
Logic Emulation with Virtual Wires

Jonathan Babb, Russell Tessier, Matthew Dahl,
Silvina Hanono, David Hoki, and Anant Agarwal

MIT Laboratory for Computer Science
Cambridge, MA 02139

Abstract

Logic emulation enables designers to functionally verify
complex integrated circuits prior to chip fabrication. How-
ever, traditional FPGA-based logic emulators have poor
inter-chip communication bandwidth, commonly limiting
gate utilization to less than 20 percent. Global routing con-
tention mandates the use of expensive crossbar and PC-board
technology in a system of otherwise low-cost, commodity
parts. Even with crossbar technology,current emulators only
use a fraction of potential communication bandwidth be-
cause they dedicate each FPGA pin (physical wire) to a sin-
gle emulated signal (logical wire). Virtual Wires overcome
pin limitations by intelligently multiplexing each physical
wire among multiple logical wires and pipelining these con-
nections at the maximum clocking frequency of the FPGA.
The resulting increase in bandwidth allows effective use of
low dimension, direct interconnect. The size of the FPGA
array can be decreased as well, resulting in low cost logic
emulation.

This paper covers major contributions of the MIT Vir-
tual Wires project. In the context of a complete emula-
tion system, we analyze phase-based static scheduling and
routing algorithms, present Virtual Wires synthesis method-
ologies, and overview an operational prototype with 20K-
gate boards. Results, including in-circuit emulation of a
SPARC microprocessor, indicate that Virtual Wires elimi-
nate the need for expensive crossbar technology while in-
creasing FPGA utilization beyond 45 percent. Theoretical
analysis predicts that Virtual Wires emulation scales with
FPGA size and average routing distance, while traditional
emulation does not.

1 Introduction

Field Programmable Gate Array (FPGA) based logic emula-
tors are capable of emulating complex logic designs at clock
speeds four to six orders of magnitude faster than software
simulators. This performance is achieved by partitioning a
logic design, described by a netlist, across an interconnected

 Logic
Simulation

Accelerated
 Simulation

Year Month Day HourWeek

Hour

Day

Week

Month

 Logic
Emulation

 Final
Silicon

Execution
 Time

Compilation
 Time

Minute

Minute

Figure 1: Verification Alternatives

array of FPGAs. The netlist partition on each FPGA, con-
figured directly into logic circuitry, is then executed at near
hardware speeds.

Figure 1 compares logic emulation to other prototyping
methods, including simulation and accelerated simulation,
as well as to final silicon. The y-axis measures relative
time for compiling or constructing a hypothetical design,
while the x-axis measures relative time for executing one
set of test vectors on this design. As an example, consider
final silicon which takes months to construct and runs a set
of vectors in less than one minute. The same design and
vector set could be compiled for a logic simulator on the
order of minutes, but would take years to execute. Logic
emulation fills a wide gap between simulation and actual
silicon. With both a moderately fast compile time and a fast
execution time, emulation offers a compromise between the
programmability of software and the fast execution speed of
hardware.

Logic emulators are further characterized by interconnec-
tion topology, target FPGA, and supporting software. The in-
terconnection topology describes the arrangement of FPGA
devices and routing resources. Example interconnects in-
clude full crossbars and two-dimensional meshes. Impor-

Page 1

Not Limited
− unused FPGA pins
− unused FPGA gates

Gate Limited

Pin Limited
− no unused pins
− some unused gates

Balanced
− no unused pins
− no unused gates

− some unused pins
− no unused gates

Figure 2: Partition Limitation Scenarios

tant target FPGA properties include gate count, pin count,
and mapping efficiency. Supporting software is extensive,
combining netlist translators, logic optimizers, technology
mappers, global and FPGA-specific partitioners,placers, and
routers.

Traditional emulators are gate inefficient due to inher-
ent pin limitations in the FPGA devices. To reduce pin
limitations, these emulators supplement FPGAs with cus-
tom crossbars chips and expensive PC-board and backplane
technology, further increasing the per-gate cost of emulation.
This paper suggests an alternative solution to pin limitations
based on multiplexing of FPGA resources.

1.1 Virtual Wires

In existing emulator architectures, both the logic configu-
ration and the network connectivity remain fixed for the
duration of the emulation. Every emulated partition of the
input design, one per FPGA, consists of a set of gates and
a set of signals communicating to other partitions. Each
emulated gate is mapped to one or more FPGA equivalent
gates and each inter-partition emulated signal is allocated to
a pair of pins between two FPGAs. Thus for a partition to be
feasible, the partition gate and pin requirements must be no
greater that the available FPGA resources. These constraints
yield four possible scenarios (Figure 2).

When typical circuits are mapped onto available FPGA
devices, partitions are predominately pin limited. That is,
all available FPGA gates cannot be utilized due to lack of
pin resources to support them. We demonstrate this result-
ing bandwidth gap with a set of partitionings of the Sparcle
and CMMU benchmarks (see Section 5.1) for various gate
counts. Figure 3 shows the resulting curves, plotted on a
log-log scale. Partition gate count is scaled by a factor of
two to get FPGA equivalent gates with an assumed mapping
efficiency of 50%. On the same curve we plot the pin and
gate capacity of target FPGAs: the Xilinx 3000 and 4000
series [40], the Altera Flex 8000 series [3], and the Atmel
6000 series [5]. For equal average gate counts in the bench-
mark partitions and FPGA devices, the required average pin
counts for partitions are much greater than the available pin
capacity of the FPGAs.

� Alewife Cache Controller partitions
� Sparcle partitions
� Xilinx 3000 & 4000 FPGAs
� Xilinx 4000H FPGAs
� Atmel FPGAs

 Altera FPGAs
� Altera MCM

|
100

| | | | | | | | |
1000

| | | | | | | | |
10000

| | | | | | | | |
100000

|
|

|
|

|
|100

|
|

|
|

|
|

|
|

|1000

 FPGA / Partition Gate Count

 F
P

G
A

 /
P

ar
ti

to
n

 P
in

 C
o

u
n

t

Bandwidth
Gap

�

�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�
�
�
�
�

�
�
��

�

�

�
�

�
�

�

Figure 3: Pin Count as a Function of FPGA Partition Size

Pin limits set a hard upper bound on the maximum usable
gate count any FPGA gate count can provide. Low utiliza-
tion of gate resources increases both the number of FPGAs
needed for emulation and the time required to emulate a
particular design. This discrepancy will only get worse as
technology scales; current trends indicate that available gate
counts are increasing faster than available pin counts. Fu-
ture breakthroughs in area I/O [27] may partially address this
problem for FPGA packaging, but will leave open the more
difficult issues of inter-board and system-level communica-
tion. Additionally, any new technology will be challenged
to keep up as minimum feature size decreases faster than
required bonding area.

Virtual Wires eliminate the pin limitation problem of pre-
vious emulators by intelligently multiplexing each physical
wire among multiple logical wires and pipelining these con-
nections at the maximum clocking frequency of the FPGA.1

A Virtual Wire represents a simple connection between a
logical output on one FPGA and a logical input on another
FPGA. Established via a pipelined, statically-routed com-
munication network, these Virtual Wires increase available
off-chip communication bandwidth by multiplexing the use
of FPGA pin resources (physical wires) among multiple em-
ulation signals (logical wires).

Without Virtual Wires, one to one allocation of logical
wires to physical wires does not exploit available pin band-
width because:

� emulation clock frequencies are one or two orders of
magnitude lower than the potential FPGA frequency;

� all logical wires are not active simultaneously.

1Although this paper focuses on logic emulation, Virtual Wires can be
applied to any multi-chip system.

Page 2

Logical InputsLogical Outputs

Physical Wire

FPGA #1 FPGA #2

Figure 4: Hard Wire Interconnect

However, by clocking physical wires at the maximum fre-
quency of the FPGA technology, several logical connections
can share the same physical resource. Figure 4 shows an
example of six logical wires allocated to six physical wires.
Figure 5 shows the same example with the six logical wires
sharing a single physical wire. The physical wire is multi-
plexed between two pipelined shift loops (Section 3). Each
register in the pipeline carries a single bit of information
from one logical output to the corresponding logical input in
the neighboring FPGA.

Systems based on Virtual Wires exploit several properties
of digital circuits to boost bandwidth from available pins.
In a logic design, evaluation flows from system inputs to
system outputs. In a synchronous design with no combina-
tional loops, this flow can be represented as a directed acyclic
graph. Thus, through analysis of the underlying logic cir-
cuit, logical values between circuit partitions only need to be
transmitted once. Furthermore, since circuit communication
is inherently static, communication patterns will repeat in a
predictable fashion. By exploiting this predictability, com-
munications can be scheduled to increase pin utilization.

1.2 Emulation Software

Software for logic emulation with Virtual Wires roughly fol-
lows the standard emulation tool flow (Figure 6). The input,
a netlist of the logic design to be emulated, is transformed
into a multi-FPGA configuration bitstream to be downloaded
onto the emulator. Not shown are the technology libraries,
target FPGA characteristics, and FPGA interconnect topol-
ogy needed to make the correct transformations. We next
describe the standard steps.

Translator: The input netlist to be emulated is typi-
cally generated with a hardware description language or a
schematic capture program. The netlist must be syntac-
tically translated into a format readable by the emulation
software. Commercial and public domain tools are available
for generic source-to-source translation. At MIT we used
both Verilog and LSI logic formats.

Logical Outputs

Logical Inputs

Logical Inputs
Logical Outputs

Physical Wire

FPGA #1 FPGA #2

Mux

Shift Loops

Figure 5: Virtual Wire Interconnect

Tech Mapper: The translated netlist is still specified in
terms of the source technology library – for example LSI
Logic’s LCA100K technology [26]. Before emulation, the
netlist must be mapped to a target library of FPGA prim-
itives. Although commercial and public domain tools are
also available for mapping, our simple and fast technique
is to create a mapping library which describes each source
primitive in terms of primitives in the target library. The
inefficiency of this mapping can be largely recovered with a
following logic optimization pass.

Partitioner: After mapping the netlist to the target tech-
nology, the netlist is divided into partitions, each of which
can fit into a single target FPGA. Without Virtual Wires,
each partition must have both fewer gates and fewer pins
than the target device. With Virtual Wires, the total gate
count, including the overhead of Virtual Wires multiplexing
logic, must be no greater than the target FPGA gate count. In
the MIT implementation, we used the InCA Concept Silicon
partitioner [19]. This partitioner performs K-way partition-
ing with min-cut and clustering techniques.

Logic Netlist

Partitioner

FPGA APR

Translator

Tech Mapper

FPGA Configuration Bitstream

Global Placer

Global Router

VW Scheduler

VW Synthesizer

Figure 6: Emulation Software Flow

Page 3

Target System

FPGA

Host Workstation Emulation System

Figure 7: Virtual Wires Emulation System

Global Placer: Individual circuit partitions must be
placed into specific FPGAs. An ideal placement mini-
mizes system communication, thus requiring less routing
resources. We wrote a simple placer based on simulated
annealing [21] to minimize total Manhattan wire length.

Global Router: In traditional emulation, inter-FPGA
communication is established with a global routing phase.
If crossbars are employed, this phase must also determine
the routing configuration for each crossbar as well as pin-
assignments of partition I/Os to FPGA pins. For Virtual
Wires emulation, there are no direct physical connections
between partitions, and this phase is completely replaced
with new virtualization software to be described in this pa-
per.

FPGA APR: Once routing is complete, there is one netlist
for each FPGA. Each netlist must be processed with FPGA
specific automated place-and-route (APR) software to pro-
duce configuration bitstreams. We used the XACT [40]
software for Xilinx FPGAs.

With Virtual Wires, we replace the global router of tradi-
tional software with modules created to specifically support
automatic pin multiplexing: the Virtual Wires Scheduler and
the Virtual Wires Synthesizer (Figure 6). Together we refer
to the transformation performed by these two components as
virtualization. Although each emulation step is an intriguing
aspect of CAD research, this paper focuses on these novel
virtualization components, described below.

Virtual Wires Scheduler: The resulting set of netlist
partitions mapped to each FPGA, in conjunction with the
routing resource constraints of the emulation system, is used
to determine an appropriate schedule of logical wires onto
physical wires. This schedule establishes a feasible time-
space route for every logical wire, while guaranteeing that
all multi-FPGA combinational paths are correctly ordered.
Schedule optimizations include minimizing the total time
needed to execute the circuit, as well as minimizing the
Virtual Wires logic overhead. While this scheduling problem
is similar to those encountered in high level synthesis, it is
complicated by inter-FPGA routing constraints and the need
to account for multiplexing overheads. In Section 2, we

describe the phase-based scheduling algorithm implemented
at MIT.

Virtual Wires Synthesizer: This step implements the
chosen routing schedule by synthesizing special multiplex-
ers and registers that are added to the circuit partition in each
FPGA. This logic is effectively a pipelined, statically routed
network in the FPGA technology itself. For maximum ef-
ficiency, the synthesizer takes into account the underlying
idiosyncrasies of the target FPGA technology. For exam-
ple, FPGA pin assignment and allocation of internal tri-state
buses are carefully optimized. The resulting synthesized
architectures provide insight into Virtual Wires implemen-
tation. Section 3 compares three different architectures for
the Xilinx 4000 series.

1.3 Low Cost Emulation System

Although virtualization can be used to map input designs to
any FPGA-based logic emulator, the process is most valu-
able when enabling the use of inexpensive, direct intercon-
nect and cheap, low pin count FPGAs. To demonstrate this
advantage, we have constructed FPGA boards composed of
sixteen mesh-connected FPGAs and commodity SRAMs.
These boards may themselves be mesh-connected, leading
to straightforward software mapping and simplified system
scalability. This system (Figure 7), described in Section 4
has demonstrated the following functionality:

� In-circuit emulation: FPGA array mimics one or more
components of the target system and is pod-connected
to the chip sockets of those missing components.

� Simulation acceleration: FPGA array replaces a piece
of a simulation model and connects to the software
simulation environment by remote calls through the
host interface.

� Hardware subroutines: FPGA array implements a
Verilog version of a subroutine in a C program and
connects to the software by remote calls through the
host interface [9].

Page 4

Section 5 describes our results for both in-circuit emulation
and simulation acceleration of the Sparcle benchmark on
our system, including booting a multiprocessor operating
system. We leave the exploration of hardware subroutines
to future reports.

1.4 Scalable Technology

Not only can Virtual Wires be used to compose low-cost sys-
tems of gigantic numbers of FPGAs, but this technology also
scales as FPGA sizes increase. To demonstrate this scalabil-
ity, Section 6 uses Rent’s Rule to derive theoretical models
of emulation gate overheads for systems with and without
Virtual Wires. This model accounts for the mismatch be-
tween circuit communication and FPGA communication in
the hard-wired case and includes a topological factor that ex-
plains why a mesh topology does not scale without Virtual
Wires. With this model we show how the derived Virtual
Wire utilization scales with increasing FPGA device size and
average routing distance, while hard-wired utilization may
not.

1.5 Overview

The rest of this paper is organized as follows: Section 2 de-
scribes the Virtual Wires scheduling and routing algorithms.
Section 3 then compares three Virtual Wires synthesis ar-
chitectures. After Section 4 describes our demonstration
hardware system, Section 5 then present results for both
simulation acceleration and in-circuit emulation on this sys-
tem. Section 6 analyzes the overhead and scalability of Vir-
tual Wires versus hard-wires. Finally, Section 7 describes
related work in the field and Section 8 makes concluding
remarks.

2 Scheduling Algorithms

Virtualization replaces the inter-FPGA routing steps of tra-
ditional emulation with software that synthesizes a routing
network into the netlist partition on each FPGA. This net-
work establishes global routes via statically scheduled bits
rather than hard-wired interconnections. The first phase of
this approach is a scheduling and routing algorithm. Our
phase-based methodology suffices to prove the concept of
Virtual Wires scheduling and is within a factor of two of
more optimal algorithms presented in recent literature [32].
Before describing the scheduling algorithms, let us first in-
troduce the basic operating principles of Virtual Wires.

2.1 Phase-Based Operating Principles

The emulation clock period is the clock period of the logic
design being emulated. To facilitate multiplexing we break

Emulation Clock

phase 1 phase 2 phase 3 phase 4

Evaluation Communication

microcycle

uEnable

uCLK

Figure 8: Clocking Framework

this period into a number of microcycles determined by a
free-running �CLK (Figure 8). In this scheme, a microcy-
cle is the shortest distinguishable unit of time. All rout-
ing is scheduled in discrete microcycle increments. These
microcycles are grouped into sequential phases to support
combinational paths that extend across multiple chips. The
advantage of this approach is a decoupling of logic execution
speed from inter-chip communication speed, allowing high-
speed communication cycles to co-exist with a long-latency
emulation clock period.

A �Enable signal divides each phase into an evaluation
time span and a communication time span. Within a phase, a
given number of microcycles are dedicated to the evaluation
of the FPGA logic, followed by a set of cycles to commu-
nicate the results to other partitions in destination FPGAs.
Evaluation takes place at the beginning of a phase, with log-
ical inputs being propagated through each circuit partition to
determine logical outputs for that phase. Not all inputs are
available at the beginning of each phase, and not all outputs
are produced. For inputs which are available, all logic is
evaluated and subsequent outputs are produced. Each input
and output transmission will be assigned to a single phase
such that signal precedences are observed. At the end of
the phase, the produced outputs are communicated to other
circuit partitions at the microcycle clock rate. All necessary
phases must be executed by the end of the emulation clock
period.

For simplicity, we limited our approach to synchronous
logic with a single global emulation clock. Any asyn-
chronous signals cannot be statically-routed and therefore
must be hard-wired to dedicated FPGA pins. Virtual Wires
can be extended to multiple clocks [32] and gated clocks, as
well as certain types of asynchronous logic, such as multiple
asynchronous clock domains.

Page 5

QD

CLK

In1

In2

In3

Out1

Out2

Out3

Clk

AND

AND

OR

REG

Figure 9: Dependence Calculation Example

2.2 Definition of Dependence and Depth

Two timing analysis computations, dependence and depth,
aid in Virtual Wires scheduling. Both dependence and depth
apply to inter-partition wires.

To analyze input to output Dependence, we scan the logic
in each partition to determine the set of outputs to which
a combinational path exists from each input. An output is
said to be a dependent (or a child) of an input if a change
in that input can combinationally change the output. The
dependence relationships between inputs and outputs for
a given partition are derived recursively from those of its
constituent logic elements. In determining dependence, we
assume that all outputs of a combinational library primitive
are dependents of all the inputs of that primitive. Similarly,
no outputs are dependents of any of the inputs for sequential
primitives.

Let Depend[i] denote the set of outputs of a given par-
tition that are dependents of an input of the same partition
connected to an inter-partition wire i. Similarly, let D�1[i]
represent the set of inputs that are ancestors to an output
driving an inter-partition wire i. By our definition, inputs to
storage elements and external outputs will have no depen-
dents: Depend[i] = ;, and outputs of storage elements as
well as external inputs will have no ancestors: D�1[i] = ;.

Figure 9 shows an example circuit partition containing
four interconnected primitive logic elements with three in-
puts (not including the clock) and three outputs. The depen-
dence relationships for this partition are as follows:

� Depend[In1] = fOut1g,

� Depend[In2] = fOut1; Out2g,

� Depend[In3] = fOut1; Out2g.

Likewise, the ancestors are as follows:

Partition1

Partition3

Partition2

Interpartition Wire

W1

W2

W3 W4

W5
W6

Dependence Relation

External
 Inputs

External
 Outputs

Figure 10: Depth Calculation Example

� D�1[Out1] = fIn1; In2; In3g,

� D�1[Out2] = fIn2; In3g,

� D�1[Out3] = ; (REG is a storage element).

The depth calculations use the dependence relationships.
The depth of inter-partition wire i is the largest number of
partitions in a forward combinational path starting at that
wire. Depth is computed recursively from the wire depen-
dence sets such that for each wire i:

Depth[i] =

(
0 ifDepend[i] = ;
1 + max

j2Depend[i]
Depth[j] otherwise

(1)
Figure 10 shows an example design with three partitions

and six inter-partition wires. The dashed-lines denote input-
output dependence relationships. In this example, wires are
at the following depths:

� depth 0: W4, W6

� depth 1: W2,W3,W5

� depth 2: W1

Our phase assignment algorithm uses depth to prioritize
routing of critical paths. During scheduling, although both
W1 and W2 have no ancestors, W1 has a greater depth and
will be given priority.

2.3 Phase Assignment Algorithm

The goal of the phase assignment algorithm is to determine
an appropriate schedule of logic wires between design par-
titions onto physical wires between FPGAs. The resulting
schedule must establish a feasible time-space route for every
logical wire, while observing FPGA routing resources con-
straints and guaranteeing that all multi-FPGA combinational
paths are correctly ordered.

The core scheduling algorithm consists of a shortest path
router inside a greedy phase assignment loop. Within the

Page 6

Given:
I : set of inter-partition design wires
ComCycles : communication cycles per phase
c : total micro-cycles per phase

Produce:
S : output schedule which assigns each wire i 2 I

to a shiftgroup in a particular phase

Procedure PhaseAssign
call Depend CalcDependents(I)
call Depth CalcDepth(Depend)
initialize Done array to false

for each wire i 2 I
for each dependent wire j 2 Depend[i]

DependCount[j] DependCount[j] + 1
endfor

endfor

n 0 /*phase counter*/
loop forever

call RouteInit
W wires with Done[i]=false and DependCount[i]=0
if W is empty exit loop
n n + 1
sort W by Depth[i], greatest depth first
for each wire i 2W

src FPGA partition where source of i is placed
dest FPGA partition where dest of i is placed
path Route(src,dest)
if path exists then

distance = length(path) - 1
maxSignals ComCycles - distance
L i, and up to maxSignals additional wires

from W that have the same src and dest as i
for each j 2 L

delete j from W
Done[j] true
for each k 2 Depend[j]

DependCount[k] DependCount[k] - 1
endfor

endfor
shiftgroup f n, path, L g
add shiftgroup to schedule S

endif
endfor

endloop

save n, c in schedule S /*final phase and cycle count*/
end Procedure

Figure 11: Phase Assignment Algorithm

main loop of the phase assignment algorithm, Figure 11, as
many wires as possible are scheduled and routed. Once no
more wires are available to schedule, the algorithm advances
to the next phase. All unscheduled wires are thus pushed
to the following phase when either their ancestors have not
been scheduled, or there is no remaining routing path avail-
able in that phase. The phases are processed sequentially
and no attempt is made to go back and optimize previously
scheduled phases. Given enough phases and at least one po-
tential path between all pairs of FPGAs, any design can be
scheduled. This is easier than hard-wired routing problems,
in which various rip-up and re-try strategies may be needed
to find a feasible route.

The algorithm starts by first calculating the dependence
and depth arrays for all wires as described in the previous
section. An additional array, Done[i], is set to false to mark
each wire i as unscheduled. The algorithm then initializes a
DependCount[i] array from the dependence information of
each wire. When this counter reaches zero, as the algorithm
progresses, wire i will be ready to schedule. The algorithm
proceeds by assigning wires to phases until all wires have
been scheduled. Advancement to following phases occurs
when no wires can be scheduled in the current phase. Within
each phase, ready wires with the greatest depth are iterated
first, guaranteeing that critical paths are given priority. The
routing algorithm is successively called to route as many
ready wires as possible.

Once a successful route is established from a source to
destination FPGA, as many as ComCycles� distance ad-
ditional ready wires between the same source and destination
are formed into a shiftgroup, whereComCycles is the num-
ber of communication cycles in a phase and distance is the
number of FPGA crossings in the routing path. For exam-
ple, if their are eight cycles per phase and the distance is
three, a total of five wires can be routed in the same shift-
group. The additional wires are also prioritized by depth.
For each routed wire j in the shiftgroup,Done[j] is set, and
the set of wires k 2 Depend[j] are iterated to decrement
DependCount[k]. If DependCount[k] = 0, wire k can be
scheduled in a following phase. Any ready signals that are
not successfully routed in a phase are automatically delayed
to following phases. As long as the delayed signals are not
on the critical path, the total number of phases will not be
affected.

The ComCycles parameter specifies the number of mi-
crocyles to spend in communication during each phase. This
number must be greater than the routing diameter of the
topology to guarantee that all signals can route. For the
results in Section 5, it turns out that eight communication
cycles match the eight-way tri-state bussing of the Xilinx
architecture.

Page 7

Given:
T : emulator topology
src : source FPGA in T
dest : destination FPGA in T

Produce:
path : list of FPGAs along shortest route from src to dest

Procedure RouteInit
for each FPGA src 2 T

for each FPGA dest 2 T
Reserve[src,dest] connections in T from src to dest
Avail[src,dest] (Reserve[src,dest] 6= 0)

endfor
endfor

end Procedure

Procedure Route(src, dest)
path ShortestPath(src,dest,Avail) /* Dijkstra’s algorithm */
if path exists then

for each FPGA f 2 path
if f = src then /* first FPGA in path */

src1 f
else /* following FPGAs in path */

dest1 f
Reserve[src1,dest1] Reserve[src1,dest1]-1
Avail[src1,dest1] (Reserve[src1,dest1] 6= 0)
src1 f

endif
endfor
return path

else
return null path

endif
end Procedure

Figure 12: Routing Algorithm

Shiftgroup f
phase number
source FPGA, 2nd FPGA, 3rd FPGA, ..., dest. FPGA
logical wire 1, logical wire 2, ..., logical wire N

g

Figure 13: Shiftgroup Data Structure

2.4 Route Algorithm

The goal of the routing algorithm (Figure 12) is to find
a shortest available path, in terms of FPGAs, between the
source and destination FPGA of a set of inter-partition wires.
The algorithm keeps track of the reserved and available phys-
ical connections between FPGAs in the emulator topology
and is repeatedly called from the inner loop of the phase as-
signment algorithm. Route uses shortest path analysis with
a cost function based on channel availability. Shortest path
routing minimizes both the number of microcycles needed
per phase and intermediate hop logic overhead.

Before the beginning of each phase, a reservation ma-
trix, Reserve[i; j], is initialized to the number of physical
connections between FPGAs i and j in the emulator topol-
ogy. Route applies Dijkstra’s shortest path algorithm [34] to
channel availability, Avail[i; j] = (Reserve[i; j] 6= 0), to
determine the shortest path between the source and destina-
tion FPGAs. If the shortest path exists, then the reservation
matrix is updated by subtracting one from each element
along that path and route returns with this path; else, route
returns unsuccessfully.

After each successful route, PhaseAssign forms a new
shiftgroup data structure (Figure 13). This data structure in-
cludes the phase number, FPGA path, and set of logical wires
in that group. This information is written to the schedule file,
to be passed to the synthesis phase of virtualization.

2.5 Execution Speed Analysis

Before proceeding, let us compute the execution speed of
Virtual Wires emulation. Based on our phased operating
principles, the emulation clock cycle time will be determined
by the total number of microcycles needed:

v = n� c; (2)

where n is the number of phases and c the number of cycles
per phase as previously defined. If c is the same across all
phases, then we can immediately recognize that:

n � L; c � D; (3)

where D is the maximum distance of any shiftgroup route
(in the worst-case D is the network diameter of the FPGA
topology), and L is the length of the critical path in the
design netlist, equivalent to the maximum depth. That is,
there must be enough cycles in each phase to route a signal
across the diameter of the network as well as enough total
phases to schedule the longest combinational path between
circuit partitions.

Additionally, we recognize that the total number of mi-
crocycles is also constrained by the maximum multiplexing
performed at each FPGA:

v � PC=Pf ; (4)

Page 8

where PC is the maximum circuit communication require-
ment, including partition pins and any additional pins re-
quired for through hops, and Pf is the pin count of each
FPGA2. Combining these two observations and assuming
that the number of microcycles per phase is constant across
all phases, we get the following best-case speed result:

Best-case microcycles: The cumulative microcycle count
for all phases within a scheduled emulation clock period
is bounded below by the following equation:

v � max(

latency boundz }| {
L�D ;

bandwidth boundz }| {
PC=Pf): (5)

where L is critical path length, D is network diameter,
PC is the maximum circuit partition pin count including
through hops, and Pf is the FPGA pin count.

In our practical experience, design emulation speed is deter-
mined predominately by the latency bound.

2.6 Improvements

We proposed the preceding algorithms to demonstrate the
feasibility of Virtual Wires and for ease of implementation
of the synthesis structures described in the following sec-
tion. These algorithms can be improved by scheduling at
the granularity of a single microcycle and eliminating the
phase barriers altogether. The advantages of such improve-
ments [32] include:

� possible initiation of computation and subsequent rout-
ing as early as one microcycle after a signal arrives at a
destination rather than waiting for the following phase,

� potential overlapping of computation with communica-
tion in different parts of the system rather than execution
in exclusive time spans,

� support of different propagation delays for individual
wires rather than observing a worst-case delay for all
computation in a phase,

� flexible scheduling of wires at the microcycle gran-
ularity rather than scheduling of dedicating pipeline
paths per phase. This scheduling also eliminates costly
pipeline filling overhead at the beginning and end of
each phase.

We continue by describing the synthesis architectures de-
signed at MIT. These architectures implement the virtual-
ized routing network produced by the phase assignment and
routing procedures.

2Note that we have ignored pipeline startup overhead associated with
each shiftgroup.

VW−
FSM

Input Registers

Output Registers

 Design
Partition

Hops

FPGA

VW−
FSM

 Design
Partition

Figure 14: Virtualized FPGA Composition

3 Synthesis Architectures

Although it would be possible to design an FPGA with mul-
tiplexed pins, we implemented Virtual Wires without custom
hardware support. That is, the virtualization process synthe-
sizes the required multiplexing components directly into the
FPGA netlists, to be downloaded with the original design
partitions. Thus, any existing FPGA-based logic emulation
system can take advantage of Virtual Wires. After discussing
the synthesis algorithms, this section proceeds to describe
three of many possible synthesis architectures based on shift
registers in Xilinx FPGAs.

3.1 Synthesis Algorithm

The Virtual Wires Synthesizer flowchart component in Fig-
ure 6, takes the following input:

� emulator topology,

� external design I/O pin assignment,

� routing schedule,

� design partition netlists,

and produces:

� one virtualized netlist for each FPGA.

As shown in Figure 14, these new netlists contain the orig-
inal design partition along with all necessary Virtual Wires
communication logic. Synthesized logic includes input and
output shift registers, through hops, and the VW-FSM finite
state machine control logic.

After reading in the appropriate inputs from previous com-
pilation stages, the Synthesizer algorithm (Figure 16) pro-
ceeds to synthesize the VW-FSM control logic for each
FPGA. For the most part, this logic is identical for each

Page 9

VW−FSM
uCLK

uEnable

Control
Signals

Figure 15: VW-FSM Control Logic

Given:
T : emulator topology
E : external I/O pin assignment
S : routing schedule
D : set of design partition netlists

Produce:
X : set of virtualized FPGA netlists

Procedure Synthesize
N number of phases in S
C cycles per phase in S
for each FPGA f 2 T

given (N,C) synthesize control logic vwFsm[f]
virtualLogic[f] vwFsm[f]

endfor

for each phase P 2 S
for each shiftgroup G 2 P

R inter-FPGA routing path for G
L number of logical wires 2 shiftgroup G
for each FPGA f 2 R:

if f is first FPGA in R then
logic synthesize output shifter of length L
assign each logical output in G to logic
assign physical FPGA output pin to logic

else if f is an intermediate FPGA in R then
logic synthesize intermediate hop
assign physical FPGA I/O pins to logic

else /* if f is last FPGA in R */
logic synthesize input shifter of length L
assign each logical input in G to logic
assign physical FPGA input pin to logic

endif
assign control nets for vwFsm[f] to logic
virtualLogic[f] virtualLogic[f] + logic

endfor
endfor

endfor
for each external I/O e 2 E

assign e to its specified FPGA physical pin
endfor

for each FPGA f 2 T
partition[f] design partition in D placed on f
X[f] virtualLogic[f] + partition[f]
endfor

end Procedure

Figure 16: Synthesis Algorithm

FPGA, determined solely by the number of phases and mi-
crocycles per phases in the schedule. The VW-FSM (Fig-
ure 15) logic takes as input the �CLK and the �Enable
signals, distributed to each FPGA, and generates the appro-
priate control signals during each microcycle. As described
in Section 2, the �CLK is the free running pipeline clock,
while the �Enable clock is synchronized to the emulation
clock and determines when to start the communication se-
quence for each emulation phase. The output control signals
are responsible for strobing logical wires into the appropriate
registers and controlling multiplexer selection.

The algorithm iterates through the shiftgroups in each
phase to construct the input, intermediate hop, and output
architectures. Each shiftgroup data structure contains the
logical wires assigned to that group as well as the group’s
phase and FPGA path. As the architectures are synthesized,
they are connected between the partition logical wires and
FPGA physical wires as well as to the appropriate control
signals. Not shown in the algorithm, the Synthesizer also
makes low level implementation decisions at this time to
optimize the use of limited FPGA resources, including tri-
state busses and combinational logic blocks. In addition,
we have added a simple pin permutation algorithm which
minimizes the use of on-chip routing resources for hops.

The Synthesizer lastly assigns any external connections
to corresponding periphery FPGA pins. Some of these pins
connect to external interface hardware for communication
with a logic simulator or other control programs. Additional
pins provide global clocks and sequencing signals. The
remaining pins may be connected to external pods to support
in-circuit emulation.

The accumulated logic synthesized for each FPGA is then
merged with the original design partition for that FPGA and
a final virtualized netlist file is output in FPGA format (XNF
for Xilinx). These files are input to the FPGA-specific place-
and-route stage which creates the emulator bitstream.

3.2 Shift Register Architectures

We now compare three shift register architectures synthesiz-
able to Xilinx 4000 FPGAs.

Full Shift Register

The full shift register architecture was originally proposed as
a proof-of-concept Virtual Wires implementation [7]. This
architecture consists of identical input and output shift loops
(Figure 17). In output mode, shift loops load emulated
signal states at the beginning of each phase and shift these
states out serially onto a routed physical connection at the
microcycle rate. For connections requiring multiple hops,
a one-bit shift register is placed in each intermediate FPGA
(Figure 18), forming a shift register pipeline between source
and destination. At the end of the pipeline, corresponding

Page 10

ld
si so

ld
si so

ld
si so

ld
si so

Logical Inputs

Logical Outputs

Physical
Output

ld
si so

Load

Shift/Rotate

Physical
 Input D D D D

QQQQ
uCLK

Phase Enable

Figure 17: Full Shift Register Architecture

D Q

uCLK

Physical
 Input

Physical
 Output

Phase Enable

Figure 18: Intermediate Hop Architecture

input mode shift loops de-multiplex and latch the emulated
signals and drive them into the emulated logic. Note that
the input shift loops must store their state so that all em-
ulated logic inputs are available for subsequent evaluation.
Output logic, however, can be reused for multiple groups of
emulation signals in different phases. To support per-phase
routing, each inter-FPGA I/O pad is preceded by a multi-
plexer that selects the appropriate shift loop output during
its active phase. Pads are bidirectional with the pad driver
enable signal asserted during phases in which that pad is an
output. To minimize associated pad logic, the Synthesizer
groups inputs and outputs separately when possible.

Gated Shift Register

To reduce the Virtual Wires consumption of core FPGA
resources, the Synthesizer can utilize architecture-specific
FPGA features. In low-cost, low-pincount FPGA parts,
many of the I/O pads are not connected to pins, and the
Synthesizer can concatenate their registers to form Virtual
Wires shift registers (Figure 19). Due to pad configuration
constraints, these shift registers cannot be parallel-loaded,
so they are not usable for output shiftgroups. However, the
Synthesizer can place input shiftgroups and intermediate hop
shift registers here. Since input shiftgroups must hold the
emulated signal state after receiving it, and these I/O regis-
ters do not have clock enables, the Synthesizer generates and
distributes a gated �CLK. During the portions of the Virtual
Wires cycle in which the emulated logic is being evaluated,
this clock is frozen. In addition, the length of the input
shiftgroups is adjusted to divide evenly into the number of

si so si so

Shift/Rotate

Physical
 Input

Q Q

Logical Inputs

Unused Pad

si so

Q

Unused Pad

Shift/Hold

uCLK

Figure 19: Gated Shift Registers Using Pad Registers

�CLKs between evaluation periods so that the state in these
registers can recirculate without change. In the 84-pin PLCC
Xilinx 4005, this approach recovered 102 input and hop shift
register bits. However, clock gating and the slower timing
of the I/O pad registers reduced the achievable �CLK rate.

Addressable Shift Register

A further variation is to replace the output shiftgroup shift
registers with tristate multiplexers available in the Xilinx
architecture (Figure 20). The Synthesizer creates an addi-
tional set of global control signals, labeled cycle enables,
to enable each bit of the multiplexer during the appropriate
micro-clock tick of each Virtual Wires phase. The Syn-
thesizer also replaces the input shift registers with sets of
individual register bits whose clock enables are controlled
by the phase signal as before, but whose clocks are succes-
sive cycle enables. This architecture considerably reduces
the cost of the Virtual Wires shift loops in terms of logic re-
sources, but the additional control signals and the use of the
tri-state multiplexers add routing overhead. This overhead
is reduced somewhat by placing many of the additional sig-
nals on global clock nets. Also, strategic use of the I/O pad
registers for pipelining recovers speed. Finally, this architec-
ture can support the more flexible Virtual Wires scheduling
methods described in [32].

Page 11

Logical Outputs
Physical
Output

Cycle Enables

Phase Enable

QD

ena

QD

ena

QD

ena

QD

ena

Logical
Inputs

Physical Input

Phase Enable

Cycle Enables

Output Shiftgroup Input Shiftgroup

Figure 20: Addressable Shift Loop Architecture

Comparisons

Table 1 compares each architecture in implementing the
smallest benchmark circuit, Palindrome (see Section 5.1),
on the 16-FPGA demonstration hardware presented in Sec-
tion 5. Speed is measured in terms of the �CLK speed. We
calculated overhead as a percentage of consumed resources
taken up by Virtual Wires. This Virtual Wire resource con-
sumption is computed by subtracting the emulation logic
resource consumption from total resource consumption. We
measured emulation logic resource consumption by com-
piling un-virtualized partitions onto high pin count FPGAs.
CLB refers to the basic Xilinx Combinational Logic Block,
which includes both combinational lookup tables and se-
quential registers. We list the Programmable Interconnect
Points (PIPs) as reported by the Xilinx router. Note that the
reported numbers are for hardware emulation and do not in-
clude any additional speed and resource overheads that may
be attributed to simulation acceleration.

The full shift register implementation is relatively fast but
has significant overhead. The gated shift register architec-
ture using the I/O pad registers is somewhat slower due to the
reduced speed of these registers. This version does use fewer
of the core registers, but routing overhead is higher because
of the greater wiring distances covered between the pad reg-
isters and the core logic. Finally, the addressable scheme,
has generally lower logic and routing overhead while main-
taining moderate speed. The results in the remainder of this
paper are based on the basic full shift register scheme, al-
though we believe the addressable scheme to be the best of
the three schemes because it can support more sophisticated
scheduling algorithms as described in [32].

4 Demonstration Hardware System

Our demonstration hardware building block is a scalable em-
ulation board [36] which is inexpensive to manufacture and

Resource Design Total Logic
Logic (Virtual Overhead)

Fig 17 Fig 19 Fig 20
Packed CLBs 54 79 80 65
(Total) (32%) (33%) (17%)
Lookup Tables 115 165 167 131
(Combinational) (30%) (31%) (12%)
Registers 74 141 102 115
(Sequential) (48%) (27%) (36%)
Xilinx PIPs 1009 1729 1948 1612
(Routing) (42%) (48%) (37%)

Average Resource Usage per FPGA
�CLK Speed 33MHz 24MHz 25MHz
Emulation Speed 1.2MHz .89MHz .93MHz

Maximum Clock Speed

Table 1: Architectural Comparison

easy to build (Figure 21). One or more boards are interfaced
to a host workstation. Each board contains sixteen Xilinx
XC4005 FPGAs [40] interconnected in a two-dimensional
nearest-neighbor mesh. The board is six layers, uses only
through-hole devices, and is ten inches square in size. Sys-
tem size is scaled by attaching additional boards on any of
the four sides of the current system boards, without the need
for crossbars or esoteric backplane technology. On board
SRAM supports emulation of large design memories. At the
present time we use a SparcStation 10 as the host interface
although the emulation board may be reconfigured to inter-
face to virtually any host computer. Any emulation board
can communicate with this host workstation through either
a serial or S-bus communication port. These interfaces are
used to both observe in-circuit emulation status and to pro-
vide circuit inputs and outputs for simulation acceleration.

The following sections further detail the important fea-
tures of the demonstration system.

4.1 FPGA Array

To emphasize the utility of Virtual Wires for inter-chip com-
munication, we used no expensive crossbar chips and only
low pin-count FPGAs (84-pin PLCCs). These FPGAs may
be clocked at speeds approaching 40MHz thus resulting
in small inter-chip delays and high emulation throughput.
Figure 22 shows the board schematic. Each FPGA com-
municates with its four nearest neighbors (logically North,
South, East, and West) through eight bidirectional I/O sig-
nals. To minimize multi-FPGA routing resources, these I/O
signals are distributed along the chip package in an alternat-
ing pattern (Figure 23). Thus I/O port signals are physically
allocated so that adjacent I/O pins are assigned to signals
from differing ports. With this permutation a signal passing
through the chip need only be routed the length of several
pins rather than across the body of the entire chip. Two

Page 12

Figure 21: Virtual Wires Emulation Board

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

68HC11

8

8

8 8

64Kx4

 North
Connector

 South
Connector

RS−232
Serial

64Kx4

64Kx4

64Kx4 64Kx4

64Kx4

64Kx4

64Kx4 64Kx4

64Kx4

64Kx4

64Kx4

64Kx4

64Kx4

64Kx4

64Kx4

 West East

 Sbus
Interface(32)

(32)(32)

(32)

Figure 22: Emulation Board Schematic

NSEWNSEW

XC4005
 84 Pin
 PLCC
Package

N
S
E
W
N
S
E
W

Pin Group

S
N
W
E
S
N
W
E

SNWESNWE

Figure 23: FPGA Pin Permutation

pin groups are located along each side of the package. This
connection scheme is analyzed in detail in [18].

4.2 Scaling to Multiple-Board Systems

Each Virtual Wires prototype board can function as either
a stand-alone system or as part of a larger group of boards.
Multiple-board systems are constructed by connecting in-
dividual boards together to form a two-dimensional mesh
(Figure 24). A clock driver chip and remote leads for clock
cables allow one board to serve as a single global source
for the other boards. �CLK signals are fanned out to lo-

Page 13

Board 0 Board 1

Board 2 Board 3

Figure 24: Multi-Board Emulation System

cal logic at the destination boards using a clock distribution
chip. Bi-directional FPGA I/O signals along the periphery
of each board extend across connectors in each of the four
directions. FPGA configuration information is transferred in
a serial chain to all FPGAs in the system starting at the board
connected to the download cable in the upper rightmost cor-
ner of the mesh. System size is currently constrained to a
total of ten boards (160 chips) by the Xilinx-imposed limit
on the configuration bitstream, although this limit may be
overcome with multiple download cables.

4.3 Memory and Host Interfaces

Each FPGA in the mesh has twenty-two dedicated I/O lines
which interface to a 64K�4 SRAM chip. These chips can
be used to emulate sections of on-chip memory and are
populated as needed. Virtual Wires software is used to mul-
tiplex address, data, and control signals for the SRAM so
that a number of individual memory accesses to the same
SRAM chip may take place during each emulation clock
cycle. Twenty nanosecond SRAMs are used in the current
prototype. SRAM interface signals have been allocated to
dedicated FPGA pins to reduce capacitive loading on inter-
FPGA signal lines and to simplify system software.

A low bandwidth serial interface via an embedded micro-
controller provides access to the array for data transfer, con-
figuration, and FPGA state readback. Data signals from the
controller interface directly to the North port of the FPGA in
the upper left corner of the array. The embedded controller
has the capability to download configuration information to
the array thus eliminating the need for an additional down-
load cable from Xilinx.

To provide a higher bandwidth interface to the host, a
seventeenth Xilinx XC4005 chip serves as an intermediary
between an Sbus interface card located in the host SparcSta-
tion and the Xilinx array. This chip is capable of transferring

words of data between the Sbus card [16] and the eight bit
North port of the Xilinx chip in the upper right position of
the array.

4.4 Application

The prototype system allows the logical behavior of one cir-
cuit component to be emulated while the rest of the system is
simulated. It contains a simulation interface to both the LSI
Logic LSIM and Cadence Verilog simulators. At a given
simulated clock edge, software drivers transfer data repre-
senting inputs to the host workstation which subsequently
forwards this data to the emulation system via the serial or
S-bus host interface. Once output results are generated, the
drivers return them for display or further simulation.

As an alternative to simulation acceleration, a target sys-
tem may be interfaced directly to the emulator with a proto-
typing pod. This pod plugs into the chip socket in the target
system. After FPGA configuration, the emulation system
exchanges data with the target system at each emulation
clock while performing internal evaluation at FPGA device
speeds.

In both modes of operation, simulation and emulation,
the usability of the system is enhanced by our InnerView
Hardware Debugger [17]. This tool consists of host software,
embedded controller software, and FPGA circuitry which
extracts the emulation state from all FPGAs and coordinates
this state with the internal register names of the design under
emulation. This tool takes advantage of the serial interface’s
capability to perform readback from FPGAs on a chip by
chip basis. The controller can be programmed to trigger
a readback bitstream from any FPGA in the system, and
subsequently transfer the values back to the host workstation
for evaluation.

5 Results

We have successfully compiled designs up to 18K gates
onto the demonstration system. In conjunction with the
scheduling and synthesis algorithms described in this paper,
we used the Synopsys Design Compiler [33] for translation
and mapping, the InCA Concept Silicon partitioner [19] for
partitioning, our simulated-annealing-based placer, and the
standard Xilinx-provided tools for FPGA-specific place and
route. Compile time is roughly 3 to 4 hours on a Sparc-
Station 10, with 90 percent of this time consumed by the
vendor specific FPGA compile. This compilation can thus
be accelerated by processing independent FPGA compiles
in parallel. The following sections describe our benchmarks
and report simulation and emulation results.

Page 14

Statistic Palindrome Sparcle CMMU

LSI Gate Count 14,241 17,252 85,721
Element Count 4,623 4,802 37,871
Element Complexity 3.1 3.6 2.3
Memory Bit Count 0 4,352 na
Net Count 4,626 5,094 na

Table 2: Statistics for Benchmarks Designs

Results Palindrome Sparcle Sparcle
Simulation Simulation Emulation

FPGAs 16 20 24
Avg. partition Gates 890 868 714
Avg. partition I/O 45 126 119
Max. partition I/O 45 437 206
Emulation Speed (MHz) 1.00 0.12 0.18

Table 3: Simulation Acceleration and Emulation Results

5.1 Emulation Benchmarks

Let us introduce relevant features of three benchmark de-
signs for this paper (Table 2). The first design, Palindrome,
is a simple 15K gate systolic array used for debugging the
system and calibrating the various Virtual Wires architec-
tures. The remaining two designs are actual chips from the
MIT Alewife Multiprocessor. Sparcle [2], is an 18K gate
SPARC processor with some modifications to enhance its
usefulness in a multiprocessor. The Cache Controller and
Memory Management Unit (CMMU) [22] is a complex 86K
gate controller. For each design, our statistics include the
LSI Logic LCA100K [26] gate count, the number of logic el-
ements, the element complexity (gate count / element count),
the number of on-chip memory bits, and the total number of
nets connecting elements. Note that for CMMU measure-
ments the memory elements are not included.

5.2 Simulation Acceleration

We have collected results from the successful simulation
acceleration of Sparcle and Palindrome (Table 3). For simu-
lation acceleration, speed refers to the evaluation rate of the
emulation hardware rather than the actual simulation rate.
The latter rate is currently limited by the speed of the sim-
ulator interface (2.1KHz) or the bandwidth across the host
interface (41KHz for S-Bus or 30Hz for serial port). Fig-
ure 25 shows the allocation of resources inside each FPGA
for Sparcle. While there is a fixed overhead of roughly 12
percent of the CLBs for Virtual Wires, usable CLBs exceed
45 percent. Note that due to internal FPGA routing, total
utilization approaching 100 percent is not achievable.

 Virtual Wires Overhead
 Average Usable CLBs
 Usable CLBs

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10
|

11
|

12
|

13
|

14
|

15
|

16
|

17
|

18
|

19
|

20
|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Chip Number

 C
L

B
 U

ti
liz

at
io

n
 (

p
er

ce
n

t
o

f
19

6
C

L
B

s)

Figure 25: FPGA Resource Allocation for Sparcle

5.3 In-Circuit Emulation

We used the emulation system in place of a Sparcle chip
in a testbed board developed for the Alewife multiproces-
sor project. The emulator plugs directly into the Sparcle
chip PGA socket using a commercially-built interface pod
attached to the emulator board edge connectors. The emula-
tor synchronizes automatically to the Sparcle system clock
and control signals. Therefore, no modifications to the target
system are needed other than slowing the system clock. The
last column in Table 3 shows in-circuit emulation results for
Sparcle. Four additional FPGA chips are needed to support
the pod interface for simulation acceleration. The emulated
Sparcle has executed system test programs successfully, in-
cluding booting the Alewife operating system at 180KHz.

5.4 Comparison with Traditional Emulation

Table 4 contrasts the required FPGA pin counts for Sparcle
emulation on a hard-wired crossbar and mesh configurations
with the actual Virtual Wires board pin counts. Note that
the Virtual Wires pin count is not a fixed constraint like
the hard-wired pin counts. By increasing the total number
of microcyles, we can lower the Virtual Wires pin count to
as low as two pins per FPGA. Hard-wired mesh pins were
estimated by multiplying the required crossbar pins by the
average route length. This estimate is actually an under-
estimate because some wires connect to multiple FPGAs.
Shown beside the hard-wired I/Os is also the Pin Multipli-
cation Factor for each case. The PMF is simply the increase
in pins needed if Virtual Wires are not employed. The table
also compares emulation speed with estimated speeds for
the hard-wired case. Virtual Wires speed is computed by

Page 15

Results Sparcle Sparcle
Simulation Emulation

FPGAs 20 24
Critical Path Length, L 10 partitions 11 partitions
Average Route Length, d 2.44 FPGAs 2.34 FPGAs
Maximum Route Length, D 7 FPGAs 6 FPGAs
Avg. VW-mesh I/O 25 29
Avg. HW-cross I/O (PMF) 126 (5.0) 119 (4.1)
Est. HW-mesh I/O (PMF) 294 (11.8) 293 (10.1)
VW-mesh �CLK Speed 12.0 MHz 18.0 MHz
VW-mesh phases � cycles 10� 10 11� 9
VW-cross phases � cycles 10� 2 11� 2
VW-mesh Emulation Speed 0.12 MHz 0.18 MHz
Est. VW-cross Emulation Speed 0.60 MHz 0.82 MHz
Est. HW-mesh Speed (ideal) 0.94 MHz 1.01 MHz
Est. HW-cross Speed (ideal) 1.30 MHz 1.43 MHz

Table 4: Comparison with Traditional Emulation

multiplying the number of phase and cycles-per-phase by
the �CLK rate. Because our system does not have cross-
bars or FPGAs of the required pin count, we estimate po-
tential hard-wired speeds. The estimate is based on the
critical path length, L, and average route distance d, in our
circuit partitions. It also assumes 20ns delays for FPGA-
to-FPGA hops and FPGA-to-crossbar-to-FPGA delay, and
50ns delay for internal FPGA logic partition paths. Thus
crossbar speed is L � 20ns+ L � 50ns while mesh speed
is L � d � 20ns + L � 50ns. Note that to achieve these
speeds, FPGAs with the required pin counts must be used to
maintain the same critical path and route lengths.

It is beyond our partitioning capability to map Sparcle
onto 32-pin mesh connected FPGAs without Virtual Wires.
However, in our earlier work [7] we did partition a version
of Sparcle without memory or external I/Os onto 100-pin,
5000-gate FPGAs. We needed at least 31 FPGAs if they were
fully connected, and greater than 100 FPGAs if they were
connected in a torus. The FPGA explosion is correspond-
ingly worse for the high communication A-1000 benchmark.

As a final comparison, note that reported results for ap-
plication of the TIERS Virtual Wires routing algorithm [32]
to Sparcle claim microcycle counts as low as 40 for a mesh,
and 16 for other direct-connected topologies. These results
support potential Sparcle emulation in excess of 1 MHz.

6 Analysis

In this section we derive theoretical gate utilization for logic
emulation with and without Virtual Wires and show that
emulation with Virtual Wires scales with increasing FPGA
device size.

Parameter IBM FPGAs 4000H Sparcle CMMU
K 2.5 0.84 0.93 1.3 8.4
B 0.6 0.57 0.60 0.62 0.45

Table 5: Rent’s Rule Parameters

6.1 Rent’s Rule

We begin by reviewing an empirical observation made in
1960 by E.F. Rent of IBM. Rent prepared two internal mem-
oranda containing the log plots of pins versus gates for por-
tions of the IBM series 1400 computers [23]. The basic
result is the following equation:

Rent
0
s Rule : P = KGB (6)

where P is the number of pins, G is the number of gates,
K is a Rent’s constant, and B is Rent’s exponent. As with
most rules, it has limitations. Rent’s Rule can be used to
measure the communication parameters of a given imple-
mentation technology as well as the parameters of a circuit.
For a circuit, both its architecture and organization greatly
affect the parameters. For example, pipelining a processor
increases communication requirements due to dependencies
between pipeline stages. Table 5 shows the original reported
IBM constants as well as those we have measured for the
FPGA technology and the Sparcle and CMMU benchmarks.
Note that the 4000H FPGAs fall on a different curve due to
their higher pin to gate ratio. For the other FPGAs, a B of
0.5 roughly corresponds to the area versus perimeter for the
FPGA die. The lowerB, the more locality there is within the
circuit. Thus, the CMMU has more locality than Sparcle,
although it has more total communication requirement, K.

6.2 Hard-Wires Gate Utilization

For circuits that obey Rent’s Rule, we can determine the
gate utilization for hard-wires, under pin-limited conditions
(Figure 26). Given pin limitations, the number of FPGA
pins, Pf , dictates the number of circuit partition pins, Pc,
available for the circuit:3

Pc =
1
d
Pf ; (7)

where d is the average distance, in terms of FPGA bound-
ary crossings, for each wire. This factor accounts for pins
consumed by intermediate hop routing4. We next substitute
Rent’s equation for both sides of Equation 7:

KcG
Bc
c =

1
d
KfG

Bf

f (8)

3For this analysis, we work with average partition pin and gate require-
ments. Pin limitation effects are worse when the circuit is non-uniform.

4For simplicity we are ignoring the effect of global nets with multiple
destinations.

Page 16

All Pins
Used

Unused
 Gates

Gc

G − G
f c

Figure 26: Gate Utilization without Virtual Wires

dh = d1=Bc

Kh =
�
Kf

Kc

�1=Bc

Bh =
Bf

Bc
� 1

Table 6: Hard-Wired Utilization Parameters

Solving forGc yields the predicted number of mapped gates
available to each circuit partition:

Gc =
� 1
d

Kf

Kc
G
Bf

f

�1=Bc

(9)

In this analysis, mapped gates refers to the gate count in
the circuit’s native technology, not the much higher count,
FPGA-equivalent gates, claimed by FPGA vendors.

We next define new parameters, dh, Kh, andBh, Table 6,
to simplify our work. Substitution of these newly defined
parameters into Equation 9 and dividing by Gf yields the
average per-FPGA utilization with hard-wires:

Uhw =
1
dh

KhGf
Bh : (10)

Note that if we combine the 1=dh and Kh terms, this equa-
tion is very similar to the original Rent equation. Here we
leave these terms separate to provide insight into the factors
which affect overall hard-wired utilization. Each parameter
is significant as follows: Bh shows how utilization will scale
with FPGA device size. IfBh is negative, utilization will de-
cline with increasing size, with a slope of Bh on a log scale.
On the other hand, utilization is directly proportional to Kh

for a fixed device size, and inversely proportional to dh. For
a crossbar interconnect with dh = 1, Kh determines the
offset of the utilization curve. For non-ideal interconnects
and with Bc in the range of 0.5, the topological factor of
dh translates to a roughly quadratic decrease in hard-wired
utilization as average routing path length increases.

6.3 Virtual Wires Gate Utilization

Let us model per-FPGA Virtual Wires costs as V0+V1�dPc,
where V0 is the per FPGA cost associated with the control

All Pins
UsedUsed Gates

Overhead

vG

Gc

Figure 27: Gate Utilization with Virtual Wires

circuitry andV1 is the cost associated with each logic I/O. The
total number of circuit pins is Pc and d is the same distance
factor used here to amortize the cost of intermediate hops
for each Virtual Wire into the overall cost equation.

For mapping circuits which obey the Rent equation, we
can substitute Pc = KcG

Bc
c to get the average Virtual Wires

cost:
Gv = V0 + V1dKcGc

Bc : (11)

Furthermore, d = 1 for a crossbar, and a derived upper limit
to the average wire length for a mesh as a function of the
total number of FPGAs, N , as reported by Bakoglu [8], is:

d =
2
9

�
7
NBc�0:5 � 1
4Bc�0:5 � 1

�
1�NBc�1:5

1� 4Bc�1:5

�
1� 4Bc�1

1�NBc�1
; (12)

Thus given Rent’s parameters for a given design, the average
Virtual Wires overhead can be expressed strictly in terms of
circuit and FPGA gate counts. We can then relate the FPGA
gate count to the circuit gate count and virtual wires overhead
as:

Gf = Gc +Gv : (13)

Substituting Equation 11 and rewriting yields:

V1dKcGc
Bc +Gc � (Gf � V0) = 0: (14)

Solving Equation 14 for Gc yields the optimal partition
size for a particular FPGA device size and circuit Rent pa-
rameters. We can further rewrite equation 14 in terms of
utilization Uvw = Gc=Gf to get:

V1dKcGf
BcUvw

Bc + (Uvw � 1)Gf + V0 = 0: (15)

Interestingly, Equation 15, and the mathematical solution
for Uvw, are not a function of Pf , the FPGA pin counts, or
the FPGA Rent parameters. While lower pin counts may
increase the pin multiplexing factor, and therefore emula-
tion latency, utilization will not be affected. Finally, from
Equation 15 it is apparent that if Bc < 1, then as Gf ! 1
Virtual Wire utilization will approach unity,Uvw ! 1, inde-
pendent of other parameters. However, for smallGf the gate
utilization will be low due to the dominating V0 factor. The
following section compares these results to the hard-wired
case for realistic design and FPGA parameters.

6.4 Scalability with FPGA size

Using the results from the previous sections,we first compare
achievable FPGA device utilization for both Virtual Wires

Page 17

and hard-wires as FPGA sizes increases. Figure 28 shows
utilizations for a hypothetical design, characterized by Rent
parameters, on both a 4 � 4 mesh and a 16-chip crossbar
topology. These graphs are on a semi-log scale, with the
Y-axis measuring percent of usable gates and the X-axis
logarithmically measuring FPGA device size. Table 7 shows
the assumed parameters for the design, the technology, and
the Virtual Wires overhead. These assumptions roughly fall
into the vicinity of our experimental measurements. Note
that since the FPGA device size is increasing, with a constant
number of devices, the circuit size is increasing as well.
Also, the FPGA pin count is increasing with the gate count
in accordance with the FPGAs Rent parameters.

The slope of both hard-wire curves is Bh = Bf=Bc � 1.
In Figure 28, Bh is negative and thus the hardware curves
slope downwards. With a positiveBh, this curve would slope
upwards instead. As a general rule, this equation suggests
that FPGA vendors should attempt to track Bf = Bc for
hard-wired FPGA systems. The log-intercept is similarly
Kh as earlier defined for the hard-wires crossbar. For the
hard-wired mesh, the offset is lower than the crossbar by
1=dh in accordance with Equation 10. For this example, the
FPGA pin counts decrease with decreasing gate count such
that FPGAs can never be fully utilized in the hard-wired
case.

For Virtual Wires, the utilization is low for small gate
count, partly due to the constant factor of V0 control logic
overhead. However, with increasing circuit size, this over-
head is rapidly diluted: in both figures the Virtual Wires
gate utilization approachs 100% with increasing FPGA size.
For a mesh topology, the utilization increases more slowly,
however it too asymptotically approaches unity. As a caveat
to this comparison, note that for most FPGA devices, utiliza-
tion will saturate at less than 100% due to internal routing
restrictions.

6.5 Scalability with Routing Distance

As a final comparison, we consider the utilization effects of
increasing the number of FPGAs, and therefore the average
routing distance. To isolate topological effects, we show
utilization as a function of the average routing distance (Fig-
ure 29) for FPGAs of size 1K, 10K, and 100K mapped gates.
As before, circuit size is assumed to increase as the FPGA
array size increases. The same parameters as in Table 7 are
used with the exception of d, which is now a variable.

For the hard-wires curves, the utilization for d = 1 and
d = 2 match the same data points as in Figure 28. As
d increases, the utilization drops exponentially at the rate
dh = d1=0:6 for all hard-wired cases. Additionally, note
that the higher utilization curves correspond to lower gate
count FPGAs, Gf , since Bh is negative. Here we see that
crossbars, with d = 1, are essential for emulation without
Virtual Wires. After only a few average FPGA hops of

� Virtual Wires, 16 Chip Crossbar
� Virtual Wires, 4X4 Mesh

 Hard Wires, 16 Chip Crossbar
� Hardwires, 4X4 Mesh

|

100
| | | | | | | | |

1000
| | | | | | | | |

10000
| | | | | | | | |

100000

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 FPGA Device Gate Count (mapped)

 F
P

G
A

 D
ev

ic
e

U
ti

liz
at

io
n

 (
%

)

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�
�

� � � � � � � � � � �

Figure 28: Scalability with FPGA Device Size

Parameter Value
Bc 0.60
Bf 0.55
Kc 2.0
Kf 1.0
dcrossbar 1 hop
dmesh 2 hops
V0 100 mapped gates
V1 4 mapped gates

Table 7: Parameters for Scalability Comparison

through routing, hard-wired utilization is nearly zero.

For the Virtual Wires curves, the higher gate count FPGAs
have a higher utilization, as demonstrated in Figure 28. All
curves asymptotically approach zero utilization as distance
increases. However, for the larger gate count curves, a re-
spectable utilization is maintained even for large values of
d. For example, the Gf = 100K curve has a utilization of
33 percent when d = 16. Thus Virtual Wires enable emu-
lation to scale to a gigantic number of FPGAs using simple
direct-connected topologies.

7 Related Work

IBM’s Yorktown Simulation Engine [31] and the earlier Logic
Simulation Engine [12], based on concepts of John Cocke,
used reconfiguring digital hardware to accelerate logic sim-
ulation. Actual logic emulation was first explored in cellular
array research, such as Frank Manning’s 1975 thesis[29],
even before FPGAs existed. His work explicitly shows how
an ”embedded machine” in programmable logic cells could
be used in place of an actual machine. Since this work,
FPGA-based logic emulation systems have been developed
for design complexity ranging from several thousand to sev-
eral million gates. Quickturn Design Systems, the pioneer

Page 18

� Virtual Wires, Gf=100K
� Virtual Wires, Gf=10K
� Virtual Wires, Gf=1K

 hard-wires, Gf=1K
 hard-wires, Gf=10K
 hard-wires, Gf=100K

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10
|

11
|

12
|

13
|

14
|

15
|

16

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Average Routing Distance (FPGAs)

 F
P

G
A

 D
ev

ic
e

U
ti

liz
at

io
n

 (
%

)
�

�

�

�

�

�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�
� � � � �

�

�

�

�

�
�

� � � � � � � � � �

Figure 29: Scalability with Average Routing Distance

of large FPGA-based emulators, first developed emulation
systems that interconnect FPGAs in a two-dimensional mesh
and later in a partial crossbar topology [38] . Their largest
systems use a hierarchical approach to interconnection [37].
Thorough reviews of contemporary emulation systems are
provided by Hauck [18] and Owen [30].

Multiplexing to overcome pin limitations was first pro-
posed by Babb [7] [6] in 1993 and the first successful ap-
plications discussed by Tessier [36], Dahl [14] [13] and
Hanono [17]. Virtual Wires technology has continued to
evolve at Virtual Machine Works, Inc. [32] [1], where com-
mercial emulators based on proprietary VirtualWires(TM)
technology are now being produced.

Since the original application of multiplexing to FPGA
systems, others have proposed several similar approaches.
In [24], multiplexing is extended to field-programmable in-
terconnect devices called dynamic FPIDs. In [25], the re-
sources inside the FPGA are multiplexed to reduce internal
routing requirements. Recent time-multiplexed FPGA-like
architectures include VEGA [20], Pegasus [28], DPGA [35],
and Dharma [11]. Other related uses of static routing tech-
niques include FPGA-based systolic arrays, such as Splash2
[4], and the very large simulation subsystem (VLSS) [39],
a massively parallel simulation engine which uses time-
division multiplexing to stagger logic evaluation. Finally,
Virtual Wires are similar to virtual channels [15], which de-
couple resource allocation in dynamically-routed networks,
and to virtual circuits [10] found in a connection-oriented
network.

8 Conclusions

We have illustrated the benefits of logic emulation with Vir-
tual Wires as a verification alternative. Previous pin limita-
tions encountered when mapping designs onto multi-FPGA
systems are now overcome. We have described correct-by-
construction virtualization software, including both phase-

based scheduling and synthesis algorithms, which can au-
tomatically re-time a synchronous input design to fit an
arbitrary number and arrangement of FPGAs. We have
demonstrated the success of Virtual Wires emulation on a
low-cost system without crossbars, esoteric backplanes, or
large pin-count FPGA devices. Finally, we have analyzed
the overheads associated with Virtual Wires and found that
FPGA utilization, over 45% in our emulation experiments,
will asymptotically approach 100% in larger FPGAs, if not
limited by internal FPGA resource constraints.

Although this paper has focused on logic emulation, vir-
tualization is a generic tool that may be applied to other
multi-FPGA systems, enabling a collection of FPGAs to be
treated as a single, gigantic FPGA. In the field of FPGA
computing, more tools like Virtual Wires are needed to ef-
ficiently utilize increasing amounts of available FPGA gate
capacity. A future direction is to speed up and potentially
multiplex the place and route inside the FPGA. However,
the current greatest deficiency for computing is in software
compilation techniques to quickly map applications from a
higher level language, such as C or Behavioral Verilog, into
FPGA instructions.

9 Acknowledgments

The research reported in this paper was funded by ARPA con-
tract # N00014-91-J-1698 and NSF grant # MIP-9012773.

References

[1] A. Agarwal. VirtualWires: A technology for massive multi-
FPGA systems. Technical report, Virtual Machine Works,
Inc., December 1994.
http://www.ikos.com/products/virtualwires.ps.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung,
G. D’Souza, and M. Parkin. Sparcle: An evolutionary pro-
cessor design for multiprocessors. IEEE Micro, 13(3):48–61,
June 1993.

[3] Altera Corporation, 2610 Orchard Parkway, San Jose, CA
95124. Flex 8000 Handbook, May 1994.

[4] J. M. Arnold, D. A. Buell, and E. G. Davis. Splash 2. In
Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 316–324, June 1992.

[5] Atmel Corporation. Atmel Configurable Logic Design and
Application Book, 1994.

[6] J. Babb. Virtual Wires: Overcoming pin limitations in FPGA-
based logic emulation. Master’s thesis, EECS Deptartment,
MIT, Department of Electrical Engineering and Computer
Science, February 1994. Also as MIT/LCS TR-586, Novem-
ber 1993.

[7] J. Babb, R. Tessier, and A. Agarwal. Virtual Wires: Over-
coming pin limitations in FPGA-based logic emulators. In

Page 19

Proceedings IEEE Workshop on FPGA-based Custom Com-
puting Machines, pages 142–151, Napa, CA, April 1993.
IEEE. Also as MIT/LCS TM-491, January 1993.

[8] H. B. Bakoglu. Circuits, Interconnections, and Packaging for
VLSI. Addison-Wesley, 1990.

[9] T. Bauer. The Design of an Efficient Hardware Subroutine
Protocol for FPGAs. Master’s thesis, EECS Deptartment,
MIT, Department of Electrical Engineering and Computer
Science, May 1994.

[10] D. Bertsekas and R. Gallagher, editors. Data Networks. Pren-
tice Hall, Englewood Cliffs, N.J., 1992.

[11] N. Bhat. Novel Techniques for High Performance Field Pro-
grammable Logic Devices. PhD thesis, University of Cali-
fornia, Berkeley, Electronic Research Laboratory, November
1993.

[12] J. Cocke and R. E. Miller. Configurable computer system.
Technical Report 9, IBM Technical Disclosure Bulletin, Feb.
1973.

[13] M. Dahl. An implementation of the Virtual Wires intercon-
nect scheme. Master’s thesis, EECS Deptartment, MIT, De-
partment of Electrical Engineering and Computer Science,
February 1994.

[14] M. Dahl, J. Babb, R. Tessier, S. Hanono, D. Hoki, and
A. Agarwal. Emulation of a SPARC microprocessor with
the MIT Virtual Wires Emulation System. In Proceedings
IEEE Workshop on FPGA-based Custom Computing Ma-
chines, pages 14–22, Napa, CA, April 1994. IEEE.

[15] W. J. Dally. Virtual-channel flow control. IEEE Transactions
on Parallel and Distributed Systems, 3(2), Mar. 1992.

[16] A. Dehon and S. Perentz. Transit Note No. 67: Transit Sbus
Interface. Technical report, Artificial Intelligence Laboratory,
MIT, June 1992.

[17] S. Hanono. Innerview hardware debugger: A logic analysis
tool for the Virtual Wires Emulation System. Master’s thesis,
EECS Deptartment, MIT, Department of Electrical Engineer-
ing and Computer Science, February 1995.

[18] S. Hauck. Multi-FPGA Systems. PhD thesis, University of
Washington, Department of Computer Science and Engineer-
ing, June 1995.

[19] InCA Inc. Concept Silicon Reference Manual, Nov. 1992.
Version 1.1.

[20] D. Jones and D. Lewis. A time-multiplexed FPGA architec-
ture for logic emulation. In Proceedings of the Third Cana-
dian Workshop on Field-Programmable Devices, May 1995.

[21] S. Kirkpatrick, C. D. Gellatt, and M. P. Vecchi. Simulated
annealing. Science, 220, 1983.

[22] J. Kubiatowicz. User’s manual for the A-1000 communica-
tions and memory management unit. ALEWIFE Memo No.
19, Laboratory for Computer Science, Massachusetts Institute
of Technology, January 1991.

[23] B. Landman and R. Russo. On a pin versus block relation-
ship for partitions of logic graphs. IEEE Transactions on
Computers, C-20(12), Dec. 1971.

[24] J. Li and C.-K. Cheng. Routability improvement using dy-
namic interconnect architecture. In Proceedings, IEEE Work-
shop on FPGA-based Custom Computing Machines, Napa,
CA, Apr. 1995.

[25] C.-C. Lin, D. Chang, Y.-L. Wu, and M. Marek-Sadowska.
Time-multiplexed routing resources for FPGA design. In
Proceedings, 1996 ACM International Workshop on Field-
Programmable Gate Arrays, Monterey, CA, Feb. 1996.

[26] LSI Logic Corporation. 0.7-Micron Array-Based Products
Databook, April 1990.

[27] V. MaheshWari, J. Darnauer, J. Ramireza, and W. W.-M. Dai.
Design of FPGAs with area I/O for field programmable MCM.
In FPGA ’95, Monterey, California, Feb. 1995.

[28] L. Maliniak. Hardware Emulation Draws Speed from Innova-
tive 3D Parallel Processing Based on Custom ICs. Electronic
Design, May 1994.

[29] F. P. Manning. Automatic Test, Configuration, and Repair of
Cellular Arrays. PhD thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Computer
Science, June 1975.

[30] H. Owen, U. Khan, and J. Hughes. FPGA-based ASIC hard-
ware emulator architectures. In Proc. International Workshop
on Field Programmable Logic and Applications, Oxford, UK,
Sept. 1993.

[31] G. F. Pfister. The Yorktown Simulation Engine: Introduction.
In Proc. 19th Design Automation Conference, pages 51–54.
IEEE Computer Society Press, 1982.

[32] C. Selvidge, A. Agarwal, M. Dahl, and J. Babb. TIERS:
Topology independent pipelined routing and scheduling for
VirtualWire compilation. In 1995 ACM International Work-
shop on Field-Programmable Gate Arrays, Berkeley, CA,
February 1995. ACM.

[33] Synopsys, Inc. Command Reference Manual, Version 3.0,
Dec 1992.

[34] R. R. T. Cormen, C. Leiserson. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1992.

[35] E. Tau, I. Eslick, D. Chen, J. Brown, and A. DeHon. A first
generation DPGA implementation. In Proceedings of the
Third Canadian Workshop on Field-Programmable Devices,
May 1995.

[36] R. Tessier, J. Babb, M. Dahl, S. Hanono, and A. Agarwal.
The Virtual Wires Emulation System: A gate-efficient ASIC
prototyping environment. In 1994 ACM International Work-
shop on Field-Programmable Gate Arrays, Berkeley, CA,
February 1994. ACM.

[37] J. Varghese, M. Butts, and J. Batcheller. An efficient logic
emulation system. IEEE Transactions on VLSI Systems, 1(2),
June 1993.

[38] S. Walters. Computer-aided prototyping for ASIC-based sys-
tems. IEEE Design and Test of Computers, June 1992.

[39] Y.-C. Wei, C.-K. Cheng, and Z. Wurman. Multiple-level
partitioning: An application for the very large-scale hardware
simulator. IEEE Journal of Solid-State Circuits, 26(5), May
1991.

[40] XILINX, Inc., 2100 Logic Drive, San Jose, California, 95214.
The Programmable Gate Array Data Book, The XC4000 Data
Book, Aug. 1992.

Page 20

