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Abstract—Architectural details of machine learning models
are crucial pieces of intellectual property in many applications.
Revealing the structure or types of layers in a model can
result in a leak of confidential or proprietary information. This
issue becomes especially concerning when the machine learning
models are executed on accelerators in multi-tenant FPGAs
where attackers can easily co-locate sensing circuitry next to the
victim’s machine learning accelerator. To evaluate such threats,
we present the first remote power attack that can extract details
of machine learning models executed on an off-the-shelf domain-
specific instruction set architecture (ISA) based neural network
accelerator implemented in an FPGA. By leveraging a time-to-
digital converter (TDC), an attacker can deduce the composition
of instruction groups executing on the victim accelerator, and
recover parameters of General Matrix Multiplication (GEMM)
instructions within a group, all without requiring physical access
to the FPGA. With this information, an attacker can then
reverse-engineer the structure and layers of machine learning
models executing on the accelerator, leading to potential theft of
proprietary information.

Index Terms—Machine Learning Security, FPGA Security,
Hardware Accelerators, Hardware Security

I. INTRODUCTION

Due to the high value of machine learning intellectual
property and the Machine Learning as a Service (MLaaS)
market, it is important to understand potential security attacks
that could extract details about a machine learning model’s
architecture. While attacks on machine learning algorithms
have been explored in CPU [1] and GPU [2] settings, they have
been much less explored for FPGAs. Of the existing FPGA-
related work on machine learning algorithm attacks, much of
it requires physical access to the FPGA [3], [4]. Meanwhile, a
number of proposals advocate for FPGA use in data centers to
accelerate machine learning algorithms [5], [6], where physical
access is not possible for attackers. Further, a variety of multi-
tenant FPGA proposals have emerged, e.g., [7], [8], which
advocate for FPGA sharing among different users to improve
FPGA utilization in cloud computing data centers.

For the multi-tenant FPGA setting, researchers have already
demonstrated some security threats, mainly focusing on attacks
on cryptographic algorithms [9], [10]. The existing attacks
have shown remote that side or covert channels in multi-
tenant FPGAs can be created using signal cross-talk [11], [12],
temperature [13], and on-FPGA voltage monitoring [9], [10].
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This work extends multi-tenant attacks to machine learning
algorithms. We present the first, remote power attack in a
multi-tenant FPGA setting that can extract information about
a machine learning algorithm’s architecture. This FPGA-based
attack targets an off-the-shelf Versatile Tensor Accelerator
(VTA) [14] that runs a domain-specific instruction set architec-
ture (ISA), including LOAD, GEMM, ALU, and STORE instruc-
tions, for the acceleration of machine learning models. VTA
is built on top of Apache’s Tensor Virtual Machine (TVM)
deep learning compiler [15]. Attacking VTA is challenging
since hardware-software co-design is used for TVM and the
VTA hardware. Some instructions are performed on the host
ARM processor, while others are implemented on the FPGA-
based VTA accelerator. The VTA is a CPU-like processor with
an instruction fetch module, a compute module, and load and
store modules. It uses statically-scheduled task-level pipeline
parallelism (TLPP) [16] to execute different instructions in
parallel, and computes on instruction groups, which do not
have a strict one-to-one relationship with the layers of a
machine learning algorithm. These features make attacking
VTA much more challenging.

Despite the challenges, we are able to realize a new remote
power attack on VTA that recovers details of the different
instruction groups and deduces approximate parameters of
instructions within a group. Each machine learning model
executed on the VTA is mapped to a unique number of groups,
each with a different quantity or type of instructions. We use
the recovered information to reverse-engineer the structure and
type of the machine learning model’s layers.

A time-to-digital converter (TDC) is used in our attack to
perform the remote power measurements as the VTA executes.
The measurements are collected on a Xilinx Zynq ZC706
board. We emulate a multi-tenant setting by instantiating an
attacker module, with a TDC sensor, on the same FPGA as the
VTA module. The TDC is logically isolated from the VTA,
but due to the shared power distribution network (PDN), we
are able to obtain traces of voltage fluctuations as the VTA
executes. This information allows us to obtain insights about
the victim’s machine learning model.

II. VERSATILE TENSOR ACCELERATOR

This work focuses on the VTA hardware that can be imple-
mented on FPGAs [14]. VTA is built on top of the TVM deep
learning compiler stack. TVM can be used to deploy popular
deep learning frameworks, such as TensorFlow, MXNet, Caffe,
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Fig. 1: Diagram of the VTA hardware (shown on green background,
adapted from [14]) and the added attacker module (shown on red
background). Attack setup is discussed in Section III. The VTA is
unmodified. An attacker module is added to the AXI crossbar to
emulate a multi-tenant FPGA setting.
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Fig. 2: Floorplan (horizontal view) for the ZC706 board showing
the location of the victim VTA and attacker TDC modules.

and PyTorch, across diverse hardware back-ends, including
CPUs, GPUs, and FPGA-based accelerators [15].

In this work, we use VTA as the FPGA-based accelerator
back-end for the TVM. Prior to offloading computations to
the VTA, the TVM/VTA software realizes a machine learning
model as sets of VTA instructions, and collates them into
instruction groups. A machine learning model layer may
be realized by one or more instruction groups. Each group
contains a mix of LOAD, GEMM, ALU, or STORE instructions.
As defined by users or optimized by TVM software, some
groups are executed on the ARM processor, while others are
off-loaded to the VTA. Individual instruction groups must
be matched to specific layers before the machine learning
algorithm structure can be reverse-engineered. Using TLPP,
VTA can execute multiple instructions in parallel, introducing
further challenge for collecting attack measurements. Prior
FPGA-based machine learning attacks, e.g., [17], [18], did not
consider accelerators that have such a level of parallelism.

III. REMOTE POWER ATTACK ON VTA

In our attack, the VTA (victim) and TDC (attacker) modules
are co-located next to each other in the FPGA, as shown in
Figure 1. A floorplan showing the physical placement of the
two modules is shown in Figure 2. While the VTA occupies
multiple clock regions, the attacker’s TDC can be placed in
close proximity to the victim’s VTA module, but not within the
VTA circuitry due to the logic placement limitations of multi-

TABLE I: Details of the tested neural networks.

Model Total
Layers

Layers Off-
loaded to VTA

Num. Inst.
Groups on VTA

ResNet-18 v1 18 16 307
MobileNet v1 28 26 210

tenancy. Because of the shared power distribution network
within the FPGA, the TDC module is able to capture voltage
traces as the VTA module executes. The traces are then used
to extract machine learning model information.

The attack was tested on a Xilinx Zynq-7000 SoC ZC706
board (xc7z045ffg900-2). The VTA and TDC run on the
same 120MHz clock. As described in Section IV, the TDC
traces show a clear voltage drop when VTA computations
begin. This drop can be used as a trigger for attacks, so strict
synchronization of the two modules is not necessary. The TDC
collects one measurement every five clock cycles, providing a
sampling rate of 24Mhz.

A. Threat Model

The victim VTA executes machine learning inference op-
erations, while the attacker attempts to steal information,
such as model architecture and kernel sizes of each layer,
that the victim desires to hide or protect. We assume that
the victim and attacker are co-located on the same FPGA,
but are logically isolated. As shown in Figure 1, the victim
and attacker modules can communicate with their respective
FPGA modules through a shared AXI crossbar. However,
the shared crossbar is not used in the attack itself. All AXI
communication is assumed to be secure, possibly encrypted,
and we do not use AXI timing or contention as part of the
attack. It is also assumed that the victim and the attacker are
on the FPGA without other tenants, and share the underlying
power distribution network (PDN). Thus, the attacker’s goal
is to observe voltage changes in the PDN, using a TDC
module [9], [19], as the VTA executes different instructions.

B. Attacker TDC Sensor

The attacker uses a 256-stage TDC that contains an ad-
justable delay module, followed by a chain of Carry4 lines
used as the taps [20]. In the TDC, each measurement, a value
between 0 and 256, records the delay of a circuit by observing
how far through a tapped delay line a signal travels during
a single measurement period. The delay is directly related
to voltage: lower voltages causes the signals to propagate a
shorter distance, and TDC outputs a smaller value. In the PDN,
voltage drops occur in the vicinity of a target module, in this
case the VTA, due to both resistive, IR, and inductive, L di

dt
voltage drop effects. [21]. We show that the VTA causes
sufficient voltage drops during its operation for observation of
its operation to be possible.

C. Machine Learning Models used in the Evaluation

In the evaluation we run the popular ResNet-18 v1 [22]
and MobileNet v1 [23] machine learning models on the VTA.
Table I shows the number of layer computations offloaded
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Fig. 3: Execution timeline of one VTA instruction group, which
causes multiple VTA instructions to be executed. One instruction
group corresponds to one AXI transaction group on the CPU-to-
VTA AXI bus. The TDC is triggered at the start of the instruction
group. Purple arrows show communication and commands sent on
the different buses. Red arrow shows TDC measurement start.

to the VTA, and total number of VTA instruction groups
used to realize the layer computations. Note that different
layers are realized using different numbers of instruction
groups. All of the networks were pre-trained on the ImageNet
dataset [24] provided by MXNet Gluon Model Zoo [25].
The networks were used to perform inference operations on
randomly selected input images as the TDC module captured
power traces.

D. Unit Tests and Layers Tests used in the Evaluation

Prior to evaluating the full machine learning models, we
used VTA unit tests and our own layer tests. Unit tests test
the operation of specific VTA instructions. Layer tests test
the operation of a group of instructions that implement one
layer in a machine learning model. Three unit tests were used:
GEMM, ALU-Add, and LOAD-and-STORE. TLPP is not used
in the unit tests, allowing straightforward instruction behavior
analysis. Layer tests simply correspond to each layer of the
tested machine learning models, and have TLPP enabled.

IV. EVALUATION

Our evaluation focuses on understanding how to extract the
information of machine learning models as VTA executes.
Figure 3 shows an execution timeline of one instruction
group on the VTA hardware. The on-FPGA computation is
performed in groups of instructions, and different instructions
within a group can be performed in parallel due to the use of
instruction queues within the processor.

Each graph in Figures 4-7 shows an average TDC trace for
one instruction group (either an instruction group of a unit
test, or an instruction group at the start of different layers
of the target neural network). The graphs in Figures 4-7 are
each averages of 50 TDC traces of the same experimental
settings, thus the attack requires (50 · N ) executions of the
neural network, where N is the number of instructions groups
that are to be captured.

A. Sensitivity to Input Values

We first analyzed different instructions using the unit tests,
and measured TDC traces for different input values (but for
the same input sizes, e.g., same batch size and same number

(a) Load-and-Store (b) ALU-Add (c) GEMM

Fig. 4: Comparison of different unit tests, with batch size = 4, input
channels = 8, and output channels = 8.

(a) O4 N8 M8 (b) O4 N8 M16 (c) Interval vs. M

(d) O4 N8 M8 (e) O4 N4 M8 (f) #Peaks vs. N

(g) O4 N8 M8 (h) O16 N8 M8 (i) Peak-Valley vs. O

Fig. 5: TDC traces used to recover the parameters of different
GEMM instructions. It can be seen that the parameter of GEMM
instructions can be reverse-engineered by calculating the interval
between adjacent peaks, the number of peaks, and the drop depth
from TDC trace.

of input and output channels). We observed that different input
values do not result in significant TDC measurement changes
– while different sizes do, as we show in section IV-B. Thus
the attacker is able to extract information about the neural
network’s architecture by taking measurements for many runs,
while the victim VTA executes the same model with possibly
different inputs.

B. Sensitivity to Instructions and Their Parameters

To distinguish different workloads running on VTA, we first
collected TDC traces for the three unit tests: GEMM, ALU-
Add, and Load-and-Store, using input data of the same size.1

As shown in Figure 4, different unit tests, and thus different
types of instructions, can be easily distinguished based on their
unit test TDC trace waveforms.

We further analyzed the GEMM unit test traces with
different data parameters for GEMM instructions. In GEMM
unit tests, ‘O’, ‘N’, ‘M’ denote the number of input batches,
input channels, and output channels respectively, which define
the dimensions of the matrix [26]. As shown in Figures 5a,
5b, and 5c, the number of output channels is related to the
interval between adjacent valleys, which is linearly correlated

1Note that the tests include data LOAD and STORE instructions needed to
provide data for, e.g., GEMM or ALU instruction computations.



(a) (56, 64, 3), 4.72 (b) (28, 128, 3), 5.07

(c) (14, 256, 3), 7.88 (d) (7, 512, 3), 13.30

Fig. 6: The TDC traces for the first 50, 000 clock cycles of different
instruction groups used to realize the convolution layers of ResNet-18
on VTA. A caption label, for example, “(56, 64, 3), 4.72” means the
convolution output size is 56x56, with 64 3x3 filters, and the average
peak-to-valley difference is 4.72.

to ‘M’. Figure 5c shows the relationship between intervals
and ‘M’, for ‘M’ from 4 to 16 with the same ‘O’ and ‘N’.
Similarly, Figures 5d, 5e, and 5f show that ‘N’ can be
recovered by counting the number of peaks, and Figures 5g,
5h, and 5i indicate that batch size mostly influences the
difference between peak and valley. Given this knowledge, an
attacker can analyze the TDC data to recover the approximate
configuration for each GEMM instruction. This configuration
information in turn can be used to recover information about
the architecture of the neural network’s layers.

C. Distinguishing Different Convolution Layers

For a convolution layer computation workload, input data is
fed into GEMM instructions first before ALU computations. This
property allows us to distinguish different convolution layers
based on the recovered GEMM instruction’s parameters. The
TDC traces of four instruction groups corresponding to four
common convolution layer parameters in ResNet-18 [22] are
shown in Figure 6. The different convolution layer parameters
can be distinguished by observing the patterns of peaks and
valleys in the traces, even when a trace does not cover the
whole instruction group’s duration.

D. Distinguishing Different Machine Learning Models

Each neural network model includes several convolution
layer parameters, e.g., ResNet-18 has 4 common layer pa-
rameters: (56x56, 3x3, 64), (28x28, 3x3, 128), (14x14, 3x3,
256), (7x7, 3x3, 512). Figure 7 shows the TDC traces for the
first 50, 000 clock cycles of the first and last layers of ResNet-
18 and MobileNet offloaded to VTA. Clear differences in the
traces can be used to distinguish different models based on
the traces of the different convolution layers. A set of traces
can thus be compared to reference traces to distinguish a
network, and approximate convolution layer parameters can
be recovered by analyzing the peaks and valleys in the trace.

(a) ResNet-18 Layer-2 (b) MobileNet Layer-2

(c) ResNet-18 Layer-17 (d) MobileNet Layer-27

Fig. 7: Comparison of TDC traces capturing the first 50, 000 clock
cycles for different layers in ResNet-18 and MobileNet, showing clear
differences for model recognition.

V. RELATED WORK

Existing attacks for the recovery of neural network archi-
tectures on FPGAs generally require physical access, e.g., [3]
and [4]. On ARM processors, attacks have leveraged elec-
tromagnetic emanations, e.g., [27]. There are also software
attacks that recover neural network architectures by abusing
the APIs [1] or analyzing outputs and confidence values [28].

We are aware of only three remote attacks targeting neu-
ral network algorithms on FPGAs in a multi-tenant setting.
Boutros et al. [29] showed that voltage manipulations by an
adversary co-tenant are unable to affect CNN inference accu-
racy due to model redundancy. They did not attempt to recover
model information like we do. Moini et al. [17] were able to
extract input images to a binarized neural network (BNN) by
monitoring on-FPGA voltage fluctuations during convolution
operations using a TDC. They targeted a custom, hard-coded
BNN algorithm, and they assumed a known BNN architec-
ture. Hua et al. [18] found the neural network algorithm’s
architecture (number of layers, type of each layer, and weight
values) by feeding inputs to the accelerator and observing the
resulting off-chip memory accesses. They require the control
of inputs and the means to monitor the CPU to FPGA memory
bus. Our attack does not require the control of inputs, is
contained fully inside the FPGA (does not depend on ability to
monitor external memory) and does not require knowledge of
the neural network algorithms architecture as the architecture
is what our attack aims to recover.

VI. CONCLUSION

This work presented the first remote power attack for the
extraction of machine learning algorithm architectures in a
multi-tenant FPGA setting. This attack targeted the Versatile
Tensor Accelerator which supports many neural network algo-
rithms, and is not a model-specific accelerator. Given the high
value of the intellectual property contained in neural network
algorithm architectures, this attack demonstrates the threats to
intellectual property when multi-tenant FPGAs are used.
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