ

Eckl, K., Legl, C., and Wurth, B. 1996. TOS Version 2.2: User Manual. Institute of

Elec. Design Automation, Tech. Univ. of Munich.

Filo, D., Yang, J., Mailhot, F., and DeMicheli, G. 1991. Technology mapping for two

output RAM-based FPGAs. In Proc. European Design Automation Conf., 534–538.

Francis, R., Rose, J., and Chung, K. 1990. Chortle: A technology mapping algorithm

for lookup table-based field programmable gate arrays. In Proc. Design Automation Conf.

(June), 613–619.

Francis, R., Rose, J., and Vranesic, Z. 1995. Chortle-crf: Fast technology mapping for

lookup table-based FPGAs. In Proc. International Symp. Theory of Switching Functions,

74–116.

Hactel, G. D. and Somenzi, F. 1996. Logic Synthesis and Verification Algorithms. Kluwer

Academic Publishers, Dordrecht, The Netherlands.

Jiang, J.-H., Jout, J.-Y., Huang, J.-D., and Wei, J.-S. 1997. A variable partitioning

algorithm of BDDs for FPGA technology mapping. IEIEC Trans. Fundamentals of Elec-

tronics E80, 10 (Oct.), 1813–1819.

Karplus, K. 1991. XMAP: A technology mapper for table-lookup based FPGAs. In Proc.

Design Automation Conf. (June), 240–243.

Lai, Y., Pedram, M., and Vrudhula, S. 1993. BDD based decomposition of logic functions

with application to FPGA synthesis. In Proc. Design Automation Conf. (June), 642–647.

Legl, C., Wurth, B., and Eckl, K. 1996. A boolean approach to performance-directed

technology mapping for LUT-based FPGA designs. In Proc. Design Automation Conf.

(June), 74–116.

Murgai, R., Brayton, R., and Sangiovanni-Vencentelli, A. 1995. Logic Synthesis for

Field-Programmable Gate Arrays. Kluwer, Boston

Murgai, R., Nishizaki, Y., Brayton, R., and Sangiovanni-Vincentelli, A. 1990. Logic

synthesis for programmable gate arrays. In Proc. Design Automation Conf. (June), 620–

625.

26 ·
Narayan, A., Jain, J., Fujita, M., and Sangiovanni-Vincentelli, A. 1996. Partitioned-

ROBDDs: A compact canonical and efficient representation for boolean functions. In Proc.

Int. Conf. Computer Aided Design (Nov.), 547–554.

Roth, J. and Karp, R. 1962. Minimization over boolean graphs. IBM J. of Research and

Development 6, 227–238.

Savage, J. E. 1976. The Complexity of Computing. Wiley, New York

Sawada, H., Suyama, T., and Nagoya, A. 1995. Logic synthesis for look-up table based

FPGAs using functional decomposition and support minimization. In Proc. Int. Conf.

Computer-Aided Design (Nov.), 54–59.

Sawkar, P. and Thomas, D. 1992. Area and delay mapping for table-look up based field

programmable gate arrays. In Proc. Design Automation Conf. (June), 368–373.

Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H.,

Stephan, P., Brayton, R., and Sangiovanni-Vincentelli, A. 1992. SIS: A System

for Sequential Circuit Synthesis. Technical Report UCB/ERL M92/41 (March), Dept. of

EECS, Univ. of Calif., Berkeley.

Singh, K., Wang, A., Brayton, R., and Sangiovanni-Vincentelli, A. 1988. Timing

optimization of combinational logic. In Proc. International Conf. Computer Aided Design

(Nov.), 282–285.

Stanion, T. and Sechen, C. 1995. A method for finding good Ashenhurst decompositions

and its application to FPGA synthesis. In Proc. Design Automation Conf. (June), 74–116.

Trimberger, S. 1994. Field Programmable Gate Array Technology. Kluwer, Boston.

Yang, C. 2000. BDD-Based Logic Synthesis System. Ph. D. thesis, Univ. of Massachusetts,

Amherst, Department of Electrical and Computer Engineering.

Yang, C., Singhal, V., and Ciesielski, M. 1999. BDD decomposition for efficient logic

synthesis. In Proc. International Conf. Computer Design (Oct.).

Yang, C., Singhal, V., and Ciesielski, M. 2000. BDS: A BDD-based logic synthesis

system. In Proc. Design Automation Conf. (June), 92–97.

Yang, S. 1991. Logic Synthesis and Optimization Benchmarks, Version 3.0. Technical Re-

port, Microelectronics Centre of North Carolina.

