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Abstract. In this paper we outline a procedure to determine appropriate parti-
tioning of programmable logic and interconnect area to minimize overall device
area across a broad range of benchmark circuits. To validate our design approach,
FPGA layout tools which target devices with less that 100% logic capacity have
been developed to augment existing approaches that target fully-utilized de-
vices. These tools have been applied to FPGA and reconfigurable computing
benchmarks which range from simple state machines to pipelined datapaths. In
general, it is shown that the minimum area point for architectures similar to
those available from Xilinx Corporation falls below the 100% logic utilization
point for many circuits.

1 Introduction

Traditionally, the capacity of FPGA devices has been completely identified by
the quantity of logic gates available inside the devices. In practice, however, it is
accepted that 100% logic utilization of FPGAs is frequently impractical due to a
limited supply of programmable routing resources. Clearly, the individual nature
of a specific logic design defines the amount of interconnect needed to complete
device routing. If the routing allocated to a device is at a high level relative to its
available logic, unused routing area will be wasted and the design can be defined
as logic limited. If the level of routing resources is at a low level relative to its
available logic, the logic device will be routing-limited, thus requiring the user
to select an FPGA with a larger amount of routing and logic resources in order
to successfully complete place and route. Since the additional logic resources
will likely be unused, this leads to wasted logic area. An area-efficient FPGA
family can be designed by allocating routing resources to a given logic capacity
so that area wastage across a collection of designs with similar amounts of logic
is minimized and the mapping for most designs is balanced.

The issue of balancing FPGA resources to minimize area was first explored
by Dehon in [10]. In this previous work, the interconnect of reconfigurable de-
vices is modelled as a hierarchical binary tree with individual LUTs located at
tree leaves. A collection of benchmark designs was applied to devices of vary-
ing interconnect richness and it was determined that for an FPGA family the
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optimal area point supports 85% logic utilization across all designs. While this
initial work clearly identifies area and logic utilization tradeoff issues, it has two
significant limitations. In general, a binary tree is a limiting interconnect struc-
ture that leads to severe routing inefficiencies [16]. In this paper we consider
lower-dimensional interconnect that more accurately reflects island-style routing
structures found in XC4000 and Virtex devices from Xilinx Corporation [3]. Sec-
ondly, the previously-analyzed benchmarks are primarily oriented toward small
state machines rather than the data paths commonly implemented in contem-
porary FPGAs. In this paper we consider a sampling of these benchmarks in
conjunction with MCNC benchmarks and circuits from the RAW reconfigurable
computing benchmark suite [5] to better represent the benchmark design space.

In performing our analysis of area efficiency it was often necessary to target
designs to devices with less than 100% logic utilization. To perform this mapping
accurately, new FPGA clustering and placement techniques were developed that
specifically assume that some FPGA logic resources will be left unpopulated. It
will be shown that these CAD techniques reduce overall required routing area
by 40% versus previously-reported clustering and placement approaches when
applied to designs mapped to devices with less than 100% logic utilization.

2 Background

In developing an area efficient FPGA design methodology, an effort has been
made to match switch populations to existing commercial devices and to use
available benchmark circuits from a spectrum of design suites.

2.1 Island-style FPGAs

While early FPGA architectures typically contained simple logic blocks con-
taining one or two LUT/flip-flop pairs, more recent devices [2] [3] have grouped



multiple LUT/FF pairs together into a single cluster to take advantage of design
locality and to reduce FPGA place-and-route time. A key action in designing
these architectural families has been the determination of logic cluster granu-
larity. As previously described by Betz and Rose [7], if logic clusters contain
insufficient logic resources, the amount of inter-cluster routing resources needed
for routing will be great. Conversely, if clusters contain excessive amounts of
logic, much of these resources will be wasted. Figure 1 shows a generalized model
of a cluster-based FPGA device. Each cluster contains N basic logic elements
(BLEs), each possessing a single look-up table/flip-flop pair. The cluster has a
total of I inputs and O outputs which connect cluster logic to the surrounding
interconnection matrix. In [7] it was determined that the appropriate relation-
ship between N and I is I = 2N+2. To provide parallels to the Xilinx Virtex [3]
architecture, a cluster size of N = 4 and cluster input count of I = 10 is used in
experimentation. The routing structure of an island-style architecture is created
by replicating a logic and routing cell in two dimensions to form a uniform, flat
logic and routing substrate. The fraction of cluster I/Os that connect to tracks
in each routing channel (Fc = 0.3) and the connectivity of each routing track
to other tracks in a switchbox (Fs = 3) have been set to values determined by
previous work [8].

Often, FPGA companies use the same logic and routing cell (with associated
proportion of tracks per channel) to make numerous logic block arrays of differing
logic block counts. If a logic design does not meet the routing constraints of a
specific device in the family, it is often possible to meet routing constraints by
migrating the design to a larger device in the family and leaving the added logic
resources unused.

2.2 Design Requirements

For a given design, a known relationship exists between the amount of logic (or
number of logic blocks) and the number of wires associated with the design. This
relationship, Rent’s Rule [12]:

Rent′s Rule : N = KGp (1)

where N is the number of wires emanating from a region, G is the number
of circuit components (or logic blocks), K is Rent’s constant, and p is Rent’s
exponent, characterizes the routing density in a circuit. Most circuits, except
for linear arrays with primarily local communication, have been shown to have
Rent exponents of p > 0.5 indicating that as a quantity of logic scales, the
amount of interconnect emanating from it grows faster than its perimeter, which
is directly proportional to G0.5. As stated previously in [10], it is possible to
characterize the relationship between a design and a target FPGA relative to
their corresponding p values assuming sufficient logic capacity is present in the
FPGA. If pinterconnect > pdesign the design is effectively logic limited since some
routing will be unused and if pinterconnect < pdesign the design is routing limited



since some logic resources will have to be left unused in order for the design to
route. Generally, FPGAs that have interconnect levels most closely aligned with
the majority of target benchmarks will have the least area wastage.

While the Rent exponent p of an FPGA based on a binary tree is generally
easy to determine [10] given the centralized nature of hierarchical routing, the
determination of p for island-style arrays must be determined experimentally.
In general, if a design with Rent exponent p successfully routes on an FPGA
device with no unused logic or routing resources (e.g. the design is balanced),
the device may be characterized as having an interconnect capable of supporting
other designs with Rent exponent p. It should be noted that full utilization of
interconnect indicates that the device track count is the minimum needed for
routing the array, not that every wire track is used. In Section 5 it will be
shown that this procedure of calibrating the Rent exponent of given array sizes
and track widths can be performed prior to experimentation to determine the
capability of an array to route a specific group of designs (e.g. those with similar
Rent exponents). It is interesting to note that while the absolute value of island-
style track count relative to p is difficult to determine with accuracy analytically,
the growth rate of track count relative to logic block count in devices with Rent
exponent p can be determined analytically [14] through the use of average design
wire length.

3 Related Work

With the exception of [9] and [10], most FPGA architectural evaluations [4]
[8] have assumed that FPGA designers and consumers desire full device logic
utilization for all designs, even at the cost of extreme amounts of routing area
that is unused for most designs. As mentioned in [10], for most previous FPGA
architectural evaluations, following assignment of design logic to programmable
logic resources, device track counts and switch patterns are varied to find the
lowest-cost solution from a routing area standpoint. In our evaluation, both
routing and logic utilization are allowed to vary to permit a minimum overall
area solution.

In [9], an FPGA architecture is described that allows logic blocks to be used
either for logic or routing. While this approach allows for area tradeoffs, the fine-
grained nature of the device architecture makes routing impractical for large,
macro-based designs frequently implemented in practice today. As previously
mentioned, in [10], a bifurcator-based binary tree model for routing is used to
evaluate area utilization. While providing a flexible, scalable model for area
experimentation, the bifurcator interconnect model is generally too restrictive
for commercial development due to performance and locality limitations. A more
complete discussion of previous work in FPGA architecture evaluation for island-
style devices and others can be found in [8] and [10].



4 Experimental Methodology

In order to determine the area-minimizing ratio of logic to interconnect for an
FPGA logic family, it is necessary to map a collection of benchmarks of approx-
imately the same logic block count to a variety of FPGA arrays with varying
logic block counts and interconnect richness (e.g. Rent exponents p). One map-
ping issue encountered in performing this evaluation was a lack of documented
FPGA clustering and placement tools that can be applied to designs with less
than 100% logic block utilization. Before describing our complete methodology,
several novel approaches for mapping logic designs to FPGA devices with less
than 100% utilization are described.

4.1 Clustering

A key aspect of mapping LUT-based designs to FPGAs with logic clusters is
the process of clustering. In previous, full-utilization clustering approaches [7]
[13], each cluster is packed as full as possible in an attempt to reduce the overall
number of required device clusters. In our new approach, an attempt is made
to spread the logic evenly across all clusters in the device while limiting the
number of inputs that logically drive each cluster to be less than the number
of pins physically available. The motivation for this approach is apparent if one
considers the need for subsequent routing. Since each cluster input can drive any
LUT input, underassigning logical inputs to physical cluster input pins gives a
router much more flexibility in routing wires. For example, consider a cluster
that has ten input pins, but only six that are to be used. The six logical inputs
can be assigned to any of the ten available pins. If all ten inputs needed to be
used, the number of possible input pin permutations would be greatly reduced.
Another advantage of the modified clustering approach is that it distributes logic
evenly across the chip. Generally, this helps the router avoid routing hot spots.

In the new clustering algorithm, the number of LUTs to be held in each
cluster (Nhigh, Nlow) is first determined. These utilization numbers reflect the
overall LUT utilization of the device and differ by only one LUT. Following this
step the number of device clusters that hold each quantity of LUTs (Chigh and
Clow, respectively) is determined. Clustering is then performed for the two types
of clusters with cluster inputs in each case, Icluster, set to limit cluster fanin.
Additional details about the clustering algorithm can be found in [15].

4.2 Placement

Simulated annealing is by far the most popular placement algorithm used for FP-
GAs [8]. This hill-climbing approach requires a cost function that closely models
the costs likely to be faced during a subsequent routing phase. Prior to devel-
oping new clustering techniques, several new placement techniques were tested
for use in conjunction with the original greedy clustering algorithm described in
[7]. For designs targeted to devices with less than 100% logic utilization, greedy
clustering leads to a number of both fully-populated clusters and some clusters



that are completely empty. Both of the following placement techniques attempt
to distribute the empty clusters inside the target device to minimize routing con-
gestion. Each technique involves the use of a modified simulated annealing cost
function that has been augmented to include costs in addition to wire length.

Bin Utilization. While wire length minimization has been shown to be an
effective technique for promoting routability in fully-populated designs, the use
of wire length alone in partially-populated devices can lead to routing congestion
in one area of the device while other areas are completely empty. A way to
overcome congestion in specific regions of the device is to penalize local region
congestion in the annealing cost function.

To promote congestion-free routing, a bin-based placer was developed that
considers the device as a collection of placement regions. Prior to placement, an
occupancy limit for each region is set to be the percentage of populated clusters in
the entire device. The net effect of a utilization factor is that populated clusters
are spread evenly throughout the device. If the population of a bin exceeds the
occupancy limit at a given time, a penalty factor is added to the annealing wire
length cost function.

The efficiency of the placement approach is directly related to the size of the
bin used. If the bin size is too small, not only is computation time increased,
but also overall placement wirelength may be adversely affected. If the bin size
is too large, the benefits of binning may be reduced. We have found that a bin
size containing approximately 25-36 clusters leads to the best placement results.

Non-linear Congestion. An alternate binning approach, first described in [6],
abandons the wire length cost model for simulated annealing in favor of a cost
model based on wiring track demand within specific bins. In this case, the cost
of the logic in each bin is characterized as:
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where Dx (Dy) is the demand for horizontal (vertical) routing tracks within
the region, Sx (Sy) is the supply of available horizontal (vertical) tracks within
the region and ρ is a scaling factor. This approach is much more time consuming
than the utilization-based binning approach since demand values must be up-
dated by examining the routing bounding box of each net affected by a potential
block move.

4.3 Experimental Procedure

To demonstrate how an area-efficient FPGA family can be determined, the ten
benchmarks listed in Table 4.3 were mapped to a set of island-style FPGAs
of various logic block counts and channel densities. The Rent exponents listed
in Table 4.3 were determined through recursive bipartitioning using a KLFM



Circuit Source LUTs Rent Exp. (p)

switch Ind 1860 .62

r4000 PREP 1825 .65

alu4 IWLS93 1522 .63

apex2 IWLS93 1878 .70

ssp16 RAW 1798 .54

bsort RAW 1653 .48

spm4 RAW 1892 .52

bigkey MCNC 1707 .56

des MCNC 1591 .57

seq MCNC 1750 .65

Table 1. Benchmark Design Statistics

mincut partitioner [11]. These similarly-sized benchmarks were taken from the
MCNC benchmark suite [17], the RAW benchmark suite [5], and the PREP
FPGA benchmark suite [1]. One design, a small network switch, was obtained
from a commercial company.

The following steps were performed to determine the appropriate amount of
routing tracks for a logic family to achieve minimum area across all benchmarks:

1. The Rent parameters of grids containing 22x22 logic blocks (clusters) were
determined for assorted channel track counts using the procedure listed in
Section 2.2. Since all benchmarks achieve exactly or nearly 100% logic uti-
lization at this logic block count, the largest track count required for a grid
of this size represents an upper area bound for these benchmarks.

2. Designs were mapped to grids with additional logic blocks compared to those
used in step 1. Mapping was performed using the clustering and placing
approaches outlined in Section 4. In many cases a design mapped to a larger
logic grid required a lower track count to route successfully, thus requiring
less routing area at the cost of additional logic area.

3. The minimum area point across all designs, track counts, and logic array sizes
was determined through area summation of both logic block and routing
switch transistor counts.

The VPR tool set [8] was used to perform all design routing with routing
segment length distributions the same as those found in Xilinx Virtex devices.
The trans count tool from the University of Toronto was used to evaluate
island-style FPGA area. As mentioned in Section 2, all clusters were assumed to
contain four LUTs.

5 Results

The first step in the design procedure was to determine which of the clustering
and placement algorithms were best suited to mapping designs to FPGAs with
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Fig. 2. Ave. minimum tracks based on device utilization

less than 100% logic utilization. All techniques, except the modified clustering
approach described in Section 4, used the greedy clusterer described in [7]. Clus-
ters created by the modified clustering algorithm were placed in the FPGA using
simulated annealing based solely on wire length minimization. As can be seen
in Figure 2, the modified clustering approach was most effective at distributing
logic around the device for a variety of LUT logic utilization levels. Even though
in many cases the total number of inter-cluster nets that needed to be routed
increased, the additional routing flexibility obtained through reduced LUTs and
inputs per cluster helped achieve lower-area placements. While utilization and
congestion bin-based costs performed better than wire-length only based cost,
the improvements were minimal.

The second part of the design analysis was to determine the number of clus-
ters required per device to map the benchmark designs to devices with a fixed
number of tracks per channel. As seen on the left side of Figure 3, as the number
of available tracks per channel was reduced, the number of clusters required per
device increased dramatically indicating low logic utilization per device for these
cases. On the right side of the graph it can be seen that beyond a certain inter-
connect point (about 50 tracks per channel) adding extra tracks does not reduce
average cluster count. This point indicates 100% routability for all benchmark
designs. The dashed lines in the graph will be explained below.

The final step in the analysis was to add the transistor area consumed by logic
clusters and routing for the design curves illustrated cumulatively in Figure 3 to
determine the area for designs mapped to various levels of logic and interconnect.
As shown in Figure 4, the minimum area point for all designs occurred for a track
count of about 38. From experimentation, this value roughly corresponds to a
Rent exponent p of approximately 0.55. In Figure 3 it can be seen that a track
count of 38 corresponds roughly to an average logic utilization of about 80%.
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Fig. 3. Ave. clusters required for logic devices versus track counts

Two observations can be noted. First, a Rent exponent of 0.55 is in the range of
the Rent values of the benchmarks, as one would expect. Secondly, the p value
of 0.55 and utilization value of 80% are close to the 0.6 and 85% found by Dehon
for the binary tree model [10].

6 Conclusions

In this paper we have outlined a procedure by which an area-efficient FPGA
family can be designed. By evaluating a series of benchmark circuits, it is possi-
ble to determine routing track counts that will lead to reduced overall logic and
routing area across all designs. An important step in this work was the anal-
ysis of several clustering and placement approaches to promote routability in
FPGA designs with less than 100% logic utilization. While improved clustering
techniques were found to be highly effective in reducing routing area, bin-based
placement approaches were found to be less effective.
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