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Testing and Diagnosis of Interconnect Faults in
Cluster-Based FPGA Architectures

I. G. Harris and R. Tessier

Abstract—As IC densities are increasing, cluster-based field pro-
grammable gate arrays (FPGA) architectures are becoming the
architecture of choice for major FPGA manufacturers. A cluster-based
architecture is one in which several logic blocks are grouped together into
a coarse-grained logic block. While the high-density local interconnect
often found within clusters serves to improve FPGA utilization, it also
greatly complicates the FPGA interconnect testing problem. To address
this issue, we have developed a hierarchical approach to define a set
of FPGA configurations which enable interconnect fault detection and
diagnosis. This technique enables the detection of bridging faults involving
intracluster interconnect and extracluster interconnect. The hierarchical
structure of a cluster-based tile is exploited to define intracluster configu-
rations separately from extracluster configurations, thereby improving the
efficiency of the configuration definition process. The cornerstone of this
work is the concise expression of the detectability conditions of each fault
and the distinguishability conditions of each fault pair. By guaranteeing
that both intracluster and extracluster configurations have several test
transparency properties, hierarchical fault detectability is ensured.

Index Terms—BIST, design for testability, interconnect, testing.

I. INTRODUCTION

Over the past decade field programmable gate arrays (FPGAs) have
become invaluable components in many facets of digital design. As a
result of increased integration, FPGA devices are now used across a
wide assortment of fault tolerant and mission critical digital platforms.
This application-level diversity has necessitated increased interest in
FPGA tests so that faulty components can be quickly identified and
recovered. Given the large range of applications and programmable
configurations each FPGA device may support, an FPGA test can be
substantially more complex than application-specified integated cir-
cuit (ASIC) test, providing motivation for new efficient testing tech-
niques. Information regarding defect location is particularly important
in today’s test environment since new techniques [1] have been devel-
oped that can reconfigure FPGAs to avoid faults. To operate effectively,
these approaches require that the specific location of the fault be clearly
identified.

The reconfigurability of FPGAs plays an important role in reducing
on-chip testing hardware relative to ASICs. While ASIC discrete
Fourier transform (DFT) approaches require the modification of circuit
functionality to perform test, FPGA test hardware can be swapped out
of the device once verification is complete. Reconfigurability does
incur other test costs, including increased test generation complexity
and increased test application time. Unlike ASICs, which require
a single configuration for fault detection, FPGAs require multiple
configurations to test an assortment of switch settings. In general,
fault coverage is directly related to the number and scope of test
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configurations that are created. The fault coverage issue has been
further complicated in recent years by the introduction of FPGA
devices [2], [3] with millions of programmable switch points. This
device capacity growth strongly suggests the need for a hierarchical
and incremental approach to FPGA test and diagnosis. To support this
need, contemporary FPGA devices now allow for rapid partial device
reconfiguration [4], [3].

Our fault test and diagnosis approach is driven by recent advances
and improvements in FPGA architecture. To take advantage of circuit
locality, several FPGA companies [3], [5] have recently introduced
cluster-basedarchitectures [6]. These architectures group numerous
primitive logic components, such as flip–flops and lookup tables, into
coarse-grained logic clusters. To simplify device mapping, clusters ex-
hibit a high degree of internal connectivity including the feedback of
cluster logic outputs to cluster inputs without the need for re-entry into
sparse global interconnect. The richness of the internal interconnect
complicates testing by providing a large range of potential intercon-
nect patterns. Since pad area increases at a slower rate than internal
logic, external access to internal test points becomes increasingly dif-
ficult as device sizes scale. As a result, novel testing approaches are
needed to address and effectively test densely interconnected cluster-
based architectures.

In this paper, an FPGA fault test and diagnosis approach is described
that performs built-in self-test (BIST) on a cluster-based FPGA device.
During the testing process, a portion of the FPGA is configured as test
generation and response circuitry for a cluster under test. As individual
logic clusters and surrounding routing resources are verified, they sub-
sequently may be used to perform testing on remaining, untested clus-
ters. To demonstrate the approach, we present a technique to generate
FPGA test configurations to detect and diagnose pairwise bridging in-
terconnect faults. By restricting the programming of the lookup tables
in the FPGA, we formulate the testing and diagnosis conditions as a
set of straightforward functions of the inputs of each tile. The testing
and diagnosis conditions for each fault and fault pair are used to direct
the configuration process. By exploring the hierarchy inherent in the
structure of cluster-based devices, our approach partitions the test con-
figuration definition process to greatly improve the efficiency of the
process. Since test configurations in our approach are replicated across
the cluster array, the process of defining test configurations is indepen-
dent of the size of the FPGA array.

The paper is organized as follows: Section III is a description of the
cluster-based architecture whose testing we are targeting. Section IV
presents the BIST approach. The diagnosis conditions for the targeted
interconnect faults are presented in Section V. The algorithms for
configuration definition are presented in Section VI. Experimental
results are presented in Section VII, and conclusions are presented in
Section VIII.

II. PREVIOUS WORK

Research in FPGA testing has investigated a wide range of test archi-
tectures and techniques. The FPGA test problem has been divided by
several researchers into the interconnect test problem [7]–[10] and the
FPGA logic test problem [11], [12]. The limited number of I/O pads
greatly reduces test access from off-chip. The pad limit has been over-
come by several researchers by using a number of BIST techniques
[13], [14], [10], [15] to reduce the need for pads. Some portion of the
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Fig. 1. FPGA structure: (a) tile array, (b) extracluster interconnect, and
(c) switch matrix.

FPGA hardware is configured as test generation and response analysis
circuitry which is used to test the remainder of the FPGA. In order to
test all of the FPGA logic, several configurations are required by these
techniques to ensure that all FPGA logic is tested in some configu-
ration. Several approaches to on-line fault detection have been intro-
duced which implement BIST by exploiting unutilized FPGA logic and
routing to implement modular redundancy [16], [15]. Previous work in
test and diagnosis of the ORCA architecture [10], [15] is notable be-
cause this architecture can be classified as cluster-based.

Testing for delay faults in FPGA architectures has been investigated
in previous work [17]–[20]. Some techniques target delay faults in the
entire FPGA structure [19], [20], while other techniques specifically
target delay only delay faults which impact a particular application
[17], [18].

The need for external controllability and observability has also been
reduced by using an iterative logic array (ILA) test architecture [11],
[13], [14]. An ILA architecture composed of an array of identical cells
allows the controllability and observability of each cell to be effec-
tively accomplished through its neighboring cells. We have addressed
the problem of defining a set of test configurations for cluster-based
architectures previously in [21], and the diagnosis problem in [22].

III. CLUSTER-BASED FPGAs

We assume an island-style FPGA architecture [23] which is com-
posed of an array of identical tiles as shown in Fig. 1(a). Each tile is
composed of acluster[24] and surrounding interconnect. The intercon-
nect structure of each tile is a set of lines which can be connected by a
set ofprogrammable interconnect points(PIP) which act as switches.
A typical tile interconnect structure is shown in Fig. 1(b). Theswitch
matrixshown in Fig. 1(c) is a commonly used structure in FPGA archi-
tectures which is composed of a set of lines entering each side. A PIP
connects each line to one line on each side of the matrix. Each PIP in
the switch matrix is seen as a dashed line in Fig. 1(c).

For the purposes of testing, it is necessary to distinguish thetile I/O
from thecluster I/O. Cluster I/O are the input and output pins of the
cluster, while tile I/O pins refer to the points at which a tile can com-
municate with a neighboring tile. The tile I/O pins include the endpoints
of wire segments which can connect to a neighboring tile via a PIP.

We assume that each cluster is composed of a set ofbasic logic ele-
ments(BLE) [24], each of which is composed of a set of programmable
lookup tables(LUT), multiplexers, and flip–flops. The most general as-
sumption is that each BLE input can connect to the output of any other
BLE and to any cluster input. The output of each BLE is assumed to
be connected directly to a cluster output.

IV. FPGA TESTING METHODOLOGY

We propose the use of a BIST strategy for the testing of an FPGA
structure. BIST techniques, in general, are associated with high per-
formance and area overhead incurred by on-chip test hardware. BIST

Fig. 2. FPGA cluster.

Fig. 3. BISTER test structure.

overhead is not an issue for FPGA BIST because the test hardware
is easily inserted and removed by reconfiguration. By embedding test
logic inside the FPGA, BIST enables test access to internal compo-
nents. This is particularly important for the testing of cluster-based
FPGA structures which have higher localized interconnect density than
other FPGAs.

In each configuration, FPGA circuitry dedicated as BIST logic will
perform test generation and response analysis to test non-BIST FPGA
circuitry. To accomplish BIST, we use the test structure presented in
[10] in which the FPGA is configured as many independent BISTER’s
structures, shown in Fig. 3.

Each BISTER is composed of a test pattern generator (TPG), an
output response analyzer (ORA), and two blocks under test (BUTs).
The TPG is simply a counter which applies an exhaustive test sequence
to the BUTs. Each BUT is a single tile in the FPGA which is being
tested. The ORA is a comparator which sets the Pass/Fail flip-flop to
“1” if the outputs of both BUTs do not agree. Each BISTER will be im-
plemented as a rectangular block of tiles, and many BISTERs will be
implemented on the FPGA to cover the tile array. The number of tiles
in a BISTER will depend on the number of tiles needed to implement
the TPG and ORA logic.

It is important to notice that the tiles which are dedicated to the TPG
and ORA logic are not completely tested. In order to guarantee testing
of all tiles, the FPGA will be reconfigured to shift the BISTERs across
the entire array as shown in Fig. 4. Over the course of several reconfig-
urations, all tiles will be tested by acting as a BUT in a BISTER. Since
the tiles adjacent to a BUT must implement either TPG or ORA logic,
the perimeter tiles cannot be tested by simply shifting the BISTERs. In
order to ensure that perimeter tiles are tested, the layout of the BISTER
must be modified to use the I/O pads to access the tiles on the periphery.

The requirement of shifting the BISTER layouts over several recon-
figurations causes the total test application time to be related to the area
of the TPG/ORA logic. Since each block of TPG/ORA logic is used to
test 2 tiles, each test configuration must be shifted1 + dAt=2e, where
At is the number of tiles required to implement the TPG/ORA logic.
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Fig. 4. Shifting BISTERs across FPGA array: (a) BISTER in lower left and
(b) BISTER shifted right.

In addition to providing good test access, the use of this BIST
strategy has several significant effects on the test configuration
definition and test sequence definition problems. The BIST strategy
decomposes the testing problem of the entire FPGA into many
identical problems of a size which is fixed by the test requirements for
a single tile. Since the size of the smaller problem is fixed, the BIST
approach is easily scalable to FPGA arrays of any size.

V. INTERCONNECTFAULT DETECTION AND DIAGNOSIS

Detection of interconnection faults in cluster-based architectures is
a difficult problem because the high density of internal cluster inter-
connect makes test access difficult. We propose a formulation of the
problem which includes the testing ofintracluster interconnectwhich
is internal to the cluster, as well asextracluster interconnectwhich
surrounds each cluster. All pairs of lines are classified as eithercon-
nectableif there is a PIP between them, andnonconnectableif there is
no intervening PIP. We assume the possibility of two types of defects,
a short defectwhich causes two lines to be crossed, and anopen de-
fect which causes a single line to be broken, or causes a connectable
line pair to be unconnectable. Given the two classes of line pairs and
the two defect types, we assume four fault classes which are previ-
ously presented in [7]. The interconnect faults which we target are sub-
sets of bridging faults. The detection requirements of bridging faults in
a non-FPGA context have been outlined in previous work [25], [26].
We summarize the four fault classes and the detection requirements for
each class in terms of the controllability and observability of each line
involved.
� Permanent Connection (PC)—A short on any pair of lines. Both

affected lines must be separately controllable and at least one affected
line must be observable. Also, any PIP between the two affected lines
must be configured to be off.
� Permanent Disconnection (PD)—An open on any pair of con-

nectable lines. Both affected lines must be controllable and observable.
Also, the PIP between the two affected lines must be configured to
be on.
� Stuck-At 0 (SA0)—A short between a line and ground (special

case of a PC fault). The affected line must be controllable and
observable.
�Stuck-At 1 (SA1)—A short between a line and power (special case

of a PC fault). The affected line must be controllable and observable.

A. Detection and Diagnosis Requirements

In order to define FPGA configurations for testing and diagnosis, a
clear definition of the testability and diagnosis requirements of each
fault and fault pair is needed. Because the configuration defines the
connectivity between segments, the test and diagnosis requirements

must be expressed in terms of connectivity as well. We present require-
ments for the testability of each single fault and the differentiability of
each fault pair. Detectability and differentiability indicate that some
test pattern must exist to detect each fault and differentiate each fault
pair. Detectability and differentiability requirements are independent
of a specific test pattern, and they are used to define BUT test config-
urations before test pattern generation has been performed.

In the expressions presented in this section, we define thecontrol
setC(s) of a segments to be the set of tile I/O whose signal values
determine the value of the segment. Because our approach configures
all LUTs as four inputXOR gates, the control set of a segment deter-
mines the function computed at segments. We will define theobserve
setO(s) of a segment to be the set of tile I/O to which a fault effect on
segments will be propagated. The observe set of a segment is the set
of all tile I/O which are reachable from segments in a configuration
and are acting as tile outputs (are not being driven directly).

1) Fault Detection Conditions:In the testing approach proposed
here, each segment value is restricted to be the exclusive–or of a subset
of tile inputs. This is accomplished by configuring all LUTs to act as ex-
clusive–or gates. Using this restriction, we can express the detectability
of each fault as a function of the tile I/O which are reachable from the
fault.

1. s1SAv—

C(s1) 6= ; \O(s1) 6= ;:

This equation states that the faulty line segments1 must be both con-
trollable by at least one tile input and observable by at least one tile
output.

2. PC(s1; s2)—

C(s1) 6=C(s2)\C(s1) 6= ; \C(s2) 6= ;\

(O(s1) 6= ; [O(s2) 6= ;):

This equation states that the faulty pair of segments must both be con-
trollable(C(s) 6= ;), they must be separately controllable(C(s1) 6=
C(s2)), and they must both be observable(O(s1) 6= ; [O(s2) 6= ;).
The PIP between the segments must be switched off.

3. PD(s1; s2)—

C(s1) 6= ; \O(s2) 6= ;

Assuming thats2 is the floating segment, this equation states that the
nonfloating segment must be controllable(C(s1) 6= ;) and that the
floating segment must be observable(O(s2) 6= ;). The PIP between
the segments must be switched on. Switching the PIP on implies that
C(s1) = C(s2).

2) Interconnect Fault Equivalence:The equivalence of faults
limits the maximum achievable diagnostic resolution because equiv-
alent faults cannot be differentiated. Fault equivalence in an FPGA is
determined by the FPGA configuration, so faults which are equivalent
in one configuration may not be equivalent in another. In order to
achieve maximum diagnostic resolution, every pair of faults must be
nonequivalent in at least one configuration.

We will define fault equivalence in terms of the connectivity between
segments and tile I/O. Since the FPGA configuration determines con-
nectivity, the process of configuration definition can ensure that all fault
pairs are distinguishable. Two faults are said to be equivalent if their
corresponding faulty machines produce the same output with all pos-
sible test patterns, at all outputs of the circuit. Since all LUTs act as
exclusive–or gates in our approach, all fault effects are propagated to
all outputs in the observe set of a faulty line. This implies that in order
for two faults to be equivalent, the two segments at the fault location
must have identical observe sets. The segments at the fault location
must have identical control sets as well because fault effects must be
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generated by the same test patterns. We will refer to two segments as
beingtest equivalentin a configuration if the segments have identical
control sets and identical observe sets. Two test equivalent segments
are indistinguishable during testing because they have the same value
under all input stimuli, and a fault effect on either segment will be ob-
served at the same tile outputs. The equivalence of a fault pair depends
on the test equivalence of the associated segments. We define the cri-
teria for equivalence between all pairs of fault classes which may be
equivalent.

1. s1SAv/s2SAv—The segments are test equivalent

C(s1) = C(s2)\O(s1) = O(s2):

This equation states that the two segments are controlled by the same
set of tile inputs and observed by the same set of tile outputs.

2. PD(s1, s2)/PD(s3, s4)—s1 ands3 refer to the driver segments,
ands2 ands4 refer to the floating segments

C(s2) = C(s4)\O(s2) = O(s4):

This equation states that each segment in a faulty segment pair must be
test equivalent to a segment in the other faulty segment pair.

3. s1SAv/PD(s2, s3)—This pair of faults may be equivalent if a
segment which is not driven by a signal floats to av value. In this case,
the two faults are equivalent if the floating segment of the PD fault is
test equivalent to the segment associated with the stuck-atv fault

C(s1) = C(s3)\O(s1) = O(s3):

This equation states that the segment with the stuck-at fault and the
floating segment involved in the PD fault must be controlled by the
same set of tile inputs and observed by the same set of tile outputs.

4. PC(s1, s2)/PC(s3, s4)—The pair of segments involved in one
fault are test equivalent to the pair of segments involved in the other
fault

(C(s1) = C(s3)\O(s1) =O(s3) \ C(s2) = C(s4)\

O(s2) = O(s4))

[

(C(s1) = C(s4)\O(s1) =O(s4) \ C(s2) = C(s3)\

O(s2) = O(s3))

This equation states that each segment in a faulty segment pair (s1; s2)
must be test equivalent to a segment in the other faulty segment pair
(s3; s4).

VI. TEST CONFIGURATION DEFINITION

The goal of test configuration definition is to identify a set of config-
urations for the tiles acting as BUTs in a BISTER. The set of configura-
tions must have the property that the fault detection requirements stated
in Section V must be satisfied for all faults in at least one configuration.
The size of the set of test configurations should be minimized to reduce
test application time. The test configuration definition process is hierar-
chical, defining the intracluster configurations separately from the ex-
tracluster configurations. Test transparency constraints are placed on
the intracluster and extracluster configurations to ensure hierarchical
controllability and observability.

A. Intracluster Configurations

The intracluster configurations are defined to ensure that all intra-
cluster interconnect faults are detectable in at least one configuration
and to facilitate the testing of the extracluster interconnect. The cluster
will be contained in the control and observe paths of many extracluster
interconnect lines. The cluster must be configured to betransparent
from a controllability and observability perspective. The cluster out-

Fig. 5. Input multiplexer configurations: (a) BLE output function determined
by input mux configurations and (b) illegal input mux configuration creating a
self-loop.

puts are not identical to the cluster inputs, but the cluster outputs must
have the following transparency properties with respect to the cluster
inputs.

1. A fault effect on a cluster input must propagate to at least one
cluster output. This condition ensures the propagation of fault effects
on extracluster which feed the cluster inputs.

2. The cluster outputs must be separately controllable. This condi-
tion ensures the controllability of the extracluster interconnect which
is driven by the cluster outputs.

1) BLE Configurations: The observability of the cluster inputs and
BLE output branches must be achieved by propagating fault effects
through the BLEs to reach the cluster outputs. Also, the controllability
of the BLE outputs must be achieved through the BLEs. The configu-
ration of the BLEs is central to ensuring maximal controllability and
observability inside the cluster. The configurations of components in-
side the BLEs are important to enable controllability of the BLE output
lines, as well as observability of the cluster inputs lines and the BLE
output branches.

Each BLE is composed of a LUT and a multiplexer, both of which
must be configured. To maximize the controllability and observability
through a BLE, we have chosen to configure each LUT to act as a
four-inputXOR gate. TheXOR operation provides good controllability
because the output value may be determined by controlling any single
input. TheXOR also provides good observability because a fault effect
on any single input is guaranteed to propagate to its output. To simplify
the interconnect testing process, the majority of test configurations by-
pass the flip–flop to drive the BLE output with the LUT output directly.
This eliminates sequential behavior and ensures that the application
of an exhaustive test pattern set is sufficient to detect all faults which
are nonredundant in each configuration. In order to test the intercon-
nect associated with the flip–flops, a single configuration is added in
which all BLEs under test are configured so that their outputs are driven
by the flip–flops. In this configuration all interconnect associated with
flip–flops are made controllable and observable and therefore testable.

2) BLE Input Multiplexer Configurations:The configurations of
the BLE input multiplexers (IMUX) affect both the controllability and
observability of the cluster interconnect. The IMUXes determine con-
trollability of BLE outputs by determining the function which defines
the output of each BLEn. Because all LUTs are configured asXOR

gates, each output BLE function is anXOR of a subset of cluster in-
puts as seen in Fig. 5(a). In Fig. 5(a), the input sources determined by
the multiplexer configurations are labeled and shown in bold. Based
on the multiplexer configurations, the BLE output functions are ex-
pressed as follows:BLE1 = IN1� IN2� IN3� IN4,BLE1 =
IN1� IN2 � IN3� IN4 � IN5 � IN6� IN7. Notice that the
most general cluster-based architecture allows a multiplexer to be con-
figured to create a loop as shown in Fig. 5(b), which would either create
sequential activity (if the BLE output is clocked) or an asynchronous
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activity. Both of these possibilities would greatly complicate testing, so
we do not allow multiplexers to be configured to create a loop. This as-
sumption matches the implementation of Xilinx Virtex [3] part which
is a cluster-based architecture which does not contain interconnect to
implement self-loops inside a cluster.

We have developed an algorithm to define the configuration of each
IMUX in each overall FPGA configuration. We have identified the fol-
lowing IMUX configuration goals which must be satisfied by the al-
gorithm. These properties are required to make all intracluster faults
detectable in at least one configuration and to ensure the transparency
of the cluster for the testing of extracluster faults.
� All BLE outputs are separately controllable from each other,

and from all cluster inputs—This property ensures that each intra-
cluster fault can be activated in each configuration and enables the acti-
vation of extracluster faults associated with extracluster lines driven by
cluster outputs. Guaranteeing this property is accomplished by defining
input multiplexer configurations so that each BLE output function is
different, and is not dependent on a single cluster input.
� Each input multiplexer is configured to select data from each

of its inputs in at least one configuration—This property ensures that
all cluster input branches and BLE output branches are observable in
at least one configuration.
� There is a sensitized path from each cluster input stem to

a cluster output in every configuration—This property ensures
the transparent propagation of extracluster fault effects through the
cluster. This property is accomplished by configuring at least one
input multiplexer to receive data from each cluster input in each
configuration. Every cluster input stem can be associated with at least
one BLE output whose value is dependent on that cluster input stem.

Algorithm 1 Intracluster Configuration
Algorithm
label all intracluster faults as
undetected
repeat

repeat
select a BLE which is not configured,

initialize IMUX configurations of
repeat

enumerate next IMUX configuration
compute BLE output function

until BLE function is unique
until all BLEs are configured
identify detectable faults

until all faults are detectable in some
configuration

The algorithm for intracluster test configuration definition is shown
in Algorithm 1. The algorithm contains 3 main loops. The inner loop,
defines the configuration of a single BLE by enumerating the config-
urations on all 4 of its input multiplexers until a satisfactory config-
uration is found. A set of BLE IMUX configurations is considered
satisfactory if the resulting BLE output function is unique from the
functions of all other BLEs, and is unique from all single cluster inputs.
The middle loop invokes the inner loop with each BLE until all BLEs
are configured to produce a complete cluster configuration. The outer
loop invokes the middle loop to define a single configuration, and then
evaluates the detection of intracluster bridging faults. The outer loop
continues to invoke the middle loop until all intracluster faults are de-
tected in at least one configuration.

Fig. 6. Transparent extracluster configuration.

B. Extracluster Configurations

The extracluster configuration defines current flow paths through the
extracluster interconnect. These current flow paths between tile input
and output pins are used to control and observe each interconnect seg-
ment on the path. We model the extracluster configuration definition
problem as a flow problem through aninterconnect graph. Each node
in the graph represents an extracluster interconnect segment, and each
edge represents the existence of a PIP between two segments.

The goal of extracluster test configuration definition is to create flow
paths between tile I/O nodes which allow the detection criteria of each
fault to be satisfied in at least one configuration. In addition to enabling
the detection of extracluster faults, the extracluster configuration must
enable transparent controllability and observability of the embedded
cluster. This goal is accomplished by creating flow paths from tile I/Os
to every cluster input, and from every cluster output to tile I/Os, in every
configuration. An example of a configuration which exhibits this type
of test transparency is shown in Fig. 6. The bold lines indicate segments
which are contained in flow paths, and the bold PIPs indicate which
PIPs are switched on in the configuration in order to instantiate the
paths. Each cluster input and output is directly connected to the edges
of the tile via a set of flow paths. Notice that flow through the cluster
does not impact the testability of extracluster interconnect because the
cluster is transparent for controllability and observability purposes.

We present two different algorithms to generate extracluster test con-
figurations which are used together to ensure the detection of all faults.
The fault independentalgorithm defines each configuration to max-
imize the fault coverage and distinguishability without targeting any
faults specifically. The fault independent algorithm enables high fault
coverage to be achieved with few configurations, but may fall short of
100% fault coverage for large examples. To achieve 100% fault cov-
erage in cases where the fault independent algorithm is insufficient,
the fault specificalgorithm is used. The fault specific algorithm first
selects an undetected fault and then defines a configuration which is
guaranteed to detect the chosen fault. By using the fault specific algo-
rithm after using the fault independent algorithm, 100% fault coverage
is guaranteed.

Algorithm 2 Fault Independent Extracluster
Algorithm
create interconnect graph
repeat

label all nodes as untouched
repeat

select an untouched node
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TABLE I
EXPERIMENTAL RESULTSWITH A VARIETY OF CLUSTER SIZES

identify an untouched path from to
a cluster I/O
label all nodes on the path as
touched
identify an untouched path from to
a tile I/O
label all nodes on the path as
touched

until paths connect all cluster I/O to
tile I/O

repeat
select an untouched node
identify an untouched path from to
a tile I/O
label all nodes on the path as
touched
identify an untouched path from to
a tile I/O
label all nodes on the path as
touched

until no additional untouched paths
can be created
identify detectable faults and
differentiable fault pairs

until fault coverage and diagnosability
do not improve

The fault-independent algorithm for extracluster test configuration
definition is outlined in Algorithm 2. The two inner loops define a
single test configuration by identifying a set of paths through the extra-
cluster interconnect which must be activated. The first inner loop guar-
antees that the cluster I/O are directly controllable and observable from
the tile I/O. The second inner loop serves to increase the number of extr-
acluster interconnects which are controllable and observable. Each pass
of the outer loop defines a single test configuration. The tasks,select
an untouched noden, identify an untouched path fromn to a cluster
I/O, andidentify an untouched path fromn to a tile I/O are performed
using several heuristics which target lines associated with faults which
are undetected in the current configuration.

Algorithm 3 Fault Specific Extracluster
Algorithm
repeat

select an undetected fault
create paths to make detectable
complete configuration (fault
independent algorithm)
identify detectable faults and
differentiable fault pairs

until all faults are detectable in some
configuration

The fault specific algorithm for extracluster test configuration def-
inition is outlined in Algorithm 3. Each loop of this algorithm begins
by selecting an undetected fault and defining paths through the inter-
connect to ensure that the selected fault is detectable. These paths are
defined to satisfy the detection conditions stated in Section V with the
shortest possible paths. Once the detection of the selected fault is en-
sured, the remainder of the configuration is completed using the fault
independent algorithm to maximize coverage. The loop continues until
all faults are detected.

VII. EXPERIMENTAL RESULTS

We have implemented the algorithms for test configuration defini-
tion and we have applied the algorithms to define test configurations
for a range of cluster-based tiles of different sizes. In test results we
assume that the cluster has the structure shown in Fig. 2 [6], withN
BLEs andI cluster inputs. We assume that cluster inputs and outputs
are equally distributed around the sides of the cluster. Each cluster I/O
on the north face may connect to all horizontal tracks via a set of PIPs,
and the same is true between cluster I/O on the west face and the ver-
tical tracks. The cluster I/O on the east and south faces are assumed to
connect directly to tracks in the neighboring tiles.

These results are summarized in Table I. The first three columns
of Table I are the cluster parameters (Clus. Prms) which indicate the
size and test properties of the cluster. The cluster parameters include
the size of the cluster in terms of the number of cluster inputs,I , and
the number of BLEs in a cluster,N . The third cluster parameter is
SHFT = 1+dAt=2e, whereAt is the number of tiles required to im-
plement the TPG/ORA logic in a single BISTER. The value1+dAt=2e
is the number of times each configuration must be shifted in order
to cover the testing of all tiles. The remainder of the columns in the
table are divided into the results ofIntraclusterconfiguration defini-
tion, and two sets of extracluster configuration results. The first set of
extracluster results labeledExtracluster (Independent)contain the re-
sults when only the fault independent extracluster algorithm is used.
The set of results labeledExtracluster (Specific)contain the results
when the fault specific extracluster algorithm is used to achieve 100%
fault coverage after the fault independent algorithm has reached its cov-
erage limit. TheC columns contain the number of configurations de-
fined. TheFCovcolumns contain the fault coverage achieved, and the
DiffCov columns contain the percent of fault pairs which are differ-
entiated across all configurations. Amin result is provided for intra-
cluster results, indicating a theoretical lower bound on the number of
intracluster configurations required. This lower bound is computed as
the fanin of the input multiplexers (I + N ), less 1 to account for the
self-loop multiplexer input which we do not test.
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The results in Table I show that high fault coverage and differen-
tiation coverage are achieved in all cases. By using the fault specific
extracluster configuration algorithm, 100% fault coverage can be guar-
anteed at the cost of an increased number of configurations.

VIII. C ONCLUSION

We have presented a hierarchical technique to define test con-
figurations for the detection and diagnosis of interconnect faults in
cluster-based FPGA architectures. We have used the concept of test
transparency to define configurations which enable test access to
the high-density logic cluster embedded within each FPGA tile. We
have demonstrated that this technique can be used to successfully
define a small set of test configurations which allow the detection and
diagnosis of nearly all targeted interconnect faults.
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Power Grid Transient Simulation in Linear
Time Based on Transmission-Line-Modeling

Alternating-Direction-Implicit Method

Yu-Min Lee and Charlie Chung-Ping Chen

Abstract—The soaring clocking frequency and integration density
demand robust and stable power delivery to support tens of millions of
transistors switching. To ensure the design quality of power delivery,
extensive transient power grid simulations need to be performed during
the design process. However, the traditional circuit simulation engines
are not scaled well for the complexity of power delivery. As a result, it
often takes a long runtime and huge memory requirement to simulate
a medium-sized power grid circuit. In this paper, the authors develop
and present a new efficient transient simulation algorithm for power
distribution. The proposed algorithm, transmission-line-modeling alter-
nating-direction-implicit (TLM-ADI), first models the power delivery
structure as transmission line mesh structure, then solves the transient
modified nodal analysis matrices by the alternating-direction-implicit
method. The proposed algorithm, with linear runtime and memory
requirement, is alsounconditionally stablewhich ensures that the time-step
is not limited by any stability requirement. Extensive experimental results
show that the proposed algorithm is not only orders of magnitude faster
than SPICE but also extremely memory saving and accurate.

Index Terms—Alternating direction implicit, power grid, transient,
transmission line modeling.

I. INTRODUCTION

The increase in the complexity of the very large scale integration
(VLSI) chips and the decrease in the feature size of the chips demand
larger grids for power distribution. This causes the designing and veri-
fying of the power networks to become a challenging task. The inferi-
orly designed power distribution network can degrade the circuit per-
formance, noise margin, and the reliability. Since the power grids are
rapidly becoming a limiting factor in high-performance microproces-
sors, the ability to analyze power grids efficiently is a critical require-
ment to obtain a robust design [1]–[4].

Power is transferred through many complicated circuit structures.
From the power supply through the PCB, packaging, I/O pins,
C4-bump, and on-chip interconnect to the transistors, every portion of
the circuit in the power delivery path plays a crucial role for the quality
of power delivery and hence all of them need to be carefully modeled
and designed. There are several sources that cause the degradation of
the quality of power delivery systems such asIR drop,Ldi=dt drop,
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