Multi-Task Support for Security-Enabled Embedded
Processors

Tedy Thomas, Arman Pouraghily, Kekai Hu, Russell Tessier, and Tilman Wolf
Department of Electrical and Computer Engineering
University of Massachusetts
Ambherst, MA, USA

Abstract—Embedded systems require low overhead security
approaches to ensure that they are protected from attacks. In
this paper, we propose a hardware-based approach to secure the
operation of an embedded processor instruction-by-instruction,
where deviations from expected program behavior are detected
within the execution of an instruction. These security-enabled
embedded processors provide effective defenses against common
attacks, such as stack smashing. Previous work in this area has
focused on monitoring a single task on a CPU while here we
present a novel hardware monitoring system that can monitor
multiple active tasks in an operating-system-based platform. The
hardware monitor is able to track context switches that occur in
the operating system and ensure that monitoring is performed
continuously, thus ensuring system security. We present the
design of our system and results obtained from a prototype
implementation of the system on an Altera DE4 FPGA board.
We demonstrate in hardware that applications can be monitored
at the instruction level without execution slowdown and stack
smashing attacks can be defeated using our system.

I. INTRODUCTION

Embedded processing systems are widely used and are
key technology for control systems, the Internet of Things,
personal health monitoring, home automation, and many other
application domains. Due to their wide use and the importance
of their tasks, embedded systems need to be protected from
hacking attacks. With an increasing number of embedded
systems being connected to networks, one typical attack vector
against embedded systems is through the global Internet.

Many embedded systems are based on general-purpose
processing systems that are vulnerable to the same type of
attacks as conventional desktop and server computers, albeit
for a different set of applications. The National Vulnerability
Database (NVD) [1] shows that around 10% of vulnerabilities
(6,518 out of 66,399) in systems are related to overflows that
can be exploited via a network. Many of these overflows then
enable an attacker to execute malicious code. Thus, our work
focuses on protecting embedded systems from this important
type of attack using a security-enhanced processor.

While desktop and server computers have the processing
power to run malware detection software (e.g., virus scanner,
intrusion detection system, etc.), embedded systems are typi-
cally not able to do so due to resource constraints (e.g., lim-
ited power budget, limited processing capacity, etc.). Instead,
hardware-based protection mechanisms have been developed,
in particular “hardware monitors,” which track the operation

of the processing system and aim to detect and suppress
malicious activity.

A variety of different hardware-based solutions have been
proposed to protect embedded processing systems. In general,
there have been two shortcomings in existing work:

o Monitoring on systems with complex workloads is based
on coarse indicators (e.g., function call sequence [2]).
This approach leaves the system vulnerable to attacks that
happen between indicators (e.g., within a function call).

o Fine-grained monitoring systems do not support multi-
task workloads on operating systems. This constraint
limits the applicability of this single-task monitoring to
specialized domains (e.g., embedded control systems,
network processors, etc.).

To make hardware monitors an effective protection mech-
anism for attacks on embedded systems in any application
domain, it is critical to develop fine-grained monitoring on
multi-task embedded systems. In our work, we present the
design of a hardware monitoring system that coordinates with
the task switching dynamics of an operating system to verify
every instruction executed by applications.

The specific contributions of our work are:

e Design of a Multi-Task Hardware Monitor System
(MTHM) that supports multi-tasking contexts and that
operates in sync with an embedded operating system
(OS).

o Prototype implementation of a hardware monitoring sys-
tem on an FPGA-based DE4 board.

o Evaluation of the prototype and a demonstration of sys-
tem protection from a stack smashing attack.

This security enhancement for embedded processors allows
for the simultaneous use of application-specific monitoring
information for multiple applications. The remainder of this
paper describes the design, operation, and implementation of
our hardware monitoring system in more detail. In Section II
we discuss other security approaches for embedded processors,
including monitoring. Section III provides the security model
and operation of our system while Section IV describes the
hardware details and protocols involved in task switching using
monitoring. Experimental results are presented in Section V.
Section VI concludes the paper.

II. RELATED WORK

Protection mechanisms for processing systems against code
injection attacks are manifold. Network devices, such as
firewalls [3] and intrusion-detection systems [4], can block
malicious network traffic if packet payloads are not encrypted
and if detection rules (e.g., Snort [5]) are updated quickly
enough. Programming language extensions can generate code
that is not vulnerable [6] if source code is available and can
be transformed appropriately. Stack protection mechanisms in
program code or in the operating system can defend against
some attacks [7]. Memory protection mechanisms that separate
instruction and data memory (e.g., Harvard architecture or
No-eXecute (NX) bit) can avoid some attacks, but are still
vulnerable [8]. A survey of these various techniques can be
found in [9].

The prevention of stack smashing attacks has been the
focus of significant work, although most approaches require
significant processor modifications and run-time execution
slowdown. Dynamic instruction flow tracking (DIFT) [10]
tags each incoming data value or its derivative with a one-
bit tag to indicate that it should not influence program control
flow. The approach can require an execution slowdown due to
tag checking. CHERI [11] establishes a base and bounds for
pointers, preventing illegal accesses to memory which can lead
to buffer overflow attacks. This approach also involves data
tagging and the use of a special-purpose capability processor
and registers to dynamically assess tags. The Hardbound
approach [12] includes hardware to check the address bounds
of every pointer access to memory. A flexible software-only
approach [13] introduces a compiler pass for each application
to insert bounds checking operations in the code. Although
flexible for a range of applications, an increase in code size
and application slowdown make the approach limited for
embedded applications.

One very effective protection mechanism is the use of
hardware and software monitoring to track different aspects
of program behavior. The granularity of such monitors ranges
from a call sequence (e.g., [2]) to checksums over basic blocks
(e.g., [14]) to per-instruction verification (e.g., [15]). Coarse
monitoring granularity may not be able to detect attacks that
require only a few instructions to execute (such as demon-
strated for a denial-of-service attack in network processors
[16]). Thus, our work focuses on monitors that perform per-
instruction monitoring and can detect attacks immediately
when program behavior changes. Due to the need for tight
coupling, such monitors are implemented in hardware and co-
located with the processor core.

Existing hardware monitors have been used to monitor
processors with single-task workloads (e.g., [15]) or with a
small number of tasks that are managed through a control
processor (e.g., [17]). However, an increasing number of
embedded systems use operating systems, where multiple tasks
actively share the processor core and tasks are dynamically
added and removed. Our work focuses on providing security
through instruction-level monitoring in such a highly dynamic

) ‘.’ .
@ n - ——
£ = processing code monitoring
5 5 binary al graph
L — AP — = ve—— 1
| 3 : | : = |
I U processing code } } U mon. graph|| £ |
} instruction memory | | hashof || mon. memory | S |
[‘ I processing | ‘ € 1
c | 2 linstruction | comparison o |
gl
-% | @ processor I context info | | |p) g ‘
S8 core ! ‘ ogic =
g5 : g
g8 OS or active task askreset | active graph| | & }
L |9 ‘ | o 4
E 13 |
g 1o I_ |
S| -g task context }
I & data memory ||
| |
I ‘ }
| .
| I/O interface }
|
b |
Fig. 1. System architecture of Multi-Task Hardware Monitor System.

workload controlled by an operating system. All instructions
(both data and control) are monitored by our approach.

III. SYSTEM AND SECURITY MODEL

To provide the necessary context for the Multi-Task Hard-
ware Monitor System design presented in Section IV, we
briefly discuss the operation of MTHM and the security model
for our work.

A. Secure Processing with Hardware Monitors

Hardware monitors are components that are co-located with
processor cores to track the processing of software on that
core. The objective is to assess the operation of the processor
and determine when incorrect behavior is detected (which can
be due to benign faults or malicious attacks). As discussed in
related work, there are a number of different approaches to
monitoring based on what information is communicated from
the processor to the monitor and what information is used to
determine if that behavior is “normal.”

In our work, we use a hardware monitor that receives
information about every instruction executed on the processor
core and compares it to a “monitoring graph” that is based on
the analysis of the processing binary (similar to [15]). Each
instruction is represented by a 4-bit hash value (to reduce the
size of the monitoring graph compared to the size of the
binary) and state transitions correspond to possible control
flow paths between instructions. We use a deterministic finite
automaton (DFA) representation of the monitoring graph (as
detailed in [18]).

The system architecture of our Multi-Task Hardware Mon-
itor System, which supports multiple tasks, is illustrated in
Figure 1. The figure shows that application binaries are ana-
lyzed offline. During runtime, the comparison logic in MTHM
matches the monitoring graph to the currently active task on
the processor. To do the operation, the OS-to-Monitor Inter-
face (OMI) communicates the necessary context information

between the processor and the monitor. When the processor
execution does not match the expected behavior reflected in
the monitoring graph of the current task, a reset signal is sent
from the monitor to the processor to terminate the current task.
(More complex recovery and roll-back mechanisms could be
implemented, but are not discussed here.)

It is important to note that the hardware monitoring system
is isolated from the processor and thus cannot be tampered
with remotely by the attacker (e.g., to change the monitoring
graph to match an attack). Related work discusses how to
achieve such isolation while still enabling dynamic installation
of hardware monitoring graphs through the use of crypto-
graphic mechanisms [19].

B. Security Model

To justify how our proposed system provides a secure
processing environment, we briefly discuss the security model
that is the basis for our work.

1) Security Requirements: We require that our system
meets the following security requirements:

SC1 The system should only allow execution of code as
programmed in the executable binaries of each task.

SC2 Secure processing should be provided for multiple, dy-
namically changing tasks.

SC3 Malicious code execution in one task should not affect
other tasks.

In addition to security, there are also practical performance
requirements. As we show in our results, the hardware monitor
does not reduce the performance of the embedded processor in
any way. The only overhead is a few instructions (five for our
experimentation) in the operating system code when switching
tasks, which leads to a negligible reduction in processing
speed.

2) Attacker Capabilities: We make the following assump-
tions about the capabilities of an attacker that tries to change
the operation of the embedded system and/or tries to execute
malicious code on the embedded system:

AC1 An attacker can provide any input through input/output
interfaces of the embedded system.

AC2 An attacker can start and stop any task from an installed
binary in the embedded system (within the limitations of
a maximum number of active tasks).

AC3 An attacker can tamper with any of the binaries.

In order to provide a practical solution for secure processing
in an embedded system, we also require some reasonable
constraints on attacker capabilities:

AC4 An attacker cannot tamper with the operating system
itself.

ACS An attacker cannot tamper with the hardware monitoring
system (e.g., modifying monitoring graphs for installed
executables).

As discussed above, we do not discuss the secure installation

of monitoring graphs, which has been addressed in related
work [19] in more detail.

IV. MONITOR DESIGN
A. Task Management in the Operating System

A key aspect of our monitoring system is its ability to fit
seamlessly within the context switch operations of a typical
operating system. As noted in Section V, the time required
to switch monitoring graphs for different tasks is significantly
less than the typical time required for other activities in a
context switch. In our implementation, graph switching is
synchronized with other OS actions (e.g., register file save and
restore) that occur during a context switch so that user tasks
are protected at all times. Typical context switch activities for
embedded operating systems, such as ;C/OS-II' used for this
work, include:

1) A timer or other OS event generates an interrupt trig-
gering a context switch.

2) The OS scheduler determines the next process for execu-
tion. Our implementation uses a priority based scheme,
although round-robin or other schedulers would also be
appropriate.

3) The OS provides the process ID (PID) of the next
process to the monitoring system, triggering a monitor-
ing graph switch in the monitor. This switch includes
monitor state saving for the process currently being
monitored, and a restoration of monitoring state for the
next process.

4) Concurrently, the OS saves process state (registers, pro-
gram counter, etc.) for the current task to main memory.

5) The OS retrieves process state for the next process from
main memory and restores it to processor registers.

6) The OS checks the status of the monitoring system to
confirm that the monitor for the next process is ready
for use.

7) The OS sends a trigger to the monitoring system to start
monitoring for the newly-loaded process.

After the context switch is completed, the processor sends
every instruction executed for the process to the monitoring
system. In the next section, we provide a detailed view of the
monitoring system and how it interacts with the processor for
steps 3, 5, and 6 above.

B. Multi-Task Hardware Monitor System

A detailed view of our monitoring subsystem is shown in
Figure 2. The portions of the monitoring system can be split
into monitoring hardware (three boxes in upper left corner
of the figure), which checks the per-instruction operation of
the companion processor, graph memory, which stores state
information about monitoring for each process, controller,
and processor interface. A detailed example using similar
monitoring hardware and graph memory can be found in [18].

The monitoring hardware checks each processor instruction
using information from the monitoring graphs stored in graph
memory. In the figure, graphs for four separate applications
are stored in slots in the graph memory. Each graph includes

Thttp://micrium.com/rtos/ucosii/overview/

Recovery 16 Graph Memory 32% read data
cPU : ? 77777777
signal | Hash |lg2e— 4 | | e |0 T |
Interrupt 8 d:ase i i
A |
controller 4 16 4 RegiszsrssiTe ! 0x0000h: |Groupl Addr |Groupl Addr 3
r,,,,,,,,,,,,]l,,w,mt,edgga,,; Group3 Addr | Group3 Addr |
. |
Position of IGroup 1 0x0008h |
i |
CPU matching iGroup 2 0x000ah | :
From the Instruction| hash in the | 0x0008h: | NextState | Valid Hash
CPU hash vector Group 3 0x000eh |
Pipeline Group 4 Oxffffh i !
————————————————— | |
| |
Enable/Disable | |
! Slot 1 Region
PID e
1
Processor ¢) GD A !
interface Ly Sequencing ! i
Operation [+ logic i Slots 2 and 3 !
|
! Regions !
14 _____Regons |
[pone 4 i
e ! 11 I . 0x1200h + 0x0000h: | Group1 Addr |Groupl Addr
f \
0
Group3 Addr | Group3 Addr
ww Address 14
| iq Pointer >t Read”
! PID | Address Pointer | Valid ! 1 y Address
| | 4 load A 0x1200h + 0x0008h: Next State | Valid Hash
! 4 0x0002h 1 ' Control FSM
| -
21 0x0004h 1 <J | | joverride Frame |
r I
11 0x0000h 1] L T Address !
ATA | |
X Xxxx 0 ﬁ I I Slot 4 Region [
PID addresses ‘ O Do
- A A A o
PID 6D | Valid GID | BaseAdar | *OPActive 14 32?
Processes
4 14 1 31 0x0000h 1 | Write Write data Write
21 14 1 14 | 0x1200h 2 | address enable
|
! 11 31 1 X XXXX 0 |
|
| X XXXX 0 X XXXX 0
i
Controller! PID to GID binding GID to frame binding 1
Graph pool

Fig. 2. Detailed view of multi-context monitoring system

one row per instruction, effectively representing expected
program control flow as a state machine [18]. A read address
pointer indicates the entry in the graph that corresponds to
the instruction that has just completed execution. During the
execution of an instruction, a multi-bit (in our case 4-bit)
hash value of the instruction is generated and converted to
a one-hot representation. Previous work has shown a 4-bit
hash value to be sufficient to limit collisions [18]. The one-
hot encoding is compared against the expected next-instruction
hash values (valid hash) that are stored in the graph entry
for the previously executed instruction. The use of a one-hot
representation simplifies these comparison operations.

A match of a 4-bit hash against a stored valid hash indicates
a valid instruction. If no match occurs, an illegal instruction
has been executed, leading to the generation of a recovery
signal which is used by the processor for process termination.
Since control flow instructions (e.g. branch) may have several
possible next instructions, and, consequently, several possible
valid hashes, multiple one-hot valid hash bits may be set
per entry. A match of any of these hashes indicates a valid
instruction. Our approach can handle dynamic branch targets
by profiling the code to determine all branch targets for an
application prior to graph generation. Entries for these targets
are then added to the graph.

The next read address (memory row) in the monitoring

graph is determined using next state information stored in the
current entry, the matched hash value, and information stored
in base address registers which group states based on fanin
count [18]. These values are combined via addition in the
sequencing logic box in the figure. The resulting address is
stored in the address pointer and subsequently added to the
start address for the appropriate graph slot for the application.
The implemented monitor requires only one memory lookup
per instruction.

Effectively, the monitoring information for each process at
any given point in execution is defined by the contents of the
addpress pointer, the monitoring graph for the process and the
contents of the base address registers. If a context switch is
requested, these values must be updated to use values for the
requested next process. The procedure required for a context
switch inside the monitoring system is described next.

C. OS-to-Monitor Interface for Context Switch

In case of a context switch, control information is ex-
changed between the processor and the monitoring system.
The exchange of monitoring information (Step 3 in Section
IV-A) starts when the processor writes the PID of the next
process into the PID register in the processor interface of the
monitoring system and sets a bit in the Operation register. The
control FSM then performs the following actions:

1) The address pointer for the currently executing process
is saved in the PID addresses storage so that it can be
restored for the next invocation of the process.

2) The graph ID (GID) associated with the next process
is located in the PID to GID binding storage using the
PID written to the processor interface.

3) If the graph ID of the next process differs from the ID of
the previous one, the base address registers are loaded
with values for the graph of the next process. These
values are loaded from the graph memory (e.g., Groupl
Addr, etc).

4) The GID is used to determine the frame address for
the start of the appropriate monitoring graph in graph
memory for the process. This information is stored in
the GID to frame binding storage.

5) The address pointer value for the next process is restored
from the PID addresses storage.

6) The Done bit is set in the processor interface indicating
that the monitoring system is now ready to monitor the
next process. This bit can be read by the processor.

7) Once all other context switch activity for the next pro-
cess has concluded (e.g., processor registers are loaded),
the processor sets an Enable bit in the Operation register
of the processor interface, restarting monitoring. The
processor waits until this bit set is successfully made,
ensuring synchronization. Instructions of the newly-
loaded process are then monitored.

In Section V we show that these steps can be performed in

17 clock cycles for our prototype system.

D. OS-to-Monitor Interface for Process Creation

When a new task is being created by the OS, it is assigned
a unique PID and GID by the operating system. Since many
processes of the same application may exist, the GID may
not be unique. The following steps are used to initialize the
security monitor for the new process.

1) The two identifiers (GID and PID) are passed to
the monitor via the processor interface. The monitor
first searches for an empty slot in the PID addresses
storage and PID to GID binding storage to insert the
new bindings.

2) While making these associations, the GID to frame bind-
ing storage is searched to determine if the appropriate
graph is already loaded. If it is available, the next step
is skipped.

3) If the GID is not found in the GID to frame binding
storage, the GID is inserted into the table and the new
graph is loaded into graph memory using the DMA
interface. If the graph memory is full, a graph to remove
is determined using a least recently used approach.
Following graph loading, base addresses are updated.

4) The Done bit is set in the processor interface indicating
that the monitoring system is now ready to monitor the
next process. This bit can be read by the processor.

During system startup, monitoring graphs are loaded from

an external memory graph pool for the new processes that

El Console | Nios T Console 52
attack Mios II Hardware configuration - cable: USE-Blaster an localhost [USE-0]

Processing string .. !

Attacked!!

Fig. 3. Console display during stack smashing

will be executed by the processor. Concurrently, the processor
performs a series of process creation operations including
initialization of the process stack and control block (registers,
etc.). In Section V, it is noted that while process creation can
require hundreds of cycles for the processor, if the appropriate
monitoring graph is already in the monitoring system, mon-
itoring information update for process creation requires less
than 20 cycles for the monitoring system.

V. PROTOTYPE IMPLEMENTATION
A. System Setup

To verify the functionality of our monitoring system, we
implemented an embedded NIOS II processor plus monitoring
system using a Stratix IV GX230 FPGA located on an
Altera DE4 board. A single-core NIOS executing a pC/OS-
IT operating system was used for testing. Monitoring logic
and memory were implemented in on-chip resources. Mon-
itoring graphs were generated by passing code through a
standard MIPS_GCC compiler flow to generate assembly-level
instructions [18]. The output of the compiler allows for the
identification of branch instructions and their target addresses.
This information was used to generate monitoring graphs for
four MiBench? applications (bitcount, gsort, basicmath, and
stringsearch) and malicious stack-smashing attack code. Our
examination of all MiBench benchmarks determined that the
target for all dynamic branches could be determined at compile
time.

The attack code we use for our system is a simple C function
which accepts a character string from an I/O port and copies
it to a buffer located on the processor stack [20].

void process_input (char xstringpassed) {
char name[90];
strcpy (name, stringpassed) ;
printf ("Processing string
return;

'\n") ;

In this poorly designed code, no check is made to determine
if the string stringpassed is longer than the target buffer,
so the return address of the function can be overwritten
with an address which points into the user-provided input
string. Instead of characters, this “string” can contain processor
instructions which repetitively print out “Attacked!!” on a

Zhttp://wwweb.eecs.umich.edu/mibench/

PID change Context Switch Monitor ready CPU ready
- PID[3..0] Zh) h
+ - Operation[1..0] Oh 2h, Oh
+- Address_Pointer]13..0] 0008h 0009h 0008h
| Virite_Data[31..0] a” 10030010h 10040010h

Done

A ——

Enable

Fig. 4. SignalTap waveforms showing the trigger for monitor context switch (Operation = 0x2), monitor switch finished (Done), and monitor restart monitoring

when CPU ready (Enable)

GID change

[Monitor ready |

PID change

[_Task Create |

- GID[3..0]

B PID3..0]

* - Operation{1..0]

/- Write_Data[31..0]
Done

Fig. 5.

terminal in a loop, although much more malicious behavior
could be imagined. A monitor for the code is able to detect
the unplanned control flow jump and kill the process before the
attack can perform this activity. The hash values stored in the
monitoring graph for the application will not match the values
for the malicious instructions as they are executed during the
attack. As shown in Figure 3, we have confirmed that this
attack will lead to unexpected results (an attack message) if
monitoring is not used.

B. Monitor Context Management

We have verified our ability to perform numerous context
switches between multiple processes of the four monitored
MiBench benchmarks both via simulation and in emulation
hardware. This switch includes both standard process state
used by the processor (e.g., register information, stack) and
monitoring information using the mechanism outlined in Sec-
tion IV-C. Altera SignalTap, a hardware debugger, was used
to generate the waveforms described in this section.

The waveforms in Figure 4 show the synchronization be-
tween the processor and the monitor as a result of the context
switch. First, the processor notifies the monitoring system
of the switch by writing the PID of the next process into
the processor interface. The monitor switch is started by the
processor writing into the Operation register of the interface.
The value of the address pointer for the old process is stored
and the value for the new process is restored to/from PID
address storage immediately after this trigger. The base address
registers are then configured using the write_data port shown
in Figure 2. After the control FSM performs the monitor
update, the Done signal is set in the processor interface
indicating the monitor context switch is finished. Finally,
after the processor finishes other context switch operations,
it sets the Enable signal in the processor interface to restart
monitoring. The processor waits a cycle until this write is
complete. Monitoring for the new process starts with the first
instruction received from the process.

SignalTap waveforms showing the operations for monitor process creation (Operation = 0x1) and monitor update finished (Done)

Application | Instructions | Graph entries

gsort 96 111

bitcount 60 74

basicmath 107 132

stringmatch 77 97
TABLE I

APPLICATION INSTRUCTION COUNT AND MONITORING GRAPH SIZE

Experiments in simulation and in the lab on FPGA hardware
showed that the processor is able to process data for the
MiBench benchmarks equally fast both with and without
monitoring (e.g., no slowdown for monitoring). Context switch
time is extended by 5 cycles versus no monitoring to allow for
monitor context switches. This overhead accounts for the data
exchanges between the processor and monitoring system for
synchronization. Overall, we found that the number of cycles
needed to perform a monitor context switch is 17 versus the 34
cycles needed for the processor to save and restore registers
(note that monitor and processor context switch operations
occur in parallel).

The amount of time needed to create a new process in
the OS is about 600 clock cycles versus 17 to create process
information in the monitor (Figure 5). If a monitoring graph
is loaded from main memory, the cycle count required for the
monitor increases to include reading the number of rows in
the monitoring graph for the new process into graph memory
(about 104 on average for our applications, as seen in Table
I). The number of graph entries (rows) for each application is
somewhat larger than the application instruction count due to
the DFA representation of the graphs [18].

C. Attack Detection and Protection

We have verified in both simulation and in hardware that our
monitoring system is able to detect the stack smashing attack
described in Section V-A and notify the processor so that the
malicious process can be terminated. SignalTap waveforms
derived from observing hardware operation in system are

Attack detected

- PID(3..0]

Enable
Hash([3..0] Oh 4h Oh 2h Oh
+1-Hash_Onehot[15. 0] 0001h A__0010h 00010 A 0004h 37[@1"
- Read_Data[15..0] 0010h ¢ 0004h 8000h 7
Recovery_Signal /
[Instruction hash matches graph memory | [_Instruction hash doesn't match graph memory |
Fig. 6. SignalTap waveforms showing the successful identification of a stack smashing attack. Instruction hash values are checked against expected values

stored in the monitor graph. When a mismatch occurs, a recovery signal is triggered indicating the process should be terminated.

Operation Number of cycles
Interrupt latency 1
Save CPU registers 25
Interrupt handler 129
Interrupt service routine 30
Task delete 126

[Total [311 |

TABLE I
DETAILED ACCOUNTING OF PROCESS DELETE TIME AFTER A MONITOR
DETECTS AN ATTACK.

shown in Figure 6. As described in Section IV-B, an attack
is detected when the hash of the CPU instruction does not
match the expected value stored in the monitoring graph for
the application. In our system, the implemented hash function
counts the number of ones in the instruction to form a four-
bit hash value. The figure shows the four-bit hash value, a
one-hot version of the hash value, and the retrieved, expected
hash value for the instruction from the monitoring graph
(read_data[15:0]). In the waveforms, it can be seen that the
correct hash value is matched twice, but the third hash value is
incorrect, indicating a branch to an unexpected section of code.
As a result of this detection, a recovery signal is generated
and used to trigger an interrupt, notifying the processor that
the process should be terminated.

From Table II, the interrupt latency in this termination
activity is only 1 cycle, limiting the number of executed
attack code instructions to two. Once the interrupt occurs, the
operating system takes control and saves the CPU registers.
Subsequently, the interrupt handler is called to determine
what caused the interrupt to occur. The interrupt handler
also disables certain OS features like context switching. An
interrupt service routine then determines the attack task by
reading the PID from the processor interface in the monitor.
The delete operation for this task in the OS takes 126 cycles.
Overall, 311 cycles are required to recover from an attack and
to continue normal operation.

D. Monitoring System Resources

To provide some context regarding the amount of overhead
required by the monitoring system relative to the processor,
hardware results of the system reported by the Altera Quartus
IT tool are shown in Table III. The lookup table (LUT), flip
flop (FF), and memory resources required for the monitor are
appropriate compared to the processor core. Dynamic power

Available Nios IT with HW monitor

on FPGA | no HW monitor | and controller

LUTs 182,400 1,341 406

FFs 182,400 1,166 522

Mem. bits 14,625,792 2,108,416 524,512

Pwr (mW) - 105.97 41.83
TABLE III

RESOURCE USE AND POWER CONSUMPTION ON A STRATIX IV FPGA

values are also shown in the table. These power numbers were
generated using Altera PowerPlay with standard node toggle
rate settings.

E. Discussion of Security Properties

We argue that the system we have designed and proto-
typed achieves the security requirements we put forth in
Section III-B.

The key observation is that our hardware monitor can detect
when a specific task executes code that is different from the
binary. In such a case, the hash value that is reported from
the processor core to the monitor does not match. (There is
a chance that the attacker is lucky and the hash matches by
coincidence or the attacker is clever and aims to construct code
that matches. This action, however, is very difficult to achieve
in practice and can be defeated by hiding the hash function
[19].) If the monitor detects deviation from the binary, then
the processor is signaled to stop execution of the attacked task.
Thus, SC1 (no execution of attack code) is achieved.

Our system supports multiple tasks that are switched dy-
namically by the operating system. The hardware monitor
follows along in sync and associates the current task on the
processor core with the correct monitoring graph. Thus, we
achieve SC2 (secure processing for multiple tasks).

Finally, when an attack occurs, the hardware monitor in-
forms the operating system about the attack and the targeted
tasks are stopped using a conventional task termination mech-
anism (similar to the ki1l command). This mechanism is
specifically designed to not affect other tasks. Thus, SC3
(isolation of attacked task) is achieved.

We rely on the limitations of attacker capabilities, such as
AC4 and ACS5 (no tampering of operating system or hardware
monitor), to ensure that an attacker cannot circumvent the
security mechanisms we have put in place.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented security hardware for
embedded processors that execute multiple processes under
the control of an operating system. Our monitoring approach
allows the operation of each process to be tracked at the
instruction execution level. If a deviation from the expected
instruction execution sequence is detected, the monitor can
quickly identify it and notify the processor to initiate process
termination. A significant contribution of the work is the
inclusion of multi-context support in the monitoring system.
Monitoring state for each process can be quickly saved during
a process context switch and previously-stored state can be
reloaded. We document the specific steps needed to ensure
synchronization between the processor and monitor to ensure
that each process is always protected during execution. Using
prototyping, we show that our system is effective for multiple
processes managed by an embedded OS. A stack smashing
attack is identified and suppressed. The monitoring system
does not impact application execution time.

In the future, we plan to explore expanding the monitoring
system to support multiple processor cores [21]. This extension
will require monitor sharing and enhanced graph loading.

ACKNOWLEDGMENTS

The authors wish to thank Altera Corporation for the
donation of the Quartus II software and DE4 board. This
material is based upon work supported by the National Science
Foundation under Grant No. CNS-1115999.

REFERENCES

[1] National Vulnerability Database, National Institute of Standards and
Technology, http:/nvd.nist.gov.

[2] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in Proc. of
the IEEE Symposium on Security and Privacy, Oakland, CA, May 2001,
pp. 144-155.

[3] J. C. Mogul, “Simple and flexible datagram access controls for UNIX-
based gateways,” in USENIX Conference Proceedings, Baltimore, MD,
Jun. 1989, pp. 203-221.

[4] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation of
a content-scanning module for an Internet firewall,” in Proc. of the 11th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), Napa, CA, Apr. 2003, pp. 31-38.

[5] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proc. of the 13th USENIX Conference on System Administration (LISA),
Seattle, WA, Nov. 1999, pp. 229-238.

[6] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in Proc. of the General Track
of the Annual Conference on USENIX Annual Technical Conference
(ATEC), Monterey, CA, Jun. 2002, pp. 275-288.

[71 T.-C. Chiueh and E-H. Hsu, “Rad: a compile-time solution to buffer
overflow attacks,” in Proc. of 21st International Conference on Dis-
tributed Computing Systems (ICDSC), Apr. 2001, pp. 409—417.

[8] A. Francillon and C. Castelluccia, “Code injection attacks on Harvard-
architecture devices,” in Proc. of the 15th ACM Conference on Computer
and Communications Security (CSS), Alexandria, VA, Oct. 2008, pp.
15-26.

[9] Y. Younan, W. Joosen, and F. Piessens, “Runtime countermeasures for

code injection attacks against C and C++ programs,” ACM Computing

Surveys, vol. 44, no. 3, pp. 17:1-17:28, Jun. 2012.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program

execution via dynamic information flow tracking,” in Proc. of the

International Conference on Architectural Support for Programming

Languages and Operating Systems, Dec. 2004, pp. 85-96.

[10]

[11] J. Woodruff, R. Watson, D. Chisnall, S. Moore, J. Anderson, B. Davis,
B. Laurie, P. Neumann, R. Norton, and M. Roe, “The CHERI capability
model: Revisiting RISC in an age of risk,” in Proc. of the International
Symposium on Computer Architecture, Jun. 2014, pp. 457-468.

J. Devietti, C. Blundell, M. Martin, and S. Zdancewic, “Hardbound:
Architectural support for spatial safety of the ¢ programming language,”
in Proc. of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, Seattle, WA, Mar.
2008, pp. 103-114.

S. Nagarakatte, J. Zhao, M. Martin, and S. Zdancewic, “SoftBound:
Highly compatible and complete spatial memory safety for C,” in Proc.
of the International Conference on Programming Language Design and
Implementation, Dublin, Ireland, Jun. 2009, pp. 245-258.

D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure embedded
processing through hardware-assisted run-time monitoring,” in Proc. of
the Design, Automation and Test in Europe Conference and Exhibition
(DATE), Munich, Germany, Mar. 2005, pp. 178-183.

S. Mao and T. Wolf, “Hardware support for secure processing in
embedded systems,” IEEE Transactions on Computers, vol. 59, no. 6,
pp. 847-854, Jun. 2010.

D. Chasaki and T. Wolf, “Attacks and defenses in the data plane of
networks,” IEEE Transactions on Dependable and Secure Computing,
vol. 9, no. 6, pp. 798-810, Nov. 2012.

K. Hu, H. Chandrikakutty, R. Tessier, and T. Wolf, “Scalable hardware
monitors to protect network processors from data plane attacks,” in Proc.
of First IEEE Conference on Communications and Network Security
(CNS), Washington, DC, Oct. 2013, pp. 314-322.

H. Chandrikakutty, D. Unnikrishnan, R. Tessier, and T. Wolf, “High-
performance hardware monitors to protect network processors from data
plane attacks,” in Proc. of 50th Design Automation Conference (DAC),
Austin, TX, Jun. 2013, pp. 80:1-80:6.

K. Hu, T. Wolf, T. Teixeira, and R. Tessier, “System-level security for
network processors with hardware monitors,” in Proc. of 51st Design
Automation Conference (DAC), San Francisco, CA, Jun. 2014, pp.
211:1-211:6.

A. B. Sikiligiri, “Buffer overflow attack and prevention for embedded
systems,” Master’s thesis, Department of Electrical and Computer En-
gineering, University of Cincinnati, 2011.

T. Thomas, “Hardware monitors for secure processing in embedded
operating systems,” Master’s thesis, Department of Electrical and Com-
puter Engineering, University of Massachusetts, Amherst, 2015.

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

