
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2005 1

Design-Specific Path Delay Testing in Lookup
Table-based FPGAs

Premachandran R. Menon, Weifeng Xu, and Russell Tessier

Abstract—
Due to the increased use of field programmable gate arrays (FP-

GAs) in production circuits with high reliability requirements, the
design-specific testing of FPGAs has become an important topic
for research. Path delay testing of FPGAs is especially important
since path delay faults can render an otherwise fault-free FPGA
unusable for a given design layout. This paper presents a new ap-
proach for FPGA path delay testing which partitions target paths
into subsets that are tested in the same test configuration. Each
path is tested for all combinations of signal inversions along the
path length. Each configuration consists of a sequence generator,
response analyzer and circuitry for controlling inversions along
tested paths, all of which are formed from FPGA resources not
currently under test. Two algorithms are presented for target
path partitioning to determine the number of required test con-
figurations. Test circuitry associated with these methods is also
described. The results of applying the methods indicate that our
path delay testing approach requires seconds per design to cover
all paths with delay within 10% of the critical path delay. The
approach has been validated using Xilinx Virtex devices.

I. I NTRODUCTION

Field programmable gate arrays are widely used, not just for
rapid prototyping, but also for production circuits. The test-
ing of FPGAs has therefore become an important topic of re-
search. FPGA tests are of two types –manufacturing tests and
user tests. The former, performed as part of the manufacturing
process, test components and interconnections in the array for
faults, such as stuck-ats, shorts and opens. Components may
also be tested to determine their switching speeds. User tests
are intended to detect FPGA faults that occur after a device is
programmed for a specific application. The faults of interest in
this type of testing are only those that can affect the operation
of the specific circuit. These consist of stuck-at faults, shorts,
opens, and faults that affect circuit timing, usually called delay
faults. Faults to be tested by user tests depend not only on the
logic implemented by the circuit, but also on its placement and
routing in the FPGA.

This paper is concerned with testing paths in lookup-table
(LUT) based FPGAs after they have been routed. While this
may be regarded as user testing by the above definition, we are
considering an environment in which a large number of manu-
factured FPGA devices implementing a specific design are to be
tested to ensure correct operation at the specified clock speed.
It is thus akin to manufacturing tests in that the time needed for
testing is important. Ideally, we would like to verify that the
actual delay of every path between flip-flops is less than the de-
sign clock period. Since the number of paths in most practical

P. Menon, W. Xu and R. Tessier are with the Department of Electrical and
Computer Engineering, University of Massachusetts, Amherst, MA, 01003
USA

circuits is very large, testing must be limited to a smaller set of
paths. Testing a set of paths whose computed delay is within a
small percentage of the clock period may be sufficient in most
cases. Thus, our goal is to determine by testing whether the de-
lay along any of the paths in the set exceeds the clock period.
Our approach is general enough to target a range of contempo-
rary LUT-based FPGAs, including recent commercial offerings
from Xilinx and Altera.

II. PREVIOUS WORK

Several methods for testing field programmable gate arrays
for faults other than delay faults have been published in the lit-
erature, e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]. Most of
these methods utilize built-in self-test (BIST) by configuring a
pattern generator and a signature analyzer from unused FPGA
resources. These methods have been applied to test for logic
block faults [5], [6], interconnect faults [4], [7], [9] and bridg-
ing faults [8]. BIST techniques have also been applied to delay
testing, using test pattern generators which generate two-pattern
tests [10], [11]. However, the fault coverage obtained by apply-
ing linear feedback shift register (LFSR) generated tests was
found to be low.

Krasniewski [12], [13], [14], [15] has proposed a num-
ber of techniques for improving the fault coverage obtained
by pseudo-random testing. These methods are based on re-
programming logic blocks on the paths under test so as to fa-
cilitate testing. This re-programming will not affect path delays
since the delay through a logic block implemented by a LUT is
independent of the function implemented by it. In [12], every
logic block is re-programmed to implement the parity function
of its inputs. Although this transformation increases the prob-
ability of detection of delay faults, the signal transitions along
the tested path may not be the same as those in the original cir-
cuit. The test results may not truly indicate whether the original
circuit would operate correctly at the rated clock speed, since
path delays may depend on the direction of signal transitions
along it. This deficiency is corrected in [13] by re-programming
each logic block so that all input/output signal pairs in the orig-
inal LUT are also contained in the modified LUT, and the num-
ber of output transitions is maximized. This, however, led to
some conditions where signal propagation was blocked along
tested paths. An improved method proposed in [14] facilitates
propagation of fault effects by reducing such blocking condi-
tions. While these methods have been shown to produce very
high fault coverage with reduced test sequence length, they can-
not guarantee that all delay faults will be detected.

A comparison-based delay test method is proposed in [16].
A number of identical paths are constructed in the FPGA under



test and every LUT on these paths is programmed to propagate
an input value to its output. The same transition is applied si-
multaneously to the inputs of all these paths. A fault is detected
when the difference between the arrival times at the destina-
tions of the first and last signals exceeds a specified threshold.
The accuracy of the method depends on the variation in delay
of different segments, the length of the paths and the allowed
difference between the fastest and slowest paths. Moreover, the
method does not test for delay faults in paths in the customized
circuit, but only the path delay along specific paths. A simi-
lar technique for FPGA interconnect delays is proposed in [17].
Using an iterative logic array model, it tests a number of simi-
lar sections of interconnects simultaneously, and also provides
information to locate faulty sections.

Tahoori and Mitra [18] have proposed a method of testing all
paths in a combinational network for delay faults with only two
tests. By changing all LUTs to implement the AND of their in-
puts, all paths are simultaneously tested for slow-to-rise faults
by applying 0->1 transitions at all inputs. Slow-to-fall faults
are similarly tested by changing LUT functions to ORs and ap-
plying 1->0 transitions at all inputs. A 4-phase test method
based on the same principle has also been proposed for sequen-
tial circuits. While this approach is very efficient in the num-
ber of tests needed, all interconnects undergo signal transitions
in the same direction during each test. Since the delay of an
interconnect depends on the direction of signal transition, this
method cannot test the paths for the combinations of transitions
that occur during normal operation.

III. B ASIC APPROACH

Before presenting the proposed test method, we define sev-
eral terms. Our method is applicable to FPGAs in which the
basic logic elements are implemented by look-up tables.

A. Definitions

A path consists of a sequence{l0, c0, l1, ..., cn−1, ln} of
LUTs li and connectionsci, such thatci−1 is an input ofli,
1 ≤ i < n. Line ci−1 is called theon-path input of LUT li.
All other inputs ofli are called itsside inputs. The paths to
be tested start and end at flip-flops, which are called thesource
anddestination flip-flops (or simply source and destination), re-
spectively.

The goal of this work is to test a set of paths, calledtarget
paths, to determine whether the maximum delay along any of
them exceeds the clock period of the circuit. These paths are
selected based on static timing analysis using nominal delay
values and actual routing information. Circuitry for applying
test patterns and observing results is configured using parts of
the FPGA that are not under test.

B. Introduction to Approach

The delay of a path segment usually depends on the direc-
tion of signal transition in it. The direction of the signal tran-
sition in any segment is determined by that of the transition at
the source and the inversions along the partial path leading to
the particular segment. A test to determine whether the maxi-
mum delay along a path is greater than the clock period must

propagate a transition along the path and produce a combina-
tion of side-input values that maximizes the path delay. This
approach is not usually feasible because of the difficulty of de-
termining the inversions that maximize the path delay and the
necessary primary input values to produce them. Instead, we
propose to test each target path for all combinations of inver-
sions along it, guaranteeing that the worst case will also be in-
cluded. Although the number of combinations is exponential in
the number of LUTs along the path, the method is feasible be-
cause application of each test requires only a few cycles of the
rated clock. However, the results may be pessimistic in that a
path that fails a test may operate correctly in the actual circuit,
because the combination of inversions in the failing test may
not occur during normal operation.

We shall first explain our method of testing a single path in a
circuit and describe a test circuit for implementing it. Applica-
tion of this method to test a number of paths simultaneously is
discussed in the next section.

Our approach, first suggested in a recent paper [19], re-
programs the FPGA to isolate each target path from the rest
of the circuit and make inversions along the path controllable
by an on-chip test controller. Every LUT along the path is
re-programmed based on its original function. If it is positive
unate in the on-path input, the LUT output is made equal to the
on-path input independent of its side inputs. Similarly, negative
unate functions are replaced by inverters. If the original func-
tion is binate in the on-path input, the LUT is re-programmed
to implement the exclusive-OR (XOR) of the on-path input and
one of its side-inputs, which we shall call itscontrolling side-
input. As mentioned earlier, this change of functionality does
not affect the delay of the path under test because the delay
through an LUT is unaffected by the function implemented. In-
versions along the path are controlled by the signal values on
the controlling side-inputs. For each combination of values on
the controlling side inputs, we apply a signal transition at the
source of the path and observe the signal value at the destina-
tion after one clock period. The absence of a signal transition
will indicate that the delay along the tested path exceeds the
clock period for the particular combination of inversions.

The basic method described above can be implemented by
the circuitry shown in Fig. 1, consisting of a sequence genera-
tor, a response analyzer and a counter, that generates all com-
binations of values in some arbitrary order. A linear feedback
shift register modified to include the all-0’s output [20], [21]
may be used as the counter. The controlling side inputs are
connected to the counter. The controller and the circuitry for
applying tests and observing results are also formed during con-
figuration in parts of the FPGA that do not affect the behavior
of the path(s) under test.

The sequence generator produces a sequence of alternating
0’s and 1’s, with period equal to6T , whereT is the operational
clock period. The response analyzer checks for an output tran-
sition for every test, and sets an error flip-flop if no transition
is observed at the end of a test. The flip-flop is reset only at
the beginning of the test session, and will indicate an error if
and only if no transition is produced in some test. The counter
has as many bits as the number of binate LUTs along the tested
path.



B
FF

Response Analyzer

A
FFFF

FF FF FF

FF

Counter

Path under test

E

Sequence Generator

ClockController

s d

y3y2y1

G

Fig. 1. Testing a single path for a negative edge-triggered design. For a positive edge-triggered design, all negative edge-triggered components are replaced by
positive edge-triggered counterparts.

0 1 2 3 4 5 6 7 8

y1

y2

G

E

9

ActionClock Time

3

s = 00−3

in destination FF (d)

FF−B set if FF−A and destination 

Final value of 1−>0 transition captured in

FF−B set if FF−A and destination 

s = 0−>1 to test rising transition with
next set of inverstions

9

8

7

6

5
have same value

s = 1−> 0 to test falling transition;
counter enabled

Destination FF(d) stable at value 
produced by s=0; s = 0−>1

destination FF (d); counter incremented

have same value

4 Final value of 0−>1 transition captured

y3=s

10 11

Fig. 2. Timing diagram for clock with periodT

The test for a path for each direction of signal transition con-
sists of two parts, an initialization part and a propagation part,
each of duration3T . A path is tested in time6T by overlapping
the initialization part of each test with the propagation part of
the preceding test. In addition, the change of counter state for
testing a path for a new combination of inversions is also done
during the initialization phase of rising transition tests.

Figure 2 shows the timing of the signals during application
of a test sequence. It can be seen from the figure that the source
s of the test path toggles every three clock cycles. For correct
operation, the input transition occurring at3T must reach the
destination within timeT (i.e., before3T + T ). On the follow-
ing clock edge at3T + T , the result of the transition is clocked
into the destination flip-flop atd. A change must be observed
at the destination for every test, otherwise a flip-flop is set to

indicate an error. In Figure 2, a test for the rising edge starts
at time3T , with thes steady at 0 for the preceding three clock
cycles. A test for the falling transition starts at6T , with the in-
put steady at 1 for the preceding three clock cycles. Results are
sampled atd at time4T (for rising edges transition) and7T
(for falling edges transition), respectively. Thus, both rising
and falling transitions are applied at the source for each combi-
nation of inversions in time6T .

As the falling transition is applied at6T , the enable inputE
of the counter is set to 1. This action starts a state (counter)
change at7T to test the path for the next combination of inver-
sions. A counter change at this time point allows2T of settling
time before the following transition occurs at the sources. By
ensuring that the counter reaches its final value withinT and
propagates to the path destinationd within an additionalT , d



is ensured to be stable before the following source transition.
Thus, the destination will reach the correct stable value corre-
sponding to the new combination of inversions if no path from
the counter to the destination has a delay greater than2T . This
delay explains the need for a3T period betweens transitions
(1T to perform the test,1T for possible counter state changes,
and1T for subsequent propagation of the counter change tod).

IV. T EST STRATEGY

The method described in the preceding section requires the
test control circuitry to be re-configured for every path to be
tested. The total time for testing a set of target paths in a cir-
cuit consists of the test application time and the re-configuration
time. Our goal is to reduce both components of the total time for
testing a specified set of paths. Since the time needed for con-
figuring the test structure is usually larger than that for applying
test patterns generated on-chip, we shall focus on reducing the
number of test configurations needed by testing as many paths
as possible in each configuration.

Two approaches to maximize the number of paths tested in a
test configuration suggest themselves. First, we can try to select
a set of target paths that can be tested simultaneously. This will
also have the effect of reducing test application time. Secondly,
we can try to select a set of simultaneously testable sets that
can be tested in sequence with the same configuration. In this
case, the number of simultaneously tested paths may have to be
reduced so as to maximize the total number of paths tested with
the configuration. These two approaches will be elaborated in
the next two subsections, but first we define a few terms.

The simultaneous application of a single rising or falling
transition at the sources of one or more paths and observing
the response at their destinations is called atest. The set of tests
for both rising and falling transitions for all combinations of
inversions along each path is called atest phase, or simply, a
phase. As mentioned earlier, a single path withk binate LUTs
will have 2 · 2k tests in a test phase. The application of all test
phases for all target paths in a configuration is called atest ses-
sion.

A. Single Phase Method

This method, first presented in [19], attempts to maximize
the number of simultaneously tested paths. A set of paths may
be tested in parallel if it satisfies the following conditions:

1) No two paths in the set have a common destination.
2) No fanout from a path reaches another path in the set.
The above conditions guarantee that signals propagating

along paths in the set do not interfere with one another. More-
over, if the same input is applied to all paths in the set, two or
more paths with a common initial segment will not interact if
they do not re-converge after fanout.

All LUTs on paths to be tested in a session are re-
programmed to implement inverters, direct connections or
XORs as discussed in the preceding section. The LUTs with
control inputs are levelized, and all control inputs at the same
level are connected to the same counter output. The source flip-
flops of all paths to be tested in the session are connected to the
same sequence generator, but a separate transition detector is

used for each path. The transition detectors of all paths are then
ORed together to produce an error indication if any of the paths
is faulty. Alternatively, a separate error flip-flop can be used for
each tested path, connected to form a scan chain and scanned
out to identify the faulty path(s).

B. Multi-phase Method

The single phase method described above requires that all
paths tested in a session be disjoint. The number of test ses-
sions needed for a large target set is therefore likely to be very
large. The multi-phase method attempts to reduce the number
of test sessions needed by relaxing the requirement that all paths
tested in a session be disjoint. This, however, increases the test
application time because non-disjoint target paths may interact
and cannot be tested simultaneously.

Consider sets of target pathsS1, S2, ...,Sp such that all paths
in each set are disjoint except for common sources. Clearly, all
paths in each setSi can be tested simultaneously, as in the single
phase method, if each set can be selected and logically isolated
from all other paths. This allows the testing of the setsSi in
sequence, and is the basis of our multi-phase method. We also
restrict the target paths for each session to simplify the control
circuitry needed.

We assume that the LUTs in the FPGA are 4-input LUTs, but
the method can be easily modified to allow a larger number of
inputs. Since each LUT may need up to two control inputs, one
for path selection and the other for inversion control, at most
two target paths may pass through any LUT. Target paths satis-
fying the following conditions can be tested in a single session.

1) There is a path to each target path destination, called the
main path to the destination.

2) Main paths may not intersect, but they may have a com-
mon initial section.

3) Additional paths to each destination, called itsside paths,
must meet only the main path and continue to the desti-
nation along the main path.

4) Main paths and side paths may not intersect any other
path, except that two or more paths may have a common
source.

5) No more than two target paths may pass through any
LUT.

6) The number of target paths to all destinations must be the
same.

The above conditions allow us to select one path to each out-
put and test all of them in parallel. The first two conditions
guarantee that the signal propagating along main paths to differ-
ent destinations will not interact. The main paths can therefore
be tested in parallel. The restriction that a side path can meet
only the main path to the same destination (Condition 3) allows
a simple mechanism for propagating a signal through the main
path or one of its side paths. Together with Condition 4, it guar-
antees that a set of main paths or a set of side paths, one to each
destination, can be tested in parallel. Condition 5 allows for two
control signals to each LUT, one for controlling inversion, and
the other for selecting the path for signal propagation. A single
binary signal is sufficient for selecting one of the target paths
that may pass through an LUT. The last condition is required



to produce a signal change at every destination for every test,
simplifying the error detection logic.

With the above restrictions, LUTs on target paths will have
one or two target paths through them. These LUTs are called
1-path LUTs and2-path LUTs, respectively. The inputs that are
not on target paths will be calledfree inputs.

The following procedure selects a set of target paths satisfy-
ing the conditions for multi-phase testing by selecting appropri-
ate target paths for each setSi from the set ofall target paths in
the circuit. The union of these sets is the set of paths targeted in
a test session. The procedure is then repeated for the remaining
paths to obtain the target paths for subsequent test sessions until
all paths are covered.

Procedure 1

1) Select a path that does not intersect any already selected
path, as the main path to each destination.

2) For each main path, select a side path such that
a) It meets the main path and shares the rest of the path

with it.
b) No other path meets the main path at the same LUT.
c) It does not intersect any already selected target path

(except for segments overlapping the main path).
3) Repeat Step 2 until no new side path can be found for any

main path.
4) Find the number,n, of paths such that

a) There aren target paths to each destination.
b) The total number of paths is a maximum.

5) Select the main path andn − 1 side paths to each desti-
nation as the target paths for the session.

Example 1: Figure 3 shows all the target paths in a circuit. The
source and destination flip-flops are omitted for the sake of clar-
ity. We start Procedure 1 by (arbitrarily) selectingdAEJLy
andhCGKMz as the main paths to the destinationsy andz.
Adding pathseAEJLy, cEJLy andfBFJLy to the first path,
andjCGKMz, nDGKMz andqHKMz to the second, we
get the set of target paths shown in heavy lines. Since there are
four paths to each destination, the eight target paths shown can
be tested in a single four-phase session.

The procedure can be repeated with the remaining paths to
select sets of target paths for subsequent sessions. One possible
set of test sessions is given in the following table, where the
path(s) in the first row of each sessions were those chosen as
the main path(s).

Destination:y Destination:z
Session 1 dAEJLy hCGKMz

eAEJLy jCGKMz
cEJLy nDGKMz
fBFJLy qHKMz

Session 2 gBEJLy gHKMz
gFJLy kDGKMz

Session 3 gBFJLy mDGKMz

Session 4 hCFJLy
jCFJLy
kDGLy

Session 5 nDGLy

Session 6 mDGLy

The set of sessions may not be unique and depends on the
choices made. Also note that not all sessions obtained are multi-
phase sessions. Session 3, for example, became a single-phase
session because no path qualified as a side path ofmDGKMz,
which was arbitrarily chosen as the main path. No paths could
be concurrently tested with those in Sessions 4, 5, and 6 because
all paths toz had already been targeted.

The sets of target paths obtained by Procedure 1 are such
that each 2-path LUT has a main path and a side path through
it. Thus, a single binary signal is sufficient to select the input
through which the signal is to be propagated. Since the side
path continues along the main path, selecting the appropriate
input at the 2-path LUT where it meets the main path is suffi-
cient for selecting the side path for testing. By using the same
path selection signal, one side path to each destination can be
selected simultaneously and tested in parallel.

The FPGA configuration for a test session is obtained by the
following procedure:

Procedure 2
1) Configure a sequence generator and connect its output to

the sources of all target paths of the session.
2) Configure a counter to control inversion parity, with the

number of bits equal to the largest number of binate LUTs
along any target path for the test session.

3) Configure a path selector to select the set of paths tested
in each test phase, with the number of bits equal to the
number of side paths to a destination.

4) Designate a free input of each LUT as its inversion con-
trol input p, and connect it to the counter output corre-
sponding to its level.

5) Designate another free input of each 2-path LUT as its
selector inputs, and connect it to the path selector.

6) Modify the LUT of each 1-path LUT with on-path inputa
to implementf = a⊕ p, if the original function is binate
in a; otherwisef = a if it is positive ora if it is negative
in a.

7) Modify the LUT of each 2-path LUT to implementf =



y z

B C D

E F G

J K

ML

A

jgfed h k m n

H

qc

Fig. 3. Selected target paths

s · (a ⊕ p) + s · (b ⊕ p), wherea andb are on the main
path and a side path, respectively.

The above modification for 2-path LUTs assumes that they
are binate in both on-path inputs. If the output of a 2-path
LUT is unate ina or b or both, a slightly different functionf is
needed. For example, if the LUT output is binate ina and nega-
tive in b, the modified LUT must implementf = s·(a⊕p)+s·b.

Example 2:
Figure 4 shows the test structure for the circuit of Fig. 3.

Only target paths that were selected for the first test session
are shown, and all LUT functions are assumed to be binate in
their inputs. The test circuitry consists of a sequence generator
that produces a sequence of alternating 1’s and 0’s, a four-bit
counter for inversion control and a path selector. The path se-
lector is a shift register that produces an output sequence, 000,
100, 010, 001 for the 4-phase test of the first session in our
example.

It can be verified from the figure that the main paths are se-
lected when all selector outputs are 0. When any output is 1,
exactly one side path to each destination is selected. Input tran-
sitions are applied to all paths simultaneously, but propagate
only up to the first 2-path LUT on all paths except the selected
ones. Thus, only one path to each destination will have transi-
tions along its entire length. Since these paths are disjoint, no
interaction can occur among them.

C. Test Time for Single and Multi-Phase Methods

The total test time for all target paths using the single phase
or multi-phase method can be computed as follows: Letn be
the number of test sessions. Letpi be the number of phases in

theith session andki the largest number of LUTs with control
inputs among the paths tested in the session. Theith session
will havepi · 2 · 2ki tests requiring6 · pi · 2ki clock cycles. IfTc

is the reconfiguration time per test session, the total test time is
is given by:

6 · T · ∑n
i=1 pi · 2ki + n · Tc.

For the single phase method,pi = 1 for all i, and the above
formula reduces to:

6 · n · T · ∑n
i=1 2ki + n · Tc = n · (6 · T · ∑n

i=1 2ki + Tc).

D. Limitations and Assumptions

Several assumptions were made in the development and eval-
uation of our approach:

• Constant LUT delay - As mentioned earlier, for this work
we assume LUT delays are independent of the function
they implement. Although this assumption has recently
been drawn into question [22] for certain logic functions,
it is accurate for most functions. Additionally, the fraction
of the FPGA path delay within LUTs is usually a small
percentage (less than 5%) of overall path delay.

• LUT-only logic - The current approach is only targeted
to paths which connect LUT logic resources. Although
testable paths including non-LUT logic, such as fixed
adder carry chains, could be determined via the approach
outlined in [23], the programming of off-path inputs to
propagate signal transitions would require additional cir-
cuitry.

• Effects of crosstalk - Left unaddressed, crosstalk can have
a significant impact on delay in FPGA circuits. To address
this issue, commercial FPGA routers actively control the



B C D

E F G

J K

ML

A

H

0 0 0

0

0

0

0

N
O

R

C
o

u
n

te
r

Selector

Seq.
Gen.

c d e f h j q

OR

Signal
Error

y z

Analyzers
Response

Controller

a b
p
s

n

Fig. 4. Multi-phase test structure

assignment of design nets to wires to limit the effect of
crosstalk. As a result, we neglect the possible delay effects
of crosstalk in this work.

• Isolation of test circuitry - Since all test circuitry is im-
plemented using wires and logic that are unused by the
paths under test during a test session, this circuitry does
not affect the size of circuit nor the number of paths that
can be tested.

• Delays in test circuitry - It was mentioned in Section III-
B that our design allows2T for the circuit to settle after
a change of counter state. This guarantees the validity of
the tests even in the presence of delay faults in the test
circuitry, provided that the above restriction is satisfied.
The restriction can be relaxed by increasing the test cycle
period from6T to 8T , thus allowing a settling time of3T .
The test cycle period can be increased by adding one flip-
flop to the sequence generator.

Currently, it is not possible to make incremental changes in
test sessions in response to incremental design changes. The en-
tire test procedure must be restarted following any design mod-

ifications.

V. EXPERIMENTAL APPROACH

To demonstrate the benefits and costs of our path delay test-
ing approach, a fully integrated computer-aided design (CAD)
system was developed. This system incorporates an implemen-
tation of the algorithms described in Section IV with commer-
cial and academic FPGA synthesis and physical layout tools.
The following specific steps are performed in order to deter-
mine the number of test sessions required and the paths as-
signed to each test session.

• The design under test is synthesized, technology mapped,
placed, and routed using FPGA CAD software.

• A static analyzer is run on the placed and routed design to
enumerate all design paths in terms of path delay. All paths
which have delay within 10% of the critical path delay are
selected for test. This path selection approach has been
used in several previous studies [24] [25].

• The test algorithms outlined in Section IV are applied to
the circuit to determine the test session and phase for each



path in the test set. This effectively assigns each tested
path to a specific test session.

Each circuit was technology mapped to a target Xilinx Virtex
FPGA using Xilinx XSE tools and placed and routed using an
enhanced version [26] of the Versatile Placement and Routing
(VPR) FPGA tool suite [27]. A static timing analyzer devel-
oped for VPR was then used to identify the paths with delay
within 10% of the critical path delay. Existing commercial Xil-
inx XSE tools could have also been used for place and route
and static analysis.

To perform the path delay tests in the FPGA hardware, one
FPGA circuit is required per test session. This circuitry con-
sists of the logic and routing resources for the paths under test
and the test circuitry shown in Figs. 1 and 4. Specific steps
performed to create each test session circuit include:

• Test circuitry for the test session is synthesized, technol-
ogy mapped and clustered using Xilinx XSE and VPR
tools. This circuitry is subsequently combined with the
path wires and logic blocks under test by merging the
netlists with a script.

• The combined test session circuitry is placed and routed
using our modified VPR system. With this system, it is
possible to constrain the tested paths to the routing wires,
multiplexers, and internal logic block connections used in
the original design routing so that the target path delays of
the original design can be tested. Added test circuitry is
implemented in logic that is not used by the paths under
test.

• Final test session placement and routing information is in-
put to Xilinx XSE tools to verify valid chip routing and
to verify that all test circuitry operates at the target clock
frequency. A configuration bitstream for the test session is
then created.

The middle step of this 3-step process was performed with
academic place and route tools due to the difficulty of reading
and manipulating detailed routing information that is generated
by commercial FPGA CAD tools. Although the Xilinx XSE
tools provide a straightforward user interface to allow for the
pre-defined placement of logic, it is difficult to determine the
exact routing resources used by paths during the original design
route and to constrain the route of these paths during the sub-
sequent route of test session circuits. Commercial tools could
be used in place of VPR for our approach if commercial FPGA
CAD software provided straightforward interfaces to read and
constrain path routing. Alternatively, our test session circuit
creation methodology could easily be integrated into a com-
mercial FPGA CAD flow by a tool vendor as a test generation
flow option.

VI. EXPERIMENTAL RESULTS

To validate our approach with the steps outlined in Section
V, we evaluated a series of MCNC [28] and RAW [29] bench-
mark circuits targeted to Xilinx Virtex FPGAs. Logic block
(CLB) counts, target devices, and the achieved clock speed of
the mapped designs appear in Table I. Each Virtex CLB con-
tains four LUTs. Test session counts were determined for these
paths using both the single phase and multi-phase methods.
Test statistics for the circuits are given in Table II.

The total time needed to test each of the benchmarks in our
experiments was determined from the number of LUTs in the
longest path in each test phase and the number of test ses-
sions (Table III). Test time is determined using the method
presented in Section IV-C. The total test time is based on the
minimum clock cycle for each circuit (shown in Table I) and
a re-configuration time per session. The re-configuration times
for the XCV100 (1.2 ms), XCV300 (2.9 ms), and XCV600 (6.2
ms) were determined assuming one byte is transferred to the
respective device each 66 MHz configuration clock cycle [30].
Each total test time is the sum of the re-configuration time mul-
tiplied by the number of design test sessions and the number of
test clock cycles multiplied by the test cycle time. In general,
test time is kept to a few seconds.

A perusal of the test sessions obtained in our experiments in-
dicate that the most efficient test method selected depends very
much on circuit structure. In most cases, Procedure 2 initially
obtained multi-phase sessions with several paths tested in paral-
lel. As the number of untargeted paths decreased, the amount of
parallelism decreased. Some sessions also became single phase
sessions. The last few sessions often tested individual paths.

Large numbers of paths could be tested in parallel in some
of our examples. In particular, Procedure 2 generated purely
parallel (i.e., single-phase) sessions for the circuits,bheap and
bsort. Many of the sessions indiffeq andtseng also targeted a
relatively large number of paths in parallel.

In one of our experiments (tseng), the total test time with
the single-phase method was less than that with the multi-phase
method, while the latter required fewer test sessions. This cir-
cuit has relatively long paths (14 to 16 LUTs). In this case, test
application time, which is exponential in the number of LUTs
on the longest path in a test session, dominates reconfiguration
time and leads to longer total test time. Our multi-phase algo-
rithm, as currently implemented, attempts to reduce the num-
ber of test sessions needed by trying to maximize the number
of paths tested in each session. This could lead to a solution
that has more test sessions than a single-phase one, although an
optimal multi-phase solution must have no more sessions than
a single-phase one. A slight modification of the method pre-
sented here can be used to obtain test sessions that reduce the
test time. The use of a measure such as the total test time per
path tested may lead to multi-phase solutions with lower total
test time.

As a final test to validate the practicality of the approach,
the test configuration circuits required to test all paths within
10% delay of the critical path delay were created for designs
alu4, apex2, and seq and applied to a Virtex XCV100. For
the multi-phase approach, the required test session totals are
shown in Table II. As stated in Section V, one configuration
circuit is generated per test session. For this experiment, all re-
quired test circuitry (as shown in Fig. 1) for each test session
was created, combined with LUTs and programmable intercon-
nects in the test paths, and synthesized. As described in Section
V, after placement and routing with our enhanced VPR, results
were input into the Xilinx XSE tools for timing performance
and routing verification. For all test sessions it was found that
it was possible to successfully place and route all test circuitry
and interface control signals to the paths under test. Since the



Design Source Virtex Part Array Size CLBs Wires Speed (MHz)
bsort RAW XCV600E 48x72 2,815 11,204 16.1
bheap RAW XCV600E 48x72 2,733 10,909 23.1
alu4 MCNC XCV100E 20x30 391 1018 39.4
apex2 MCNC XCV100E 20x30 491 1438 33.1
clma MCNC XCV600E 48x72 2133 6134 14.4
diffeq MCNC XCV100E 20x30 379 1180 27.3
elliptic MCNC XCV600E 48x72 906 2450 15.0
frisc MCNC XCV300E 32x48 894 2280 14.2
seq MCNC XCV100E 20x30 457 1320 39.3
tseng MCNC XCV300E 32x48 166 828 29.9

TABLE I
DESIGN STATISTICS FOR BENCHMARK CIRCUITS

Circuit Tested Paths Multi-phase Single Phase
Sessions Phases Phases = Sessions

bsort 101 1 1 1
bheap 295 4 4 4
alu4 80 15 56 56
apex2 27 5 13 13
clma 136 17 55 55
diffeq 482 231 263 263
elliptic 155 24 26 26
frisc 379 34 84 84
seq 150 24 89 89
tseng 4,169 993 1,758 1,377

TABLE II
TEST STATISTICS FOR BENCHMARK CIRCUITS

Circuit Multi-phase Single Phase
Sessions Test Clock Cycles Test Sessions Test Cycles Test

Time (s) Time (s)
bsort 1 24 0.006 1 24 0.006
bheap 4 192 0.025 4 192 0.025
alu4 15 86,016 0.021 56 81,408 0.069
apex2 5 39,936 0.007 13 39,936 0.017
clma 17 4,184,064 0.377 55 2,758,656 0.522
diffeq 231 11,796,480 0.725 263 11,649,024 0.769
elliptic 24 9,338,880 0.764 26 9,142,272 0.764
frisc 34 77,568 0.104 84 40,320 0.246
seq 24 136,704 0.031 89 135,168 0.112
tseng 993 165,789,696 8.351 1,377 131,776,512 8.347

TABLE III
RESULTS FOR SINGLE AND MULTI-PHASE TEST

placed and routed test circuitry for all test sessions (including
the counter) was successfully restricted to operate at the same
clock speed as the original design, it was possible to test each
path at the target clock speed.

Table IV indicates the number of paths tested during each
test session and the amount of logic resources used by the test

circuitry and overall (including tested logic). All tests were
conducted at the clock speed of the respective design (Table
I). Note the decrease in the number of paths tested during the
later test sessions.



alu4 apex2 seq
LUTs FFs Paths LUTs FFs Paths LUTs FFs Paths

Session Test/ Test/ Test/ Test/ Test/ Test/
Total Total Total Total Total Total

1 23/49 18/27 6 21/47 19/28 8 26/64 21/36 12
2 23/56 18/26 6 21/47 18/26 6 23/57 19/30 9
3 20/51 17/24 6 21/45 18/26 6 20/52 19/27 10
4 20/50 18/28 8 21/42 17/23 4 23/59 19/31 9
5 20/52 18/27 8 23/46 18/24 3 20/47 19/31 10
6 17/37 17/22 5 23/56 19/30 9
7 20/48 17/25 6 20/48 17/25 7
8 18/41 18/25 6 23/51 19/30 9
9 17/39 16/21 4 25/50 19/27 4

10 22/41 17/22 3 20/47 17/25 6
11 17/40 17/23 5 18/39 18/23 6
12 17/36 17/23 5 18/39 18/25 6
13 17/34 16/21 4 17/35 17/23 5
14 17/37 17/23 5 18/38 18/25 6
15 17/31 15/19 3 17/35 17/23 5
16 17/35 17/23 5
17 17/31 17/22 5
18 20/41 16/22 4
19 22/40 17/21 3
20 18/39 18/24 6
21 17/31 16/21 4
22 22/41 17/23 3
23 17/35 16/21 4
24 17/29 15/19 3

total 80 27 150

TABLE IV
PER-TEST SESSION STATISTICS FOR SELECTED DESIGNS

VII. C ONCLUSION

In this paper, we have presented a new approach to testing se-
lected sets of paths in FPGA-based circuits. Our approach tests
these paths for all combinations of inversions along them to
guarantee that the maximum delays along the tested paths will
not exceed the clock period during normal operation. While
the test method requires reconfiguring the FPGA for testing,
the tested paths use the same connection wires, multiplexers
and internal logic connections as the original circuit, ensuring
the validity of the tests. Following testing, the test circuitry is
removed from the device and the original user circuit is pro-
grammed into the FPGA.

Two methods have been presented for reducing the number
of test configurations needed for a given set of paths. In one
method, called the single-phase method, paths are selected so
that all paths in each configuration can be tested in parallel. The
second method, called the multi-phase method, attempts to test
the paths in a configuration with a sequence of test phases, each
of which tests a set of paths in parallel. Our experimental results
with benchmark circuits show that these methods are viable, but
the preferable method depends on the circuit structure.

While our approach has been shown to be feasible, the algo-

rithms presented are greedy algorithms that simply maximize
the number of target paths tested in each configuration. They
are by no means optimal and may not result in the smallest
number of configurations or total test time. The use of other
criteria, such as the total time for configuration and test appli-
cation for each configuration, or better heuristics may lead to
more efficient testing with the proposed approach.

REFERENCES

[1] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya, and V. Verma,
“Using roving STARs for on-line testing and diagnosis of FPGAs in fault-
tolerant applications,” inIEEE Int. Test Conf., Atlantic City, NJ, Sept.
1999, pp. 28–30.

[2] M. Abramovici, C. Stroud, and J. Emmert, “Online BIST and BIST-based
diagnosis of FPGA logic blocks,”IEEE Trans. on VLSI Systems, vol. 12,
no. 12, pp. 1284–1294, Dec. 2004.

[3] I. G. Harris and R. Tessier, “Interconnect testing in cluster-base FPGA
architectures,” inACM/IEEE Design Automation Conf., Los Angeles,
CA, June 2000, pp. 49–54.

[4] I. G. Harris and R. Tessier, “Testing and diagnosis of interconnect faults
in cluster-based FPGA architectures,”IEEE Trans. on CAD, vol. 21, no.
11, pp. 1337–1343, Nov. 2002.

[5] W.K. Huang, F.J. Meyer, X-T. Chen, and F. Lombardi, “Testing config-
urable LUT-based FPGAs,”IEEE Trans. on VLSI Systems, vol. 6, no. 2,
pp. 276–283, June 1998.



[6] C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-in self-test of
logic blocks in FPGAs (Finally, a free lunch),” inIEEE VLSI Test Symp.,
Princeton, NJ, Apr. 1996, pp. 387–392.

[7] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in self-
test of FPGA interconnect,” inIEEE Int. Test Conf., Washington, D.C.,
Oct. 1998, pp. 404–411.

[8] L. Zhao, D.M.H. Walker, and F. Lombardi, “IDDQ testing of bridging
faults in logic resources of reprogrammable field programmable gate ar-
rays,” IEEE Trans. on Computers, vol. 47, no. 10, pp. 1136–1152, Oct.
1998.

[9] M. Renovell, J. Figuras, and Y. Zorian, “Test of RAM-based FPGA:
Methodology and application to the interconnect,” inIEEE VLSI Test
Symp., Monterey, California, Apr. 1997, pp. 230–237.

[10] C-A. Chen and S.K. Gupta, “Design of efficient BIST test pattern gener-
ators for delay testing,”IEEE Trans. on CAD, vol. 15, no. 12, pp. 1568–
1575, Dec. 1996.

[11] S. Pilarski and A. Pierzynska, “BIST and delay fault detection,” inIEEE
Int. Test Conf., Baltimore, MD, Oct. 1993, pp. 236–242.

[12] A. Krasniewski, “Application-dependent testing of FPGA delay faults,”
in Euromicro Conf., Milan, Italy, Sept. 1999, pp. 260–267.

[13] A. Krasniewski, “Enhancing detection of delay faults in FPGA-based
circuits by transformations of LUT functions,” inIFAC Workshop on
Programmable Devices and Systems, Ostrava, CZ, Feb. 2000, pp. 127–
132.

[14] A. Krasniewski, “Exploiting reconfigurability for effective detection of
delay faults in LUT-based FPGAs,” inInt. Conf. on Field Programmable
Logic and Applications, Villach, Austria, Aug. 2000, pp. 675–684.

[15] A. Krasniewski, “Evaluation of delay fault testability of LUTs for the
enhancement of application-dependent testing of FPGAs,”Journal of
Systems Architecture, vol. 49, no. 4, pp. 283–296, Sept. 2003.

[16] M. Abramovici and C. Stroud, “BIST-based delay-fault testing in FP-
GAs,” Journal of Electronic Testing, vol. 19, no. 5, pp. 549–558, Oct.
2003.

[17] E. Chmelar, “FPGA interconnect delay fault testing,” inIEEE Int. Test
Conf., Charlotte, NC, Sept. 2003, pp. 1239–1247.

[18] M. Tahoori and S. Mitra, “Interconnect delay testing of designs on pro-
grammable logic devices,” inIEEE Int. Test Conf., Charlotte, NC, Oct.
2004.

[19] I. G. Harris, P. R. Menon, and R. Tessier, “BIST-based delay path testing
in FPGA architectures,” inIEEE Int. Test Conf., Baltimore, MD, Nov.
2001, pp. 932–938.

[20] L.T. Wang and E.J. McCluskey, “Complete feedback shift register design
for built-in self-test,” inInt. Conf. Comput.-Aided Design, Santa Clara,
CA, Oct. 1986, pp. 56–59.

[21] E.J. McCluskey, Logic Design Principles with Emphasis on Testable
Semi-custom Circuits, Prentice-Hall, Inc., Upper Saddle River, NJ, 1991.

[22] P. Girard, O. Heron, S. Pravossoudovitch, and M. Renovell, “Defect anal-
ysis for delay-fault BIST in FPGAs,” inIEEE Int. On-Line Testing Symp.,
Kos Island, Greece, July 2003, pp. 124–128.

[23] A. Krasniewski, “Evaluation of testability of path delay faults for user-
configured programmable devices,” inInt. Conf. on Field Programmable
Logic and Applications, Lisbon, Portugal, Sept. 2003, pp. 828–838.

[24] S. Padmanaban and S. Tragoudas, “Efficient identification of (critical)
testable path delay faults using decision diagrams,”IEEE Trans. on CAD,
vol. 24, no. 1, pp. 77–87, Jan. 2005.

[25] E. S. Park and M. R. Mercer, “An efficient delay test generation system
for combinational logic circuits,”IEEE Trans. on CAD, vol. 11, no. 7, pp.
926–938, July 1992.

[26] W. Xu, R. Ramanarayanan, and R. Tessier, “Adaptive fault tolerance for
networked reconfigurable systems,” inIEEE Symp. Field-Programmable
Custom Computing Machines, Napa, CA, Apr. 2003, pp. 143–152.

[27] V. Betz and J. Rose, “VPR: a new packing, placement, and routing tool
for FPGA research,” inInt. Conf. on Field Programmable Logic and
Applications, Oxford, UK, Sept. 1997, pp. 213–222.

[28] S. Yang, “Logic synthesis and optimization benchmarks user guide, ver-
sion 3.0,” Tech. Rep., Microelectronics Centre of North Carolina, 1991.

[29] Jonathan Babb, Matthew Frank, Victor Lee, Elliot Waingold, and Rajeev
Barua, “The RAW benchmark suite: Computation structures for general
purpose computing,” inIEEE Workshop on FPGA-based Custom Com-
puting Machines, Napa, Ca, Apr. 1997, pp. 134–144.

[30] Virtex Data Sheet, Xilinx Corporation, 2002.

PLACE
PHOTO
HERE

Premachandran R. Menon received his B.Sc. from
the Banaras Hindu University, Varanasi, India in 1954
and the Ph.D. from the University of Washington,
Seattle, WA in 1963, both in Electrical Engineering.
He is now a retired professor in the Department of
Electrical and Computer Engineering at the Univer-
sity of Massachusetts, Amherst, MA. Prior to joining
the University, he was with Bell Laboratories, first at
Murray Hill, NJ and later at Naperville, IL where he
was a Distinguished Member of Technical Staff. He
has served on the Editorial Boards of theIEEE Trans-

actions on Computers and theJournal of Design Automation and Fault Tolerant
Computing. His research interests are VLSI circuit testing and testable design.

PLACE
PHOTO
HERE

Weifeng Xu received the B.S. and M.S. degrees in
electrical engineering from Fudan University, Shang-
hai, China in 1997 and 2000, respectively. He is
current pursuing the Ph.D. degree at the University
of Massachusetts, Amherst. His research interests
include reconfigurable computing and fault tolerant
systems.

PLACE
PHOTO
HERE

Russell Tessier is an associate professor of elec-
trical and computer engineering at the University
of Massachusetts, Amherst, MA. He received the
B.S. degree in computer engineering from Rensse-
laer Polytechnic Institute, Troy, NY in 1989 and
S.M. and Ph.D. degrees in electrical engineering from
MIT, Cambridge, MA in 1992 and 1999, respec-
tively. Dr. Tessier is a founder of Virtual Ma-
chine Works, a logic emulation company, and has
also worked at BBN, Ikos Systems, and Altera. Prof.
Tessier currently leads the Reconfigurable Comput-

ing Group at UMass. His research interests include computer architecture,
field-programmable gate arrays, and system verification.


