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Abstract— Contemporary FPGA design requires a spectrum of 
available physical resources. As FPGA logic capacity has grown, 
locally-accessed FPGA embedded memory blocks have increased 
in importance. When targeting FPGAs, application designers 
often specify high-level memory functions which exhibit a range of 
sizes and control structures. These logical memories must be 
mapped to FPGA embedded memory resources such that physical 
design objectives are met. In this work a set of power-efficient 
logical-to-physical RAM mapping algorithms are described which 
convert user-defined memory specifications to on-chip FPGA 
memory block resources. These algorithms minimize RAM 
dynamic power by evaluating a range of possible embedded 
memory block mappings and selecting the most power-efficient 
choice. Our automated approach has been validated with both 
simulation of power dissipation and measurements of power 
dissipation on FPGA hardware. A comparison of measured 
power reductions to values determined via simulation confirms 
the accuracy of our simulation approach. Our power-aware RAM 
mapping algorithms have been integrated into a commercial 
FPGA compiler and tested with 34 large FPGA benchmarks. 
Through experimentation, we show that, on average, embedded 
memory dynamic power can be reduced by 26% and overall core 
dynamic power can be reduced by 6% with a minimal loss (1%) 
in design performance. Additionally, it is shown that the 
availability of multiple embedded memory block sizes in an FPGA 
reduces embedded memory dynamic power by an additional 
9.6% by giving more choices to the CAD algorithms. 
 

Index Terms— power demand, field programmable gate 
arrays, memory architecture, design automation  

I. INTRODUCTION 

As field-programmable gate arrays (FPGAs) have grown in 
logic capacity, the need for on-chip data storage has increased 
since almost all modern designs contain memory. In 
contemporary FPGAs, most on-chip storage is implemented in 
large RAM blocks integrated into the FPGA architecture. 
These storage blocks allow for the implementation of a variety 
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of memory structures, including FIFOs, scratch pad memories, 
and shift registers, within close physical proximity of logic 
resources. Due to their extensive use, embedded memory 
blocks have been found to consume between 10-20% of core 
dynamic power in typical FPGA designs [1]. For example, Fig. 
1 illustrates the core dynamic power breakdown for 124 FPGA 
designs of varying sizes and functionalities mapped to Altera 
Stratix II [2] devices. On average, embedded memory 
consumes as much power as lookup tables (LUTs) in these 
designs. As the amount of FPGA logic and on-chip memory 
increases over the next few years and the application domain of 
FPGAs expands to include mobile and power-sensitive 
environments, the power-efficient use of embedded memory 
blocks will become increasingly important. 
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Fig. 1: Core dynamic power distribution for 124 benchmarks mapped 
to Stratix II devices. Test vectors are not available for these designs, 
so logic is assumed to toggle during 12.5% of clock cycles. 

 
   Embedded memory blocks in contemporary FPGAs are 
typically implemented with synchronous SRAM [2][19] to 
improve design performance. Like other synchronous SRAM 
architectures, FPGA embedded memory accesses are 
performed in concert with a design clock and a series of 
interface signals including read/write (R/W) enables, clock 
enables, address, and data signals. During application 
development, designers usually do not specify RAM blocks 
that precisely match the size and fully specify the control 
signals of the physical RAM blocks on an FPGA. More 
typically, a higher-level, logical memory representation is 
specified and the CAD flow automatically implements this 
specification using physical memories and any required control 
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circuitry.  
Synchronous FPGA embedded memories primarily consume 

dynamic power as a result of internal RAM clocking. To save 
power, RAM control signals can be configured to suppress 
internal clocking when RAM access is unnecessary on a 
specific clock cycle. Although user-defined or generated 
control signals provide for valid functional embedded memory 
behaviour, their configuration may not efficiently suppress 
unnecessary clocked memory accesses, leading to wasted RAM 
dynamic power. These limitations motivate the development of 
RAM mapping algorithms that take power objectives into 
account while maintaining valid functional behaviour. 

   In this paper we describe a series of algorithms to 
automatically map user-specified logical memories to available 
physical embedded memory block resources with the goal of 
reducing overall FPGA dynamic power consumption. In 
considering feasible RAM mappings, our approach estimates 
the relative dynamic power consumption of each potential 
implementation and selects the most power-efficient 
implementation subject to on-chip RAM availability 
constraints. When necessary, user-specified RAM control 
signals (R/W enable, clock enables) are remapped to achieve a 
logically-equivalent RAM implementation with reduced 
dynamic power consumption. If an FPGA contains embedded 
memory blocks of different sizes, a mapping using each block 
type is considered.  

Our mapping techniques have been integrated into the Altera 
Quartus II synthesis system [1] and targeted to several Altera 
FPGA families which contain embedded memories. To 
determine the benefit of our approach we evaluate the power 
reduction for 34 designs which contain RAM using a power 
estimation methodology based on digital simulation and circuit-
level power models. To evaluate the accuracy of the 
simulation-based approach, we first map a sample set of six 
large FPGA designs and a group of primitive RAM 
instantiations to an FPGA-based board which allows for 
accurate dynamic power measurements. Through 
experimentation with the sample designs, it is shown that the 
measured and predicted power savings due to our mapping 
optimizations differ by a little more than one percentage point. 
Subsequent simulation-based experimentation with the 34 
RAM-based designs demonstrates an average embedded 
memory dynamic power reduction of 26% and overall core 
dynamic power reduction of 6% on Stratix II devices. 
Additionally, the availability of multiple types of embedded 
memory blocks in an FPGA device reduces memory dynamic 
power and overall core dynamic power by an additional 9.6% 
and 2%, respectively. 

   In the next section we discuss related power-aware 
memory mapping techniques. In Section III the basic operation 
of FPGA embedded memories is described along with details 
of the basic mapping flow used to translate user-specified 
logical memory to physical embedded memory blocks. Section 
IV provides the details of our power-aware RAM mapping 
techniques and supporting algorithms. Experimental results are 

presented in Section V. Section VI summarizes the paper and 
provides directions for future work. 

II. RELATED WORK 

RAM dynamic power-reduction techniques for ASICs and 
microprocessor systems have been considered at the 
application-mapping, compiler, and circuit levels. Although 
these approaches provide insight into reducing FPGA 
embedded memory power, none are directly applicable. Several 
synthesis techniques for application-specific embedded systems 
create power-optimized memory structures based on 
application address traces. In Benini et al. [5], the memory 
trace of an embedded application is analyzed by an algorithm 
to determine the portion of program and data memory that is 
most frequently accessed. These addresses are then grouped 
into memory banks which are implemented with scratch pad 
memories. Infrequently accessed addresses are grouped into 
larger physical memory blocks. Later work by Cao et al. [6] 
extends this optimization to consider data width scaling. 
Wuytack et al. [18] have developed techniques to optimize the 
entire memory hierarchy of an application for power 
consumption based on application information. These previous 
approaches rely on application trace information to perform 
memory partitioning. 

A number of compiler techniques have been developed for 
processor-based systems which optimize power while mapping 
data to fixed system memory resources. For example, in Unsal 
et al. [16], a series of memory locations for multimedia 
applications are remapped to a small, local scratch pad memory 
to save dynamic power. In Petrov and Orailoglu [13], the 
organization and power consumption of a translation look-
aside buffer are adjusted on a per-application basis. In Gebotys 
[8], memory energy is managed through memory and register 
allocation using a network flow algorithm.  In Ferrahi et al. [7], 
a compiler technique to optimize sleep mode operation for 
memories is described. Memory reactivations are minimized via 
scheduling to save dynamic power.  

Numerous circuit-level techniques for power reduction have 
been explored [11] including reduced swing pre-decode lines, 
multi-stage address decoding, and divided word and bit lines, 
among others. These techniques may be used in the future by 
FPGA designers to reduce FPGA embedded memory block 
power and are additive to the approaches described in this 
paper. 
   Although FPGA logic and routing dynamic power reduction 
has been studied [10], these techniques were not applied to 
embedded memory blocks. Except for [15], previous research 
efforts that map design logic to embedded memory blocks in 
ASICs [4][14] and FPGAs [9] do not consider power 
optimization as a mapping goal.  
   This paper extends our earlier work in [15] by providing 
more detailed algorithm descriptions and many new 
experimental results. We validate our simulation-based power 
estimation approach by comparing the power reductions 
estimated via simulation with those measured on physical 
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hardware for a subset of our design suite, and show that the 
results are very consistent. We also measure all power 
reductions due to our RAM mapping algorithm using a more 
recent version of the Quartus CAD tool than the one used in 
[15]. This more recent version of the Quartus software 
includes synthesis, placement and routing algorithms which 
incorporate power optimizations, so the results in this paper 
show that power-aware RAM mapping saves significant power 
even when a CAD suite incorporates other power-reduction 
techniques. Finally, this work extends [15] by evaluating the 
effect of RAM power-reduction techniques across multiple 
FPGA device families. 

III. BACKGROUND 

The development of a power-efficient embedded RAM 
mapping strategy requires insight into the internal behaviour of 
synchronous SRAM. Typically, each port of an embedded 
memory block is controlled by one or more read/write (R/W) 
enable signals, clock (Clk) enable signals, and clock signals. As 
shown in Fig. 2, these signals directly or indirectly control data 
movement in different parts of the embedded memory port.  

During a typical memory read operation the following 
events occur in sequence, in response to a rising clock edge: 

•  The memory port clock (MClk) is strobed causing the 
BIT lines to be precharged to Vcc. 

•  The read address is decoded and one word line is 
activated. 

•  The BIT line difference is identified by sense amps 
causing the read data to be strobed into a column 
multiplexer. 

•  Read data passes through the column multiplexer and a 
latch conditioned by Read Enable to the RAM external 
Read Data lines. 

Memory write operations require a similar sequence of 
operations which occur in the following order: 

•  MClk  is strobed causing the BIT lines to be precharged 
to Vcc. 

•  The Write Enable signal, conditioned by MClk, creates 
a write pulse which transfers write data to the write 
buffers and a word line is activated following write 
address decode. 

•  The write buffer data is stored in the RAM cell 
For both synchronous read and write RAM operations, most 

dynamic power is consumed via BIT line precharging [12]. To 
control clocking, embedded memory ports often have a clock 
enable signal which can eliminate internal precharging, word-
line decoding, and RAM cell access. The disabling of the clock 
enable signal when memory port access is not required 
provides the best technique to eliminate embedded memory 
dynamic power consumption for a memory port. If a RAM 
port is inactive on a given clock cycle and its clock can be 
suppressed via an inactive clock enable, the RAM port will not 
consume significant dynamic power.  

A number of contemporary FPGAs support embedded 
memory blocks with enable and clock enable signals. Altera 
Stratix II and Cyclone II [3] devices support both R/W enables 
and clock enables on each of the two ports on every memory 
block. Each Xilinx Virtex-II [20] and Virtex-4 [19] embedded 
SelectRAM block contains write enable and clock enable 
control signals on each port, but no separate read enable. While 
Stratix II devices support three different embedded memory 
block sizes, Cyclone II, Virtex-II, and Virtex-4 contain 
embedded memory blocks of a single size. 

The goal of power-aware RAM mapping is to implement the 
functionality of a user-defined RAM module (logical memory) 
in one or more FPGA embedded memory blocks so that 
memory precharges are limited. This optimization goal 
attempts to minimize RAM dynamic activity through the use of 
RAM port clock enables whenever possible. The effective use 
of clock enable signals ensures that the bulk of embedded 
memory block dynamic power is consumed when a required 
access to data within a RAM is performed. In some cases this 
goal may require the synthesis of one of more clock enable 
signals during the mapping process. This mapping must achieve 
the same functional behaviour for the RAM as specified by the 
designer while allowing for possible tradeoffs between design 
power consumption, area and performance. 

 

A. Typical RAM Mapping Flow 

FPGA embedded memory blocks are used to implement a 
variety of RAM components including FIFOs, shift registers, 
and single and dual-port memories. Logical RAMs are 
specified by the designer in RTL or schematic form, created by 
the FPGA compiler and mapped [1], as shown in Fig. 3: 

 
1. Logical memory creation – User-defined RAM 

descriptions are processed by the FPGA compilation 
software to create logical memories with the desired 
characteristics.    

2. Logical-to-physical RAM processing - Logical RAMs 
are converted into one or more RAM blocks which 
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Fig. 2: Internal view of embedded memory read/write port 
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Fig. 4: Area-efficient mapping of a 4Kx4 logical RAM to 4 Kbit 
memory blocks 

match the external interface and size constraints of 
available embedded memory blocks.  

3. Embedded memory block placement – RAM blocks 
and associated control logic are assigned to available 
on-chip embedded memory block and logic resources. 

 
The power-aware algorithms developed in this work are 

applied in the logical-to-physical RAM processing step. 
Traditionally, RAM mapping has targeted logical RAM 
performance and FPGA area minimization [9] rather than 
power consumption. As shown in Section IV.B, however, an 
area-optimal embedded memory implementation does not 
always minimize dynamic power.  To conserve dynamic power 
it is desirable to map the required memory functions to the 
available physical memories so that power consumption is 
optimized, while meeting area and delay constraints.  
   The size of both logical and physical (embedded) memory 
blocks can be defined in terms of the number of addressable 
locations (depth) and output bits per memory (width). The 
number of address bits required for both logical and physical 
memories is directly related to memory block depth. The 
number of data in and data out bits is related to memory block 
width. To promote flexibility, an FPGA embedded memory 
block may typically be programmed to support a range of 
depth versus width configurations [2][19]. 

Until the relatively recent adoption of synchronous SRAMs, 
most user-defined RAM targeted asynchronous memories 
which use read and write enable for data access control. 
Although embedded memory blocks now allow for the use of 
either operation-specific enable or clock enable signals to 
provide access control, many designers continue to use the 
operation-specific enable approach, ignoring the clock enable. 
Contemporary RAM mapping flows (e.g. Fig. 3) automatically 
map these user-defined enable signals to the R/W enable 
signals located on the embedded memory block ports. 
Unspecified clock enables are set to be continuously active. 
The use of read and write enable signals for data access control 
instead of clock enable signals leads to sub-optimal power 
consumption in many cases. 

A second impediment to reduced RAM power dissipation is 
related to logical RAM size. In most cases the size of a user-

specified logical memory will not exactly match the width and 
depth dimensions of an embedded memory block. Since RAM 
mapping flows typically focus on optimizing delay and resource 
usage, rather than power, logical memories are usually mapped 
using a minimum of external logic. As an example, Fig. 4 
illustrates the mapping of a 4Kx4 logical memory to four 4Kx1 
embedded memory blocks. In this case, each memory block is 
configured as 4Kx1 so that a single bit of each addressable 
location is located in each block. This configuration requires no 
external logic.  However, all four memory blocks must be 
active during each logical memory access, so this is a high-
power implementation. 

 

IV. POWER-AWARE RAM MAPPING 

Our RAM mapping approach consists of two algorithms that 
obtain a power-efficient mapping of logical memories to FPGA 
embedded memory blocks. Two specific cases are targeted: 

 
1. Since most embedded memory block dynamic power is a 

result of clock-induced precharging, we identify cases 
where user-specified logical RAM read and write enable 
signals can be automatically converted or combined with 
corresponding read and write clock enable signals while 
maintaining correct functional behaviour. 

 
2. For cases where more than one embedded memory block 

is required to implement a logical RAM, we implement a 
multi-banked RAM mapping. As a result of this banked 
mapping, only one embedded memory block is clocked per 
access. In some cases the banked structure may require the 
inclusion of supporting logic. 

 

A. Conversion of read and write enable to read and write 
clock enable 

In general, synchronous embedded memory blocks exhibit the 
same RAM behaviour if either an enable or a clock enable is 
used to control a read (or write) access and the alternate signal 
is set to an active state. If present, both read enable and read 
clock enable signals must be active to successfully perform an 
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RAM blocks/ 
logic 

Memory/ 
logic 
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Fig. 3: Typical logical RAM to embedded memory block 
mapping flow 
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embedded memory block read transaction [15]. Consider a 
scenario where a read enable input is attached to a control 
signal and read clock enable input is always tied to active logic 
1. Since the inputs both must be active for reads, the read 
clock enable input can be driven by the signal previously tied to 
read enable input, and read enable input can be tied to logic 1.  
   Similarly, write enable and write clock enable signals must be 
active simultaneously to successfully perform an embedded 
memory block write transaction [15]. Consider a scenario 
where a write enable input is attached to a control signal and 
the write clock enable input is always tied to active logic 1. 
Since the inputs both must be active for writes, the write clock 
enable input can be driven by the signal previously tied to the 
write enable input, and the write enable input can be tied to 
logic 1. 
   The conversion of user-defined read and write enable signals 
to respective clock enables primarily reduces power by 
eliminating BIT line precharging when embedded memory 
block data access is not required. The same functional RAM 
behaviour is maintained. For some logical memories, a designer 
may specify both an enable and a clock enable signal for an 
embedded memory port. In these cases, simple conversion 
cannot be performed. Additional logic (an AND gate) must be 
added to the user design to allow the user-defined enable signal 
to condition the associated memory port clock. The 
combining of the enable and clock enable signal forms a new 
combined clock enable signal which can be attached to the 
memory port clock enable input. Depending on designer timing 
constraints, the addition of logic delay to the clock enable path 
may negatively impact mapped design performance. As a 
result, this approach may only be appropriate if design power 
reduction is considered more important than design 
performance or preliminary timing information is available to 
determine that performance is not likely to be affected. 

The mapping steps in Fig. 5 are performed on each logical 
RAM. These steps perform enable-to-clock enable conversion 
and combining for embedded memory block inputs Clken and 
Enable and designer signals User Clken and User Enable.  

B. Power-Aware RAM Partitioning 

As shown in Fig. 4, a logical memory which exceeds the size 
of an embedded memory block must be mapped to multiple 
blocks. Although the mapping shown in Fig. 4 does not require 

any supporting logic, each memory block is active during each 
memory access, requiring substantial power consumption. In 
this case, the depth of each physical memory block matches the 
depth of the logical memory and the width of each physical 
memory block is smaller than its logical memory counterpart. 
This mapping is an example of vertical memory slicing. 

In general, an FPGA embedded memory block can be 
structured to have a variety of depth and width configurations, 
each with the same bit storage capacity. For example, an Altera 
M4K (4608 bit) embedded memory block can be organized 
into configurations ranging from 4096x1 to 256x18 [2]. This 
allows a range of choices in mapping a logical RAM to 
physical memory blocks. For example, Figs 4 and 6 provide 
two example mapping alternatives. In the mapping in Fig. 6, 
the width of each physical memory block matches the width of 
the logical memory while the depth of each physical memory 
block is reduced compared to its logical memory counterpart. 
This mapping can be considered an example of horizontal 
memory slicing. This second mapping requires the inclusion of 
address decoding circuitry to determine which memory block 
contains the requested data. Additionally, a multiplexer is 
required on the read port to select the requested word during 
read requests. Although dynamic power is consumed by the 
added address decoder and multiplexer, all but one of the 
embedded memory blocks is disabled during RAM accesses, 
saving considerable dynamic power. Unused memory blocks 
are disabled by connecting the outputs of the address decoder 
to memory block clock enable signals. 
   The vertical and horizontal RAM slicing implementations 
shown in Figs 4 and 6 represent the end points of a spectrum of 
feasible logical-to-physical RAM mappings (e.g. 2Kx2 RAM 
block configurations are also possible). If, as a result of a 
mapping change, an embedded memory block is converted 
from a given depth to one that is half as deep, the following 
additional mapping changes are required: 
 
1. Each write port data line must be tied to twice the number 

of source/destination embedded memory blocks. 

If  Clken = 1 and Enable = User Enable 
    Set Clken = User Enable and Enable = 1 
If Clken = User Clken and Enable = User Enable 
    Set Clken = User Enable & User Clken and Enable = 1 
If Clken = User Clken and Enable = 1 
    Perform no change    
 

Fig. 5: Steps required for enable signal conversion and 
combining. This analysis is performed on each design logical 
RAM 
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Addr[10:11] 

Data[0:3] 

4k words 
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Logical 
memory 

Addr[10:11] 

Fig. 6: Alternate mapping of a 4Kx4 logical RAM to 4 Kbit 
memory blocks 
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2. The size of the address decoder increases by a factor of 2.  
3. The bit input size of each multiplexer on the embedded 

memory read port increases by a factor of 2.  
4. One address line is removed from each of the embedded 

memory blocks. 
 
The relative power consumed by each logical-to-physical 

mapping can be evaluated by assessing the power consumed by 
the memory blocks during a data access, the address decoder, 
the output multiplexer, and associated routing. As mappings 
approach the vertical slicing implementation (maximum 
physical block depth), memory block power is increased and 
multiplexer and address decoder power is decreased. As 
mappings approach the horizontal slicing implementation, 
multiplexer and address decoder power is increased and 
memory block power is decreased. Fig. 7 shows the dynamic 
power consumed by various mappings of a 4Kx32 logical 
RAM in a Stratix II device for a selection of embedded 
memory block depths as reported by the Quartus II PowerPlay 
power analyzer. The plot shows that the power optimal 
mapping for this logical RAM falls between the horizontal 
slicing on the left and vertical slicing on the right. All mappings 
achieve the same functional behaviour. 

C. Logical RAM Partitioning Algorithm 

A power-aware RAM partitioning algorithm has been 
developed to evaluate the relative power consumption of a 
series of logical-to-physical RAM mappings. Each mapping is 
evaluated based on the number of active embedded memory 
blocks per port, the required address decoder and multiplexer 
circuitry, and the estimated routing required. Since 
contemporary FPGAs contain a set of different embedded 
memory block sizes, mapping evaluation is performed for each 
block type to determine the most power-efficient choice.   

The relative cost for each mapping is determined based on 
the estimated dynamic power consumption of the mapping. 
This cost can be expressed for each port of each logical RAM:  
 

Cost = W * Pmux + N * Pram + Paddr_decode               (1) 
 

where Cost is the relative power cost for the mapping, W is 
the width of the logical RAM, Pmux is the per-bit dynamic 

power of a read port multiplexer, N is the number of required 
embedded memory blocks, Pram is the per-block dynamic 
power, and Paddr_decode is the dynamic power consumption of 
the address decoder. Specific algorithm steps are shown in Fig. 
8. An initial, resource-feasible mapping is first determined for 
each logical memory based on vertical memory slicing. The 
goal of this step is to find a RAM mapping such that all the 

Dynamic Power 
(mW) 

0 
20 
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60 
80 

100 
120 
140 

Maximum Depth per Block 

 

Multiplexer Power Increasing 

128 256 512 1k 2k 4k 
Embedded Memory Block Power Increasing 

Fig. 7: Dynamic power consumption of a 4Kx32 logical RAM at 
100 MHz in different slicing configurations 

Fig. 8: Power-aware memory partitioning algorithm 

1. For each logical memory 

a. Identify smallest memory block type with depth ≥ logical 
memory depth 

i. Determine number of embedded memory blocks, N 

b. For each logical memory port 

ii. Look-up memory block power, Pram 

iii. Set Costport, for logical memory port to N * Pram 

c. Sum Costport values across ports to form Costinit 

d. Store mapping and Costinit for logical memory 

2. Verify mappings of all logical memories are feasible within 
device memory constraints. 

a. If mapping is infeasible, Retry 1 with alternate embedded 
memory block mappings 

3. For each logical memory 

a. For each memory block type 

i. For each possible memory block depth and width 
configuration 

1. Determine N and the size of the address decoder. 

2. For each logical memory port 

a. Look-up memory block power, Pram 

b. Scale Pram by number of memories, N 

c. Look up per-bit dynamic power of  bit of 
output read port multiplexer, Pmux 

d. Scale Pmux by read port width, W 

e. Look up dynamic power of address decoder, 
Paddr_decode                   

f. Sum power components to determine Costport 
via Eq. (1) 

3. Sum Costport values across logical memory ports 
to form Costtype 

ii. Store depth and width of configuration with 
minimum Costtype if  Costtype <  Costinit 

b. Rank memory block types  by  Costtype 

c. Set Costmem to the minimum Costtype  value 

4. Rank logical memories by Costinit  - Costmem 

5. For each logical memory in ranked order 

a. Select memory block type which has minimum Costtype 
and is feasible. 
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logical memories are mapped to physical memories without 
exceeding the supply of any RAM block or logic resource in 
the FPGA. Next, all possible logical-to-physical mappings are 
enumerated and evaluated based on their estimated dynamic 
power consumption. The minimum power depth and width 
configuration for each memory block type is then stored for 
each logical memory. Following enumeration, the initial 
physical mapping for each logical memory is replaced by a 
lower-power alternative mapping, subject to embedded 
memory block availability. This final step is ordered so that re-
mappings that will save the most dynamic power are 
considered first.    
   Our approach is effective for both single- and dual-port 
logical RAMs. The key power savings aspect of the approach 
is the connection of address decoder outputs to embedded 
memory block clock enables. Only the addressed memory 
block is precharged on a given clock cycle, saving considerable 
RAM dynamic power.   

The inclusion of a memory block read port multiplexer can 
negatively impact design performance for designs which 
include the RAM block output on the design critical path. 
Design performance is not explicitly considered by the 
partitioning algorithm. However, to minimize performance 
impact, only configurations which require a 4-to-1 or smaller 
multiplexer on each read port output bit are considered. Larger 
multiplexers require additional levels of logic (at least 2) and 
routing, significantly reducing design performance.  

In addition to possibly affecting performance, the inclusion 
of multiplexers consumes device logic. This added logic may 
result in an overflow of required design logic elements for a 
target device, so care must be taken not to add excessive logic. 

D. Parameter Evaluation 

The algorithms described in Sections IV.A and IV.C have 
been integrated into Quartus II and are included in 5.1 and 
later versions. Before experimental results on a range of 
benchmarks were evaluated, the technology parameters noted 
in Eq. (1) were determined via experiments with a 
representative set of logical RAMs. The RAMs used for 
parameter evaluation include ROMs and single and dual port 
RAMs of sizes ranging from 512x2 to 8Kx132. Parameter 
evaluation was performed for the Altera Stratix II architecture, 
which contains three types of embedded memory blocks, each 
of a different size: 576 bit (M512), 4,608 bit (M4K), and 
589,824 bit (M-RAM) [2]. Each memory block allows for 
implementation of both single and dual-port synchronous 
RAMs.  

Each logical RAM used for parameter evaluation was 
mapped to each of the three Stratix II memory block types 
using multi-block partitioning ranging from horizontal slicing 
to vertical slicing. Following synthesis with Quartus II, the 
memory designs were placed and routed using Quartus II. All 
synthesis, place, and route steps used an unattainable 1 GHz 
timing constraint to ensure maximum optimization effort by the 
CAD software. A digital simulation of each design at 100 MHz 

with random input vectors was performed to find the toggle 
rate of each signal. This simulation includes glitch filtering, 
where changes in logic state that are too rapid to propagate 
through the device routing or functional blocks are removed 
from the simulation waveform – this improves power 
estimation accuracy [1]. Dynamic power was then estimated by 
using the Quartus II PowerPlay power analyzer to combine the 
signal toggle rates with detailed models of the power dissipated 
by FPGA circuitry for each toggle. All the designs were able to 
satisfy a minimum clock frequency of 100 MHz. 

Statistical averaging was then used to determine the 
following values based on the reported power estimates for all 
RAM implementations: 

 
•  Power consumed by a single bit of an n-to-1 multiplexer, 

Pmux, Values for only 2-to-1 and 4-to-1 multiplexers were 
determined since shallower embedded memory blocks 
depth slicings are not performed by our system due to 
performance concerns. 

•  Per-port design power consumed by an active physical 
memory block, Pram, for an M512, M4K, and M-RAM 
embedded memory block. 

•  Power consumed by a k-to-n address decoder, Paddr_decode, 
for a 2-to-4 and 1-to-2 decoder.  

 
The variance of the multiplexer, memory block, and address 
decoder dynamic power parameters listed above across the 
various designs was found to be less than 1%. Variations of the 
parameter values across devices in the same device family were 
found to be negligible since logic block and routing constructs 
are consistent across devices. Because the power analyzer 
takes detailed placement and routing into account when 
producing a power estimate, the averaged values for Pmux and 
Paddr_decode take the effects of control signal, address, and data 
net fanout into account.  
   Although the calculated parameters measure dynamic power 
values averaged across the RAM parameter evaluation design 
set, the access patterns of user logical RAMs may differ. Since 
our algorithm considers relative rather than absolute dynamic 
power values in making tradeoffs, we consider the subsequent 
use of these parameters across a range of user benchmarks to 
be acceptable and representative of most RAM access patterns. 
 

V. RESULTS 

A. Validation of Simulation-Based Power Estimation 

   The power-saving benefits of our approach have been tested 
experimentally using both physical measurements and power 
estimates obtained via the digital simulation and Quartus II 
power analyzer flow described in Section IV.D. 

In an initial experiment, six designs which contain memory 
were mapped to a board which allows for accurate FPGA 
power measurements. These designs include: 
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Table I: Measured versus predicted changes in RAM dynamic power          

 
 

 
 

 

 
 
•  des3_6 – an implementation of the triple data encryption 

standard algorithm using six pipeline stages. This design is 
derived from the circuit described in [17]. 

•  fft – an implementation of the Fast Fourier Transform 
algorithm including buffer storage. 

•  512x9_d72 - 72 instances of a 512x9 RAM block. Each 
block contains one read port and one write port. 

•  fir_63tap_18bit – a 63 tap FIR filter with 18 bit data and 
coefficients. 

•  1024x18_x36 - 36 instances of a 1024x18 RAM block. 
Each block contains one read and one write port. 

•  jpeg – an implementation of a JPEG image encoder. 
 
Table I lists LUT, memory bit, and flip flop counts for each 

design. The memory instance designs (512x9_d72 and 
1024x18_x36) contain some memory block selection logic 
which accounts for reported LUTs and flip flops. Although the 
number of designs in this set is insufficient to fully assess the 
power saving potential of our mapping approaches, they 
provide a sufficient sample set to validate the relative accuracy 
of our simulation-based power estimation approach versus 
physical measurement. The estimation approach is 
subsequently applied to a substantially larger design set. 

As shown in Fig. 9, the board used for power measurement 
contains an Altera Stratix II EP2S60 device. The power rails 
for the FPGA are isolated and individually regulated to allow  
precise measurement of supply current per power rail. The six 
designs described above were coded in architecture 
independent HDL. Each design was wrapped inside the FPGA 
with a random vector generation circuit which generates a 
sequential series of test vectors. The structure of all six designs 
is such that random vectors provide a reasonable input 
stimulus. This circuit reduces the external signal requirements 
of the FPGA to a clock signal and an enable signal.  The 
designs were compiled using Altera Quartus II version 6.0 at 
an unattainable 1 GHz target clock frequency. The Quartus II 
software includes several power optimization algorithms, and 
all algorithms except the power-aware RAM mapping 
algorithm were set to their highest effort level. 

 Circuit Characteristics Unopt. 
power 

Enable convert Enable convert/combine + mem 
partition 

 LUTs Memory 
bits 

Flip 
flops 

Meas. 
(mW) 

%change 
Predict 

%change 
Meas. 

Absol 
Diff. 

%change 
Predict 

%change 
Meas. 

Absol 
Diff. 

des3_6 5850 2688 1014 2240.6 -0.4% 0.0% 0.4% -0.3% 0.0% 0.3% 
fft 4585 286956 4039 136.5 0.0% -0.1% 0.1% -8.3% -11.3% 3.0% 
512x9_x72 840 331776 762 108.5 -3.2% -4.8% 1.6% -3.2% -4.8% 1.6% 
fir_63tap_18bit 3331 1134 3263 189.9 -0.5% 0.0% 0.5% -0.5% 0.0% 0.5% 
1024x18_x36 1414 663552 781 220.0 -2.1% -5.2% 3.1% -32.4% -35.1% 2.7% 
jpeg 12068 1164986 9390 747.9 -15.5% -15.9% 0.4% -18.7% -18.2% 0.5% 

average     -3.6% -4.3% 1.0% -10.6% -11.6% 1.4% 

Fig. 9: Test platform for Stratix II EP2S60 power 
measurements 
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   The dynamic power consumption of each design was 
measured in a series of tests. Following device configuration, 
FPGA power consumption was first measured with an input 
clock frequency of 0 MHz, providing the design static power 
consumption. Then, overall FPGA power is measured at a 
series of clock frequencies, up to the maximum frequency of 
the design. The slope of the plotted line connecting these 
points provides a dynamic power mW/MHz ratio for the 
design. The ratio is then multiplied by 50 to determine 
measured design dynamic power at 50 MHz. For comparison, 
the same designs were simulated at 50 MHz and dynamic 
power analysis was performed using the Quartus II PowerPlay 
power analyzer to determine predicted power. 
   Each design was compiled three times using Quartus II, each 
time with a different RAM power optimization setting, as listed 
below. 
Power optimization cases: 

1. No RAM power optimization 
2. Read/write enable conversion to read/write clock 

enable. 
3. Memory partitioning in addition to read/write enable 

conversion and combining 
The optimizations for Cases 2 and 3 were described in Section 
IV. The dynamic power consumption of each design at 50 
MHz was determined using the physical measurement and 
simulation methods described above for each case. The 
percentage change in dynamic power for a design compiled 
using RAM power optimization (e.g. Case 2 or Case 3) versus 
no optimization (e.g. Case 1) is: 
 

% change = 100 * (Popt – Punopt ) / Punopt    (2) 
 
where Punopt is design dynamic power if RAM power 
optimization is not used and Popt is the dynamic power of the 
design compiled with optimization. Percent changes can be 
individually determined for values predicted via simulation (% 
changepredict) or physically measured (% changemeas). The 
absolute difference in power saving percentage between the 
simulated (predicted) and measured dynamic power values for 
each design optimized under Case 2 or Case 3 is: 
 

Abs diff = | % changepredict - % changemeas|    (3) 
 

Table I shows the measured and predicted percentage 
change in dynamic power for the six designs based on Case 2 
and 3 power optimization cases. The measured power 
consumption for unoptimized compilation (Case 1) is provided 
for reference. The maximum per-design absolute difference in 
power saving percentage for measured and predicted values is 
3.1% for enable conversion (1024x18_x36) and 3.0% for 
partitioning, enable conversion and combining (fft). On 
average, the absolute difference in power saving percentage for 
the six designs was 1.0% for enable conversion and 1.4% for  

Table II: Benchmark design statistics for 34 designs 

 
all techniques.  

As a final test of the accuracy of our simulation-based power 
evaluation approach, a set of 150 ROMs and single and dual-
port RAMs ranging in size from 256x1 to 128Kx9 were 
mapped to a Stratix II device and evaluated using the 
procedure outlined above. One instantiation of each design 
RAM was evaluated in each test. On average, read/write enable 
conversion resulted in a measured 0.28% reduction in core 
dynamic power (0.27% predicted). The low power reduction 
for this method was primarily due to the presence of a 
designer-specified clock enable on many designs. Memory 
partitioning in addition to read/write enable conversion and 
combining resulted in a measured 16.1% core dynamic power 
reduction (18.1% predicted). Maximum per-design and 
average absolute differences in power reduction percentage 
were similar to the six designs noted above. Although these 
RAMs do not reflect typical FPGA designs, they provide an 
additional platform for the validation of the simulator. 

 
 

Design LUTs Memory 
bits 

Flip 
flops 

Target Device 

1 4617 246488 6283 EP2S15F672C3 
2 12005 66336 12366 EP2S90F1508C3 
3 12005 66336 12366 EP2S90F1508C3 
4 7130 43008 4013 EP2S30F672C3 
5 6348 231970 6813 EP2S15F672C3 
6 11145 548 12951 EP2S60F1020C3
7 8199 292608 5388 EP2S15F672C3 
8 3395 63744 7362 EP2S60F1020C3
9 3697 6432 5944 EP2S60F1020C3

10 18890 327680 3241 EP2S60F1020C3
11 225 331776 43 EP2S60F672C3 
12 256 331776 77 EP2S60F672C3 
13 20833 327680 3312 EP2S90F1508C3 
14 2424 512 4919 EP2S60F1020C3
15 533 8192 273 EP2S60F672C3 
16 35404 89600 19465 EP2S90F1508C3 
17 8938 36096 5461 EP2S30F672C3 
18 5481 47264 6993 EP2S15F672C3 
19 8356 65536 8461 EP2S30F672C3 
20 2583 35280 3260 EP2S60F1020C3
21 6542 128452 22139 EP2S60F1020C3 
22 3283 94588 3886 EP2S15F672C3 
23 26310 270336 29394 EP2S60F1020C3 
24 3584 111872 4695 EP2S15F672C3 
25 9005 426512 10416 EP2S60F1020C3
26 7527 98304 4497 EP2S60F1020C3
27 2136 126118 2693 EP2S15F672C3 
28 3706 168416 6972 EP2S15F672C3 
29 12320 184320 15075 EP2S60F1020C3 
30 13993 88048 25516 EP2S60F1020C3 
31 15907 337501 18874 EP2S30F672C3 
32 8911 293856 9164 EP2S30F672C3 
33 4248 153864 2842 EP2S60F1020C3
34 18553 996096 12816 EP2S60F1020C3 
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   Since many of the designs in our benchmark suite cannot be 
adequately exercised by random input vectors, we cannot 
physically measure power reductions on the entire suite. 
However, the power reduction accuracy of both of these 
calibration experiments validates the use of our simulation-
based power evaluation approach on the larger set of 
benchmark circuits.  

B. Power-Aware Mapping Algorithm Results for Stratix II 

Following the determination of the tuning parameters, the 
integration of our algorithms with Quartus II, and the 
validation of our simulation-based power evaluation approach, 
experimentation was performed on 34 designs with test 
vectors. LUT, memory bit and flip flop counts for each design 
are shown in Table II. This benchmark set includes designs 
from the encryption, signal processing, and communications 
processing domains. Most of the benchmark set consists of 
proprietary designs collected by Altera and used for evaluation 
of current and future FPGA architectures. Several designs are 
Altera-created IP cores (e.g. Design 6 is an FIR filter, Design 7 
is a network interface core, and Design 16 is a digital 
correlator). Designs 11 and 12 are single- and dual-port 
versions, respectively, of the 512x9_x72 design described in 
Section V.A. As discussed later in this section, the designs in 
Table II are ordered by achieved overall power savings 
(smallest to largest). The ratio of memory bits to LUTs in the 
designs is consistent with the ratio found in Stratix II devices 
(about 70 memory bits per LUT). 

    
Table III: Benchmark power statistics for 34 test designs 

 
Average % dynamic power  - 
embedded block memory 

22.3% 

Average % dynamic power – 
combinational logic 

15.6% 

Average % dynamic power – 
registers 

25.9% 

Average % dynamic power – 
routing 

24.1% 

 
As seen in Fig. 3, optimization occurs after complex memory 
functions (e.g. FIFOs, shift registers) are converted to logical 
RAMs, but before structures are assigned to specific embedded 
memories. The specific device used for each design is listed in 
Table II. The 34 designs were targeted to the smallest Stratix 
II device which would hold them. 
   Designs were implemented using the compilation settings 
described in Section V.A, and dynamic power consumption 
was evaluated using the power analysis flow detailed in Section 
IV.D. A series of test vectors were used to simulate each 
design at 100 MHz to obtain the toggle rate of each signal. 
Dynamic power analysis was then performed with the Quartus 
II PowerPlay power analyzer using these toggle rates.  In 
contrast to the experimentation described in [15], all Quartus II  
power optimizations, except for our RAM power optimization 
algorithms where noted, were included during experimentation.  

Figure 10: Percentage change in data RAM power for benchmark designs due to RAM power optimizations 
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To validate our approach, a series of experiments were 
performed using combinations of the algorithms with the 34 
benchmark circuits. Dynamic power statistics related to the 
benchmarks appear in Table III for initial compilation with 
default parameters and no RAM power optimizations. Dynamic 
power percentages were determined versus overall design core 
dynamic power. As shown in Table III, RAM dynamic power 
forms a significant part of average design core dynamic power. 
In addition to compilation without RAM power optimizations, 
each design was compiled using the following combinations of 
automatic RAM power optimizations described in Section IV. 
Power optimization cases: 
1. Read/write enable conversion to read/write clock enable. 
2. Read/write enable combining with an existing clock enable 

in addition to read/write enable conversion. 
3. Memory partitioning in addition to read/write enable 

conversion and combining. 
A bar graph illustrating the per-design percent change in 

memory dynamic power due to these optimizations for Cases 1  
(enable conversion) and 3 versus compilation with no RAM 
power optimization appears in Fig. 10. The dynamic power 
percentage change is computed via Eq. 2. Fig. 11 shows the 
percent change in overall core dynamic power. The designs 
appear in the same order numerically in each plot and in Table 
II. Case 3 data for each graph includes any increase in 
combinational logic and register dynamic power due to logic 
added for multiplexing, address decoding, and clock enable 
combining. 

 
Table IV: Summary of RAM optimization results for 34 benchmark 

designs (all averages geometric). Each percentage represents the 
percent change of a value obtained via compilation with no RAM 

power optimization due to the specified optimization 

 R/W 
Enable 
convert 

R/W 
Enable 
convert/ 
combine 

R/W Enable 
convert/ 

combine + 
Mem 

partition 
Core dynamic 
power  -1.1% -1.5% -5.5% 

Memory dynamic 
power  

-6.8% -10.1% -26.0% 

Max clk freq 0.0% -0.4% -1.1% 
LUT count 0.0% 0.0% 0.4% 

 

These plots show that although some designs achieve no 
benefit from the new approaches, others benefit significantly 
(up to 72% RAM dynamic power and 35% overall core 
dynamic power).  
   Table IV shows the average percentage change in core and 
RAM dynamic power for all three cases. The use of memory 
partitioning more than doubles the average core dynamic 
power savings (5.5% vs. 1.5%) and RAM dynamic power 
savings (26.0% vs. 10.1%). 

 
 

Figure 11: Percent change in overall core dynamic power for benchmark designs due to RAM power savings 
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Table V: Summary of RAM optimization results for logical 
RAMs targeted to specific embedded memory blocks versus 
unconstrained RAM placement using 34 benchmark designs.  
 

 M512 M4K M-RAM 
Designs completed 21 34 5 
Core dynamic power 19.6% 1.9% 41.6% 
Memory power  149.1% 9.6% 433.0% 
Max clk freq. -3.6% 1.4% -13.4% 
LUT count 2.4% 0.0% -0.4% 
 

Table IV also shows that the RAM dynamic power 
optimizations have little effect on area or performance. The 
percentage reduction in the achievable average design clock is 
shown in the table for all three cases. As expected, Case 3, 
which includes memory partitioning, exhibits the largest 
performance loss due to the inclusion of multiplexers at the 
logical RAM output (1.1%). As discussed in Section IV.C, this 
performance loss was mitigated by our restriction of a 
maximum 4-to-1 read port output bit multiplexer size.  
   Case 3 also shows the largest increase in required LUTs 
(0.4%), primarily used to implement multiplexing logic. Case 1 
(enable conversion) requires no additional logic and shows 
minimal performance decrease. Although not optimal, our 
memory partitioning algorithm is effective. For each design 
except Design 5, sufficient embedded memory block resources 
were available in the target FPGA to select the power optimal 
logical-to-physical memory mapping for each logical memory 
(Case 3). On average, memory partitioning required 0.7 sec. 
(worst case 10 sec. for Design 16). This represents 0.05% of 
Quartus II synthesis time on average (1.3% worst case for 
Design 16). 
 

C. The Use of Multiple Embedded Memory Block Sizes to 
Reduce Dynamic Power 

As stated in Section IV.C, the memory partitioning 
algorithm considers mapping each logical memory to each type 
of embedded memory block on a target device and selects the 
most power-efficient implementation relative to available 
resources. To illustrate the dynamic power benefits of the 
availability of multiple embedded memory block sizes on a 
target FPGA we re-mapped each of the 34 benchmark designs 
to a Stratix II EP2S180 using the constraints described in 
Section IV.D. Four separate compiles were performed for each 
design, each using one of the following constraints: 

a. Memory partitioner selects the target physical 
embedded memory for each logical memory 

b. All logical memories mapped to M512s 
c. All logical memories mapped to M4Ks 
d. All logical memories mapped to M-RAMs 

For each compile, all Quartus II power optimizations, including 
RAM power optimizations, were used, including memory 
partitioning. Due to RAM resource limitations it was not  

Table VI: Summary of RAM optimization results for logical RAMs 
targeted to M512s and M4Ks versus unconstrained RAM placement 

using 21 benchmark designs 

 M512 M4K 
Core dynamic power 19.6% 0.8% 
Memory dynamic power 149.1% 6.4% 
Max clk freq -3.6% 0.6% 
LUT count 2.4% 0.0% 

 
possible to successfully map all designs for Cases b, c, and d. 
Table V shows the number of designs that were successfully 
mapped for each case and the percentage changes for Cases b, 
c, and d mapping versus Case a for several parameters. 
Although it was possible to map all designs using solely M4Ks 
for embedded memory, a 9.6% RAM power and 1.9% core 
dynamic power penalty was observed. More drastic results 
versus the base case were observed by restricting memory 
mapping to solely M512s and M-RAMs. For example, RAM 
dynamic power for M512-only mapping more than doubled 
(e.g. a 149% increase indicates a final value 2.49x larger than 
the original). Table VI shows similar percentage change results 
for the 21 designs that were successfully mapped for Cases a, b 
and c. These results indicate that if only one type of embedded 
memory block could be included in an FPGA, a block of 
intermediate size would be best for power efficiency.  
 

D. The Effect of Read and Write Enable on Memory Block 
Dynamic Power 

   As mentioned in Section III, Xilinx Virtex-II and Virtex-4 
and Altera Cyclone II devices contain embedded memory 
blocks of a single size (18 Kbit, 18 Kbit, and 4.5 Kbit, 
respectively). Additionally, Virtex-II and Virtex-4 memory 
blocks do not have read enable signals. To assess the benefits 
of our approach for write port only optimization on devices 
which contain a single embedded memory block type, the 34 
benchmark designs were re-mapped to Cyclone II devices 
using the procedure described in Section V.B for four specific 
sets of optimization: 
Power optimization cases: 
A. Write enable conversion to write clock enable 
B. Read/write enable conversion to read/write clock enable. 
C. Memory partitioning in addition to write enable 

conversion and combining. 
D. Memory partitioning in addition to read/write enable 

conversion and combining. 
For Cases A and C, read enable signals were left in their 

original locations. As shown in Table VII, the availability of 
both read and write enable conversion (Case B) versus write 
enable-only conversion (Case A) nearly doubles memory 
power reduction from 3.5% to 6.7%. Core dynamic power is 
modestly reduced by 0.4%. Figure 12 illustrates that this power 
decrease is primarily the result of four designs (17, 22, 23, and 
32). The designs in Figure 12 are shown in the same order as in 
Table II. If enable combining and memory partitioning are  
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Table VII: Summary of RAM optimization results for 34 designs 

mapped to Cyclone II devices. Each percentage represents the percent 
change of a value obtained via compilation with no RAM power 

optimization due to the specified optimization 

 
 

included with write enable conversion  (Case C) and R/W 
enable conversion (Case D), overall core dynamic power is 
more substantially reduced (by 3.3% and 6.1%, respectively). 
For each design, sufficient embedded memory block resources 
were available in the target FPGA to select power optimal 
logical-to-physical memory mapping for each logical memory. 
For Cases C and D, memory partitioning required about 0.02% 

of design synthesis time on average (max 0.1% for Design 34).
It should be noted that these results do not advocate for the 
inclusion of a RAM read enable input on embedded memory 
blocks. A designer could select to use an available read clock 
enable input on an embedded memory block and gain the same 
power reduction benefit without the need for 
conversion/combining. 
 

VI. CONCLUSION AND FUTURE WORK 

In this paper we have presented a set of RAM mapping 
algorithms that are targeted to FPGA embedded memory 
blocks. These techniques take advantage of the internal 
structure of FPGA embedded memory to reduce memory 
dynamic power dissipation. When possible, embedded memory 
block clock enables are used to deactivate RAM block 
precharging. Our mapping algorithms maintain the functional 
behavior of each designer-specified RAM. These techniques 
achieve a 26% RAM dynamic power reduction and a 6% core 
dynamic power reduction for 34 large benchmark designs with 
a performance and logic cost of about 1%. The availability of 
three embedded memory block sizes leads to a 10% memory 
power and 2% dynamic power reduction versus using only 4.5 
Kbit embedded memory blocks. Our power reduction estimates 
have been verified both via board-level power measurement 
and via simulation-based power estimates. 

Several optimizations to our power saving approaches could 

 Write 
enable 
convert 

R/W 
enable 
convert 

Write 
Enable 
convert/ 
combine 
+ Mem 
partition 

R/W 
Enable 
convert/ 
combine 
+ Mem 
partition 

Core dynamic 
power  -0.7% -1.1% -3.3% -6.1% 

Memory 
dynamic 
power  

-3.5% -6.7% -16.1% -26.1% 

Max clk freq -0.4% -0.4% -1.0% -1.6% 
LUT count 0.0% 0.0% 0.7% 0.7% 

Figure 12: Percent change in data RAM power for benchmark designs due to RAM optimizations mapped to Cyclone II devices 
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be implemented in the future. An analysis of our benchmark 
designs shows that, on average, 18% of logical memories in a 
design share address decoding circuitry with other design 
logical memories. Currently, we rely on the Quartus II logic 
synthesis tool to identify and eliminate these and other 
structural logic redundancies and to pack compatible logical 
memories into the same physical memory. Higher-level logical 
RAM clustering may provide additional dynamic power 
savings. Another possible optimization is the RTL analysis of 
state machines to determine when embedded memory block 
accesses are not needed. More complex RAM shut-down 
signals could then be generated. Finally, an investigation to 
determine the optimal size and availability of different-sized 
embedded memory blocks is needed. In this paper it has been 
shown that a diverse selection of memory block sizes is 
beneficial and medium sized blocks (e.g. 4-16 Kbit) are 
desirable for power reduction. The exact mix of block sizes for 
optimal power reduction remains an open problem. 
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