
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

1

Abstract— Contemporary FPGA design requires a spectrum of
available physical resources. As FPGA logic capacity has grown,
locally-accessed FPGA embedded memory blocks have increased
in importance. When targeting FPGAs, application designers
often specify high-level memory functions which exhibit a range of
sizes and control structures. These logical memories must be
mapped to FPGA embedded memory resources such that physical
design objectives are met. In this work a set of power-efficient
logical-to-physical RAM mapping algorithms are described which
convert user-defined memory specifications to on-chip FPGA
memory block resources. These algorithms minimize RAM
dynamic power by evaluating a range of possible embedded
memory block mappings and selecting the most power-efficient
choice. Our automated approach has been validated with both
simulation of power dissipation and measurements of power
dissipation on FPGA hardware. A comparison of measured
power reductions to values determined via simulation confirms
the accuracy of our simulation approach. Our power-aware RAM
mapping algorithms have been integrated into a commercial
FPGA compiler and tested with 34 large FPGA benchmarks.
Through experimentation, we show that, on average, embedded
memory dynamic power can be reduced by 26% and overall core
dynamic power can be reduced by 6% with a minimal loss (1%)
in design performance. Additionally, it is shown that the
availability of multiple embedded memory block sizes in an FPGA
reduces embedded memory dynamic power by an additional
9.6% by giving more choices to the CAD algorithms.

Index Terms— power demand, field programmable gate
arrays, memory architecture, design automation

I. INTRODUCTION

As field-programmable gate arrays (FPGAs) have grown in
logic capacity, the need for on-chip data storage has increased
since almost all modern designs contain memory. In
contemporary FPGAs, most on-chip storage is implemented in
large RAM blocks integrated into the FPGA architecture.
These storage blocks allow for the implementation of a variety

Manuscript received March 15, 2006. Revised July 28, 2006
Russell Tessier is with the Department of Electrical and Computer

Engineering, University of Massachusetts, Amherst, MA 01003 USA (e-mail:
tessier@ ecs.umass.edu). Vaughn Betz, David Neto, and Aaron Egier are with
the Altera Toronto Technology Centre, Toronto ON CANADA. Thiagaraja
Gopalsamy is with Altera Corporation, San Jose, CA USA.
 Copyright (c) 2006 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

of memory structures, including FIFOs, scratch pad memories,
and shift registers, within close physical proximity of logic
resources. Due to their extensive use, embedded memory
blocks have been found to consume between 10-20% of core
dynamic power in typical FPGA designs [1]. For example, Fig.
1 illustrates the core dynamic power breakdown for 124 FPGA
designs of varying sizes and functionalities mapped to Altera
Stratix II [2] devices. On average, embedded memory
consumes as much power as lookup tables (LUTs) in these
designs. As the amount of FPGA logic and on-chip memory
increases over the next few years and the application domain of
FPGAs expands to include mobile and power-sensitive
environments, the power-efficient use of embedded memory
blocks will become increasingly important.

Routing
27%

Other circuitry
13%

Flip flops
24%

LUTs
18%

Memory
18%

Fig. 1: Core dynamic power distribution for 124 benchmarks mapped
to Stratix II devices. Test vectors are not available for these designs,
so logic is assumed to toggle during 12.5% of clock cycles.

 Embedded memory blocks in contemporary FPGAs are
typically implemented with synchronous SRAM [2][19] to
improve design performance. Like other synchronous SRAM
architectures, FPGA embedded memory accesses are
performed in concert with a design clock and a series of
interface signals including read/write (R/W) enables, clock
enables, address, and data signals. During application
development, designers usually do not specify RAM blocks
that precisely match the size and fully specify the control
signals of the physical RAM blocks on an FPGA. More
typically, a higher-level, logical memory representation is
specified and the CAD flow automatically implements this
specification using physical memories and any required control

Power-efficient RAM Mapping Algorithms for
FPGA Embedded Memory Blocks

Russell Tessier, Member, IEEE, Vaughn Betz, Member, IEEE, David Neto, Aaron Egier, Member,
IEEE, and Thiagaraja Gopalsamy

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

2

circuitry.
Synchronous FPGA embedded memories primarily consume

dynamic power as a result of internal RAM clocking. To save
power, RAM control signals can be configured to suppress
internal clocking when RAM access is unnecessary on a
specific clock cycle. Although user-defined or generated
control signals provide for valid functional embedded memory
behaviour, their configuration may not efficiently suppress
unnecessary clocked memory accesses, leading to wasted RAM
dynamic power. These limitations motivate the development of
RAM mapping algorithms that take power objectives into
account while maintaining valid functional behaviour.

 In this paper we describe a series of algorithms to
automatically map user-specified logical memories to available
physical embedded memory block resources with the goal of
reducing overall FPGA dynamic power consumption. In
considering feasible RAM mappings, our approach estimates
the relative dynamic power consumption of each potential
implementation and selects the most power-efficient
implementation subject to on-chip RAM availability
constraints. When necessary, user-specified RAM control
signals (R/W enable, clock enables) are remapped to achieve a
logically-equivalent RAM implementation with reduced
dynamic power consumption. If an FPGA contains embedded
memory blocks of different sizes, a mapping using each block
type is considered.

Our mapping techniques have been integrated into the Altera
Quartus II synthesis system [1] and targeted to several Altera
FPGA families which contain embedded memories. To
determine the benefit of our approach we evaluate the power
reduction for 34 designs which contain RAM using a power
estimation methodology based on digital simulation and circuit-
level power models. To evaluate the accuracy of the
simulation-based approach, we first map a sample set of six
large FPGA designs and a group of primitive RAM
instantiations to an FPGA-based board which allows for
accurate dynamic power measurements. Through
experimentation with the sample designs, it is shown that the
measured and predicted power savings due to our mapping
optimizations differ by a little more than one percentage point.
Subsequent simulation-based experimentation with the 34
RAM-based designs demonstrates an average embedded
memory dynamic power reduction of 26% and overall core
dynamic power reduction of 6% on Stratix II devices.
Additionally, the availability of multiple types of embedded
memory blocks in an FPGA device reduces memory dynamic
power and overall core dynamic power by an additional 9.6%
and 2%, respectively.

 In the next section we discuss related power-aware
memory mapping techniques. In Section III the basic operation
of FPGA embedded memories is described along with details
of the basic mapping flow used to translate user-specified
logical memory to physical embedded memory blocks. Section
IV provides the details of our power-aware RAM mapping
techniques and supporting algorithms. Experimental results are

presented in Section V. Section VI summarizes the paper and
provides directions for future work.

II. RELATED WORK

RAM dynamic power-reduction techniques for ASICs and
microprocessor systems have been considered at the
application-mapping, compiler, and circuit levels. Although
these approaches provide insight into reducing FPGA
embedded memory power, none are directly applicable. Several
synthesis techniques for application-specific embedded systems
create power-optimized memory structures based on
application address traces. In Benini et al. [5], the memory
trace of an embedded application is analyzed by an algorithm
to determine the portion of program and data memory that is
most frequently accessed. These addresses are then grouped
into memory banks which are implemented with scratch pad
memories. Infrequently accessed addresses are grouped into
larger physical memory blocks. Later work by Cao et al. [6]
extends this optimization to consider data width scaling.
Wuytack et al. [18] have developed techniques to optimize the
entire memory hierarchy of an application for power
consumption based on application information. These previous
approaches rely on application trace information to perform
memory partitioning.

A number of compiler techniques have been developed for
processor-based systems which optimize power while mapping
data to fixed system memory resources. For example, in Unsal
et al. [16], a series of memory locations for multimedia
applications are remapped to a small, local scratch pad memory
to save dynamic power. In Petrov and Orailoglu [13], the
organization and power consumption of a translation look-
aside buffer are adjusted on a per-application basis. In Gebotys
[8], memory energy is managed through memory and register
allocation using a network flow algorithm. In Ferrahi et al. [7],
a compiler technique to optimize sleep mode operation for
memories is described. Memory reactivations are minimized via
scheduling to save dynamic power.

Numerous circuit-level techniques for power reduction have
been explored [11] including reduced swing pre-decode lines,
multi-stage address decoding, and divided word and bit lines,
among others. These techniques may be used in the future by
FPGA designers to reduce FPGA embedded memory block
power and are additive to the approaches described in this
paper.
 Although FPGA logic and routing dynamic power reduction
has been studied [10], these techniques were not applied to
embedded memory blocks. Except for [15], previous research
efforts that map design logic to embedded memory blocks in
ASICs [4][14] and FPGAs [9] do not consider power
optimization as a mapping goal.
 This paper extends our earlier work in [15] by providing
more detailed algorithm descriptions and many new
experimental results. We validate our simulation-based power
estimation approach by comparing the power reductions
estimated via simulation with those measured on physical

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

3

hardware for a subset of our design suite, and show that the
results are very consistent. We also measure all power
reductions due to our RAM mapping algorithm using a more
recent version of the Quartus CAD tool than the one used in
[15]. This more recent version of the Quartus software
includes synthesis, placement and routing algorithms which
incorporate power optimizations, so the results in this paper
show that power-aware RAM mapping saves significant power
even when a CAD suite incorporates other power-reduction
techniques. Finally, this work extends [15] by evaluating the
effect of RAM power-reduction techniques across multiple
FPGA device families.

III. BACKGROUND

The development of a power-efficient embedded RAM
mapping strategy requires insight into the internal behaviour of
synchronous SRAM. Typically, each port of an embedded
memory block is controlled by one or more read/write (R/W)
enable signals, clock (Clk) enable signals, and clock signals. As
shown in Fig. 2, these signals directly or indirectly control data
movement in different parts of the embedded memory port.

During a typical memory read operation the following
events occur in sequence, in response to a rising clock edge:

• The memory port clock (MClk) is strobed causing the
BIT lines to be precharged to Vcc.

• The read address is decoded and one word line is
activated.

• The BIT line difference is identified by sense amps
causing the read data to be strobed into a column
multiplexer.

• Read data passes through the column multiplexer and a
latch conditioned by Read Enable to the RAM external
Read Data lines.

Memory write operations require a similar sequence of
operations which occur in the following order:

• MClk is strobed causing the BIT lines to be precharged
to Vcc.

• The Write Enable signal, conditioned by MClk, creates
a write pulse which transfers write data to the write
buffers and a word line is activated following write
address decode.

• The write buffer data is stored in the RAM cell
For both synchronous read and write RAM operations, most

dynamic power is consumed via BIT line precharging [12]. To
control clocking, embedded memory ports often have a clock
enable signal which can eliminate internal precharging, word-
line decoding, and RAM cell access. The disabling of the clock
enable signal when memory port access is not required
provides the best technique to eliminate embedded memory
dynamic power consumption for a memory port. If a RAM
port is inactive on a given clock cycle and its clock can be
suppressed via an inactive clock enable, the RAM port will not
consume significant dynamic power.

A number of contemporary FPGAs support embedded
memory blocks with enable and clock enable signals. Altera
Stratix II and Cyclone II [3] devices support both R/W enables
and clock enables on each of the two ports on every memory
block. Each Xilinx Virtex-II [20] and Virtex-4 [19] embedded
SelectRAM block contains write enable and clock enable
control signals on each port, but no separate read enable. While
Stratix II devices support three different embedded memory
block sizes, Cyclone II, Virtex-II, and Virtex-4 contain
embedded memory blocks of a single size.

The goal of power-aware RAM mapping is to implement the
functionality of a user-defined RAM module (logical memory)
in one or more FPGA embedded memory blocks so that
memory precharges are limited. This optimization goal
attempts to minimize RAM dynamic activity through the use of
RAM port clock enables whenever possible. The effective use
of clock enable signals ensures that the bulk of embedded
memory block dynamic power is consumed when a required
access to data within a RAM is performed. In some cases this
goal may require the synthesis of one of more clock enable
signals during the mapping process. This mapping must achieve
the same functional behaviour for the RAM as specified by the
designer while allowing for possible tradeoffs between design
power consumption, area and performance.

A. Typical RAM Mapping Flow

FPGA embedded memory blocks are used to implement a
variety of RAM components including FIFOs, shift registers,
and single and dual-port memories. Logical RAMs are
specified by the designer in RTL or schematic form, created by
the FPGA compiler and mapped [1], as shown in Fig. 3:

1. Logical memory creation – User-defined RAM

descriptions are processed by the FPGA compilation
software to create logical memories with the desired
characteristics.

2. Logical-to-physical RAM processing - Logical RAMs
are converted into one or more RAM blocks which

Write Data

MClk

Write
Enable

Pulse
Gen.

Column Mux
Write Buffers
Sense Amps

RAM cell

BIT BIT

Bit Line
Precharge

Read Data

Read
Enable Latch MClk

Word

MClk Clk
Enable
Clk

MClk

Fig. 2: Internal view of embedded memory read/write port

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

4

4k words
deep and 4
bits wide

Logical memory

4k words deep
and 1 bit wide
memory block

(4 times)

Addr[0:11]

Data[0:3]

Physical memories

Fig. 4: Area-efficient mapping of a 4Kx4 logical RAM to 4 Kbit
memory blocks

match the external interface and size constraints of
available embedded memory blocks.

3. Embedded memory block placement – RAM blocks
and associated control logic are assigned to available
on-chip embedded memory block and logic resources.

The power-aware algorithms developed in this work are

applied in the logical-to-physical RAM processing step.
Traditionally, RAM mapping has targeted logical RAM
performance and FPGA area minimization [9] rather than
power consumption. As shown in Section IV.B, however, an
area-optimal embedded memory implementation does not
always minimize dynamic power. To conserve dynamic power
it is desirable to map the required memory functions to the
available physical memories so that power consumption is
optimized, while meeting area and delay constraints.
 The size of both logical and physical (embedded) memory
blocks can be defined in terms of the number of addressable
locations (depth) and output bits per memory (width). The
number of address bits required for both logical and physical
memories is directly related to memory block depth. The
number of data in and data out bits is related to memory block
width. To promote flexibility, an FPGA embedded memory
block may typically be programmed to support a range of
depth versus width configurations [2][19].

Until the relatively recent adoption of synchronous SRAMs,
most user-defined RAM targeted asynchronous memories
which use read and write enable for data access control.
Although embedded memory blocks now allow for the use of
either operation-specific enable or clock enable signals to
provide access control, many designers continue to use the
operation-specific enable approach, ignoring the clock enable.
Contemporary RAM mapping flows (e.g. Fig. 3) automatically
map these user-defined enable signals to the R/W enable
signals located on the embedded memory block ports.
Unspecified clock enables are set to be continuously active.
The use of read and write enable signals for data access control
instead of clock enable signals leads to sub-optimal power
consumption in many cases.

A second impediment to reduced RAM power dissipation is
related to logical RAM size. In most cases the size of a user-

specified logical memory will not exactly match the width and
depth dimensions of an embedded memory block. Since RAM
mapping flows typically focus on optimizing delay and resource
usage, rather than power, logical memories are usually mapped
using a minimum of external logic. As an example, Fig. 4
illustrates the mapping of a 4Kx4 logical memory to four 4Kx1
embedded memory blocks. In this case, each memory block is
configured as 4Kx1 so that a single bit of each addressable
location is located in each block. This configuration requires no
external logic. However, all four memory blocks must be
active during each logical memory access, so this is a high-
power implementation.

IV. POWER-AWARE RAM MAPPING

Our RAM mapping approach consists of two algorithms that
obtain a power-efficient mapping of logical memories to FPGA
embedded memory blocks. Two specific cases are targeted:

1. Since most embedded memory block dynamic power is a

result of clock-induced precharging, we identify cases
where user-specified logical RAM read and write enable
signals can be automatically converted or combined with
corresponding read and write clock enable signals while
maintaining correct functional behaviour.

2. For cases where more than one embedded memory block

is required to implement a logical RAM, we implement a
multi-banked RAM mapping. As a result of this banked
mapping, only one embedded memory block is clocked per
access. In some cases the banked structure may require the
inclusion of supporting logic.

A. Conversion of read and write enable to read and write
clock enable

In general, synchronous embedded memory blocks exhibit the
same RAM behaviour if either an enable or a clock enable is
used to control a read (or write) access and the alternate signal
is set to an active state. If present, both read enable and read
clock enable signals must be active to successfully perform an

FIFO, Shift Register, RAM
specification

Create
Logical
Memory

Logical RAMs

Logical-to-

physical RAM
processing

RAM blocks/
logic

Memory/
logic

placement

Placed
Memory

Fig. 3: Typical logical RAM to embedded memory block
mapping flow

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

5

embedded memory block read transaction [15]. Consider a
scenario where a read enable input is attached to a control
signal and read clock enable input is always tied to active logic
1. Since the inputs both must be active for reads, the read
clock enable input can be driven by the signal previously tied to
read enable input, and read enable input can be tied to logic 1.
 Similarly, write enable and write clock enable signals must be
active simultaneously to successfully perform an embedded
memory block write transaction [15]. Consider a scenario
where a write enable input is attached to a control signal and
the write clock enable input is always tied to active logic 1.
Since the inputs both must be active for writes, the write clock
enable input can be driven by the signal previously tied to the
write enable input, and the write enable input can be tied to
logic 1.
 The conversion of user-defined read and write enable signals
to respective clock enables primarily reduces power by
eliminating BIT line precharging when embedded memory
block data access is not required. The same functional RAM
behaviour is maintained. For some logical memories, a designer
may specify both an enable and a clock enable signal for an
embedded memory port. In these cases, simple conversion
cannot be performed. Additional logic (an AND gate) must be
added to the user design to allow the user-defined enable signal
to condition the associated memory port clock. The
combining of the enable and clock enable signal forms a new
combined clock enable signal which can be attached to the
memory port clock enable input. Depending on designer timing
constraints, the addition of logic delay to the clock enable path
may negatively impact mapped design performance. As a
result, this approach may only be appropriate if design power
reduction is considered more important than design
performance or preliminary timing information is available to
determine that performance is not likely to be affected.

The mapping steps in Fig. 5 are performed on each logical
RAM. These steps perform enable-to-clock enable conversion
and combining for embedded memory block inputs Clken and
Enable and designer signals User Clken and User Enable.

B. Power-Aware RAM Partitioning

As shown in Fig. 4, a logical memory which exceeds the size
of an embedded memory block must be mapped to multiple
blocks. Although the mapping shown in Fig. 4 does not require

any supporting logic, each memory block is active during each
memory access, requiring substantial power consumption. In
this case, the depth of each physical memory block matches the
depth of the logical memory and the width of each physical
memory block is smaller than its logical memory counterpart.
This mapping is an example of vertical memory slicing.

In general, an FPGA embedded memory block can be
structured to have a variety of depth and width configurations,
each with the same bit storage capacity. For example, an Altera
M4K (4608 bit) embedded memory block can be organized
into configurations ranging from 4096x1 to 256x18 [2]. This
allows a range of choices in mapping a logical RAM to
physical memory blocks. For example, Figs 4 and 6 provide
two example mapping alternatives. In the mapping in Fig. 6,
the width of each physical memory block matches the width of
the logical memory while the depth of each physical memory
block is reduced compared to its logical memory counterpart.
This mapping can be considered an example of horizontal
memory slicing. This second mapping requires the inclusion of
address decoding circuitry to determine which memory block
contains the requested data. Additionally, a multiplexer is
required on the read port to select the requested word during
read requests. Although dynamic power is consumed by the
added address decoder and multiplexer, all but one of the
embedded memory blocks is disabled during RAM accesses,
saving considerable dynamic power. Unused memory blocks
are disabled by connecting the outputs of the address decoder
to memory block clock enable signals.
 The vertical and horizontal RAM slicing implementations
shown in Figs 4 and 6 represent the end points of a spectrum of
feasible logical-to-physical RAM mappings (e.g. 2Kx2 RAM
block configurations are also possible). If, as a result of a
mapping change, an embedded memory block is converted
from a given depth to one that is half as deep, the following
additional mapping changes are required:

1. Each write port data line must be tied to twice the number

of source/destination embedded memory blocks.

If Clken = 1 and Enable = User Enable
 Set Clken = User Enable and Enable = 1
If Clken = User Clken and Enable = User Enable
 Set Clken = User Enable & User Clken and Enable = 1
If Clken = User Clken and Enable = 1
 Perform no change

Fig. 5: Steps required for enable signal conversion and
combining. This analysis is performed on each design logical
RAM

1K deep x 4
wide memory

block

Addr
Decoder

4

Addr[0:9]

Addr[10:11]

Data[0:3]

4k words
deep and 4
bits wide

Logical
memory

Addr[10:11]

Fig. 6: Alternate mapping of a 4Kx4 logical RAM to 4 Kbit
memory blocks

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

6

2. The size of the address decoder increases by a factor of 2.
3. The bit input size of each multiplexer on the embedded

memory read port increases by a factor of 2.
4. One address line is removed from each of the embedded

memory blocks.

The relative power consumed by each logical-to-physical

mapping can be evaluated by assessing the power consumed by
the memory blocks during a data access, the address decoder,
the output multiplexer, and associated routing. As mappings
approach the vertical slicing implementation (maximum
physical block depth), memory block power is increased and
multiplexer and address decoder power is decreased. As
mappings approach the horizontal slicing implementation,
multiplexer and address decoder power is increased and
memory block power is decreased. Fig. 7 shows the dynamic
power consumed by various mappings of a 4Kx32 logical
RAM in a Stratix II device for a selection of embedded
memory block depths as reported by the Quartus II PowerPlay
power analyzer. The plot shows that the power optimal
mapping for this logical RAM falls between the horizontal
slicing on the left and vertical slicing on the right. All mappings
achieve the same functional behaviour.

C. Logical RAM Partitioning Algorithm

A power-aware RAM partitioning algorithm has been
developed to evaluate the relative power consumption of a
series of logical-to-physical RAM mappings. Each mapping is
evaluated based on the number of active embedded memory
blocks per port, the required address decoder and multiplexer
circuitry, and the estimated routing required. Since
contemporary FPGAs contain a set of different embedded
memory block sizes, mapping evaluation is performed for each
block type to determine the most power-efficient choice.

The relative cost for each mapping is determined based on
the estimated dynamic power consumption of the mapping.
This cost can be expressed for each port of each logical RAM:

Cost = W * Pmux + N * Pram + Paddr_decode (1)

where Cost is the relative power cost for the mapping, W is
the width of the logical RAM, Pmux is the per-bit dynamic

power of a read port multiplexer, N is the number of required
embedded memory blocks, Pram is the per-block dynamic
power, and Paddr_decode is the dynamic power consumption of
the address decoder. Specific algorithm steps are shown in Fig.
8. An initial, resource-feasible mapping is first determined for
each logical memory based on vertical memory slicing. The
goal of this step is to find a RAM mapping such that all the

Dynamic Power
(mW)

0
20
40
60
80

100
120
140

Maximum Depth per Block

Multiplexer Power Increasing

128 256 512 1k 2k 4k
Embedded Memory Block Power Increasing

Fig. 7: Dynamic power consumption of a 4Kx32 logical RAM at
100 MHz in different slicing configurations

Fig. 8: Power-aware memory partitioning algorithm

1. For each logical memory

a. Identify smallest memory block type with depth ≥ logical
memory depth

i. Determine number of embedded memory blocks, N

b. For each logical memory port

ii. Look-up memory block power, Pram

iii. Set Costport, for logical memory port to N * Pram

c. Sum Costport values across ports to form Costinit

d. Store mapping and Costinit for logical memory

2. Verify mappings of all logical memories are feasible within
device memory constraints.

a. If mapping is infeasible, Retry 1 with alternate embedded
memory block mappings

3. For each logical memory

a. For each memory block type

i. For each possible memory block depth and width
configuration

1. Determine N and the size of the address decoder.

2. For each logical memory port

a. Look-up memory block power, Pram

b. Scale Pram by number of memories, N

c. Look up per-bit dynamic power of bit of
output read port multiplexer, Pmux

d. Scale Pmux by read port width, W

e. Look up dynamic power of address decoder,
Paddr_decode

f. Sum power components to determine Costport
via Eq. (1)

3. Sum Costport values across logical memory ports
to form Costtype

ii. Store depth and width of configuration with
minimum Costtype if Costtype < Costinit

b. Rank memory block types by Costtype

c. Set Costmem to the minimum Costtype value

4. Rank logical memories by Costinit - Costmem

5. For each logical memory in ranked order

a. Select memory block type which has minimum Costtype
and is feasible.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

7

logical memories are mapped to physical memories without
exceeding the supply of any RAM block or logic resource in
the FPGA. Next, all possible logical-to-physical mappings are
enumerated and evaluated based on their estimated dynamic
power consumption. The minimum power depth and width
configuration for each memory block type is then stored for
each logical memory. Following enumeration, the initial
physical mapping for each logical memory is replaced by a
lower-power alternative mapping, subject to embedded
memory block availability. This final step is ordered so that re-
mappings that will save the most dynamic power are
considered first.
 Our approach is effective for both single- and dual-port
logical RAMs. The key power savings aspect of the approach
is the connection of address decoder outputs to embedded
memory block clock enables. Only the addressed memory
block is precharged on a given clock cycle, saving considerable
RAM dynamic power.

The inclusion of a memory block read port multiplexer can
negatively impact design performance for designs which
include the RAM block output on the design critical path.
Design performance is not explicitly considered by the
partitioning algorithm. However, to minimize performance
impact, only configurations which require a 4-to-1 or smaller
multiplexer on each read port output bit are considered. Larger
multiplexers require additional levels of logic (at least 2) and
routing, significantly reducing design performance.

In addition to possibly affecting performance, the inclusion
of multiplexers consumes device logic. This added logic may
result in an overflow of required design logic elements for a
target device, so care must be taken not to add excessive logic.

D. Parameter Evaluation

The algorithms described in Sections IV.A and IV.C have
been integrated into Quartus II and are included in 5.1 and
later versions. Before experimental results on a range of
benchmarks were evaluated, the technology parameters noted
in Eq. (1) were determined via experiments with a
representative set of logical RAMs. The RAMs used for
parameter evaluation include ROMs and single and dual port
RAMs of sizes ranging from 512x2 to 8Kx132. Parameter
evaluation was performed for the Altera Stratix II architecture,
which contains three types of embedded memory blocks, each
of a different size: 576 bit (M512), 4,608 bit (M4K), and
589,824 bit (M-RAM) [2]. Each memory block allows for
implementation of both single and dual-port synchronous
RAMs.

Each logical RAM used for parameter evaluation was
mapped to each of the three Stratix II memory block types
using multi-block partitioning ranging from horizontal slicing
to vertical slicing. Following synthesis with Quartus II, the
memory designs were placed and routed using Quartus II. All
synthesis, place, and route steps used an unattainable 1 GHz
timing constraint to ensure maximum optimization effort by the
CAD software. A digital simulation of each design at 100 MHz

with random input vectors was performed to find the toggle
rate of each signal. This simulation includes glitch filtering,
where changes in logic state that are too rapid to propagate
through the device routing or functional blocks are removed
from the simulation waveform – this improves power
estimation accuracy [1]. Dynamic power was then estimated by
using the Quartus II PowerPlay power analyzer to combine the
signal toggle rates with detailed models of the power dissipated
by FPGA circuitry for each toggle. All the designs were able to
satisfy a minimum clock frequency of 100 MHz.

Statistical averaging was then used to determine the
following values based on the reported power estimates for all
RAM implementations:

• Power consumed by a single bit of an n-to-1 multiplexer,

Pmux, Values for only 2-to-1 and 4-to-1 multiplexers were
determined since shallower embedded memory blocks
depth slicings are not performed by our system due to
performance concerns.

• Per-port design power consumed by an active physical
memory block, Pram, for an M512, M4K, and M-RAM
embedded memory block.

• Power consumed by a k-to-n address decoder, Paddr_decode,
for a 2-to-4 and 1-to-2 decoder.

The variance of the multiplexer, memory block, and address
decoder dynamic power parameters listed above across the
various designs was found to be less than 1%. Variations of the
parameter values across devices in the same device family were
found to be negligible since logic block and routing constructs
are consistent across devices. Because the power analyzer
takes detailed placement and routing into account when
producing a power estimate, the averaged values for Pmux and
Paddr_decode take the effects of control signal, address, and data
net fanout into account.
 Although the calculated parameters measure dynamic power
values averaged across the RAM parameter evaluation design
set, the access patterns of user logical RAMs may differ. Since
our algorithm considers relative rather than absolute dynamic
power values in making tradeoffs, we consider the subsequent
use of these parameters across a range of user benchmarks to
be acceptable and representative of most RAM access patterns.

V. RESULTS

A. Validation of Simulation-Based Power Estimation

 The power-saving benefits of our approach have been tested
experimentally using both physical measurements and power
estimates obtained via the digital simulation and Quartus II
power analyzer flow described in Section IV.D.

In an initial experiment, six designs which contain memory
were mapped to a board which allows for accurate FPGA
power measurements. These designs include:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

8

Table I: Measured versus predicted changes in RAM dynamic power

• des3_6 – an implementation of the triple data encryption

standard algorithm using six pipeline stages. This design is
derived from the circuit described in [17].

• fft – an implementation of the Fast Fourier Transform
algorithm including buffer storage.

• 512x9_d72 - 72 instances of a 512x9 RAM block. Each
block contains one read port and one write port.

• fir_63tap_18bit – a 63 tap FIR filter with 18 bit data and
coefficients.

• 1024x18_x36 - 36 instances of a 1024x18 RAM block.
Each block contains one read and one write port.

• jpeg – an implementation of a JPEG image encoder.

Table I lists LUT, memory bit, and flip flop counts for each

design. The memory instance designs (512x9_d72 and
1024x18_x36) contain some memory block selection logic
which accounts for reported LUTs and flip flops. Although the
number of designs in this set is insufficient to fully assess the
power saving potential of our mapping approaches, they
provide a sufficient sample set to validate the relative accuracy
of our simulation-based power estimation approach versus
physical measurement. The estimation approach is
subsequently applied to a substantially larger design set.

As shown in Fig. 9, the board used for power measurement
contains an Altera Stratix II EP2S60 device. The power rails
for the FPGA are isolated and individually regulated to allow
precise measurement of supply current per power rail. The six
designs described above were coded in architecture
independent HDL. Each design was wrapped inside the FPGA
with a random vector generation circuit which generates a
sequential series of test vectors. The structure of all six designs
is such that random vectors provide a reasonable input
stimulus. This circuit reduces the external signal requirements
of the FPGA to a clock signal and an enable signal. The
designs were compiled using Altera Quartus II version 6.0 at
an unattainable 1 GHz target clock frequency. The Quartus II
software includes several power optimization algorithms, and
all algorithms except the power-aware RAM mapping
algorithm were set to their highest effort level.

 Circuit Characteristics Unopt.
power

Enable convert Enable convert/combine + mem
partition

 LUTs Memory
bits

Flip
flops

Meas.
(mW)

%change
Predict

%change
Meas.

Absol
Diff.

%change
Predict

%change
Meas.

Absol
Diff.

des3_6 5850 2688 1014 2240.6 -0.4% 0.0% 0.4% -0.3% 0.0% 0.3%
fft 4585 286956 4039 136.5 0.0% -0.1% 0.1% -8.3% -11.3% 3.0%
512x9_x72 840 331776 762 108.5 -3.2% -4.8% 1.6% -3.2% -4.8% 1.6%
fir_63tap_18bit 3331 1134 3263 189.9 -0.5% 0.0% 0.5% -0.5% 0.0% 0.5%
1024x18_x36 1414 663552 781 220.0 -2.1% -5.2% 3.1% -32.4% -35.1% 2.7%
jpeg 12068 1164986 9390 747.9 -15.5% -15.9% 0.4% -18.7% -18.2% 0.5%

average -3.6% -4.3% 1.0% -10.6% -11.6% 1.4%

Fig. 9: Test platform for Stratix II EP2S60 power
measurements

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

9

 The dynamic power consumption of each design was
measured in a series of tests. Following device configuration,
FPGA power consumption was first measured with an input
clock frequency of 0 MHz, providing the design static power
consumption. Then, overall FPGA power is measured at a
series of clock frequencies, up to the maximum frequency of
the design. The slope of the plotted line connecting these
points provides a dynamic power mW/MHz ratio for the
design. The ratio is then multiplied by 50 to determine
measured design dynamic power at 50 MHz. For comparison,
the same designs were simulated at 50 MHz and dynamic
power analysis was performed using the Quartus II PowerPlay
power analyzer to determine predicted power.
 Each design was compiled three times using Quartus II, each
time with a different RAM power optimization setting, as listed
below.
Power optimization cases:

1. No RAM power optimization
2. Read/write enable conversion to read/write clock

enable.
3. Memory partitioning in addition to read/write enable

conversion and combining
The optimizations for Cases 2 and 3 were described in Section
IV. The dynamic power consumption of each design at 50
MHz was determined using the physical measurement and
simulation methods described above for each case. The
percentage change in dynamic power for a design compiled
using RAM power optimization (e.g. Case 2 or Case 3) versus
no optimization (e.g. Case 1) is:

% change = 100 * (Popt – Punopt) / Punopt (2)

where Punopt is design dynamic power if RAM power
optimization is not used and Popt is the dynamic power of the
design compiled with optimization. Percent changes can be
individually determined for values predicted via simulation (%
changepredict) or physically measured (% changemeas). The
absolute difference in power saving percentage between the
simulated (predicted) and measured dynamic power values for
each design optimized under Case 2 or Case 3 is:

Abs diff = | % changepredict - % changemeas| (3)

Table I shows the measured and predicted percentage
change in dynamic power for the six designs based on Case 2
and 3 power optimization cases. The measured power
consumption for unoptimized compilation (Case 1) is provided
for reference. The maximum per-design absolute difference in
power saving percentage for measured and predicted values is
3.1% for enable conversion (1024x18_x36) and 3.0% for
partitioning, enable conversion and combining (fft). On
average, the absolute difference in power saving percentage for
the six designs was 1.0% for enable conversion and 1.4% for

Table II: Benchmark design statistics for 34 designs

all techniques.

As a final test of the accuracy of our simulation-based power
evaluation approach, a set of 150 ROMs and single and dual-
port RAMs ranging in size from 256x1 to 128Kx9 were
mapped to a Stratix II device and evaluated using the
procedure outlined above. One instantiation of each design
RAM was evaluated in each test. On average, read/write enable
conversion resulted in a measured 0.28% reduction in core
dynamic power (0.27% predicted). The low power reduction
for this method was primarily due to the presence of a
designer-specified clock enable on many designs. Memory
partitioning in addition to read/write enable conversion and
combining resulted in a measured 16.1% core dynamic power
reduction (18.1% predicted). Maximum per-design and
average absolute differences in power reduction percentage
were similar to the six designs noted above. Although these
RAMs do not reflect typical FPGA designs, they provide an
additional platform for the validation of the simulator.

Design LUTs Memory
bits

Flip
flops

Target Device

1 4617 246488 6283 EP2S15F672C3
2 12005 66336 12366 EP2S90F1508C3
3 12005 66336 12366 EP2S90F1508C3
4 7130 43008 4013 EP2S30F672C3
5 6348 231970 6813 EP2S15F672C3
6 11145 548 12951 EP2S60F1020C3
7 8199 292608 5388 EP2S15F672C3
8 3395 63744 7362 EP2S60F1020C3
9 3697 6432 5944 EP2S60F1020C3

10 18890 327680 3241 EP2S60F1020C3
11 225 331776 43 EP2S60F672C3
12 256 331776 77 EP2S60F672C3
13 20833 327680 3312 EP2S90F1508C3
14 2424 512 4919 EP2S60F1020C3
15 533 8192 273 EP2S60F672C3
16 35404 89600 19465 EP2S90F1508C3
17 8938 36096 5461 EP2S30F672C3
18 5481 47264 6993 EP2S15F672C3
19 8356 65536 8461 EP2S30F672C3
20 2583 35280 3260 EP2S60F1020C3
21 6542 128452 22139 EP2S60F1020C3
22 3283 94588 3886 EP2S15F672C3
23 26310 270336 29394 EP2S60F1020C3
24 3584 111872 4695 EP2S15F672C3
25 9005 426512 10416 EP2S60F1020C3
26 7527 98304 4497 EP2S60F1020C3
27 2136 126118 2693 EP2S15F672C3
28 3706 168416 6972 EP2S15F672C3
29 12320 184320 15075 EP2S60F1020C3
30 13993 88048 25516 EP2S60F1020C3
31 15907 337501 18874 EP2S30F672C3
32 8911 293856 9164 EP2S30F672C3
33 4248 153864 2842 EP2S60F1020C3
34 18553 996096 12816 EP2S60F1020C3

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

10

 Since many of the designs in our benchmark suite cannot be
adequately exercised by random input vectors, we cannot
physically measure power reductions on the entire suite.
However, the power reduction accuracy of both of these
calibration experiments validates the use of our simulation-
based power evaluation approach on the larger set of
benchmark circuits.

B. Power-Aware Mapping Algorithm Results for Stratix II

Following the determination of the tuning parameters, the
integration of our algorithms with Quartus II, and the
validation of our simulation-based power evaluation approach,
experimentation was performed on 34 designs with test
vectors. LUT, memory bit and flip flop counts for each design
are shown in Table II. This benchmark set includes designs
from the encryption, signal processing, and communications
processing domains. Most of the benchmark set consists of
proprietary designs collected by Altera and used for evaluation
of current and future FPGA architectures. Several designs are
Altera-created IP cores (e.g. Design 6 is an FIR filter, Design 7
is a network interface core, and Design 16 is a digital
correlator). Designs 11 and 12 are single- and dual-port
versions, respectively, of the 512x9_x72 design described in
Section V.A. As discussed later in this section, the designs in
Table II are ordered by achieved overall power savings
(smallest to largest). The ratio of memory bits to LUTs in the
designs is consistent with the ratio found in Stratix II devices
(about 70 memory bits per LUT).

Table III: Benchmark power statistics for 34 test designs

Average % dynamic power -
embedded block memory

22.3%

Average % dynamic power –
combinational logic

15.6%

Average % dynamic power –
registers

25.9%

Average % dynamic power –
routing

24.1%

As seen in Fig. 3, optimization occurs after complex memory
functions (e.g. FIFOs, shift registers) are converted to logical
RAMs, but before structures are assigned to specific embedded
memories. The specific device used for each design is listed in
Table II. The 34 designs were targeted to the smallest Stratix
II device which would hold them.
 Designs were implemented using the compilation settings
described in Section V.A, and dynamic power consumption
was evaluated using the power analysis flow detailed in Section
IV.D. A series of test vectors were used to simulate each
design at 100 MHz to obtain the toggle rate of each signal.
Dynamic power analysis was then performed with the Quartus
II PowerPlay power analyzer using these toggle rates. In
contrast to the experimentation described in [15], all Quartus II
power optimizations, except for our RAM power optimization
algorithms where noted, were included during experimentation.

Figure 10: Percentage change in data RAM power for benchmark designs due to RAM power optimizations

-80

-70

-60

-50

-40

-30

-20

-10

0

10
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Designs

%
 D

yn
am

ic
 P

o
w

er
 C

h
an

g
e

fo
r

R
A

M

Enable convert

Enable
convert/combine +
Mem partition

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

11

To validate our approach, a series of experiments were
performed using combinations of the algorithms with the 34
benchmark circuits. Dynamic power statistics related to the
benchmarks appear in Table III for initial compilation with
default parameters and no RAM power optimizations. Dynamic
power percentages were determined versus overall design core
dynamic power. As shown in Table III, RAM dynamic power
forms a significant part of average design core dynamic power.
In addition to compilation without RAM power optimizations,
each design was compiled using the following combinations of
automatic RAM power optimizations described in Section IV.
Power optimization cases:
1. Read/write enable conversion to read/write clock enable.
2. Read/write enable combining with an existing clock enable

in addition to read/write enable conversion.
3. Memory partitioning in addition to read/write enable

conversion and combining.
A bar graph illustrating the per-design percent change in

memory dynamic power due to these optimizations for Cases 1
(enable conversion) and 3 versus compilation with no RAM
power optimization appears in Fig. 10. The dynamic power
percentage change is computed via Eq. 2. Fig. 11 shows the
percent change in overall core dynamic power. The designs
appear in the same order numerically in each plot and in Table
II. Case 3 data for each graph includes any increase in
combinational logic and register dynamic power due to logic
added for multiplexing, address decoding, and clock enable
combining.

Table IV: Summary of RAM optimization results for 34 benchmark

designs (all averages geometric). Each percentage represents the
percent change of a value obtained via compilation with no RAM

power optimization due to the specified optimization

 R/W
Enable
convert

R/W
Enable
convert/
combine

R/W Enable
convert/

combine +
Mem

partition
Core dynamic
power -1.1% -1.5% -5.5%

Memory dynamic
power

-6.8% -10.1% -26.0%

Max clk freq 0.0% -0.4% -1.1%
LUT count 0.0% 0.0% 0.4%

These plots show that although some designs achieve no
benefit from the new approaches, others benefit significantly
(up to 72% RAM dynamic power and 35% overall core
dynamic power).
 Table IV shows the average percentage change in core and
RAM dynamic power for all three cases. The use of memory
partitioning more than doubles the average core dynamic
power savings (5.5% vs. 1.5%) and RAM dynamic power
savings (26.0% vs. 10.1%).

Figure 11: Percent change in overall core dynamic power for benchmark designs due to RAM power savings

-35

-30

-25

-20

-15

-10

-5

0

5
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Designs

%
 D

yn
am

ic
 P

o
w

er
 C

h
an

g
e

Enable convert

Enable
convert/combine +
Mem partition

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

12

Table V: Summary of RAM optimization results for logical
RAMs targeted to specific embedded memory blocks versus
unconstrained RAM placement using 34 benchmark designs.

 M512 M4K M-RAM
Designs completed 21 34 5
Core dynamic power 19.6% 1.9% 41.6%
Memory power 149.1% 9.6% 433.0%
Max clk freq. -3.6% 1.4% -13.4%
LUT count 2.4% 0.0% -0.4%

Table IV also shows that the RAM dynamic power
optimizations have little effect on area or performance. The
percentage reduction in the achievable average design clock is
shown in the table for all three cases. As expected, Case 3,
which includes memory partitioning, exhibits the largest
performance loss due to the inclusion of multiplexers at the
logical RAM output (1.1%). As discussed in Section IV.C, this
performance loss was mitigated by our restriction of a
maximum 4-to-1 read port output bit multiplexer size.
 Case 3 also shows the largest increase in required LUTs
(0.4%), primarily used to implement multiplexing logic. Case 1
(enable conversion) requires no additional logic and shows
minimal performance decrease. Although not optimal, our
memory partitioning algorithm is effective. For each design
except Design 5, sufficient embedded memory block resources
were available in the target FPGA to select the power optimal
logical-to-physical memory mapping for each logical memory
(Case 3). On average, memory partitioning required 0.7 sec.
(worst case 10 sec. for Design 16). This represents 0.05% of
Quartus II synthesis time on average (1.3% worst case for
Design 16).

C. The Use of Multiple Embedded Memory Block Sizes to
Reduce Dynamic Power

As stated in Section IV.C, the memory partitioning
algorithm considers mapping each logical memory to each type
of embedded memory block on a target device and selects the
most power-efficient implementation relative to available
resources. To illustrate the dynamic power benefits of the
availability of multiple embedded memory block sizes on a
target FPGA we re-mapped each of the 34 benchmark designs
to a Stratix II EP2S180 using the constraints described in
Section IV.D. Four separate compiles were performed for each
design, each using one of the following constraints:

a. Memory partitioner selects the target physical
embedded memory for each logical memory

b. All logical memories mapped to M512s
c. All logical memories mapped to M4Ks
d. All logical memories mapped to M-RAMs

For each compile, all Quartus II power optimizations, including
RAM power optimizations, were used, including memory
partitioning. Due to RAM resource limitations it was not

Table VI: Summary of RAM optimization results for logical RAMs
targeted to M512s and M4Ks versus unconstrained RAM placement

using 21 benchmark designs

 M512 M4K
Core dynamic power 19.6% 0.8%
Memory dynamic power 149.1% 6.4%
Max clk freq -3.6% 0.6%
LUT count 2.4% 0.0%

possible to successfully map all designs for Cases b, c, and d.
Table V shows the number of designs that were successfully
mapped for each case and the percentage changes for Cases b,
c, and d mapping versus Case a for several parameters.
Although it was possible to map all designs using solely M4Ks
for embedded memory, a 9.6% RAM power and 1.9% core
dynamic power penalty was observed. More drastic results
versus the base case were observed by restricting memory
mapping to solely M512s and M-RAMs. For example, RAM
dynamic power for M512-only mapping more than doubled
(e.g. a 149% increase indicates a final value 2.49x larger than
the original). Table VI shows similar percentage change results
for the 21 designs that were successfully mapped for Cases a, b
and c. These results indicate that if only one type of embedded
memory block could be included in an FPGA, a block of
intermediate size would be best for power efficiency.

D. The Effect of Read and Write Enable on Memory Block
Dynamic Power

 As mentioned in Section III, Xilinx Virtex-II and Virtex-4
and Altera Cyclone II devices contain embedded memory
blocks of a single size (18 Kbit, 18 Kbit, and 4.5 Kbit,
respectively). Additionally, Virtex-II and Virtex-4 memory
blocks do not have read enable signals. To assess the benefits
of our approach for write port only optimization on devices
which contain a single embedded memory block type, the 34
benchmark designs were re-mapped to Cyclone II devices
using the procedure described in Section V.B for four specific
sets of optimization:
Power optimization cases:
A. Write enable conversion to write clock enable
B. Read/write enable conversion to read/write clock enable.
C. Memory partitioning in addition to write enable

conversion and combining.
D. Memory partitioning in addition to read/write enable

conversion and combining.
For Cases A and C, read enable signals were left in their

original locations. As shown in Table VII, the availability of
both read and write enable conversion (Case B) versus write
enable-only conversion (Case A) nearly doubles memory
power reduction from 3.5% to 6.7%. Core dynamic power is
modestly reduced by 0.4%. Figure 12 illustrates that this power
decrease is primarily the result of four designs (17, 22, 23, and
32). The designs in Figure 12 are shown in the same order as in
Table II. If enable combining and memory partitioning are

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

13

Table VII: Summary of RAM optimization results for 34 designs

mapped to Cyclone II devices. Each percentage represents the percent
change of a value obtained via compilation with no RAM power

optimization due to the specified optimization

included with write enable conversion (Case C) and R/W
enable conversion (Case D), overall core dynamic power is
more substantially reduced (by 3.3% and 6.1%, respectively).
For each design, sufficient embedded memory block resources
were available in the target FPGA to select power optimal
logical-to-physical memory mapping for each logical memory.
For Cases C and D, memory partitioning required about 0.02%

of design synthesis time on average (max 0.1% for Design 34).
It should be noted that these results do not advocate for the
inclusion of a RAM read enable input on embedded memory
blocks. A designer could select to use an available read clock
enable input on an embedded memory block and gain the same
power reduction benefit without the need for
conversion/combining.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a set of RAM mapping
algorithms that are targeted to FPGA embedded memory
blocks. These techniques take advantage of the internal
structure of FPGA embedded memory to reduce memory
dynamic power dissipation. When possible, embedded memory
block clock enables are used to deactivate RAM block
precharging. Our mapping algorithms maintain the functional
behavior of each designer-specified RAM. These techniques
achieve a 26% RAM dynamic power reduction and a 6% core
dynamic power reduction for 34 large benchmark designs with
a performance and logic cost of about 1%. The availability of
three embedded memory block sizes leads to a 10% memory
power and 2% dynamic power reduction versus using only 4.5
Kbit embedded memory blocks. Our power reduction estimates
have been verified both via board-level power measurement
and via simulation-based power estimates.

Several optimizations to our power saving approaches could

 Write
enable
convert

R/W
enable
convert

Write
Enable
convert/
combine
+ Mem
partition

R/W
Enable
convert/
combine
+ Mem
partition

Core dynamic
power -0.7% -1.1% -3.3% -6.1%

Memory
dynamic
power

-3.5% -6.7% -16.1% -26.1%

Max clk freq -0.4% -0.4% -1.0% -1.6%
LUT count 0.0% 0.0% 0.7% 0.7%

Figure 12: Percent change in data RAM power for benchmark designs due to RAM optimizations mapped to Cyclone II devices

-50

-40

-30

-20

-10

0

10
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Designs

%
 D

yn
am

ic
 P

o
w

er
 C

h
an

g
e

Write enable convert
R/W enable convert

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

14

be implemented in the future. An analysis of our benchmark
designs shows that, on average, 18% of logical memories in a
design share address decoding circuitry with other design
logical memories. Currently, we rely on the Quartus II logic
synthesis tool to identify and eliminate these and other
structural logic redundancies and to pack compatible logical
memories into the same physical memory. Higher-level logical
RAM clustering may provide additional dynamic power
savings. Another possible optimization is the RTL analysis of
state machines to determine when embedded memory block
accesses are not needed. More complex RAM shut-down
signals could then be generated. Finally, an investigation to
determine the optimal size and availability of different-sized
embedded memory blocks is needed. In this paper it has been
shown that a diverse selection of memory block sizes is
beneficial and medium sized blocks (e.g. 4-16 Kbit) are
desirable for power reduction. The exact mix of block sizes for
optimal power reduction remains an open problem.

ACKNOWLEDGMENT

The authors wish to thank Elden Chau, Marcel LeBlanc,
David Lewis, David Lin, Ricky Tai, and Meghal Varia for their
insights regarding this work.

REFERENCES

[1] Altera Corp. Quartus II Handbook, Chapter 7, vol. 1, July 2005.
[2] Altera Corp. Stratix II Device Handbook, vol. 2, July 2005.
[3] Altera Corp. Cyclone II Device Handbook, vol. 1, June 2006.
[4] S. Bakshi and D. Gajski, A memory selection algorithm for high-

performance pipelines, In Proceedings of the European Design
Automation Conference, Brighton, England, Sept. 1995, pp. 124-129.

[5] L. Benini, A. Macii, and M. Poncino. A recursive algorithm for low-
power memory partitioning. In Proceedings of the International
Symposium on Low Power Electronics and Design, Rapallo, Italy, July,
2000, pp. 78-83.

[6] Y. Cao, H. Tomiyama, T. Okuma and H. Yasuura. Data memory design
considering effective bitwidth for low-energy embedded systems, In
Proceedings of the IEEE International Symposium of System Synthesis,
Kyoto, Japan, Oct. 2002, pp. 201-206.

[7] A. Ferrahi, G. Tellez, and M. Sarrafzadeh. Memory segmentation to
exploit sleep mode operation, In Proceedings of the ACM/IEEE Design
Automation Conference, San Francisco CA, Jun. 1995, pp. 36-41.

[8] C. Gebotys. Low energy memory and register allocation using network
flow, In Proceedings of the ACM/IEEE Design Automation Conference,
Anaheim, CA, Jun. 1997, pp. 435-440.

[9] W. Ho and S. Wilton. Logical-to-physical memory mapping for FPGAs
with dual-port embedded memories, In Proceedings of the International
Workshop of Field Programmable Logic and Applications, Glasgow,
UK, Aug. 1999, pp. 111-123.

[10] J. Lamoureux and S. Wilton. On the interaction between FPGA CAD
algorithms, In Proceedings of the IEEE International Conference on
Computer-Aided Design, San Jose, CA, Nov. 2003, pp. 701-708.

[11] M. Margala. Low-power SRAM circuit design, In Proceedings of the
IEEE International Workshop on Memory Technology, Design, and
Testing, San Jose, CA, Aug. 1999, pp. 115-122.

[12] M. Mamidipaka and N. Dutt. An Enhanced Power Estimation Model for
On-Chip Caches. CECS Technical Report #04-28, University of
California, Irvine, 2004.

[13] P. Petrov and A. Orailoglu. Virtual page tag reduction for low-power
TLBs, In Proceedings of the IEEE International Conference on
Computer Design, San Jose, CA, Oct. 2003, pp. 371-374.

[14] H. Schmit and D. Thomas. Address generation for memories containing
multiple arrays, IEEE Transactions on VLSI Systems, vol. 17, pp. 377-
385, May 1998.

[15] R. Tessier, V. Betz, D. Neto, and T. Gopalsamy. Power-aware RAM
mapping for FPGA embedded memory blocks, In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, Monterey, CA, Feb 2006, pp. 189-198.

[16] O. Unsal, R. Ashok, I. Koren, C. Krishna, and C. Moritz. Cool-cache for
hot multimedia, In Proceedings of the ACM/IEEE International
Symposium on Microarchitecture, Austin, TX, Dec. 2001, pp. 274-283.

[17] S. Wilton, S. Ang, and W. Luk. The impact of pipelining on energy per
operation in field-programmable gate arrays, In Proceedings of the
International Workshop of Field Programmable Logic and Applications,
Antwerp, Belgium, Aug. 2004, pp. 719-728.

[18] S. Wuytack, F. Catthoor, L. Nachtergaele and H. De Man. Power
exploration for data dominated video applications, In Proceedings of the
IEEE International Symposium on Low Power Design, Monterey, CA,
Aug. 1996, pp. 359-364.

[19] Xilinx Corp. Virtex-4 User’s Guide, July 2005.
[20] Xilinx Corp. Virtex II Platform FPGAs: Complete Data Sheet, March

2005

Russell Tessier (M’00) is an associate professor of electrical
and computer engineering at the University of Massachusetts,
Amherst, MA. He received the B.S. degree in computer and
systems engineering from Rensselaer Polytechnic Institute,
Troy, NY in 1989 and S.M. and Ph.D. degrees in electrical
engineering from MIT, Cambridge, MA in 1992 and 1999,
respectively. Dr. Tessier was a founder of Virtual Machine
Works, a logic emulation company, and has also worked at
BBN, Ikos Systems, and Altera. Prof. Tessier currently leads
the Reconfigurable Computing Group at UMass. His research
interests include computer architecture, field-programmable
gate arrays, and system verification.

Vaughn Betz (S ’88, M ‘92) received the B.Sc. degree from
the University of Manitoba in 1991, the M.S. degree from the
University of Illinois at Urbana-Champaign in 1993, and the
PhD degree from the University of Toronto in 1998, all in
Electrical and Computer Engineering. Currently he is a
Director of Software Engineering at Altera Corporation’s
Toronto Technology Centre. Dr. Betz was a co-founder and
Vice President of Engineering at Right Track CAD until its
acquisition by Altera in May of 2000. His research interests
include placement and routing algorithms, field programmable
gate array architecture, and power and timing modeling of
deep-submicron circuitry.

David Neto earned a BSc in Computer Science and
Mathematics in 1991, an MSc in Computer Science in 1993,
and a PhD in Computer Science in 1999, all at the University
of Toronto. His technical interests include power analysis,
CAD optimization algorithms for power and other metrics, and
software performance and quality.

Aaron Egier (S'00-M'06) received the B.A.Sc. and M.A.Sc.
degrees in computer engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2002 and from the
University of Toronto, Toronto, ON, Canada, in 2005,
respectively. For the M.A.Sc. degree, he created software tools
to automate the design and layout of FPGAs. Currently, he is

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, 2006

15

an Advanced Software Engineer in the power modeling group
at the Altera Toronto Technology Centre.

Thiagaraja Gopalsamy has a Masters degree in computer
science and engineering from the Ohio State University. He is
currently working at Altera Corporation as a Senior Engineer.
His research interests include FPGAs and mobile ad-hoc
wireless networks.

