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Static Scheduling of Multidomain Circuits
for Fast Functional Verification

Murali Kudlugi and Russell Tessier

Abstract—With the advent of system-on-a-chip design, many under test. In general, since multiple system clock cycles are
application specific integrated circuits (ASICs) now require mul-  required to perform computation and communication for a

tiple design clocks that operate asynchronously to each other. This gnq1e design clock, a fixed relationship must exist between the
design characteristic presents a significant challenge when theseclocks ’

ASIC designs are mapped to parallel verification hardware such
as parallel cycle-based simulators and logic emulators. In general, ~ Many contemporary ASIC designs require multiple design
theszi; sys_,tergsi requiirciao aI” coinputai\tioir(w aAnd comrrilturii]catior(i ti? b?j clocks that operate asynchronously to each other. While syn-
synchronized to a global system clock. As a result, the undefine - e .
rg{lationship betwegn desig); clocks can make it difficult to deter- chrqmzaﬂon between a verification system clock and a S'”Q'e
mine hold times for synchronous storage elements and causality design clock can be addressed through linear event ordering,
relationships along reconvergent communication paths. This derived relationships for asynchronously occurring events are
paper presents new scheduling and synchronization techniques to much more difficult to determine. For parallel verification sys-
support accurate mapping of designs with multiple asynchronous temg  asynchronous domain limitations occur both during data

clocks to parallel verification hardware. Through analysis, it is . LS
shown that this approach is scalable to an unlimited number of transport between processors and during data evaluation inside

domains and supports increasingly large design sizes. To prove Processors. Synchronous data transport often requires that log-
the effectiveness of the authors’ approach, developed algorithms ical signals assigned to the same physical interprocessor wire
have been integrated into the compilation system for a commercial pe driven in the same clock domain. As a result, the transport
inulti-iFP_GA Iogiict emulatiorihsystefriw. For three desigtns mgplped of a multidomain signal requires that each signal be logically
ﬁ% eé}ityo?s'crf ;?nutgnog du;ndg pe:?orsn? a\r'ivca erei Seg\r/llf:(;?]r:: dn \’/eTS?J Sei')?g_ splitinto constituer_]t single—domain values before interprocessor
vious manual mapping approaches. A theoretical analysis based fransport. These single-domain values are then combined at the

on Rent's rule validates the scalability of the approach as device destination to support multidomain behavior. Causality is an

sizes increase. issue in such systems since routing delays can vary across in-
Index Terms—Asynchronous circuits, FPGA-based emulation, terprocessor paths. System scheduling algorithms must ensure
functional verification, static scheduling. that a regenerated multidomain value is causally consistent with
the pretransport value created at the source processor.
I. INTRODUCTION When modeling design latches, hold-time constraints can

e - arise if latches are evaluated with gate and data signals which
S APPLICATION specific integrated circuit (ASIC).transition on multiple clock domains. For each latch, the

design sizes grow 'ioward.a} b||_||on tranS|stor§ on a (.:h'%:llidity of the gate must be assured before a data transition
the need for fast, effective verification becomes increasin : . X
presented, even in the presence of multidomain data and

apparent. Although microprocessor-based simulators are sfill S
control transitions.

the dominant means of prefabrication functional verification, . : : . .
e . In this paper, we identify a set of scheduling constraints

parallel verification platforms, such as logic emulators [4], [8 . . S ; X
at achieve provable modeling fidelity for designs with

[14], [15], are increasing in importance. The inherent paral- " . ) :

. . i : .._Multiple asynchronous design clocks. These constraints are

lelism found in many system-on-a-chip designs necessitate . )

. ) e infegrated into a reverse-ordered computation and commu-

parallel evaluation of functional resources that is difficult tg. "= :
nlﬁatlon scheduler to provide causally correct transport of

accomplish on accelerated uniprocessor systems. Although,.. S .

Y . : .. . multidomain signals and phase-ordered evaluation of latch
specific system implementations vary, most parallel verificatio : . ) )
. ) . : ata. This automated approach is easier to use than previous
systems contain a tightly connected collection of special-pur- . . ; L
. _ manually mapped techniques that isolate multidomain circuits

pose logic processors or FPGAs. Due to the distributed nature "7 . " .

|riever|f|cat|on hardware. Additionally, our approach is shown

of these systems, a global system clock is used to coordmi'il? scale to an unlimited number of asynchronous domains. To

combinational evaluations and to transfer intermediate resu Si ; .
. . validate our approach, new scheduling algorithms have been

throughout the system. Evaluation and communication phase : . i
: integrated into the software flow of a commercial FPGA-based

are often delineated by edges of the user clock(s) of the desigaiC emulation system from Ikos Systems [8]. When applied
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Il. BACKGROUND HDLfeSig“

A. Related Work Design Translation

In an effort to enhance functional verification speed, ASIC I
designers have increasingly turned to parallel verification hard-
ware. Contemporary parallel verification systems include mul- Timing Analysis
tiprocessor cycle simulators, logic emulators, and rapid proto- I
typing engines. These systems generally contain a collection
of processing elements, such as custom logic processors [7] or Partitioning
FPGAs, organized in a fixed topology. Contemporary systems I
contain up to hundreds of devices packaged on boards in a card-
cage. Although prototyping speeds range from a few megaHertz Global Placement
to 20-30 MHz [9], parallel verification systems provide up to I
five orders of magnitude speedup [1] versus uniprocessor sim- Dependency and
ulation. This speedup has remained roughly constant since in- Depth Analysis
creases in ASIC integration due to Moore’s law have tracked I
capacity increases in verification system devices.

Unlike many other forms of parallel processing, the circuit Static Scheduling
structure of verified designs does not change during execution.
As a result, all computation within logic processors and com- i
munication between logic processors is predictable at compile Synthesis
time. This compile-time approach has been demonstrated in a

number of current and previous emulation systems. Example
verification architectures that fit this model include Quickturn
CoBalt [14] and Arkos emulators [13] and Ikos VirtualLogic emrig. 1. Verification software compiler flow.
ulators [8].

Generally, n paraI.IeI verlflcgtlon systems both Intr‘?lprqr'matppingforFPGA-based logic emulation systems and Boolean
cessor logic evaluation and interprocessor communication

is performed in reference to a high-speed system clock. [$1|n|m|zat|on for parallel simulators that contain sequential

necessity, the system clock runs at a higher clock rate thgrlqlc processors. Following design translation, dedigring

the clock(s) of the design under evaluation. The system cIo%RalySlS is_performed to determine the clock domains or

: . .- . rel%ions of influence of user clocks. After timing analysis, a
serves as a discrete timebase, providing a reliable mechanbs . s . ) ; .
. design ispartitioned into pieces appropriately sized to meet

for controlling events at a fine granularity. Generally, it i . . . .
) . . : s he physical constraints of each logic processor. These logic
straightforward to determine a fixed relationship between one" .. . o
artitions are subsequently assigned to specific system pro-

emulation clock and a high-speed system clock since muItip?e . L .
. cessors vigylobal placement Communication between logic
cycles of the system clock make up one emulated design cloc

cycle. It is more difficult to form a fixed relationship betweer oCc>20"S 1S (_jetermmed based on Iogrd:a;b_e ndency ﬂ_OW
. : and available interprocessor resourcesstatic scheduling
the system clock and multiple design clocks that operate as

n-_ . . : LT
chronously to each other since a fixed phase relationship %&gp mclgde; the scheduling of logic evaluation, mterprocessor
ct%mmunlcatmn, and access to system memory resources. This

a

computation and communication scheduling cannot be easi b is the focus of the algorithm development described in

. ; . ) S|
denve_d. _Prewous logic emulation systems: have usgd SPegs manuscript. Scheduling is followed by a logignthesis
compilation and/or manual steps [4], [6] to isolate logic that IS.ep which L .
. ; : p which creates necessary control and communication logic

evaluated on multiple asynchronous clocks in dedicated syst?m . ) -
0_Implement the static schedule. As a final step, compilation

hardware. This approach comes at the expense of performa%rfeeach logic processor is performed. This step includes

and mapping flexibility. Not only did these techniques requirEPGA place and route for FPGA-based logic emulators [2]

special system knowledge, but manual intervention can lead_to : . . , .
o and Boolean instruction scheduling for special-purpose logic
verification errors.

processors [13].

Processor Compile

B. Verification Software Flow C. The Target System

Although individual systems may differ in implementation, The target system for this work is an Ikos VirtuaLogic emu-
design mapping similarities exist across many parallel verificktion system [8] that contains 384 Xilinx XC4062XL FPGAs.
tion systems. A typical system flow for converting a structuralhe FPGA interconnect topology of this emulator is primarily
or register transfer level (RTL) design to a physical realizaticm nearest neighbor mesh [9]. The design mapping steps for
appears in Fig. 1. The first step in the mapping process \fgtuaLogic systems follow the basic flow shown in Fig. 1.
design translation This step converts the original RTL orCompilation steps include design partitioning of logic blocks
structural design to the native technology of the verificatioimto FPGAs using K-way mincut, assignment of partitions to
system [7]. Typical design translation steps include technologpecific FPGAs using simulated annealing, and scheduling of
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both intra-FPGA logic evaluation and inter-FPGA communi- s T"Q‘N:"NS’F‘F?LQ—‘ """"" g
cation. Communication scheduling is based on Virtual Wires .-~ ARt ]
technology, a static list-ordered scheduling technique. The w1 b o Ns | QL N6_
initial step in Virtual Wires scheduling is the determination of
all circuit combinational dependencies. Logic can be scheduled
for evaluation once all dependent inputs have reached a known <“KL] N3 CLK1|
value. After intermediate values have been determined, the FF1 N5 FF3
scheduling approach pipelines multiple logical signalgial N4 /G1
wires) across inter-FPGA wires to overcome FPGA pin limita-
tions [1], [2]. The derived communication schedule determines n» b 9 Ns [ oV
a feasible space—time route for inter-FPGA connections such I —
that all inter-FPGA dependencies are satisfied.

Both logic evaluation and inter-FPGA signal communication ~CL¥2| CLK2|
are controlled by a high-speed system clock called a Virtual . FF2 e — o - _  FF4
Clock. This clock serves as a discrete timebase, providingare- ~~_ _ - Tsel_

- = -~ FF2.0-N4-N5-FF4.D --

liable mechanism for controlling the order of events at a fine
granularity. Since many combinational evaluations and sigriad. 2. A multitransition and sample domain (MTSD) example.
transfers may occur in a single design clock cycle, the Virtual

Clock by necessity runs at a much higher frequency than the de- FPGA1 FPGA2
sign clock. Additional detailed discussion of virtual wires com- N3 Gl
pilation can be found in [2] and [16]. A preliminary approach D NSp-———7 " B FPGA
for scheduling latch evaluation for asynchronous clock domains N4 AR HOP
in logic emulation systems is described in [10]. This previous - \ -
paper did not consider asynchronous domain inter-FPGA trans- i L\D . | |7~ Domain D1
port. Asynchronous domain memory evaluation for logic emu- E ; Cz;“na;‘;l:n i E’/Cha““els
lation is described in [11]. o] )
FPGA3 | ! j L FPGA4
FF3
I1l. M ULTIDOMAIN PROBLEMS FPGA p---------- n
. o HOP bommmmm - Y FF4
There are a number of problems that make multidomain cir- B

cuits interesting and challenging from a functional modeling
point of view. These problems directly affect the scheduling @fg. 3. An example of multitransition and sample domain (MTSD) signal
logic evaluation and inter-FPGA signal communication in pafansport.

allel verification systems.

If part A feeds part B, events on A must have occurred before
A. Timing Closure events on B.
Consider a situation where the circuit in Fig. 2 is partitioned

plus transmission delay plus setup time between two seque (fh that the multidomain vr_;llue_ NS must be t_ransported from
elements in the same domain takes less than one clock perio OPAl tp FPG_A4 as shownin Fig. 3. In a mulU-FPGA SyStemi
the fastest clock attached to either of the sequential element e physmal wires that connect FPG.AS are grpuped into unidi-
Consider the circuitry shown in Fig. 2 where two asynr_e_ct|onal c_hanngls where each physical wire is capable of car-
chronous clocks CLK1 and CLK2 drive state elemeifsi, rying multiple signals that belong to the same clock domain,

FF3) and FF2, FF4), respectively. This circuit contains two °Ne signal in each Virtual Clock cycle. Pin multiplexing makes

same domain path&F1.Q-N3—N5—FF3.0n the domain of it possible to reuse physical wires to support numerous logical
CLK1 (domain1) an(i:Fé Q—N4—N5—FFA.1 On the domain of wires. To complete signal transport, the communication sched-
CLK2 (domain2). Note that net N5 transitions and is sampled er determlnes.g path from a source FPGA 1o a des'qnapon
both clock domains. It is called an MTSD (multitransition an GA and identifies schedule time slots for the communication

sample domain) net. The correct functional model of this circnﬁztake place. Signal routing may include several intermediate

must simultaneously satisfy the timing closure axiom in ea flf‘ hops.f.. toni involves the t t of multid :
constituent domain. This indicates that the dat&Fft.Q must ey verilication ISsue involves the transport ofmuttidomain

reachFF3.D in exactly one cycle of CLK1 and data BF2.Q signals such as N5 in Fig. 2in a system where inter-FPGA com-
must reactFF4.D in exactly one cycle of CLK? irrespective Ofmunlcatlon needs to be synchronous to a system clock (Virtual

combinational delays or multidomain net segments in the pat JPC!() over a single-domain physmal_resqurce (channel_wwe).
revious work suggests that such a situation can be avoided by

limiting the size of asynchronous-domain logic to one FPGA or

by dedicating special inter-FPGA wires to transport the values
Functional Axiom 2(Causality): The occurrence times of (hard-wiring) [4]. Since hard-wired signals cannot be multi-

combinational logic form a partial order based on causalityplexed to carry non-MTSD nets, pin limitation problems [2] can

Functional Axiom {Timing Closure): Combinational logic

B. Transporting Multidomain Values
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Fig. 4. An example of the multidomain causality problem.

result, leading to reduced system performance. To avoid this 3
problem, it is desirable to split a multidomain value into con- :
stituent domain values, route (schedule) the values in respective  oaag ||
domains, and recover the multidomain value at the destination

FPGA. This solution poses another problem because of unpre-

dictable route timing that is inherent in statically routed systems GATE
[2].

As shown in the Fig. 3, communication for each asyn-
chronous clock domain takes place over a different set of
inter-FPGA channels. In the case of N5, paths using both do-
mainl (D1) and domain2 (D2) channels are needed to trans- L OCTNATIONAL
port N5 between FPGAL and FPGA4. The disjoint nature of
multiple routing paths for the same logical signal can ledtd- 5. Anexample of an MTSD latch.
to causality concerns at the destination FPGA. As a result
of unpredictable routing delays due to routing congestion, ¢f. Hold Time Problem in Multidomain Circuits

is possible for the domainl (D1) value of N5 to start from o )
tThe correct functioning of state elements requires that data

the source FPGA sooner than the domain2 (D2) value bu ) ) X ) )
still arrive after the D2 value reaches its destination. ThRignals arrive atan elementa certain period of time (setup time)

arrival order can violate the causality principle, resulting iHegor(-;tt_hetrIEglzrlthg S|g?tal iﬂd f‘fe hel_d ste_adylforgcertﬁcu;pe-
an incorrect result at FPGA4. Fig. 4 illustrates such a cadg®© _|me_( 0 '”_‘e) atter the trggering signal arrives. f1tne
. . triggering signal arrives at a time when the data signal is invalid,
where a D1 version of signal N5 departs from FPGA1 at=2 " . . . -
. ) a violation occurs and causes incorrect operation of the circuit.
t = 2 while the D2 version departs dt= 4, after a new . : A : .
. onsider a simple latch shown in Fig. 5, which has combina-
value of N4 has been created. Due to route congestion, %e . o .
D1 val hes FPGA4 after the D2 ion. H tati iohal logic sourcing its Gate and Data inputs. In the waveforms
N ya_ u((je_ reac ehs | ? er a‘? q verglﬁn. ere, nc; alQhown in Fig. 6, D, G, and Q represent Data, Gate, and Output
(4) in |cates_ the va ue of sign ue tot even'F in ¥ € waveforms of the latch. Fig. 6(a) shows an ideal zero delay func-
domain to which the signalV belongs. For a multidomain 54| modeling of the latch. The edge on user clock CLK at
signal, N(j, k) indicates the value of the sign&¥ due t0 ; _ 41 causes a change in Gate and Data values at the same in-
jth event on the first domain ankth event on the second giant of time and the old valuet” gets stored in the latch as a
domain. Using combinational rules, when multiple versiongsyit. Fig. 6(b) shows more realistic waveforms where routing
of a signal in asynchronous domains are merged at a destiggrays cause the Gate and Data to arrive at the latch inputs at
tion, th? most recently arriving version Is used in subsequedfferent points in time in response to CLK. A problem arises if
calculation. As a result, the late arriving, older D1 value ahe new dataB” reaches the latch sooner than the new gate and
t = 7 will be the final value of the signal at FPGA4 and theverwrites the old valueA,” which is not recoverable. This sce-
newer value that arrived dt= 6 will be lost. A requirement nario can happen if the routing delay on the Gate path is greater
in transporting multidomain signals is to ensure that causaliflyan the routing delay on the Data path due to combinational
of events is guaranteed within each of the constituent diagic in those paths. This potential delay imposes a constraint
mains, irrespective of routing delays. (called theDG constraint) on latch scheduling for every (Data,

MTSD FPGA PARTITION
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Fig. 6. A hold time violation in an MTSD latch.

Gate) input pair. In a case where both Gate and Data paths ar®ITSD Gate: Any combinational gate whose output is con-

in the same domain, it is easy for a scheduler to compute reected to an MTSD net. In Fig. 2, gate G1 is an MTSD gate.
gions of time when Gate is invalid and mask those regions soMTSD State: A latch/flip—flop whose gate/clock input is
that latches are not evaluated. This solution fails if Data asdurced by a multitransition net.

Gate nets are multidomain nets because regions of validity forClock Domain: Encapsulation of user logic that is driven by
latch evaluation in one domain may conflict with regions of ina design clock or set of design clocks that are phase related. A
validity in other domains. The key challenge here is to satisgfock domain demarcates the region of influence of a user clock
hold time requirements for every (D, G) pair in each of the corfer phase-related set) within the design. The number of clock
stituent domains. domains is equal to the number of asynchronous (sets of) clocks
in the design.

MTSD Domain: Encapsulation of MTSD logic (gates, states,
memories, and nets) that are all MTSD with only single-domain
nets at the interface.

The following definitions pertain to multidomain scheduling et CO"eCt'.On of mte.r-FPGA physical wires
t transport a larger collection of logical signals that belong to

These definitions are used throughout the remainder of tﬂ@ . . , . L
manuscript. a given domain. Multiple logical signals are transported within

Multitransition Net: A net which is combinationally a user cycle along a single physical wire using time division

reachable from the output of state elements in distinct cIo@(UIt'ple?(mg [.2]' . I L .
Block: During design compilation the user design is parti-

domains. An MTSD net changes value in response to tV{Ii%ned into chunks of size that are small enough to fit into an

or more _asy_nchro_nous CIOCK#;M'. > b whe_rer IS a set gPGA. It is at the block boundary that all the inter-FPGA com-
of domains in which a net transitions. In Fig. 2, for net N o ;
munication (routing) takes place.

Td = {domainl, domain2}, for NetN6Td = {domainl}, MTSD Block: A block that contains only MTSD gates, nets,

Multisample Net: A net which combinationally reaches theand state elements.

D input of state elements in two or more distinct clock domains. RouteLink: An interpartition connection between two block

A net whose value is sampled in response to multlple aS¥&minals. A RouteLink is different from a net in that it is asso-
chronous clocks|§d| > 1) whereSd is a set of domains in

. . ; ciated with a particular clock domain and a specific user clock.
which the net va!ue is sampled. In Fig. 2 for net 88 = A multitransition net can result in multiple RouteLinks.
{domainl, domain2}, fpr N1 Sd_ ~ {damalé_nl}' _ MTSDLinks : A set of RouteLinks for an MTSD net (one for

MTSD Net: A net which transitions and is sampled in more,, -, of its transition domains) that collectively transport the net
than one domain. A netis an MTSD net if between two MTSD blocks placed on two FPGASs.

DG Constraint: A latch scheduling constraint imposed on
|T'd(n) N Sd(n)| > 1 every Data,Gate) pair of same-domain block inputs. This con-
straint requires that the Gate input must be valid before the Data
whereT'd(n) is the set of domains in which nettransitions input. It is necessary to satisfy this constraint to prevent latch
andSd(n) is the set of domains in which netis sampled. Hold time violations during scheduling.

IV. DEFINITIONS
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NSO | B. Setup/Hold Time Constraints on a MTSD Latch

N i N5(D1) : :

| L NsD2) E Observation 2: For a multidomain latch, instantaneous Setup
a2 |/ ! ! 1 time violations are correctable whereas instantaneous Hold

| ; R N . time violations are not.
N ) 7 Due to different routing and combinational delays, latch data
MTSD FORK PARTITION MTSD MERGE . . . . . . .

and gate values may arrive at different points in time (i.e., Vir-

tual Clock cycles). This necessitates the us®©bervation 2
in determining latch evaluation scheduling. The basis of the ob-
servation stems from analyzing two problem situations.

1) Alatch is evaluated with a NEW gate value againstan OLD
data value. This is a setup time violation because NEW data is
V. THE APPROACH not ready and stable when the NEW gate value arrives.

2) Alatchis evaluated with a NEW data value againstan OLD
gate value. This is a hold time violation because data is not held

Fig. 7. Multidomain data transport.

Observation 1: For any relationshiRi(A, B) in a multido-
main circuit containing domaind and B, it is sufficient to sat-

) ; _ . o stable sufficiently long enough.
isfy 1ti(4) andR:L(B) for. correct funcyon_al verl-flqatlon. When a latch is evaluated with OLD data against a NEW gate
For example, in the circuit shown in Fig. 2, it is only neces;

sary to satisfy the timing closure property for the same domafl At has just changed from closed to open, temporary corruption

paths FF1.Q-N3-N5-FF3.D and FF2.Q-N4-N5—FF4.D © the latch may occur. However, the eventual arrival of NEW
but not for cross domain. pathEFl.Q—'N3—N5—FF4.Do'r data results in reevaluation of the latch and restoration of the

FF2.Q-N4-N5-FF3.DSimilarly, hold time must be satisfied COrrect latch value. As a result, a functional setup violation is
for each same domain (D, G) pair. With this observatiogorrectable. _ _ _

multidomain problems can be reduced to sets of functionalln contrast, when a latch is evaluated with an OLD gate thatis
requirements (i.e., timing closure, causality and setup/hadpen and NEW data, the correct latch value may be irretrievably

times) within each constituent domain. lost since the OLD latch data is no longer available. As a result,
a functional hold time violation is not correctable.
A. Multidomain Data Transport We use notatio’/(Ai, Bk) to indicate the value of signal

) ) o V' which occurs in response to thith clock edge of domain
Our approach to transporting a multidomain signal betweg_p and thekth clock edge of domair3. For any latch with

FPGAs is to decompose the signal into a set of single-domzy&taD(Ai- Bk) and GateG(Aj, Bk) on some clock edgé

signals, one for each cor_wstltuent_domam. These component §lgr 6y ain B, three possible conditions exist with respect to
nals can then be freely time-multiplexed with other signals a Dmain A:

transported using respective domain channels. Component do-

main signals may travel independently toward the destination * (i < j) = instantaneous Setup time violation;

FPGA and may cross multiple intermediate FPGAs. The sig- * (. == j) = both Setup and Hold time satisfied,;

nals are merged at the destination FPGA to regenerate the mul- (¢ > j) = instantaneous Hold time violation.

tidomain signal such that the causality of events is maintained.Observation implies that every edgein domainB requires
As shown in Fig. 7, two new operators are introduced, a FORd% evaluation of the latch with(Ai, Bk) againstG(Aj, Bk)
operator at the source FPGA and a MERGE operator at the dgsiich satisfies both setup and hold time with respedt@b-
tination, to facilitate the decomposition and causal merging géryation 2mplies that when performing such an evaluation, it
component signals. Fro@bservation 1flow and dependence js |egitimate to have < j ori == j but not legitimate to have

relationships along inter-FPGA paths are based on combinas ; The symmetrical relationship holds with respect to eval-
tional signals from the same domain. This observation allowsions against domaid. This relationship can be extended to

component signals to be _rom_Jted in pqrall_el in their respect_ive da?ﬁ arbitrary number of domains. The implication of these obser-
mains and merged at their final destination. Causal merging ions is that every edge for any domain results in an evaluation

be achieved by dynamically selecting an appropriate single- Chich satisfies both setup and hold time with respect to that do-

main signal at a MERGE point based on the causal order at e

corresponding FORK point. One way of ensuring causal Corp_aln.Anyevaluatmn not satisfying setup time against a domain

rectness is by requiring that the effectisaute lengthsalong IS sub§equently followed by a correcting evaluation against that
these reconvergent paths are equal. This step is accomplish&g'a'"- _

by first routing all component signals in parallel such that they 11€S€ observations lead to our approach to MTSD latch

all have lengths less than or equal to a spedificyetLength, scheduling, which ensures that hold time violations do not

the maximum of the shortest achievable route lengths among@@Fur and setup time violations do not propagate. Our new
paths. This step is followed by the synthesis of delay compeng#atic scheduling algorithm meets these constraints by ensuring
tion flip—flops within paths which are shorter than TargetLengtthat latch Data inputs do not arrive before associated Gate
to absorb remaining time slack. If routes of length TargetLeng#alues for any edge in any domain and that both Data and Gate
cannot be achieved during initial scheduling, TargetLength is inhanges, triggered off a specific clock edge, arrive prior to

cremented by 1 and routing is restarted. subsequent clock edges from that domain.
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Fig. 8. MTSD dependency and depth computation.
C. Transforming MTSD Flip—Flops four partitions. Partition1 contains a block with strictly domain

MTSD flipflops are not covered b@bservation 2and are D1 logic, Partition2 contains a block with strictly domain D2

more difficult to address than MTSD latches. Our approach hdf9iC; and Partition3 and Partition4 contain MTSD blocks. The
dles MTSD flip—flops by transforming them into master—slavBartitions are interconnected with a set of RouteLinks labeled

latch pairs and then subjecting them to the same processing 4% through W9. Each link is associated with a specific domain
other MTSD latches. of transition. MTSD nets are split into component domain

signals. For example, wires W5(D1) and W5(D2) carry D1 and
D2 versions of MTSD wire W5 from Partition3 to Partition4.
The transport of a given MTSD signal between FORK and
Two important timing analysis computations, dependen@fERGE operators is split into a group of RouteLinks which
and depth, are performed to aid the scheduling process. Tflectively transport the MTSD value across FPGAs. As
purpose of these computations are two-fold: first, to ensure thagntioned in Section V-A, our scheduling approach ensures
the logical data dependency along multi-FPGA combinationghusality along reconvergent MTSD paths by requiring that
paths is correctly implemented in the schedule and secoggk routing length of each domain path is the same. To support
to prioritize routing of critical paths based on the depth fausal transport, it is necessary to schedule all related MTSD
logic [2]. This depth information is also used to determine thRouteLinks together so that they all have equal route length.
execution order of sequential components (such as memo@qgviougy [2], [16], dependency and depth information was
and |atChES) inside blocks that contain combinational ﬂOﬂletermined on|y a|ong same-domain paths since these paths

VI. DEPENDENCY AND DEPTH COMPUTATION

paths. are strictly governed by the synchronous clock edges in a given
. . . . domain. This analysis is extended to include cross-domain
A. Hold Time Problem in Multidomains paths so that a partial order of RouteLinks is created that is

A RouteLink, as defined in Section 1V, is used to repreaot only logically consistent in any single domain, but also
sent a logical connection between block terminals that aie causally correct along reconvergent multidomain paths.
placed on two different FPGAs. Two RoutelLinks are linke@ausality is achieved by sorting all RouteLinks by depth that is
by a parent—child relationship if they are combinationallpormalized over all constituent domains.
connected. In addition, each RouteLink is assigned an integralfo support MTSD scheduling, two types of dependency are
number, depth, based on the depth of its parent RouteLirk@mputed. Same-domain dependency tracks link dependencies
and the estimated distance between its source and destinatiithin a single domain and MtsdDependency tracks link depen-
FPGAs. As a result, the inter-FPGA communication of the edencies across all domains including cross-domain paths.
tire design can be represented as a partial order of RouteLink®ependency determination is a multistep process. Initially,
sorted by depth. Routing according to this partial order autterminal-to-terminal dependencies are determined for each
matically satisfies the dependency flow and ensures that crititddck. For each block input terminal, the following are
paths are routed first. Fig. 8 shows an example design withlculated:
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* Child [¢] = set of block outputs in the same domain that TABLE |
can be combinationally reached from block input SAME-DOMAIN DEPTHS ANDM 7sp D EpPTHS FORROUTELINKS IN FIG. 8
» MtsdChild [i] = set of all block outputs that can be com- RouteLink | Depth | MtsdDepth
binationally reached from block input W9 1 1
Child[{] = @ if the terminal is terminated exclusively w6 2 2
by one or more state elements. Similarlyarent[;] and gg : g
MtsdParent[j] sets are determined to express inverse relation- W51 3 3
ships. For example, in Partition4, which contains an MTSD W5(D2) 6 6
block, the following domain relationships hold: w4 7 7
. Child[i] = {I}; L : !
o MtsdChild[i] = {k, l}; Wo 3 g

* Parent[l] = {i};

* MtsdParent[l] = {i, j}. _

Following the evaluation of parent and child relationships, the ® D-INPUT Set: Group of all RouteLinks that reach the Data
same-domain and MTSD depths of each interpartition wire at,_%rminal of the latch via combinational logic. This .includes any
determined. These depths are computed in reverse order (Hi§ that reaches both Data and Gate (called DG input).
is an implementation choice; forward evaluation could be per-® G-INPUT Set: Group of all RouteLinks that reach the Gate

formed as well) recursively from the RouteLink dependent sé@'minal of the latch via combinational logic. None of these in-

such that for each Routelink puts also fan out to the latch Data input. _ _
‘ e D-OUTPUT Set Group of all RouteLinks which are de-
Depthl[i] pendent children of links in the D-INPUT set or the latch output.
0 if Child[i] =0 Given these RouteLink sets, a temporal dependency is added
=911+ max Depth[j] otherwise. (1) between same-domain D-INPUT and G-INPUT RouteLinks.
J€EChild[i] An additional RouteLink is created for each latch to represent
Similarly MtsdDepth is expressed as latch dependen(_:ies in the overal! dependency flow. _Fig. 11
‘ shows the ordering requirements imposed on RouteLinks due
MtsdDepthl[i] . to this temporal dependency. These requirements order the
0 if MtsdChild[i] = () RouteLinks from least constrained to most constrained. If the
—J1+ max @) RouteLinks at the block terminals are scheduled in dependency
J€MtsdChild[i] ) order, the DG constraints can be easily satisfied at the latch
-MtsdDepth[j]  otherwise. input terminals. Note that the above approach cannot handle

Consider depth evaluation for the partitioned circuit showmultipartition cyclic dependencies from D-OUTPUT links
in Fig. 8. In this example, it is known that initially the sameto G-INPUT links. Currently, this limitation is avoided by
domain andV/tsdDepths of wire W8 = 4 and W9= 1 due to encapsulating such cycles in a single combinational module
downstream paths that are not shown in the figure. From theitd placing it in the FPGA containing the latch.
initial conditions, the remaining depths can be determined.

In Table I, related MTSD links W5(D1) and W5(D2) haveC. Latch Groups
different same-domain depths but eqdétsd Depths. During A block terminal can combinationally reach multiple latch
routing, same-domain paths are scheduled independently to piputs, necessitating ordering requirements between latches.
mote optimal scheduling. As shown in Fig. B{tsdDepth is  Each of these latches can in turn impose conflicting ordering
used to sort all RouteLinks in all domains to produce a partigdquirements for the input RouteLink at the block terminal. It

order that is consistent across all domains. is therefore necessary to determine an evaluation order that sat-
) ) ) isfies latch ordering constraints for latches that share common
B. MTSD Latch Signal Evaluation Ordering RouteLinks. As shown in Fig. 12, this limitation imposes

As noted in Section V-B, in order to satisfy the hold timedditional constraints on the order in which RouteLinks are
(DG Constraint) of an MTSD latch, signals must be schedulasdheduled.
such that Gate signal information from a given domain arrives DD-Type: Consider the case shown in Fig. 12(A) where a
at the latch at or before the time the same-domain Data vahleck terminalP: combinationally reaches Data inputs of two
arrives. This imposes an ordering requirement between the gemore latches. In order to satisfy DG constraints, RouteLinks
of RouteLinks fanning into the D-input of the latch and the sét the G-INPUT sets of both latches must be ordered before the
of RouteLinks fanning into the G-input of the latch. The samRouteLink for this block terminal. This ordering is achieved by
RouteLink can reach multiple latch inputs imposing additionalombining these latches into a latch group and merging their
ordering requirements between latches. The following describrespective D-INPUT and D-OUTPUT sets so that the latches
the scheme used to compute the evaluation order of RouteLimien be evaluated together as a group. The individual latch
and latches. RouteLinks are replaced by a single RouteLink to represent the

To aid in latch ordering, each MTSD patrtition is analyzed tgroup in the dependency flow graph.
create RouteLink sets for each latch. Example dependencies al@G-Type: If a block terminal Pi reaches the Data input
shown in Fig. 10. of latch L1 and the Gate input of latch L2, as shown in
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Indicates that RouteLink R1 must be evaluated

before RouteLink R2

Fig. 9. A partial order of RouteLinks sorted By tsd Depth.

D-OUTPUT . :
SET ! !
' '
D-INPUT B — '
SET AN emmmm = m T LATCHL1 | LATCHL1 | LATCHL1
__________ 1 . | |
— T - - Pi D Q E Pi D Q E Pi D Q
D Qr- ! :
! |
G i G ! G
! |
G : :
! 1
! 1
G-INPUT MTSD LATCH : !
SET MTSD BLOCK ' :
BOUNDARY LATCHL2 | LATCH L2 ' LATCH L2
' '
D o p o ; Hdap o
i :
! 1
_____ *  Dependence Relation G ' G : G
! |
—  Inter FPGA RouteLinks ! !
‘ !
1
Fig. 10. An example of MTSD latch signal dependencies. (A) DD-TYPE (B) DG-TYPE (C) DG-CYCLE

Fig. 12. MTSD latch relationships.

These relationships lead to conflicting ordering requirements
since latch L1 require®’;j to be ordered befor#: and latch

@ L2 requires just the opposite. Whenever there is a cyclical DG
relation involving two or more latches, the only way to satisfy
DG constraints on all latches is to evaluate all of them at the
same point in time, similar to DD-type latches.

G-INPUT

Indicates that RouteLink R1 must be evaluated

before RouteLink R2 D. Computing MTSD Latch Dependency

The DG constraint implies that: D-INPUT terminals must be
evaluated after all of the dependent G-INPUT terminals are eval-

Fig. 12(B), then latch L2 must be evaluated before latch Lyated in each domain, but before the latch itself is evaluated.

since Gate terminals must be evaluated before Data terminél-lé_!S constraint must hold valid in each of the same domain (

This restriction forms a Parent—Child dependency relationsHiy) Pairs forDi in the D-INPUT set andv; in the G-INPUT

between L2 (parent) and L1 (child). During scheduling, tweet. In addition to depend_ency dl_Je to combi.national logic, two
arrays, DGChild{) and DGParenf(), are used to maintain thetypes of latch dependencies are introduced into the system.
list of latches which must be evaluated before and after latch * Dependency introduced between terminals in the
L, respectively. D-INPUT set and terminals in the G-INPUT set.

DG Cycle: Consider a case where a block termiffareaches ~ * Dependency introduced between latches/latch groups due
the Data input of latch L1 and the Gate input of latch L2, as  to DG relationships.
shown in Fig. 12(C). Additionally, block termindt; reaches  These dependencies are used to order latch RouteLinks with
the Gate terminal of latch L1 and the Data terminal of latch L@ther RouteLinks that are connected at the block boundary.

Fig. 11. A partial order of RouteLinks sorted based on DG constraints.
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VII. STATIC SCHEDULING d) Compute DepartureTimg¢) at the source Pi,
A list scheduling algorithm is used to route communication DepartureTime(Pi) - ReadyTime(Pj) +
PathLength(sp)

paths between blocks. This is a reverse scheduling algorithm . ) .
which routes paths starting from primary outputs to primary in- €) Upd.ate Input RgadyTlmes atthe block. For each terminal
puts. The described techniques are also applicable to forward Pk in Parent(’i)
scheduling which routes frorr_1 primary inputs tlo primary OqtReadyTz'me(Pk)
puts. In this section, the basic steps involved in static routing . ) )
are described. In the next section, the specific steps involved in ~ — MAX (DepartureTime(Pi) + Delay(Pk to Pi)).
MTSD latch scheduling are described.

Combinational depen_dency analysis is pe_rformed on tge_: Routing MTSD Data Paths
placed but unrouted design to support the creation of an ordered o ] )
set of RouteLinks for routing. At the end of the dependency andAS Shown in Fig. 4, MTSD paths are given special treatment;
depth computation step, a list of RouteLinks that collectivelj€y are splitinto a group of RouteLinks that belong to different
represents the communication between all FPGA partitionsq_gma'ns- These links collectively transport single-domain ver-
produced. RouteLink depths represent the longest (worst ca2@)’S of the MTSD value across FPGAs. If the route sched-
time required to propagate through the network from the sourdler can schedule .these RouteLinks such that they all take an
FPGA to the destination FPGA. The reverse scheduler staf!@l number of Virtual Clocks to propagate, the causally cor-
from RouteLinks terminating at primary outputs or interndi€Ct value can be obtained at the destination. _
state elements and schedules one link in the partial order at 4 "€ group of all related RouteLinks of an MTSD nelis re-
time progressively moving toward the primary inputs. ferred to as MTSDLinksg). All Rou_teLlnI_<s in MTSDLl_nks(z)

The goal of the algorithm is to compute the latest time, calldpust be scheduled at the same time since scheduling one path

the ReadyTime, at which a value must arrive at a given blockny affectanother. Itis necessary to determine a schedule such
or latch terminal for further evaluation and/or propagatioftiat all RouteLinks have the same effective length. The longest

This time commitment flows in a reverse fashion from a chilfomain path from a source FPGA to the destination FPGA de-
RouteLink to all its parent RouteLinks which in turn computé€rmines the minimal route length. As described in Section V-A,
and propagate ReadyTime commitments to their pareits. this length is thélargetLength. _

delays and ReadyTimes are represented in terms of integra'” determining routing for each MTSD net, four variables are

time units with a Virtual Clock cycle as the basic unit considered. . . . _
e DTrequired (RequiredDepartureTime), the time at which

a signal must depart a source block terminal to satisfy Target-
) . ) ) Length requirements.
The core scheduling algorithm involves the following steps. o p7actual, the time at which a signal departs the source
1) Sort Routelinks in descending order based G§ock.
MtsdDepths. The scheduling of RouteLinks that are sortede ATrequired (RequiredArrivalTime), the time at which a
by MtsdDepth ensures that all dependent RouteLinks in @fgnal must arrive at a destination block to satisfy the Target-
domalljs_ are schedulgd before descendant. RouteLlnks.. Length requirement. This value is the ReadyTime computed
2) Initialize ReadyTime for each RouteLink that terminategyring the scheduling of dependent RouteLinks, as explained
at a primary output or internal state element with the combingr Algorithm 1.
tional/propagational delay involved in moving a value from a o ATactual (ActualArrivalTime), the time at which a signal
block terminal to its final destination (output or state). Initializgs scheduled to arrive at the input of the destination block.
ReadyTimes of all other RouteLinks to 0.

3) For each RouteLinl?:, P3) in the sorted list: C. Algorithm 2: MTSDLinks Routing

a) Find the shortest paty}” from P to Pj such thatdata  1hjg gigorithm is a specialization of Step 3a) of Algorithm 1.

arrives by ReadyTimé{(j) using a modified Dijkstra’s The pasic algorithm is as follows.
algorithm [3]. ReadyTime;) is either initialized in Stép 1) computeTarget Length for MTSD RouteLinks. Even if
2) or computed for a previous RouteLink in Step 3€). gq;rce and destination FPGAs for an MTSD net are the same,

b) Check if routing resources are available in the domajfe nath lengths of different domain paths may vary based on
channels along the path for the given time slot(S},annel domain designation

If routing resources are not available, increment
ReadyTime{’j) and go to Step 3a). This finding indi- TargetLength =  max (min (Distance(Ri))) .
cates that the final value will arrive d;j sooner than Ri€MTSDLinks(n)

needed. This is not a problem, in general, but has an effi-5) £o 6ach RouteLink in MTSDLinks compute DTrequired,
ciency impact on MTSD routing, described subsequentlye time py which a signal must leave a source block
in Algorithm 2.

c) Reserve wiring resources along the pathThis reserva- DTrequired(Ri) = ATrequired + TargetLength.
tion involves selecting a set of physical wire and time slot
pairs along the path segments from the destination FPGA3) For each RouteLink in MTSDLinks find a schedule using
to the source FPGA. Dijkstra’s algorithm such that the value arrives at the destination

A. Algorithm 1: Static Routing
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Fig. 13. Delay compensation to achieve a causally correct merge at the route destination.

at or before ATrequired and has a length less than or equal to theee flip—flops are inserted in the D2 path to compensate for

TargetLength. the difference in D1 versus D2 routing delay (5 versus 2).
4) If Step 3) is successful for all RouteLinks in MTSDLinks, ]
go to Step 3a) of Algorithm 1. E. Scheduling MTSD Latches
5) If Step 3) failed because a feasible schedule cannot beVTSD paths must be scheduled such that hold time require-
found, then: ments are satisfied on every MTSD latch in each of the con-
a) delete all the schedules for links already routed. stituent domains.
b) incrementlargetLength by 1. Fig. 14 illustrates the basic steps involved in latch sched-
Cc) go to Step 3). uling. The goal of this algorithm is to schedule each latch such
that Hold time and Setup time constraints are satisfied in each
D. Delay Compensation Synthesis constituent domain. Our solution to the hold time problem is

At the completion of Algorithm 2, it is known that all to schedule D-INPUT RouteLinkisefore (a result of reverse

RouteLinks of an MTSD net have been routed successfulputing) G-INPUT RouteLinks bufterthe latch itself is sched-
However, each RouteLink in MTSDLinks) may require a uled. The setup time is ensured by schedullng D-OUTPUTSs be-
different number of Virtual Clocks to traverse source-destin#2re the latch is scheduled so that only the final correct value
tion paths. In order to equalize the delay for all RouteLink®" the latch is propagated to its fanouts. Due to the latch order
of MTSDLinks(n), it is necessary to add extra Virtual Clockglescribed in Section VI-B, by the time a latch is evaluated, the
to all paths that initially require fewer Virtual Clocks than thé?@partureTimes of all the terminals in the D-OUTPUT set are
longest RouteLink path. This can be accomplished by addifg§own- In Fig. 14, arrows indicate the flow of ReadyTime, the
delay compensating flip—flops under one of two scenarios. time at which a value must be ready for consumption by depen-
e Source Compensation: Virtual Clock triggered fIip—ropé’e”t logic. The ReadyTime evaluation sequence is indicated by

can be added in the source FPGA at the FPGA boundary sigf numbers in the parentheses. This algorithm computes the
that final ReadyTime on D-INPUTs and the lower bound for the

ReadyTimes on G-INPUTSs.
SourceCompensation = DT required — DT actual. MinDelay (i, L) andMaxDelay(z, L) are determined prior
to scheduling for each block input terminato latch L. This

This insertion prevents a signal from being sampled in any dgatermination requires intrablock path analysis since there can

main before it is ready. _ _ _ be multiple combinational paths from a block input terminal to
e Destination Compensation: Virtual Clock triggered, |aich.

flip—flops can be added in the destination FPGA at the FPGA
input boundary such that F. Algorithm 3: Latch Scheduling

The Latch Scheduling algorithm below is a specialized ver-
sion of Step 3a) of Algorithm 1. The basic algorithm that is in-
This approach ensures that the domain data reaches the destioked for each latch RouteLinkK,, involves the following steps.
tion in a causally correct fashion. 1) Compute the initial ReadyTimes for each termiriad

Delay compensation is implemented by synthesizing Virtual the D-INPUT(L) set based on the DepartureTimes of their
Clock triggered flip—flops in each single-domain path as showanouts (D-OUTPUTS). These values are not final ReadyTimes
in Fig. 13 for the example in Fig. 4. The lower half of the figurdecause they do not take into account the lattisdy Time.
shows one possible way to correctly transport multidomain n€his step is same as Step 3e) in Algorithm 1, but repeated here
N5 to the destination so that causality is preserved. Note tHiat sake of completeness.

DestCompensation = ATactual — ATrequired.
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Fig. 14. An example of MTSD latch evaluation.

2) Evaluate the difference between edtbadyTime(D7) 5) PropagateReadyTime(L) to each of the terminals in
andReadyTime(L). If the difference is less than the minimumG-INPUT(L) as initial ReadyTime(G4). This is theinitial

delay fromD:s to the latchL, updateReady Time(L). ReadyTimédecause there could be other dependent children on
For eachDi in D-INPUT(L) G which can further alter itReadyTime.
ReadyTime(L.) For eachGi in G-INPUT(L)

= MAX (ReadyTime(Di) — MinDelay(Di to L)). ReadyTime(Gi) = MAX(MaxDelay(Gi to L)

3) If latch L. has a DG relationship on other latches, take the +ReadyTime(Gi, ReadyTime(L))).

maximum ReadyTime of the child latches. The above algorithm guarantees that BwadyTimes at the
For each child latct.c in DGChild(L) Gate input terminals are always greater than or equal to the
. ReadyTimes at the Data input terminals for every same domain
ReadyTime(L) : . . . .

' ) (Data, Gate) terminal pair of any latch. This relationship ensures
= MAX (ReadyTime(L), ReadyTime(Lc)). thatthe Gate value always arrives before the Data value and that
4) For eachDi in D-INPUT(L): t_he DG constraints are satisfied at the latch. In.the above equa-
tions,MinDelay values for paths from Data terminals to latches
required ReadyTime because if data arrives any soonh?‘ve. beﬁ[n ll"steg ratthher t_?ﬁ.n M?ﬁpelaz_values uset(:]f(:rthG a(tje |
than this time, there is a risk of violating the DG Con;orminatto fatch patns. This reiationsnip ensures fhal the delay
straint from any Gi to a latch does not exceed the delay fréam to
the latch after compensation (performed in Step 4c). Without
RequiredReadyTime(Di) this compensation it is still possible to violate the hold time at

= ReadyTime(L) + MinDelay(Di to L). the latch even if DG constraints at the block boundary are met.
Fig. 15 illustrates Algorithm 3 with a simple example.

a) Compute thdRequiredReadyTime. The value is called

b) Compute the finaReadyTime. This is the time that is

used by parent links ab: for further computation VIII. RESULTS
ReadyTime(Di) A. Experimental Results
= MAX(ReadyTime(D1), RequiredReadyTime(Di)).  The algorithms described in this paper have been imple-
c) If ReadyTime(Di) is greater than mented and integrated into the Ikos VirtualLogic Compiler

RequiredReadyTime(Di), add  delay  com- [8] for the VStationSM Emulator. Three industrial designs

pensation in theDi to L path to ensure that Data(@ telecom design and two graphics processors) containing
does not arrive at the latch sooner than required [§Ynchronous domains have been compiled using the Virtua-
mentioned in Step 3b) of Algorithm 1]. A delay equal td-0gic compiler. As shown in Table Il, Design2 has the largest

DelayCompensation(Di, L) is injected into the path Percentage of MTSD logic. Each of the designs has multiple
from Di to latch L by adding a chain of Virtual Clock User clocks that are phase-locked to each other within each

triggered flip—flops dpmain. Ta_lble Il compares the_ resul_ts of schedule_:d MTSD
) _ Virtual routing to hard-wired routing. Virtual routed wires and
DelayCompensation(Di, L) pins are multiplexed to achieve better FPGA pin utilization

= ReadyTime(Di) — RequiredReadyTime(Dz). while hard-routed wires require dedicated physical wires and
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(1) MTSD Latch Scheduling Algorithm. (4) STEP2,3: Compute Latch ReadyTimes.
Arrows indicate the direction of ReadyTime Flow ReadyTime(Latch)= Max{(4-2), (6-1)}=(5}
.......................................... D-INPUT D-OUTPUT
D-INPUT : SET
SET H
D1 D17}
D2 D2(6) :
Gl G- E
G-INPUT G-INPUT E
SET SET v i
2) Given: Combinational Path Lengths <x> and (5) STEP4: Set FINAL Di ReadyTimes.
E)l)npllx‘tle'lr‘lenn(i)xl:;l ‘]::algyTimes {y} g Final ReadyTime(D1) = ReadyTime(Latch){5}+Delay<2> = {7}
_________________________________________ D-OUTPUT
D-INPUT ' . SET
SET ; B> eeemmn o1 {1}
DY(7 AT L 35 02 (4
! T ] :
; AT\ DD ;
i <3—> - 7 é
i G1{8)~e—]| H
G-INPUT : G-INPUT
SET t : SET ! H
(3) STEPI: Set initial Di ReadyTimes. Note that (6) STEP 5: Set initial G ReadyTimes.
ReadyTime flows from right to left (reverse scheduling). Initial ReadyTime(G1) = ReadyTime(Latch){5 }+Delay<3> = {8}
Initial ReadyTime(D1) = ReadyTime(O1){1} + Delay<3> ={4}
Fig. 15. An example of the Latch Scheduling Algorithm.
TABLE I prerouting step was performed to reserve physical pins between
MTSD DESIGN STaTISTICS source and destination FPGAs for each MTSD wire. These pins
Testcase Designl | Design2 | Design3 were removed from consideration during subsequent virtual
Num. primitive Gates | 1687000 | 101000 | 958000 routing of non-MTSD wires. From Table Il it can be seen that
Num. MTSD Gates 4100 10000 3400 the number of Virtual Clocks in the critical path for Design2
Num. Clock Domains 3 2 3 is much higher than the other two designs. This is because
Clock Domains did2d3 | did2 |d1d2d3 experiments for Design2 were dominated by transactions with
Num. User Clocks 246 16 12 4 . . .
- emulation memory. MTSD routing results in a smaller number
Num. MTSD Flipflops 219 220 304 f i | Clocks (leadi f I .
Nom. MTSD Latches 130 320 10 of Virtual Clocks (lea ing to faster overa execu.tlon) as
Application field Graphics | Telecom | Graphics compared to the hard-wired approach. This observation results

from some physical wires being removed for hard-wiring and
the remaining wires carrying a greater load of nhon-MTSD
pins. To determine the results for hard-routing experimentscammunication. Maximum emulation clock speeds in the last
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TABLE I TABLE IV
COMPILER RESULTS VIRTUAL ROUTING VERSUSHARD ROUTING PARAMETERS FORSCALABILITY COMPARISON
Designl Design2 | Design3 Parameter Value
Num. MTSD Paths 173 213 100 B. 0.60
Num. MTSD FPGAs 23 24 8 By 0.55
Num. FPGA LUTS 1500 2400 1359 K, 2.0
Clock Domains dl d2 d3 d1d2 dld2d3 Ky 1.0
Num. Non MTSD 11 43180 47 10 685 dmesh 2 hops
FPGAs Vo 100 mapped gates
Critical Path (Virtual 42 47 49 | 85131 16 47 39 \Z 4 mapped gates

Clocks) Hard Routing
Critical Path (Virtual 37 38 46 | 68108 | 204031
Clocks) Virt. Routing
Approx. Max Speed 346 KHz | 129 KHz | 354 KHz
MTSD Hard Routing
Approx. Max Speed 369 KHz | 157 KHz | 410 KHz
MTSD Virt. Routing

two rows of Table Il were determined based on a 34-MHz
Virtual Clock on a VStation-5M Emulator.

B. Theoretical Results

In this section we derive theoretical gate utilization for MTSD
logic emulation with and without virtual wires and show that
emulation with virtual wires scales with increasing FPGA de-
vice size. It was shown previously [2] that isolating logic (such
as MTSD partitions) in specific FPGAs aihérd-wiring them
to other system FPGAs will lead to decreasing FPGA utiliza- 7 T T ¥ I A 17T
tion as FPGA gate capacities scale. In this analysis, we consider 1000 10000 100K 1000K  10000K
FPGA gate utilization for logic emulation when MTSD and FPGA Device Gate Count (mapped)
single-domain logic is distributesl/enlyacross all FPGAS. TWO rig 16, Maximum percentage of MTSD gatd§( x vmax) per partition—
distinct cases are considered for this even distribution: MTSEISD hard wires.
signals are hard-wired for communication between FPGAs and
virtual wires are used for communication between FPGAs. |g ,the number of FPGA pins required per FPGA for the MTSD
both cases, virtual wires are used to communicate non—MT%@mon of each partition is
single-domain signals.

1) Rent's Rule: To complete this analysis we use a formula- Putsa = dK (Grugsa) P (4)
tion that is similar to the one provided in [2]. The basic relation-
ship between an amount of logic and required 1/O for the logighere d indicates the average distance, in terms of FPGA
can be characterized by the Rent’s rule [12] equation as followsyundary crossings, for each wire [2], adf. and B, are

design dependent. For an FPGA to contain single-domain logic
Rent's Rule: P =KG" () (G.q > 0) with signals that are routed with virtual wires, at
] ) . ~least one FPGA pin must be available that is not use@®fqt,.
where P is the number of ping;r is the number of gatedy’ is The gate cost of per-FPGA virtual wireserheadthe logic
Rent’s constant, anf} is Rent’s exponent. As with most rules, ;sed to multiplex pins) for per-FPGA single domain logit.()
it has limitations. Rent’s rule can be used to measure the COY, + Vi x dP,; whereV, is the per-FPGA cost associated
munication parameters of a given implementation technology g control circuitry andV; is the cost associated with each
well as the parameters of a circuit. logic I/0 of the single-domain logic. The total number of single

To determine FPGA utilization it is necessary to determingymain inter-FPGA signals leavirtg,, is P, andd is the same

the fraction of design gate. implemented in the FPGA versusgjstance factor used to amortize intermediate hops in (4). From

total available per-FPGA gates;;. Design gatesy. can be 2] the virtual wires gate overhead associated with per-FPGA
separated into two categories, MTSD and single-domain desQﬂgle-domain logic is

gates (G misqa andGgy, respectively), such that, = Gsq +
Gsa- Gy =Vo+ VidK.G." ®)

2) Hard-Wired MTSD Logic:In the first case that is con-
sidered, MTSD and single-domain logic is partitioned evenlyhich is obtained by substituting, G, - for P,, in the virtual
throughout all system FPGAs. Inter-FPGA MTSD nets are hardires gate overhead equation. These gates allow for the multi-
wired to inter-FPGA pin and wire resources such that each Iggiexing of device pins for single-domain logic. In total, the gate
ical signal is assigned to dedicated pin and wire resources. Froount for an FPGA ) containing hard-wired MTSD logic,

Max. Percent. Hard-wired MTSD Logic (100 x Vmax)
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Fig. 17. Scalability with FPGA device size for FPGAs with MTSD logic.

single-domain logic, and virtual wires overhead for the singtgince logic is distributed evenly, also represents the fraction

domain logic can be expressed as of per-FPGA design gates which are MTSD

Gf =G.+G, = (Gmtsd + Gsd) + G, (6) Ge =Gmtsd + Gsa (9)

Gmtsd =v X Gc (10)
whereG,. represents total user design gates in each partition. Got = (1—v) x G,. (11)
Given pin limitations, the available pins on an FPGA as a func- o '
tion of gate count are Pin requirements for hard-wired MTSD logic can be deter-
mined by inserting7 m¢sa in (4). If Pmtsa = Py, Single-domain
Py = KiGgP! (7)  logic cannot be accommodated in the FPGA due to the lack of

available pins. This point can be represented with a maximum

whereK s and By are the Rent parameters of the FPGA techyqaple fractiony,,.. of MTSD logic for a given FPGA gate
nology. In o_rder fpr an FPGA to be_able to support poth smgl%bunth. For designs at this,,. value or higher, FPGAs that
domain logic which uses virtual wires and hard-wired MTSRqnain MTSD logic must be dedicated and overall logic utiliza-
logic, Py, the total number of FPGA pins, must be greater thapyng in these partitions are correspondingly low.
Prisa, the pins required for MTSD logic. IPy = Puisa, the  Fig 16 shows that as FPGA gate capacity increases the max-
partition contaln_s only .MTSD logic and single-domain logi¢y,,m fraction of each FPGA that contains MTSD logic de-
must be placed in additional, se_pr.glrate FPGAs. _ creases significantly. This drop-offis further reflected in Fig. 17

3) Virtual Routed MTSD Logicin the second case that isyhich shows that the per-FPGA utilization of FPGAs decreases
considered, MTSD logic is distributed evenly across all systefd FpGA size increases across a range eflues. Oncey
FPGAs and inter-FPGA MTSD nets are routed to adjacepischeg),,.., only MTSD logic can remain in the device due to
FPGASs viavirtual wires SincebothMTSD and single-domain i, jimitations and overall logic utilization drops dramatically.
logic use virtual routing, per-FPGA virtual wires overhead cap cases whereirtual wiresare used to route MTSD nets, high
be characterized by per-FPGA logic utilization is maintained regardlessuadince
both MTSD and single-domain pins are multiplexed. Fig. 17
shows that while FPGA utilization improves when MTSD logic

For the virtual routing MTSD case, combined overhead alsy routed with virtual wires via approaches developed in this

design gates leads the same relationship as (6)@jtreplaced paper, evenly distributing MTSD logic with interconnect via
by the relationship above hard wires is not scalable as FPGA gate capacities increase.

4) Analysis of ResultsUsing the results from previous Sec_Note that for virtual wires, relativé/, overhead versus design

tions, we compare achievable FPGA device utilizati@p/G ) gates decreases as FPGA gate counts increase.
for devices containing MTSD logic. Parameters for the com-
parison are listed in Table V. Both hard wire and virtual wire
routing of MTSD signals are considered as FPGA size increasesln this manuscript, a new general approach for dealing with

In the following, we represent the per-device relationship beiultiple asynchronous clock domains in parallel functional ver-

tween MTSD and single-domain logic gates via a fractisnch ification systems has been presented. A new scheduling algo-
thatv represents the fraction of the user design that is MTSEthm has been developed that allows transported signals to be

G, = Vo + V1dK .G P-. (8)

IX. CONCLUSION AND FUTURE WORK
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split into several single-domain versions and transmitted acros$o]
inter-FPGA channels dedicated to signals sourced by a single
clock. These constituent signals are subsequently merged tAy
gether at the routing destination to form a causally correct result.
The scheduling algorithm also statically determines multido-[n]
main latch modeling for parallel verification equipment so that
setup and hold violations are avoided. The approach has been
demonstrated on a VirtuaLogic emulation system for three largg2l
commercial benchmark designs. The algorithms were integrated
into a commercial compiler for logic emulation. Experimental[13]
and theoretical results show that the approach is scalable and
provides good modeling fidelity. As a result of this scalability, [14]
an improvement in overall system performance was obtained.

We plan to extend this approach to deal with hard-wireci
cores and MTSD 1/O signals. The heterogeneous nature 1l
these blocks presents special considerations for scheduling and)
interfacing.
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