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Static Scheduling of Multidomain Circuits
for Fast Functional Verification

Murali Kudlugi and Russell Tessier

Abstract—With the advent of system-on-a-chip design, many
application specific integrated circuits (ASICs) now require mul-
tiple design clocks that operate asynchronously to each other. This
design characteristic presents a significant challenge when these
ASIC designs are mapped to parallel verification hardware such
as parallel cycle-based simulators and logic emulators. In general,
these systems require all computation and communication to be
synchronized to a global system clock. As a result, the undefined
relationship between design clocks can make it difficult to deter-
mine hold times for synchronous storage elements and causality
relationships along reconvergent communication paths. This
paper presents new scheduling and synchronization techniques to
support accurate mapping of designs with multiple asynchronous
clocks to parallel verification hardware. Through analysis, it is
shown that this approach is scalable to an unlimited number of
domains and supports increasingly large design sizes. To prove
the effectiveness of the authors’ approach, developed algorithms
have been integrated into the compilation system for a commercial
multi-FPGA logic emulation system. For three designs mapped
to a logic emulator using this software environment, modeling
fidelity is maintained and performance is enhanced versus pre-
vious manual mapping approaches. A theoretical analysis based
on Rent’s rule validates the scalability of the approach as device
sizes increase.

Index Terms—Asynchronous circuits, FPGA-based emulation,
functional verification, static scheduling.

I. INTRODUCTION

A S APPLICATION specific integrated circuit (ASIC)
design sizes grow toward a billion transistors on a chip,

the need for fast, effective verification becomes increasingly
apparent. Although microprocessor-based simulators are still
the dominant means of prefabrication functional verification,
parallel verification platforms, such as logic emulators [4], [8],
[14], [15], are increasing in importance. The inherent paral-
lelism found in many system-on-a-chip designs necessitates
parallel evaluation of functional resources that is difficult to
accomplish on accelerated uniprocessor systems. Although
specific system implementations vary, most parallel verification
systems contain a tightly connected collection of special-pur-
pose logic processors or FPGAs. Due to the distributed nature
of these systems, a global system clock is used to coordinate
combinational evaluations and to transfer intermediate results
throughout the system. Evaluation and communication phases
are often delineated by edges of the user clock(s) of the design
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under test. In general, since multiple system clock cycles are
required to perform computation and communication for a
single design clock, a fixed relationship must exist between the
clocks.

Many contemporary ASIC designs require multiple design
clocks that operate asynchronously to each other. While syn-
chronization between a verification system clock and a single
design clock can be addressed through linear event ordering,
derived relationships for asynchronously occurring events are
much more difficult to determine. For parallel verification sys-
tems, asynchronous domain limitations occur both during data
transport between processors and during data evaluation inside
processors. Synchronous data transport often requires that log-
ical signals assigned to the same physical interprocessor wire
be driven in the same clock domain. As a result, the transport
of a multidomain signal requires that each signal be logically
split into constituent single-domain values before interprocessor
transport. These single-domain values are then combined at the
destination to support multidomain behavior. Causality is an
issue in such systems since routing delays can vary across in-
terprocessor paths. System scheduling algorithms must ensure
that a regenerated multidomain value is causally consistent with
the pretransport value created at the source processor.

When modeling design latches, hold-time constraints can
arise if latches are evaluated with gate and data signals which
transition on multiple clock domains. For each latch, the
validity of the gate must be assured before a data transition
is presented, even in the presence of multidomain data and
control transitions.

In this paper, we identify a set of scheduling constraints
that achieve provable modeling fidelity for designs with
multiple asynchronous design clocks. These constraints are
integrated into a reverse-ordered computation and commu-
nication scheduler to provide causally correct transport of
multidomain signals and phase-ordered evaluation of latch
data. This automated approach is easier to use than previous
manually mapped techniques that isolate multidomain circuits
in verification hardware. Additionally, our approach is shown
to scale to an unlimited number of asynchronous domains. To
validate our approach, new scheduling algorithms have been
integrated into the software flow of a commercial FPGA-based
logic emulation system from Ikos Systems [8]. When applied
to a collection of three large ASIC benchmarks containing
multiple asynchronous clock domains, this approach exhibits
performance improvement compared to “hard-wired” [4]
approaches while maintaining modeling fidelity. A Rent’s rule
analysis of the approach shows that as FPGA sizes grow, the
overhead of our technique is reduced.
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II. BACKGROUND

A. Related Work

In an effort to enhance functional verification speed, ASIC
designers have increasingly turned to parallel verification hard-
ware. Contemporary parallel verification systems include mul-
tiprocessor cycle simulators, logic emulators, and rapid proto-
typing engines. These systems generally contain a collection
of processing elements, such as custom logic processors [7] or
FPGAs, organized in a fixed topology. Contemporary systems
contain up to hundreds of devices packaged on boards in a card-
cage. Although prototyping speeds range from a few megaHertz
to 20–30 MHz [9], parallel verification systems provide up to
five orders of magnitude speedup [1] versus uniprocessor sim-
ulation. This speedup has remained roughly constant since in-
creases in ASIC integration due to Moore’s law have tracked
capacity increases in verification system devices.

Unlike many other forms of parallel processing, the circuit
structure of verified designs does not change during execution.
As a result, all computation within logic processors and com-
munication between logic processors is predictable at compile
time. This compile-time approach has been demonstrated in a
number of current and previous emulation systems. Example
verification architectures that fit this model include Quickturn
CoBalt [14] and Arkos emulators [13] and Ikos VirtuaLogic em-
ulators [8].

Generally, in parallel verification systems both intrapro-
cessor logic evaluation and interprocessor communication
is performed in reference to a high-speed system clock. By
necessity, the system clock runs at a higher clock rate than
the clock(s) of the design under evaluation. The system clock
serves as a discrete timebase, providing a reliable mechanism
for controlling events at a fine granularity. Generally, it is
straightforward to determine a fixed relationship between one
emulation clock and a high-speed system clock since multiple
cycles of the system clock make up one emulated design clock
cycle. It is more difficult to form a fixed relationship between
the system clock and multiple design clocks that operate asyn-
chronously to each other since a fixed phase relationship for
computation and communication scheduling cannot be easily
derived. Previous logic emulation systems have used special
compilation and/or manual steps [4], [6] to isolate logic that is
evaluated on multiple asynchronous clocks in dedicated system
hardware. This approach comes at the expense of performance
and mapping flexibility. Not only did these techniques require
special system knowledge, but manual intervention can lead to
verification errors.

B. Verification Software Flow

Although individual systems may differ in implementation,
design mapping similarities exist across many parallel verifica-
tion systems. A typical system flow for converting a structural
or register transfer level (RTL) design to a physical realization
appears in Fig. 1. The first step in the mapping process is
design translation. This step converts the original RTL or
structural design to the native technology of the verification
system [7]. Typical design translation steps include technology

Fig. 1. Verification software compiler flow.

mapping for FPGA-based logic emulation systems and Boolean
minimization for parallel simulators that contain sequential
logic processors. Following design translation, designtiming
analysis is performed to determine the clock domains or
regions of influence of user clocks. After timing analysis, a
design ispartitioned into pieces appropriately sized to meet
the physical constraints of each logic processor. These logic
partitions are subsequently assigned to specific system pro-
cessors viaglobal placement. Communication between logic
processors is determined based on logicaldependency flow
and available interprocessor resources. Astatic scheduling
step includes the scheduling of logic evaluation, interprocessor
communication, and access to system memory resources. This
step is the focus of the algorithm development described in
this manuscript. Scheduling is followed by a logicsynthesis
step which creates necessary control and communication logic
to implement the static schedule. As a final step, compilation
for each logic processor is performed. This step includes
FPGA place and route for FPGA-based logic emulators [2]
and Boolean instruction scheduling for special-purpose logic
processors [13].

C. The Target System

The target system for this work is an Ikos VirtuaLogic emu-
lation system [8] that contains 384 Xilinx XC4062XL FPGAs.
The FPGA interconnect topology of this emulator is primarily
a nearest neighbor mesh [9]. The design mapping steps for
VirtuaLogic systems follow the basic flow shown in Fig. 1.
Compilation steps include design partitioning of logic blocks
into FPGAs using K-way mincut, assignment of partitions to
specific FPGAs using simulated annealing, and scheduling of
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both intra-FPGA logic evaluation and inter-FPGA communi-
cation. Communication scheduling is based on Virtual Wires
technology, a static list-ordered scheduling technique. The
initial step in Virtual Wires scheduling is the determination of
all circuit combinational dependencies. Logic can be scheduled
for evaluation once all dependent inputs have reached a known
value. After intermediate values have been determined, the
scheduling approach pipelines multiple logical signals (virtual
wires) across inter-FPGA wires to overcome FPGA pin limita-
tions [1], [2]. The derived communication schedule determines
a feasible space–time route for inter-FPGA connections such
that all inter-FPGA dependencies are satisfied.

Both logic evaluation and inter-FPGA signal communication
are controlled by a high-speed system clock called a Virtual
Clock. This clock serves as a discrete timebase, providing a re-
liable mechanism for controlling the order of events at a fine
granularity. Since many combinational evaluations and signal
transfers may occur in a single design clock cycle, the Virtual
Clock by necessity runs at a much higher frequency than the de-
sign clock. Additional detailed discussion of virtual wires com-
pilation can be found in [2] and [16]. A preliminary approach
for scheduling latch evaluation for asynchronous clock domains
in logic emulation systems is described in [10]. This previous
paper did not consider asynchronous domain inter-FPGA trans-
port. Asynchronous domain memory evaluation for logic emu-
lation is described in [11].

III. M ULTIDOMAIN PROBLEMS

There are a number of problems that make multidomain cir-
cuits interesting and challenging from a functional modeling
point of view. These problems directly affect the scheduling of
logic evaluation and inter-FPGA signal communication in par-
allel verification systems.

A. Timing Closure

Functional Axiom 1(Timing Closure): Combinational logic
plus transmission delay plus setup time between two sequential
elements in the same domain takes less than one clock period of
the fastest clock attached to either of the sequential elements.

Consider the circuitry shown in Fig. 2 where two asyn-
chronous clocks CLK1 and CLK2 drive state elements (FF1,
FF3) and (FF2, FF4), respectively. This circuit contains two
same domain paths,FF1.Q–N3–N5–FF3.Din the domain of
CLK1 (domain1) andFF2.Q–N4–N5–FF4.Din the domain of
CLK2 (domain2). Note that net N5 transitions and is sampled in
both clock domains. It is called an MTSD (multitransition and
sample domain) net. The correct functional model of this circuit
must simultaneously satisfy the timing closure axiom in each
constituent domain. This indicates that the data atFF1.Qmust
reachFF3.D in exactly one cycle of CLK1 and data atFF2.Q
must reachFF4.D in exactly one cycle of CLK2 irrespective of
combinational delays or multidomain net segments in the paths.

B. Transporting Multidomain Values

Functional Axiom 2(Causality): The occurrence times of
combinational logic form a partial order based on causality.

Fig. 2. A multitransition and sample domain (MTSD) example.

Fig. 3. An example of multitransition and sample domain (MTSD) signal
transport.

If part A feeds part B, events on A must have occurred before
events on B.

Consider a situation where the circuit in Fig. 2 is partitioned
such that the multidomain value N5 must be transported from
FPGA1 to FPGA4 as shown in Fig. 3. In a multi-FPGA system,
the physical wires that connect FPGAs are grouped into unidi-
rectional channels where each physical wire is capable of car-
rying multiple signals that belong to the same clock domain,
one signal in each Virtual Clock cycle. Pin multiplexing makes
it possible to reuse physical wires to support numerous logical
wires. To complete signal transport, the communication sched-
uler determines a path from a source FPGA to a destination
FPGA and identifies schedule time slots for the communication
to take place. Signal routing may include several intermediate
FPGA hops.

A key verification issue involves the transport of multidomain
signals such as N5 in Fig. 2 in a system where inter-FPGA com-
munication needs to be synchronous to a system clock (Virtual
Clock) over a single-domain physical resource (channel wire).
Previous work suggests that such a situation can be avoided by
limiting the size of asynchronous-domain logic to one FPGA or
by dedicating special inter-FPGA wires to transport the values
(hard-wiring) [4]. Since hard-wired signals cannot be multi-
plexed to carry non-MTSD nets, pin limitation problems [2] can
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Fig. 4. An example of the multidomain causality problem.

result, leading to reduced system performance. To avoid this
problem, it is desirable to split a multidomain value into con-
stituent domain values, route (schedule) the values in respective
domains, and recover the multidomain value at the destination
FPGA. This solution poses another problem because of unpre-
dictable route timing that is inherent in statically routed systems
[2].

As shown in the Fig. 3, communication for each asyn-
chronous clock domain takes place over a different set of
inter-FPGA channels. In the case of N5, paths using both do-
main1 (D1) and domain2 (D2) channels are needed to trans-
port N5 between FPGA1 and FPGA4. The disjoint nature of
multiple routing paths for the same logical signal can lead
to causality concerns at the destination FPGA. As a result
of unpredictable routing delays due to routing congestion, it
is possible for the domain1 (D1) value of N5 to start from
the source FPGA sooner than the domain2 (D2) value but
still arrive after the D2 value reaches its destination. This
arrival order can violate the causality principle, resulting in
an incorrect result at FPGA4. Fig. 4 illustrates such a case
where a D1 version of signal N5 departs from FPGA1 at

while the D2 version departs at , after a new
value of N4 has been created. Due to route congestion, the
D1 value reaches FPGA4 after the D2 version. Here, notation

indicates the value of signal due to th event in the
domain to which the signal belongs. For a multidomain
signal, indicates the value of the signal due to
th event on the first domain andth event on the second

domain. Using combinational rules, when multiple versions
of a signal in asynchronous domains are merged at a destina-
tion, the most recently arriving version is used in subsequent
calculation. As a result, the late arriving, older D1 value at

will be the final value of the signal at FPGA4 and the
newer value that arrived at will be lost. A requirement
in transporting multidomain signals is to ensure that causality
of events is guaranteed within each of the constituent do-
mains, irrespective of routing delays.

Fig. 5. An example of an MTSD latch.

C. Hold Time Problem in Multidomain Circuits

The correct functioning of state elements requires that data
signals arrive at an element a certain period of time (setup time)
before the triggering signal and are held steady for a certain pe-
riod of time (hold time) after the triggering signal arrives. If the
triggering signal arrives at a time when the data signal is invalid,
a violation occurs and causes incorrect operation of the circuit.
Consider a simple latch shown in Fig. 5, which has combina-
tional logic sourcing its Gate and Data inputs. In the waveforms
shown in Fig. 6, D, G, and Q represent Data, Gate, and Output
waveforms of the latch. Fig. 6(a) shows an ideal zero delay func-
tional modeling of the latch. The edge on user clock CLK at

causes a change in Gate and Data values at the same in-
stant of time and the old value “” gets stored in the latch as a
result. Fig. 6(b) shows more realistic waveforms where routing
delays cause the Gate and Data to arrive at the latch inputs at
different points in time in response to CLK. A problem arises if
the new data “ ” reaches the latch sooner than the new gate and
overwrites the old value “,” which is not recoverable. This sce-
nario can happen if the routing delay on the Gate path is greater
than the routing delay on the Data path due to combinational
logic in those paths. This potential delay imposes a constraint
(called theDG constraint) on latch scheduling for every (Data,
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Fig. 6. A hold time violation in an MTSD latch.

Gate) input pair. In a case where both Gate and Data paths are
in the same domain, it is easy for a scheduler to compute re-
gions of time when Gate is invalid and mask those regions so
that latches are not evaluated. This solution fails if Data and
Gate nets are multidomain nets because regions of validity for
latch evaluation in one domain may conflict with regions of in-
validity in other domains. The key challenge here is to satisfy
hold time requirements for every (D, G) pair in each of the con-
stituent domains.

IV. DEFINITIONS

The following definitions pertain to multidomain scheduling.
These definitions are used throughout the remainder of the
manuscript.

Multitransition Net : A net which is combinationally
reachable from the output of state elements in distinct clock
domains. An MTSD net changes value in response to two
or more asynchronous clocks where is a set
of domains in which a net transitions. In Fig. 2, for net N5

, for net N6 .
Multisample Net: A net which combinationally reaches the

D input of state elements in two or more distinct clock domains.
A net whose value is sampled in response to multiple asyn-
chronous clocks ( ) where is a set of domains in
which the net value is sampled. In Fig. 2, for net N5

, for N1 .
MTSD Net: A net which transitions and is sampled in more

than one domain. A net is an MTSD net if

where is the set of domains in which net transitions
and is the set of domains in which netis sampled.

MTSD Gate: Any combinational gate whose output is con-
nected to an MTSD net. In Fig. 2, gate G1 is an MTSD gate.

MTSD State: A latch/flip–flop whose gate/clock input is
sourced by a multitransition net.

Clock Domain: Encapsulation of user logic that is driven by
a design clock or set of design clocks that are phase related. A
clock domain demarcates the region of influence of a user clock
(or phase-related set) within the design. The number of clock
domains is equal to the number of asynchronous (sets of) clocks
in the design.

MTSD Domain: Encapsulation of MTSD logic (gates, states,
memories, and nets) that are all MTSD with only single-domain
nets at the interface.

Domain Channel: A collection of inter-FPGA physical wires
that transport a larger collection of logical signals that belong to
a given domain. Multiple logical signals are transported within
a user cycle along a single physical wire using time division
multiplexing [2].

Block: During design compilation the user design is parti-
tioned into chunks of size that are small enough to fit into an
FPGA. It is at the block boundary that all the inter-FPGA com-
munication (routing) takes place.

MTSD Block: A block that contains only MTSD gates, nets,
and state elements.

RouteLink : An interpartition connection between two block
terminals. A RouteLink is different from a net in that it is asso-
ciated with a particular clock domain and a specific user clock.
A multitransition net can result in multiple RouteLinks.

MTSDLinks : A set of RouteLinks for an MTSD net (one for
each of its transition domains) that collectively transport the net
between two MTSD blocks placed on two FPGAs.

DG Constraint: A latch scheduling constraint imposed on
every (Data,Gate) pair of same-domain block inputs. This con-
straint requires that the Gate input must be valid before the Data
input. It is necessary to satisfy this constraint to prevent latch
Hold time violations during scheduling.
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Fig. 7. Multidomain data transport.

V. THE APPROACH

Observation 1: For any relationship in a multido-
main circuit containing domains and , it is sufficient to sat-
isfy and for correct functional verification.

For example, in the circuit shown in Fig. 2, it is only neces-
sary to satisfy the timing closure property for the same domain
paths FF1.Q–N3–N5–FF3.D and FF2.Q–N4–N5–FF4.D
but not for cross domain pathsFF1.Q–N3–N5–FF4.Dor
FF2.Q–N4–N5–FF3.D. Similarly, hold time must be satisfied
for each same domain (D, G) pair. With this observation,
multidomain problems can be reduced to sets of functional
requirements (i.e., timing closure, causality and setup/hold
times) within each constituent domain.

A. Multidomain Data Transport

Our approach to transporting a multidomain signal between
FPGAs is to decompose the signal into a set of single-domain
signals, one for each constituent domain. These component sig-
nals can then be freely time-multiplexed with other signals and
transported using respective domain channels. Component do-
main signals may travel independently toward the destination
FPGA and may cross multiple intermediate FPGAs. The sig-
nals are merged at the destination FPGA to regenerate the mul-
tidomain signal such that the causality of events is maintained.
As shown in Fig. 7, two new operators are introduced, a FORK
operator at the source FPGA and a MERGE operator at the des-
tination, to facilitate the decomposition and causal merging of
component signals. FromObservation 1, flow and dependence
relationships along inter-FPGA paths are based on combina-
tional signals from the same domain. This observation allows
component signals to be routed in parallel in their respective do-
mains and merged at their final destination. Causal merging can
be achieved by dynamically selecting an appropriate single-do-
main signal at a MERGE point based on the causal order at the
corresponding FORK point. One way of ensuring causal cor-
rectness is by requiring that the effectiveroute lengthsalong
these reconvergent paths are equal. This step is accomplished
by first routing all component signals in parallel such that they
all have lengths less than or equal to a specificTargetLength,
the maximum of the shortest achievable route lengths among all
paths. This step is followed by the synthesis of delay compensa-
tion flip–flops within paths which are shorter than TargetLength
to absorb remaining time slack. If routes of length TargetLength
cannot be achieved during initial scheduling, TargetLength is in-
cremented by 1 and routing is restarted.

B. Setup/Hold Time Constraints on a MTSD Latch

Observation 2: For a multidomain latch, instantaneous Setup
time violations are correctable whereas instantaneous Hold
time violations are not.

Due to different routing and combinational delays, latch data
and gate values may arrive at different points in time (i.e., Vir-
tual Clock cycles). This necessitates the use ofObservation 2
in determining latch evaluation scheduling. The basis of the ob-
servation stems from analyzing two problem situations.

1) A latch is evaluated with a NEW gate value against an OLD
data value. This is a setup time violation because NEW data is
not ready and stable when the NEW gate value arrives.

2) A latch is evaluated with a NEW data value against an OLD
gate value. This is a hold time violation because data is not held
stable sufficiently long enough.

When a latch is evaluated with OLD data against a NEW gate
that has just changed from closed to open, temporary corruption
of the latch may occur. However, the eventual arrival of NEW
data results in reevaluation of the latch and restoration of the
correct latch value. As a result, a functional setup violation is
correctable.

In contrast, when a latch is evaluated with an OLD gate that is
open and NEW data, the correct latch value may be irretrievably
lost since the OLD latch data is no longer available. As a result,
a functional hold time violation is not correctable.

We use notation to indicate the value of signal
which occurs in response to theth clock edge of domain

A and the th clock edge of domain . For any latch with
Data and Gate on some clock edge
in Domain , three possible conditions exist with respect to
Domain :

• instantaneous Setup time violation;
• both Setup and Hold time satisfied;
• instantaneous Hold time violation.

Observation 1implies that every edgein domain requires
an evaluation of the latch with against
which satisfies both setup and hold time with respect to. Ob-
servation 2implies that when performing such an evaluation, it
is legitimate to have or but not legitimate to have

. The symmetrical relationship holds with respect to eval-
uations against domain. This relationship can be extended to
an arbitrary number of domains. The implication of these obser-
vations is that every edge for any domain results in an evaluation
which satisfies both setup and hold time with respect to that do-
main. Any evaluation not satisfying setup time against a domain
is subsequently followed by a correcting evaluation against that
domain.

These observations lead to our approach to MTSD latch
scheduling, which ensures that hold time violations do not
occur and setup time violations do not propagate. Our new
static scheduling algorithm meets these constraints by ensuring
that latch Data inputs do not arrive before associated Gate
values for any edge in any domain and that both Data and Gate
changes, triggered off a specific clock edge, arrive prior to
subsequent clock edges from that domain.
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Fig. 8. MTSD dependency and depth computation.

C. Transforming MTSD Flip–Flops

MTSD flip–flops are not covered byObservation 2and are
more difficult to address than MTSD latches. Our approach han-
dles MTSD flip–flops by transforming them into master–slave
latch pairs and then subjecting them to the same processing as
other MTSD latches.

VI. DEPENDENCY ANDDEPTH COMPUTATION

Two important timing analysis computations, dependency
and depth, are performed to aid the scheduling process. The
purpose of these computations are two-fold: first, to ensure that
the logical data dependency along multi-FPGA combinational
paths is correctly implemented in the schedule and second,
to prioritize routing of critical paths based on the depth of
logic [2]. This depth information is also used to determine the
execution order of sequential components (such as memories
and latches) inside blocks that contain combinational flow
paths.

A. Hold Time Problem in Multidomains

A RouteLink, as defined in Section IV, is used to repre-
sent a logical connection between block terminals that are
placed on two different FPGAs. Two RouteLinks are linked
by a parent–child relationship if they are combinationally
connected. In addition, each RouteLink is assigned an integral
number, depth, based on the depth of its parent RouteLinks
and the estimated distance between its source and destination
FPGAs. As a result, the inter-FPGA communication of the en-
tire design can be represented as a partial order of RouteLinks
sorted by depth. Routing according to this partial order auto-
matically satisfies the dependency flow and ensures that critical
paths are routed first. Fig. 8 shows an example design with

four partitions. Partition1 contains a block with strictly domain
D1 logic, Partition2 contains a block with strictly domain D2
logic, and Partition3 and Partition4 contain MTSD blocks. The
partitions are interconnected with a set of RouteLinks labeled
W0 through W9. Each link is associated with a specific domain
of transition. MTSD nets are split into component domain
signals. For example, wires W5(D1) and W5(D2) carry D1 and
D2 versions of MTSD wire W5 from Partition3 to Partition4.

The transport of a given MTSD signal between FORK and
MERGE operators is split into a group of RouteLinks which
collectively transport the MTSD value across FPGAs. As
mentioned in Section V-A, our scheduling approach ensures
causality along reconvergent MTSD paths by requiring that
the routing length of each domain path is the same. To support
causal transport, it is necessary to schedule all related MTSD
RouteLinks together so that they all have equal route length.
Previously [2], [16], dependency and depth information was
determined only along same-domain paths since these paths
are strictly governed by the synchronous clock edges in a given
domain. This analysis is extended to include cross-domain
paths so that a partial order of RouteLinks is created that is
not only logically consistent in any single domain, but also
is causally correct along reconvergent multidomain paths.
Causality is achieved by sorting all RouteLinks by depth that is
normalized over all constituent domains.

To support MTSD scheduling, two types of dependency are
computed. Same-domain dependency tracks link dependencies
within a single domain and MtsdDependency tracks link depen-
dencies across all domains including cross-domain paths.

Dependency determination is a multistep process. Initially,
terminal-to-terminal dependencies are determined for each
block. For each block input terminal, the following are
calculated:
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• set of block outputs in the same domain that
can be combinationally reached from block input;

• set of all block outputs that can be com-
binationally reached from block input.

if the terminal is terminated exclusively
by one or more state elements. Similarly, and

sets are determined to express inverse relation-
ships. For example, in Partition4, which contains an MTSD
block, the following domain relationships hold:

• ;
• ;
• ;
• .

Following the evaluation of parent and child relationships, the
same-domain and MTSD depths of each interpartition wire are
determined. These depths are computed in reverse order (this
is an implementation choice; forward evaluation could be per-
formed as well) recursively from the RouteLink dependent sets
such that for each RouteLink

if
(1)

Similarly is expressed as

if

(2)

Consider depth evaluation for the partitioned circuit shown
in Fig. 8. In this example, it is known that initially the same-
domain and of wire W8 4 and W9 1 due to
downstream paths that are not shown in the figure. From these
initial conditions, the remaining depths can be determined.

In Table I, related MTSD links W5(D1) and W5(D2) have
different same-domain depths but equal . During
routing, same-domain paths are scheduled independently to pro-
mote optimal scheduling. As shown in Fig. 9, is
used to sort all RouteLinks in all domains to produce a partial
order that is consistent across all domains.

B. MTSD Latch Signal Evaluation Ordering

As noted in Section V-B, in order to satisfy the hold time
(DG Constraint) of an MTSD latch, signals must be scheduled
such that Gate signal information from a given domain arrives
at the latch at or before the time the same-domain Data value
arrives. This imposes an ordering requirement between the set
of RouteLinks fanning into the D-input of the latch and the set
of RouteLinks fanning into the G-input of the latch. The same
RouteLink can reach multiple latch inputs imposing additional
ordering requirements between latches. The following describes
the scheme used to compute the evaluation order of RouteLinks
and latches.

To aid in latch ordering, each MTSD partition is analyzed to
create RouteLink sets for each latch. Example dependencies are
shown in Fig. 10.

TABLE I
SAME-DOMAIN DEPTHS ANDM D FORROUTELINKS IN FIG. 8

D-INPUT Set: Group of all RouteLinks that reach the Data
terminal of the latch via combinational logic. This includes any
link that reaches both Data and Gate (called DG input).

G-INPUT Set: Group of all RouteLinks that reach the Gate
terminal of the latch via combinational logic. None of these in-
puts also fan out to the latch Data input.

D-OUTPUT Set: Group of all RouteLinks which are de-
pendent children of links in the D-INPUT set or the latch output.

Given these RouteLink sets, a temporal dependency is added
between same-domain D-INPUT and G-INPUT RouteLinks.
An additional RouteLink is created for each latch to represent
latch dependencies in the overall dependency flow. Fig. 11
shows the ordering requirements imposed on RouteLinks due
to this temporal dependency. These requirements order the
RouteLinks from least constrained to most constrained. If the
RouteLinks at the block terminals are scheduled in dependency
order, the DG constraints can be easily satisfied at the latch
input terminals. Note that the above approach cannot handle
multipartition cyclic dependencies from D-OUTPUT links
to G-INPUT links. Currently, this limitation is avoided by
encapsulating such cycles in a single combinational module
and placing it in the FPGA containing the latch.

C. Latch Groups

A block terminal can combinationally reach multiple latch
inputs, necessitating ordering requirements between latches.
Each of these latches can in turn impose conflicting ordering
requirements for the input RouteLink at the block terminal. It
is therefore necessary to determine an evaluation order that sat-
isfies latch ordering constraints for latches that share common
RouteLinks. As shown in Fig. 12, this limitation imposes
additional constraints on the order in which RouteLinks are
scheduled.

DD-Type: Consider the case shown in Fig. 12(A) where a
block terminal combinationally reaches Data inputs of two
or more latches. In order to satisfy DG constraints, RouteLinks
in the G-INPUT sets of both latches must be ordered before the
RouteLink for this block terminal. This ordering is achieved by
combining these latches into a latch group and merging their
respective D-INPUT and D-OUTPUT sets so that the latches
can be evaluated together as a group. The individual latch
RouteLinks are replaced by a single RouteLink to represent the
group in the dependency flow graph.

DG-Type: If a block terminal reaches the Data input
of latch L1 and the Gate input of latch L2, as shown in
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Fig. 9. A partial order of RouteLinks sorted byMtsdDepth.

Fig. 10. An example of MTSD latch signal dependencies.

Fig. 11. A partial order of RouteLinks sorted based on DG constraints.

Fig. 12(B), then latch L2 must be evaluated before latch L1,
since Gate terminals must be evaluated before Data terminals.
This restriction forms a Parent–Child dependency relationship
between L2 (parent) and L1 (child). During scheduling, two
arrays, DGChild( ) and DGParent(), are used to maintain the
list of latches which must be evaluated before and after latch

, respectively.
DG Cycle: Consider a case where a block terminalreaches

the Data input of latch L1 and the Gate input of latch L2, as
shown in Fig. 12(C). Additionally, block terminal reaches
the Gate terminal of latch L1 and the Data terminal of latch L2.

Fig. 12. MTSD latch relationships.

These relationships lead to conflicting ordering requirements
since latch L1 requires to be ordered before and latch
L2 requires just the opposite. Whenever there is a cyclical DG
relation involving two or more latches, the only way to satisfy
DG constraints on all latches is to evaluate all of them at the
same point in time, similar to DD-type latches.

D. Computing MTSD Latch Dependency

The DG constraint implies that: D-INPUT terminals must be
evaluated after all of the dependent G-INPUT terminals are eval-
uated in each domain, but before the latch itself is evaluated.
This constraint must hold valid in each of the same domain (,

) pairs for in the D-INPUT set and in the G-INPUT
set. In addition to dependency due to combinational logic, two
types of latch dependencies are introduced into the system.

• Dependency introduced between terminals in the
D-INPUT set and terminals in the G-INPUT set.

• Dependency introduced between latches/latch groups due
to DG relationships.

These dependencies are used to order latch RouteLinks with
other RouteLinks that are connected at the block boundary.
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VII. STATIC SCHEDULING

A list scheduling algorithm is used to route communication
paths between blocks. This is a reverse scheduling algorithm
which routes paths starting from primary outputs to primary in-
puts. The described techniques are also applicable to forward
scheduling which routes from primary inputs to primary out-
puts. In this section, the basic steps involved in static routing
are described. In the next section, the specific steps involved in
MTSD latch scheduling are described.

Combinational dependency analysis is performed on the
placed but unrouted design to support the creation of an ordered
set of RouteLinks for routing. At the end of the dependency and
depth computation step, a list of RouteLinks that collectively
represents the communication between all FPGA partitions is
produced. RouteLink depths represent the longest (worst case)
time required to propagate through the network from the source
FPGA to the destination FPGA. The reverse scheduler starts
from RouteLinks terminating at primary outputs or internal
state elements and schedules one link in the partial order at a
time progressively moving toward the primary inputs.

The goal of the algorithm is to compute the latest time, called
theReadyTime, at which a value must arrive at a given block
or latch terminal for further evaluation and/or propagation.
This time commitment flows in a reverse fashion from a child
RouteLink to all its parent RouteLinks which in turn compute
and propagate ReadyTime commitments to their parents.All
delays and ReadyTimes are represented in terms of integral
time units with a Virtual Clock cycle as the basic unit.

A. Algorithm 1: Static Routing

The core scheduling algorithm involves the following steps.
1) Sort RouteLinks in descending order based on

MtsdDepths. The scheduling of RouteLinks that are sorted
by MtsdDepth ensures that all dependent RouteLinks in all
domains are scheduled before descendant RouteLinks.

2) Initialize ReadyTime for each RouteLink that terminates
at a primary output or internal state element with the combina-
tional/propagational delay involved in moving a value from a
block terminal to its final destination (output or state). Initialize
ReadyTimes of all other RouteLinks to 0.

3) For each RouteLink( , ) in the sorted list:

a) Find the shortest path “” from to such that data
arrives by ReadyTime( ) using a modified Dijkstra’s
algorithm [3]. ReadyTime( ) is either initialized in Step
2) or computed for a previous RouteLink in Step 3e).

b) Check if routing resources are available in the domain
channels along the path for the given time slot(s).
If routing resources are not available, increment
ReadyTime( ) and go to Step 3a). This finding indi-
cates that the final value will arrive at sooner than
needed. This is not a problem, in general, but has an effi-
ciency impact on MTSD routing, described subsequently
in Algorithm 2.

c) Reserve wiring resources along the path. This reserva-
tion involves selecting a set of physical wire and time slot
pairs along the path segments from the destination FPGA
to the source FPGA.

d) Compute DepartureTime( ) at the source ,

e) Update input ReadyTimes at the block. For each terminal
in Parent( )

B. Routing MTSD Data Paths

As shown in Fig. 4, MTSD paths are given special treatment;
they are split into a group of RouteLinks that belong to different
domains. These links collectively transport single-domain ver-
sions of the MTSD value across FPGAs. If the route sched-
uler can schedule these RouteLinks such that they all take an
equal number of Virtual Clocks to propagate, the causally cor-
rect value can be obtained at the destination.

The group of all related RouteLinks of an MTSD netis re-
ferred to as MTSDLinks(). All RouteLinks in MTSDLinks( )
must be scheduled at the same time since scheduling one path
may affect another. It is necessary to determine a schedule such
that all RouteLinks have the same effective length. The longest
domain path from a source FPGA to the destination FPGA de-
termines the minimal route length. As described in Section V-A,
this length is the .

In determining routing for each MTSD net, four variables are
considered.

(RequiredDepartureTime), the time at which
a signal must depart a source block terminal to satisfy Target-
Length requirements.

, the time at which a signal departs the source
block.

(RequiredArrivalTime), the time at which a
signal must arrive at a destination block to satisfy the Target-
Length requirement. This value is the ReadyTime computed
during the scheduling of dependent RouteLinks, as explained
in Algorithm 1.

(ActualArrivalTime), the time at which a signal
is scheduled to arrive at the input of the destination block.

C. Algorithm 2: MTSDLinks Routing

This algorithm is a specialization of Step 3a) of Algorithm 1.
The basic algorithm is as follows.

1) Compute for MTSD RouteLinks. Even if
source and destination FPGAs for an MTSD net are the same,
the path lengths of different domain paths may vary based on
channel domain designation

2) For each RouteLink in MTSDLinks compute DTrequired,
the time by which a signal must leave a source block

3) For each RouteLink in MTSDLinks find a schedule using
Dijkstra’s algorithm such that the value arrives at the destination
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Fig. 13. Delay compensation to achieve a causally correct merge at the route destination.

at or before ATrequired and has a length less than or equal to the
.

4) If Step 3) is successful for all RouteLinks in MTSDLinks,
go to Step 3a) of Algorithm 1.

5) If Step 3) failed because a feasible schedule cannot be
found, then:

a) delete all the schedules for links already routed.
b) increment by 1.
c) go to Step 3).

D. Delay Compensation Synthesis

At the completion of Algorithm 2, it is known that all
RouteLinks of an MTSD net have been routed successfully.
However, each RouteLink in MTSDLinks() may require a
different number of Virtual Clocks to traverse source-destina-
tion paths. In order to equalize the delay for all RouteLinks
of MTSDLinks( ), it is necessary to add extra Virtual Clocks
to all paths that initially require fewer Virtual Clocks than the
longest RouteLink path. This can be accomplished by adding
delay compensating flip–flops under one of two scenarios.

Source Compensation: Virtual Clock triggered flip–flops
can be added in the source FPGA at the FPGA boundary such
that

This insertion prevents a signal from being sampled in any do-
main before it is ready.

Destination Compensation: Virtual Clock triggered
flip–flops can be added in the destination FPGA at the FPGA
input boundary such that

This approach ensures that the domain data reaches the destina-
tion in a causally correct fashion.

Delay compensation is implemented by synthesizing Virtual
Clock triggered flip–flops in each single-domain path as shown
in Fig. 13 for the example in Fig. 4. The lower half of the figure
shows one possible way to correctly transport multidomain net
N5 to the destination so that causality is preserved. Note that

three flip–flops are inserted in the D2 path to compensate for
the difference in D1 versus D2 routing delay (5 versus 2).

E. Scheduling MTSD Latches

MTSD paths must be scheduled such that hold time require-
ments are satisfied on every MTSD latch in each of the con-
stituent domains.

Fig. 14 illustrates the basic steps involved in latch sched-
uling. The goal of this algorithm is to schedule each latch such
that Hold time and Setup time constraints are satisfied in each
constituent domain. Our solution to the hold time problem is
to schedule D-INPUT RouteLinksbefore (a result of reverse
routing) G-INPUT RouteLinks butafterthe latch itself is sched-
uled. The setup time is ensured by scheduling D-OUTPUTs be-
fore the latch is scheduled so that only the final correct value
for the latch is propagated to its fanouts. Due to the latch order
described in Section VI-B, by the time a latch is evaluated, the
DepartureTimes of all the terminals in the D-OUTPUT set are
known. In Fig. 14, arrows indicate the flow of ReadyTime, the
time at which a value must be ready for consumption by depen-
dent logic. The ReadyTime evaluation sequence is indicated by
the numbers in the parentheses. This algorithm computes the
final ReadyTime on D-INPUTs and the lower bound for the
ReadyTimes on G-INPUTs.

and are determined prior
to scheduling for each block input terminalto latch . This
determination requires intrablock path analysis since there can
be multiple combinational paths from a block input terminal to
a latch.

F. Algorithm 3: Latch Scheduling

The Latch Scheduling algorithm below is a specialized ver-
sion of Step 3a) of Algorithm 1. The basic algorithm that is in-
voked for each latch RouteLink,, involves the following steps.

1) Compute the initial ReadyTimes for each terminal
in the D-INPUT( ) set based on the DepartureTimes of their
fanouts (D-OUTPUTs). These values are not final ReadyTimes
because they do not take into account the latch’s .
This step is same as Step 3e) in Algorithm 1, but repeated here
for sake of completeness.
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Fig. 14. An example of MTSD latch evaluation.

2) Evaluate the difference between each
and . If the difference is less than the minimum
delay from to the latch , update .

For each in D-INPUT( )

3) If latch has a DG relationship on other latches, take the
maximum ReadyTime of the child latches.

For each child latch in DGChild( )

4) For each in D-INPUT( ):

a) Compute the . The value is called
required ReadyTime because if data arrives any sooner
than this time, there is a risk of violating the DG Con-
straint

b) Compute the final . This is the time that is
used by parent links of for further computation

c) If is greater than
, add delay com-

pensation in the to path to ensure that Data
does not arrive at the latch sooner than required [as
mentioned in Step 3b) of Algorithm 1]. A delay equal to

is injected into the path
from to latch by adding a chain of Virtual Clock
triggered flip–flops

5) Propagate to each of the terminals in
G-INPUT( ) as initial . This is the initial
ReadyTimebecause there could be other dependent children on

which can further alter its .
For each in G-INPUT( )

The above algorithm guarantees that the at the
Gate input terminals are always greater than or equal to the
ReadyTimes at the Data input terminals for every same domain
(Data, Gate) terminal pair of any latch. This relationship ensures
that the Gate value always arrives before the Data value and that
the DG constraints are satisfied at the latch. In the above equa-
tions, values for paths from Data terminals to latches
have been used rather than the values used for Gate
terminal to latch paths. This relationship ensures that the delay
from any to a latch does not exceed the delay from to
the latch after compensation (performed in Step 4c). Without
this compensation it is still possible to violate the hold time at
the latch even if DG constraints at the block boundary are met.
Fig. 15 illustrates Algorithm 3 with a simple example.

VIII. R ESULTS

A. Experimental Results

The algorithms described in this paper have been imple-
mented and integrated into the Ikos VirtuaLogic Compiler
[8] for the VStation5M Emulator. Three industrial designs
(a telecom design and two graphics processors) containing
asynchronous domains have been compiled using the Virtua-
Logic compiler. As shown in Table II, Design2 has the largest
percentage of MTSD logic. Each of the designs has multiple
user clocks that are phase-locked to each other within each
domain. Table III compares the results of scheduled MTSD
Virtual routing to hard-wired routing. Virtual routed wires and
pins are multiplexed to achieve better FPGA pin utilization
while hard-routed wires require dedicated physical wires and



KUDLUGI AND TESSIER: STATIC SCHEDULING OF MULTIDOMAIN CIRCUITS FOR FAST FUNCTIONAL VERIFICATION 1265

Fig. 15. An example of the Latch Scheduling Algorithm.

TABLE II
MTSD DESIGN STATISTICS

pins. To determine the results for hard-routing experiments a

prerouting step was performed to reserve physical pins between
source and destination FPGAs for each MTSD wire. These pins
were removed from consideration during subsequent virtual
routing of non-MTSD wires. From Table III it can be seen that
the number of Virtual Clocks in the critical path for Design2
is much higher than the other two designs. This is because
experiments for Design2 were dominated by transactions with
emulation memory. MTSD routing results in a smaller number
of Virtual Clocks (leading to faster overall execution) as
compared to the hard-wired approach. This observation results
from some physical wires being removed for hard-wiring and
the remaining wires carrying a greater load of non-MTSD
communication. Maximum emulation clock speeds in the last
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TABLE III
COMPILER RESULTS: VIRTUAL ROUTING VERSUSHARD ROUTING

two rows of Table III were determined based on a 34-MHz
Virtual Clock on a VStation-5M Emulator.

B. Theoretical Results

In this section we derive theoretical gate utilization for MTSD
logic emulation with and without virtual wires and show that
emulation with virtual wires scales with increasing FPGA de-
vice size. It was shown previously [2] that isolating logic (such
as MTSD partitions) in specific FPGAs andhard-wiring them
to other system FPGAs will lead to decreasing FPGA utiliza-
tion as FPGA gate capacities scale. In this analysis, we consider
FPGA gate utilization for logic emulation when MTSD and
single-domain logic is distributedevenlyacross all FPGAs. Two
distinct cases are considered for this even distribution: MTSD
signals are hard-wired for communication between FPGAs and
virtual wires are used for communication between FPGAs. In
both cases, virtual wires are used to communicate non-MTSD
single-domain signals.

1) Rent’s Rule:To complete this analysis we use a formula-
tion that is similar to the one provided in [2]. The basic relation-
ship between an amount of logic and required I/O for the logic
can be characterized by the Rent’s rule [12] equation as follows:

' (3)

where is the number of pins, is the number of gates, is
Rent’s constant, and is Rent’s exponent. As with most rules,
it has limitations. Rent’s rule can be used to measure the com-
munication parameters of a given implementation technology as
well as the parameters of a circuit.

To determine FPGA utilization it is necessary to determine
the fraction of design gates implemented in the FPGA versus
total available per-FPGA gates, . Design gates can be
separated into two categories, MTSD and single-domain design
gates ( and , respectively), such that

.
2) Hard-Wired MTSD Logic:In the first case that is con-

sidered, MTSD and single-domain logic is partitioned evenly
throughout all system FPGAs. Inter-FPGA MTSD nets are hard-
wired to inter-FPGA pin and wire resources such that each log-
ical signal is assigned to dedicated pin and wire resources. From

TABLE IV
PARAMETERS FORSCALABILITY COMPARISON

Fig. 16. Maximum percentage of MTSD gates (100� v ) per partition—
MTSD hard wires.

(3), the number of FPGA pins required per FPGA for the MTSD
portion of each partition is

(4)

where indicates the average distance, in terms of FPGA
boundary crossings, for each wire [2], and and are
design dependent. For an FPGA to contain single-domain logic
( ) with signals that are routed with virtual wires, at
least one FPGA pin must be available that is not used for .

The gate cost of per-FPGA virtual wiresoverhead(the logic
used to multiplex pins) for per-FPGA single domain logic ()
is where is the per-FPGA cost associated
with control circuitry and is the cost associated with each
logic I/O of the single-domain logic. The total number of single
domain inter-FPGA signals leaving is and is the same
distance factor used to amortize intermediate hops in (4). From
[2], the virtual wires gate overhead associated with per-FPGA
single-domain logic is

(5)

which is obtained by substituting for in the virtual
wires gate overhead equation. These gates allow for the multi-
plexing of device pins for single-domain logic. In total, the gate
count for an FPGA ( ) containing hard-wired MTSD logic,
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Fig. 17. Scalability with FPGA device size for FPGAs with MTSD logic.

single-domain logic, and virtual wires overhead for the single
domain logic can be expressed as

(6)

where represents total user design gates in each partition.
Given pin limitations, the available pins on an FPGA as a func-
tion of gate count are

(7)

where and are the Rent parameters of the FPGA tech-
nology. In order for an FPGA to be able to support both single-
domain logic which uses virtual wires and hard-wired MTSD
logic, , the total number of FPGA pins, must be greater than

, the pins required for MTSD logic. If , the
partition contains only MTSD logic and single-domain logic
must be placed in additional, separate FPGAs.

3) Virtual Routed MTSD Logic:In the second case that is
considered, MTSD logic is distributed evenly across all system
FPGAs and inter-FPGA MTSD nets are routed to adjacent
FPGAs viavirtual wires. SincebothMTSD and single-domain
logic use virtual routing, per-FPGA virtual wires overhead can
be characterized by

(8)

For the virtual routing MTSD case, combined overhead and
design gates leads the same relationship as (6) withreplaced
by the relationship above.

4) Analysis of Results:Using the results from previous sec-
tions, we compare achievable FPGA device utilization ( )
for devices containing MTSD logic. Parameters for the com-
parison are listed in Table IV. Both hard wire and virtual wire
routing of MTSD signals are considered as FPGA size increases.
In the following, we represent the per-device relationship be-
tween MTSD and single-domain logic gates via a fractionsuch
that represents the fraction of the user design that is MTSD.

Since logic is distributed evenly, also represents the fraction
of per-FPGA design gates which are MTSD

(9)

(10)

(11)

Pin requirements for hard-wired MTSD logic can be deter-
mined by inserting in (4). If , single-domain
logic cannot be accommodated in the FPGA due to the lack of
available pins. This point can be represented with a maximum
allowable fraction of MTSD logic for a given FPGA gate
count . For designs at this value or higher, FPGAs that
contain MTSD logic must be dedicated and overall logic utiliza-
tions in these partitions are correspondingly low.

Fig. 16 shows that as FPGA gate capacity increases the max-
imum fraction of each FPGA that contains MTSD logic de-
creases significantly. This drop-off is further reflected in Fig. 17
which shows that the per-FPGA utilization of FPGAs decreases
as FPGA size increases across a range ofvalues. Once
reaches , only MTSD logic can remain in the device due to
pin limitations and overall logic utilization drops dramatically.
In cases wherevirtual wiresare used to route MTSD nets, high
per-FPGA logic utilization is maintained regardless ofsince
both MTSD and single-domain pins are multiplexed. Fig. 17
shows that while FPGA utilization improves when MTSD logic
is routed with virtual wires via approaches developed in this
paper, evenly distributing MTSD logic with interconnect via
hard wires is not scalable as FPGA gate capacities increase.
Note that for virtual wires, relative overhead versus design
gates decreases as FPGA gate counts increase.

IX. CONCLUSION AND FUTURE WORK

In this manuscript, a new general approach for dealing with
multiple asynchronous clock domains in parallel functional ver-
ification systems has been presented. A new scheduling algo-
rithm has been developed that allows transported signals to be
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split into several single-domain versions and transmitted across
inter-FPGA channels dedicated to signals sourced by a single
clock. These constituent signals are subsequently merged to-
gether at the routing destination to form a causally correct result.
The scheduling algorithm also statically determines multido-
main latch modeling for parallel verification equipment so that
setup and hold violations are avoided. The approach has been
demonstrated on a VirtuaLogic emulation system for three large
commercial benchmark designs. The algorithms were integrated
into a commercial compiler for logic emulation. Experimental
and theoretical results show that the approach is scalable and
provides good modeling fidelity. As a result of this scalability,
an improvement in overall system performance was obtained.

We plan to extend this approach to deal with hard-wired
cores and MTSD I/O signals. The heterogeneous nature of
these blocks presents special considerations for scheduling and
interfacing.
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