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ABSTRACT

INTEGRATION OF SYSTEMC WITH AN IKOS VIRTUALOGIC

EMULATION SYSTEM

SEPTEMBER 2001

RAMASWAMY RAMASWAMY

B.E., UNIVERSITY OF MADRAS, INDIA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by : Professor Russell G. Tessier

With the advent of high complexity system-on-a-chip (SoC) designs, IC verifica-

tion techniques have taken on an important role in the ASIC design flow. A sizable

part of complex SoC verification has to be done at the system level. This poses a

unique challenge for logic emulators since internal design wires are not easily acces-

sible. In this thesis, a series of research and engineering tasks are described that

integrate SystemC, a new software modeling environment, with an Ikos VirtuaLogic

emulation system.

This system allows co-modeling of different portions of an SoC. One portion is

specified with SystemC and is verified on a host computer. Additional SoC compo-

nents are specified in a hardware description language (HDL) and are verified on the

logic emulator. As a result of the SystemC/emulator interface, the functionality of

an existing Reed-Solomon encoder/decoder is verified. In one experiment, its test-

bench is migrated to a SystemC model. In a second experiment, an SoC design using

a Reed Solomon coder and a Viterbi decoder was created and interaction between
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these two components was modeled to demonstrate the usefulness of the interface

between SystemC and the emulator in SoC verification.

As SoC complexity increases, traditional methods of verification using HDL soft-

ware simulators lack the verification horsepower to ensure correct system function-

ality. Simulation times can be infeasibly, large limiting the use of real-world test

cases. Logic emulators along with co-modeling provide a high speed solution to the

verification problem. A software model of a testbench sends test vectors through a

communication channel to an SoC or its components, implemented on the emulator.

Current verification speed is limited by the rate at which test vectors are transferred

between the emulator and the testbench through a communication channel.

Another goal of this research is to reduce or completely eliminate this overhead

by storing portions of the testbench on the emulator. A significant improvement in

verification speed can be obtained since the overhead of sending test vectors through

the communication channel is absent.
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C H A P T E R 1

INTRODUCTION

1.1 Motivation

Enabled by shrinking device sizes, microprocessors, digital signal processors,

memory and custom logic are being integrated onto a single chip to form systems-

on-a-chip (SoC). Verification of such systems poses unique challenges. The various

modules of the SoC must be integrated and sufficient real world scenarios must be

run to verify that the system operates as designed. It is beneficial to perform this

integration as early as possible in the design flow when the design is still fluid enough

to allow for straightforward design changes.

Traditional methods of verification using HDL software simulators have proven

to be insufficient in verifying SoCs. These approaches lack the parallelism needed to

rapidly verify correct system functionality. With a simulation only approach, software

debugging can begin only after first silicon is obtained. If bugs become apparent after

fabrication, the designer is forced to undertake a time consuming and costly series of

design changes and silicon re-spins.

Logic emulators allow designers to verify at the hardware level before fabrication.

An emulator is a reprogrammable hardware system that plugs into a board or system
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and allows in-system testing during chip design. It is a tool that allows designers to

quickly create a prototype of a chip design. It can run at close to real time speeds,

is able to ensure correct timing relationships, and can support application software.

Logic emulation is also helping to drive the next paradigm in system level design called

concept realization. With concept realization, designers emulate and verify chips at

the highest level of abstraction - the behavioral level, before starting implementation.

It is currently possible to integrate software written in high level languages, such

as C/C++, with hardware descriptions written in HDLs, such as Verilog and VHDL

by means of remote procedure calls or some form of inter-process communication such

as sockets. The overhead of passing data between the two verification domains is often

a bottleneck limiting verification performance. In [3], a methodology is presented in

which both the software and hardware portions of the system are modeled in C/C++.

Despite the performance gains that can be obtained, C/C++ based hardware mod-

eling has yet to be embraced by the EDA industry. Currently, HDLs remain the

language of choice to describe hardware systems. Hence, there is a need for a flexible,

high speed modeling environment that will allow the designer to integrate hardware

models (written in HDLs) and software models(written in C/C++) effectively and to

develop real world test cases which will test their interaction.

A hardware/software environment can be obtained by interfacing software sys-

tems running on a host workstation with hardware models implemented on logic

emulators. This integration enables the designer to link simulators, testbench gen-

eration products, software C models and debug tools with the emulator to enhance
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the verification process. Communication between the software and hardware models

is usually performed by means of an interface card on the host workstation to which

the emulator is connected. These interfaces typically come with their own application

programming interface (API) which provides bi-directional data transfer between the

software side and the emulator. The API usually provides functions to control the

operation of the emulator. Examples of such interfaces are Q/Bridge [29] from Quick-

turn for use with Mercury and CoBALT series of emulators and Transaction Interface

Portal (TIP) [21] from Ikos Systems for use with the VirtuaLogic and VStation series

of emulators.

This capability introduces a new type of verification methodology called co-

modeling. Traditionally, data exchange between a hardware verification platform and

a software model(usually written in C) has either been cycle-based or event-based.

Co-modeling involves exchanging data by means of transactions. A transaction is a

multi-cycle communication sequence between the software model and the design on

the emulator. The level of abstraction is raised from cycles and events to transactions.

Transactions separate data transfer from clock based timing. Multiple events can be

transferred in one transaction. The increase in performance over event and cycle

based data transfer is substantial. [5] reports A 320X speedup for emulation over

PLI based simulation is reported in [5]. Figure 1.1 shows where co-modeling fits with

other current verification technologies.
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Figure 1.1 Current Verification Technologies

1.2 Objectives

A main objective of this thesis is to increase the scope of applications which

use co-modeling. The typical application of co-modeling is verification of a design

running on an emulator. The testbench is usually implemented as a C application

and test vector transfer with the design under test(DUT) takes place through the co-

modeling interface. An alternate verification view point allows a model to simulate

the behavior of surrounding hardware and generate emulator input instead of generic

test vectors, for the emulator. This type of modeling can be done by using SystemC

to describe the software model on the workstation.
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SystemC[26] is an extension to C/C++ which consists of a set of class libraries

that provide constructs to model hardware components. SystemC provides a simula-

tion kernel that supports cycle-based hardware modeling. As a result, both software

and cycle-accurate hardware can be specified in the same language. With SystemC,

a designer can create an executable specification of a design at the behavioral level

which can be synthesized directly into gates without code conversion to a hardware

description language (HDL). This type of modeling enables the designer to accu-

rately simulate hardware-software interactions between various components of a SoC

by modeling one component on the emulator and others in SystemC. Testbenches

can be modeled at the algorithmic level in addition to test vector representation.

Substantial gains in performance can be achieved versus traditional HDL simulation

since the cycle based simulation kernel of SystemC is compiled using a standard C

compiler. The simulation system allows direct interaction between a portion of a

SoC, specified with SystemC and running on a host computer, and additional SoC

components undergoing verification on the logic emulator. In our system, the func-

tionality of a Reed Solomon encoder/decoder core has been verified as described in

Section 3.4.

Despite the use of transaction based verification and co-modeling, the host

workstation-emulator interface is still the verification performance bottleneck. Fur-

ther performance gains can be achieved for testbench based verification if the test-

bench is stored on the emulator with the DUT and the verification process is run

entirely on the emulator with host intervention required only to start and stop the
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verification run. We show that an improvement in verification time can be obtained

since the the test vector transfer overhead with the co-modeling interface is removed.

1.3 Summary of Chapters

This thesis is divided into 5 chapters. Chapter 2 presents an overview of current

verification technologies followed by an introduction to co-modeling and SystemC.

Chapter 3 describes the architectural features of the SystemC co-modeling interface

and presents the design flows used to verify the functionality of the Reed Solomon

coder core. This is followed by a description of an interface implementation for

SoC verification. Chapter 4 discusses testbench integration issues and presents the

methodology used to migrate the testbench to the emulator. Conclusions and ideas

for future work are presented in Chapter 5.
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C H A P T E R 2

BACKGROUND

2.1 Verification Techniques

2.1.1 Event Based Simulation

The most common type of ASIC verification approach in use today is uni-

processor based event driven simulation. Changes in design inputs and internal states

trigger a chain of signal changes at a particular time which are recorded in a time-

ordered event queue. An event driven simulator maintains a list of events to simulate

various time instances. As the event list corresponding to the current time is exe-

cuted, it results in additions to event lists at later points in time. When the simulator

completes execution of the current list, the event list for the next time point is ex-

ecuted. Contemporary event driven simulators are between three and four orders of

magnitude faster than electrical simulators such as Spice. These simulators typically

solve a set of partial differential equations at each time step and trace out analog

voltages and currents. Event driven simulators are generally either interpreted or

compiled-code. Interpreted simulators involve little compilation as each event is in-

terpreted at run time. These type of simulators are very fast for small sized designs,
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but become time consuming for large size designs. Verilog-XL [28] from Cadence is

a well known interpreted simulator. Compiled code simulators require a C compiler

to convert the HDL source into C code (or some other programming language) and

construct an executable file. This type of simulator requires time consuming com-

pilation but achieves a faster runtime, especially for large designs. The Affirma NC

Series [30] of simulators from Cadence are examples of compiled code simulators.

2.1.2 Cycle Based Simulation

For large designs event driven simulation can take hours to complete. To improve

verification speed, cycle-based simulators may be used. These simulators construct

event lists only for each clock edge and are limited to functional verification rather

than timing. By limiting simulation to clocked edges, the overhead of event manage-

ment is reduced and an improvement in performance over event driven simulators can

be obtained. The Cyclone simulator [31] from Synopsys is an example of a cycle-based

simulator.

2.1.3 Hardware Based Verification Tools

For large designs, even a cycle based simulation approach may be overly time

consuming. Increased chip complexity and limited design times have resulted in the

development of hardware based verification tools such as simulation accelerators and

logic emulators. Simulation accelerators typically consist of a number of intercon-

nected processors. A user’s design is partitioned across the processors so that logic

dependencies are minimized. All the processors operate in parallel offering a sig-
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nificant performance gain over uniprocessor simulation. NSIM [32] from Ikos is an

example of such a system.

Logic emulators fully implement user designs in hardware. The emulator pro-

vides a complete functional implementation of the design that runs within an order

of magnitude of real time speed. One limitation of emulation is that it retains only

the functional behavior of the circuit, which means that validation of both perfor-

mance and timing features cannot be performed on a logic emulator. Two main

approaches to logic emulation exist today - the custom processor approach and the

field programmable gate array (FPGA) approach. CoBALT [29] from Quickturn uses

a custom processor approach. RTL code is partitioned and scheduled to execute on

an array of customized concurrent processors. Celaro [33] from Mentor Graphics is

another example of an emulation system that uses customized programmable devices.

The inherently reprogrammable nature of FPGAs make them an ideal choice

for use in logic emulators. FPGAs are flexible and do not require the fabrication

cost of custom processors. Both System Realizer [36] from Quickturn and Virtua-

Logic/VStation [27] from Ikos are FPGA based systems. System Realizer contains

crossbar interconnection devices to overcome inter-FPGA pin limitations. Ikos emula-

tors use time division multiplexing of the FPGA interconnect (called VirtualWires [4])

instead of crossbars to overcome pin limitations.

Logic emulation shares many of the advantages and disadvantages of both pro-

totyping and software simulation [12]. Like a prototype, the design to be tested is

implemented in hardware so that it can achieve high performance during testing.
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However, like software, the emulated design can be easily altered and observed to iso-

late bugs. Transforming a circuit description into a form that can implemented onto

an emulator can take many hours to perform. This task is usually done by emulation

system software. The high performance of emulators can be attributed to the fact

that they can implement the complete circuit in parallel which software simulation

and simulaton accelerators cannot do.

For circuits that execute software programs, the emulator can be used to debug

these programs much earlier in the design flow than a prototype. This is because an

emulator can use a high level description of the circuit (such as a hardware description

language) for implementation, while a prototype cannot be made until the complete

circuit has been designed. Software simulation is too slow to run software in a feasible

time frame. A circuit implemented on an emulator can be inserted into a target

environment and the system can be evaluated in a more realistic setting. This helps

both to debug the circuit and to test circuit interfaces. For example, an ASIC and the

board that will contain it are often developed simultaneously. An emulated version

of the ASIC can be inserted into the circuit board prototype for testing both ASIC

and board functionality.

2.2 Transaction Based Verification

Synchronization between different verification engines (netlist, RTL, or ISS sium-

lators and emulators) plays a crucial role in determining the raw performance that can

be achieved [5]. Event and cycle based synchronization are examples of fine grained
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synchronization in which the verification engines synchronize at every event and clock

cycle respectively. Due to this tight coupling, the entire system proceeds at the rate

of the slowest domain. As a result, verification performance is limited.

An alternative approach is to synchronize the engines only when necessary via

transactions. A transaction can be defined as a multi-cycle communication sequence

between two verifcation domains. Transactions contain both data and synchronization

information. A single transaction results in multiple cycles of work being performed

by a verification engine. A transaction can be as simple as a memory read or as

complex as the transfer of an entire structured packet through a channel. This is

accomplished by the transfer of a single message through one synchronization point.

The increase in performance over cycle and event based synchronization is substantial.

2.3 Co-Modeling

Co-modeling is a transaction based verification approach in which system behav-

ior (modeled in a high level language such as C), interacts with an RTL design which

is implemented on the emulator.

Co-modeling has the following advantages :

• Co-modeling provides a system level verification solution that links system im-

plementation (such as a gate level HDL model) with system behavior (such as

a C/C++ based model). It makes use of the fact that the system designer has

created a behavioral model of the system and reuses this behavioral model as

part of the test environment for the entire system
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• Co-modeling offers higher performance when compared to an event/cycle inter-

face based on a Programming Language Interface (PLI) implementation

• By using a co-modeling based methodology, we can build interfaces that are

standard and re-usable. For example, if an Ethernet transaction model is built,

it can be re-used for future designs that might have an Ethernet port built in.

Co-modeling can be used in two ways - data streaming and reactive co-modeling.

This thesis focuses on data streaming. In data streaming, transactions are indepen-

dent of each other and are sent continuously from the user application to the DUT

and vice versa. The data passed between the models is intended to correspond to

specific pins of the DUT. A transactor located on the emulator does not modify or

process the data in any way, but provides the handshaking signals which enable data

exchange between the software model and the DUT also located on the emulator.

This kind of operation provides maximum throughput. In reactive co-modeling, the

transaction sent by the user application depends on the previous transaction. The

user application has to wait for the DUT to process the current transaction before it

can send a new one. The channel is not utilized effectively in this way since the user

application and DUT may be idle awaiting new transactions.

2.3.1 Transaction Interface Portal (TIP)

Transaction Interface Portal [23][24][25] is a transaction based co-modeling in-

terface that provides a communication channel between a host workstation and an

Ikos VirtuaLogic/VStation logic emulator.
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Figure 2.1 Transaction Interface Portal

Figure 2.1 illustrates the layered architecture of TIP for an Ikos emulation sys-

tem. It consists of a design environment (DE) running on a host workstation, and a

DUT running on the emulator. These two domains are connected via a communica-

tion channel which provides a mechanism for transporting data and synchronization

between the DUT and DE. One main component of the DE is the User Application.

The User Application may contain a complex C model of a system component, or it

may contain a test environment that provides test vectors for the DUT. It utilizes

an Application Programming Interface (API) called the Transaction API (TAPI) to

communicate with the DUT. This API is provided by the Application Adapter. The

DUT is comprised of the User’s Netlist, an RTL Transactor, and Co-Modeling Macros.
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The User Netlist is a gate level model of the design to be verified with the C code.

The transactor acts as an interface between the User’s Netlist and the underlying co-

modeling macros. The co-modeling macros are responsible for data transfer between

the transactor and the PCI card. This card is installed on the host workstation and

performs data transfer between the emulator and the workstation.

2.3.2 System Operation

Transactions can be initiated by the user application or the DUT. The user

application starts a transaction by calling the appropriate API routine with data.

This call sends the transaction across the communication channel and activates the

co-modeling macros on the emulator. If the DUT’s co-modeling primitives are busy,

the transaction is buffered in the channel. Once the transaction is received, it is

passed to the RTL transactor. The transactor unpacks the data into a sequence of

cycle level stimuli which are then applied to the DUT. The reverse process occurs

when the DUT initiates the transaction. Similar channel buffering will occur if the

co-modeling macros are busy.

The application adapter’s API provides a variety of C routines to facilitate send-

ing and receiving of transactions. A summary of the most commonly used TIP func-

tions is shown in Table 2.1. In addition to encoding and decoding transactions, the

RTL transactor performs the following functions :

• Negotiate the handshaking signals by which data flow is managed through the

co-modeling macros.
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• Implement clock control of the DUT so that the DUT does not run when there

is no data ready for it.

API call Function
tapiCOMI1 initInterface() Initialize communication channel
tapiCOMI1 done() Close channel, free the card and memory
tapiCOMI1 read() Read a value from the interface
tapiCOMI1 write() Write a value to the interface
tapiCOMI1 newtapiDVVForWrite() Creates a new object for writing
tapiCOMI1 newtapiDVVForRead() Creates a new object for reading
tapiCOMI1 VLEconnect Connect to the emulator
tapiCOMI1 VLEconfigure Download a design onto the emulator
tapiCOMI1 VLEenable Enable I/O pods on the emulator
tapiCOMI1 VLEdisable Disable I/O pods on the emulator
tapiCOMI1 VLEspeed Set the emulator speed index
tapiCOMI1 VLEquit Terminate emulator connection

Table 2.1 Common TAPI functions

In addition to encoding and decoding transactions, the RTL transactor performs

the following functions :

• Negotiate the handshaking signals by which data flow is managed through the

co-modeling macros.

• Implement clock control of the DUT so that the DUT does not run when there

is no data ready for it.

The co-modeling macros are a collection of HDL components provided to the

user. They perform low level synchronization between the physical channel and the

transactors and provide the functionality upon which transactors are built. There

are 5 basic primitives as shown in Figure 2.2 - a clock macro, an input macro, an

15



output macro, a dgate macro and a reset macro. The clock macro is a controlled

clock generator which can produce a controlled version of any clock in a design clock

domain. The clock macro also activates the dgate macro which contains latches that

hold DUT data stable at times when the controlled clock is inactive. The dgates

isolate the DUT from activity on the outputs of the RTL transactor which could be

invalid DUT inputs. The input macro presents data from the communication channel

to the user’s netlist. The data is sent by the user application through the API call

tapiCOMI1 write(). The output macro allows the user’s netlist to send data to the

user’s application. The reset macro is used to initialize the transactor to a known

state before the co-modeling session commences.

tapiCOMI1 *handle;
tapiRC         rc;
tapiDVV      *readvector;
tapiDVV      *writevector;

handle=tapiCOMI1_init
Interface(...);
readvector=tapiCOMI1_
newtapiDVVForRead(
handle,&rc);
writevector=tapiCOMI1_
newtapiDVVForWrite(
handle,&rc);

transaction reset at first I/O

tapiCOMI1_write(handle,
vector,&rc);

tapiCOMI1_read(handle,
vector,&rc);

tapiCOMI1_done(handle,
&rc);

clock
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Figure 2.2 TIP Software Architecture
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Figure 2.2 illustrates how the co-modeling macros interact with the transactor

and the DUT. The input macro allows a netlist running on the emulator to receive

data sent by the host using one of the write functions of the TIP API. The macro

contains an input data register which temporarily holds channel data until the DUT

is ready to access it. Upon the arrival of new data, a signal newdata is asserted.

Assertion of datadone by the transactor indicates that the macro may overwrite the

data value during the next cycle. Newdata will not be reasserted until datadone is

deasserted. Similarly, the output macro allows the user’s netlist to send data to the

user’s application through the transactor, where it can be read using the API call,

tapiCOMI1 read(). When the macro senses newdata, data is read into an output

register. Once the read operation is completed, datadone is asserted.

2.3.3 Co-Modeling Algorithm

The following steps have to be performed to initiate and close a co-modeling ses-

sion. The corresponding TAPI function calls are shown along with a short description

of their operation.

• Initialization

1. tapiCOMI1 initInterface()

This must be the first routine called because it performs two functions -

initialize the SPCI card and return a handle to the user’s communication

interface which all other functions use.

2. tapiCOMI1 VLEconnect()
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Once the SPCI card is initialized, the next step is connection to the em-

ulator. This routine must be called before any other emulator control

functions can be used.

3. tapiCOMI1 VLEconfigure()

Once the SPCI card and the VStation are initialized, the design can be

downloaded onto the emulator by calling this function.

4. tapiCOMI1 VLErunInternalClocksDefault()

This function sets all user clocks in a default manner. It is not appropriate

when the design has multiple clocks and precise phase relationships have

to be maintained, or when the clock characteristics have to be modified

for optimal operation. In these cases, the following functions can be used.

1. tapiCOMI1 VLEgetClockInfo()

This function returns minimum low duty cycle and minimum high

duty cycle values given a particular clock name. The numbers are

given in vcycles which is the base clock period of the emulator.

2. tapiCOMI1 VLEsetupInternalClock()

This function allows the user to set up a given clock by name. The

clock parameters are specified as arguments to the function. This

function can be called multiple times to define multiple clocks in the

design.

3. tapiCOMI1 VLEstartInternalClocks()
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This function starts all the clocks specified with

tapiCOMI1 VLEsetupInternalClock(). This function must be called

prior to calling tapiCOMI1 VLEenable().

5. tapiCOMI1 VLEenable()

This function enables I/O pods on the emulator.

6. tapiCOMI1 newtapiDVVForWrite()

This function creates a data structure object for sending data to the em-

ulator. The size of the object is created according to the size specified in

the co-modeling macros.

7. tapiCOMI1 newtapiDVVForRead()

This function creates a data structure object for reading data from the

emulator. The size of the object is created according to the size specified

in the co-modeling macros.

• Data Transfer

1. Initialize SystemC model.

2. tapiCOMI1 write()

This function sends data that has been written into the object created by

tapiCOMI1 newtapiDVVForWrite() to the emulator.

3. tapiCOMI1 read()

This function reads data coming from the emulator into the object created

by tapiCOMI1 newtapiDVVForRead().
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• Closing

1. tapiCOMI1 VLEdisable()

This function disables the I/O pods on the emulator and is required to

shut down the emulator.

2. tapiCOMI1 VLEquit()

This function terminates the connection with the emulator.

3. tapiCOMI1 done()

This routine frees up the memory resources allocated to the SPCI card.

2.3.4 Co-Modeling for SoC Verification

Co-modeling with a C application has many limitations when used for SoC de-

signs. The most common use of co-modeling is validation of a design on the emulator

with a C testbench. This application involves passing test vectors to and from the

design on the emulator. This poses problems for SoC designs in which the interaction

between various components of a SoC have to be verified. It is more appropriate for

the C model to generate the test vectors in a manner that is similar to a real world

situation, i.e. a component driving a hardware model which in this case is emulated.

Two disadvantages exist in the C based approach. Firstly, C by itself cannot be

used to model the operation of hardware since it lacks the necessary constructs for

concurrency and reactive behavior. Secondly, the use of a functional or behavioral

specification written in C may not model the interaction between the SoC components
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in the same way as the actual hardware model. This is due to the fact that the

functional specification is usually translated into HDL which may result in some

aspects of the functionality being lost. Moreover, the HDL version of the module

becomes the focus of attention and any changes made to it are not implemented in

the functional specification. Therefore, by using C for SoC verification, the designer

runs the risk of incorrectly modeling the interaction between various SoC components.

These problems can be alleviated through the use of a common language to

specify both the behavioral and hardware representations of the module. This can

be done by using SystemC. SystemC is an extension to C/C++ which includes con-

structs to model hardware behavior. The use of SystemC for co-modeling provides a

more accurate picture of the behavior of the system and the interaction between SoC

components. Most SystemC development to date has focussed on system modeling

in software rather than on integration of SystemC modules with logic emulators and

simulation accelerators. Given the advanced complexity of many SoC components

and the need to verify system level interaction at distinct points in the design cycle,

the need for a SystemC interface to verification hardware is evident.

2.4 SystemC

2.4.1 Introduction

SystemC is a C++ class library and a methodology that can be used to effectively

create a cycle accurate model of software algorithms, hardware architecture, and
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interfaces between SoC components. SystemC constructs can be used with standard

C++ compilers and debuggers to create a system level model. This model can be used

to provide hardware and software development teams with an executable specification

of the system. This specification is often a C/C++ program that exhibits the same

behavior as the proposed system.

C or C++ provide the control and data abstractions necessary to develop com-

pact and efficient system descriptions. A large number of development tools are

associated with these popular programming languages. Standard C and C++ lack

the necessary constructs to model hardware behavior such as timing, concurrency,

and reactive behavior. SystemC provides a solution to this limitation by offering

hardware constructs in the form of C++ classes. A class based approach to provid-

ing modeling constructs is superior to a proprietary new language because it allows

designers to continue to use the language and tools with which they are familiar.

Unlike proprietary solutions, SystemC is open source and any changes or additions

are standardized by the Open SystemC Initiative. SystemC includes a cycle based

simulation kernel that supports clock based hardware modeling at the system level,

behavioral level and register transfer level [10]. Cycle based C simulations are much

faster than software HDL simulators.

2.4.2 Hardware Modeling with SystemC

The flowchart of Figure 2.3(a) shows the current system design methodology. A

C or C++ model of the system is written to verify concepts at the algorithmic level.

After validation is complete, parts of the model are manually converted to a hardware
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Figure 2.3 System Design Methodologies

description language (HDL), like Verilog or VHDL, for hardware implementation.

Unfortunately, this approach can lead to numerous problems. Manual conversion can

cause errors. Tests that validate the C model cannot be used to validate the HDL

model often leading to a second testbench.

When a SystemC based design methodology is used, the entire system including

software and cycle accurate hardware can be specified in one language. The result

is the standardization of all design information and the capability to quickly debug,

re-specify or re-model design changes. The flowchart of Figure 2.3(b) shows a system

design methodology which uses SystemC.
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2.4.3 A Simple Example

The following code examples show how to model a D flip flop with an asyn-

chronous reset in Verilog, VHDL and SystemC.
The VHDL model can be written as follows :

library ieee;
use ieee.std_logic_1164.all;
entity dffa is
port (
clock : in std_logic;
reset : in std_logic;
din : in std_logic;
dout : out std_logic;

);
architecture rtl of dffa is
begin

process(reset,clock)
begin

if reset = ’1’ then
dout <= ’0’;

elsif clock’event and clock = ’1’ then
dout <= din;

end if;
end process;

end rtl;

The Verilog model can be written as follows :

module dffa(clock,reset,din,dout);
input clock,reset,din;
output dout;
reg dout;
always @(posedge clock or reset)
begin

if (reset)
dout <= 1’b0;

else
dout = din;

end
endmodule

The corresponding SystemC implementation is shown below :
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#include ‘‘systemc.h’’
SC_MODULE(dffa)
{

sc_in<bool> clock; // Input port
sc_in<bool> reset; // Input port
sc_in<bool> din; // Input port
sc_out<bool> dout; // Output port

void do_ffa() // Process
{

if (reset)
{

dout = false;
}
else if (clock.event())
{

dout = din;
}

};

SC_CTOR(dffa) // Module constructor
{

SC_METHOD(do_ffa);
sensitive(reset);
sensitive_pos(clock);

}
};

A module is the basic class for objects in SystemC. Modules allow designers to break

large complex designs into smaller more manageable pieces. Modules are declared

with the SystemC keyword, SC MODULE. A large design will typically be divided

into a number of modules that represent logical areas of functionality of the design.

Modules communicate with other modules via ports. In the above example, the D

flip flop has three input ports (clock,reset and din) and one output port(dout). Ports

are specified with the keywords, sc in for input ports, and sc out for output ports.

Signals connect ports together. They represent the physical wires that interconnect

devices. Signals carry data while ports determine the direction of data. Processes
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provide functionality to the module. Processes communicate with each other via

signals, and explicit clocks can be used to order events and synchronize processes.

The above model has one process, do ffa() which performs the functionality of the D

flip flop. The process checks the value of the reset port. If it is a ’0’ then the output

port is assigned a value ’0’. Otherwise, if a positive edge of the clock occurs, the

output just reflects the input. Every module must have a constructor to initialize the

module. Constructors are specified with the keyword SC CTOR. Besides initializing

values for the module variables, the constructor also sets the sensitivities of the various

processes in the module. In the above module, process do ffa() is sensitive to two

signals - reset and the positive edge of clock. This indicates that do ffa() will be

executed whenever the value of reset changes, or a positive edge occurs on clock.

2.5 Related Work

Heterogenous co-simulation environments between C and Verilog/VHDL already

exist. Ikos Systems has developed a simulator, called TIPSIM, for their TIP co-

modeling environment. TIPSIM simulates the functionality of the emulator and the

DUT using Verilog models. A C program is used to model the testbench. Communi-

cation between software (C models) and hardware (Verilog models) is implemented

through the Verilog Programming Language Interface (PLI) using sockets. There is

an overhead in passing data back and forth between the HDL based hardware domain

and the C/C++ based software domain. This overhead can be reduced but cannot

be eliminated. The main purpose of TIPSIM is to test the functionality of the user

DUT and transactors in software before implementing them on the emulator.
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A different approach to co-simulation is presented in [3] in which SystemC is used

to describe both hardware and software components of a system. This approach offers

better performance than TIPSIM since it does not use any type of PLI mechanism for

data transfer. Moreover, hardware can be synthesized directly from SystemC, which

eliminates the need for translation to an HDL. This not only reduces translation time

but eliminates bugs introduced during translation. This approach enables designers to

perform hardware-software co-verification at very early stages of the design. Various

architectures may be explored since the co-simulation process is very fast. As the

system becomes more and more refined, hardware can be implemented in gates using

synthesis tools and compilers can be used for software. This approach is shown to be

three times faster than traditional HDL based co-simulation due to the simplification

of the communication between the hardware and software domains. However, it is

useful only in the earlier stages of the design cycle when the system specification is

still flexible and various design alternatives are being explored.

It is clear that another method of co-verification will be required when the hard-

ware has advanced to the gate level. Logic simulation could be used, but simulation

performance will be very slow. Logic emulation along with co-modeling offers a high

speed solution. However, a new stimulus environment has to be created in order to

use logic emulation and this limits its adoption despite the significant performance

gains that can be achieved. A transaction based architecture which provides for 100%

portability of a C based testbench for simulation and emulation is presented in [5].

The main focus of this work is to re-use the stimulus driving environment for both

simulation and emulation.
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The problem of using emulation to its full potential when used in a SoC verifica-

tion environment remains largely unsolved. Recently, Ikos Systems has presented a

proposal called the Standard Co-Emulation Modeling Interface (SCE-MI)[11]. This

proposal aims to create a standardized C/C++ modeling interface for emulators and

other verification platforms. Its aim is to provide multiple channels of communication

that allow software models describing system behavior to connect to structural mod-

els describing implementation of a DUT. SystemC has been chosen as the C/C++

modeling environment since it is ideally suited for both untimed and cycle accurate

modeling. An infrastructure has been created that allows an untimed functional

model to exchange data with a cycle accurate DUT implemented on a simulator or

an emulator.
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C H A P T E R 3

RESEARCH METHODOLOGY

3.1 Research Goals

The main objective of this research is to develop an interface between SystemC

and the emulator and to demonstrate its capability to effectively model the interaction

between various components of an SoC. This is demonstrated by creating a typical

SoC design involving a Reed Solomon coder, a Viterbi decoder, and an interleaver/de-

interleaver. The Reed Solomon coder is implemented on the emulator. The Viterbi

decoder is implemented as a software C model. The interleaver/de-interleaver which

is required to re-order the data exchanged between the Reed Solomon coder and

the Viterbi coder is modeled in SystemC. The net result is a system that contains

components modeled in 3 different environments - SystemC, C and RTL. In the

process of achieving this goal, the functionality of a Reed Solomon coder is verified

by means of a co-modeling application. This demonstrates speed gains that can be

achieved by using the emulator instead of a software-based HDL simulator.

Another goal of this research is to explore testbench migration. Since the host

workstation - emulator interface is a bottleneck to verification speed, we migrate

testbench vectors to the emulator to accelerate verification.

29



3.2 System Architecture

Figure 3.1 shows the elements of our system and how they are interconnected.
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Figure 3.1 System Setup

The user’s code runs on a Sun Ultra 60 workstation. It contains SystemC con-

structs in addition to TAPI function calls. The application is linked with the TAPI

and SystemC libraries and compiled. Physical communication with the emulator

takes place through an SPCI card. The user application is able to communicate with

the card using the TIP driver installed on the host workstation. On the emulator

side, the user’s RTL code contains an instantiation of the DUT, the RTL transactor

and the co-modeling macros. These are compiled and synthesized onto the emulator
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by emulator system software called VSYN. The VRUN component of the emulator

system software controls loading of the design onto the emulator and its operation.

Both VRUN and VSYN components are located on the host workstation. The VMW

directory is a location on the host workstation where the design files are stored.

The co-modeling macro configuration file specifies the interfaces of the co-modeling

macros. It contains the bit widths and terminal names of the input and output signals

for the various co-modeling macros. The pod file maps a particular set of co-modeling

macros to a particular pod on the emulator. A pod is the interface through which

the emulator is connected to the host workstation using a PCI cable. It establishes a

logical connection through which the macros and the TIP interface exchange data.

3.3 DUT Verification

3.3.1 DUT Overview

The design implemented on the emulator is a fully programmable Reed Solomon

(RS) [1] encoder/decoder. This core contains approximately 40k gates and was ob-

tained from Texas Instruments. The design is well suited for emulation since several

requirements are met:

• Fully synchronous design style

• Uses a single clock

• Verification based on a large set of stimuli
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3.3.2 Simulation

All clock and control information is provided in the test vectors. An example test

vector is shown in Figure 3.2. It consists of two portions - an input vector portion and

an output vector portion. The input vector consists of 34 bits and includes values for

clock (1 bit), reset (1 bit), address (12 bits), control signals (4 bits) and input data (16

bits). The address bits and input data bits are represented in hexadecimal notation.

The testbench converts these values into their binary equivalent and applies them

to the appropriate DUT inputs. Each output vector consists of 22 bits and includes

values for output data (16 bits) and status signals (6 bits). Output data values are

represented in hexadecimal notation. The testbench is responsible for converting the

output data bits from the DUT into hexadecimal values and writing them into a file.

1 1   4 2 0   0 0 0 1   0 0 8 0   0 0 3 F   0 1   1 0 1 1

Address

Control
Signals

Input
Data Bits

Output Data
Bits

Status Signals

Reset

Clock

INPUT VECTOR OUTPUT VECTOR

Figure 3.2 A Sample Test Vector

The simulation scenario with test vectors is depicted in Figure 3.3. Input test

vectors were applied to the DUT and output result vectors were collected from the

DUT by a VHDL testbench. The testbench is responsible for applying input test

vectors and collecting output result vectors. The DUT is a gate level netlist of the

Reed Solomon coder that is obtained by synthesizing an RTL description provided
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by Texas Instruments. Synopsys Design Compiler [34] was used for RTL synthesis.

During simulation, vectors are read from files using the TEXTIO package. The TEX-

TIO package is provided by the VHDL IEEE standard logic library and provides

file input/output capabilities to VHDL models. The output vectors from the DUT

are written to a file and are compared with the expected results using a comparison

script written in Perl, shown in Appendix C. Test vectors and expected outputs were

provided by Texas Instruments. Both the testbench and the DUT are simulated on

the workstation as a single process. Testbenches of varying sizes, shown in Table 3.1,

are used to verify the functionality of the core.

DUTTest
Input

Vectors

Output

Vectors
Result

Expected
Results

Compare

Figure 3.3 Simulation Environment

Table 3.1 shows the time taken to simulate each RS coder testbench. These times

are reported by the simulator after the completion of each verification run. All runs

were performed on an unloaded Sun Ultra 60 workstation with a single UltraSparc-

II 360MHz CPU and 512MB of memory. The Affirma NC VHDL simulator from

Cadence was used for simulation. The times shown in Table 3.1 include the time

taken to send the test vectors to the DUT, the time taken by the DUT to process the

test vectors, and the time taken to receive the output result vectors from the DUT.

It does not include the time needed to compare the actual output with the expected

output. This time can be considered as a constant for a given testbench size.
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Testbench Number of vectors Time(sec)
T1 61714 50
T2 68066 55
T3 128270 113
T4 170594 126
T5 179804 134
T6 275262 211

Table 3.1 Time taken for simulation of various testbenches

3.3.3 Emulation

An Ikos VirtuaLogic VLE-2M IDS emulator was used as a second approach for

verification. Figure 3.4 shows the design flow used to perform verification using the

emulator. The first step in the flow defines the interface between the C model on

the host workstation and the DUT on the emulator. This involves designing the

protocol used by the emulator and the host workstation to exchange data. Since data

streaming is used, there is no need to use a pre-defined protocol. It is enough to specify

the format of the data being exchanged, and the bit widths of the communication

interface. The data format is similar to the test vector shown in Figure 3.2. Clock

information is not provided in the test vector for emulation. The clock generated by

the emulator is used for this purpose. The input vector is 33 bits long and the output

vector is 22 bits long. More implementation details are shown in Table 3.2. The

interface must be designed so that it minimizes the number of transactions between

the emulator and the host workstation. This ensures maximum performance. This

can be done by selecting proper input and output vector widths for the interface. The

most efficient transactions take place across a 512 bit (for a double edge positive and

negative clocked design) or 1024 bit (for a single edge clocked design) interface [25].
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Since data streaming was used, the number of transactions across the interface equals

the number of test vectors in the testbench.

Define the interface

Build RTL
transactor

Create top level
HDL wrapper

Build the C
interface

Run on TIPSIM

Run on emulator

Debug on emulator

Figure 3.4 TIP/Emulator design flow

Once the interface was established, the RTL transactor was written and tested.

The RTL transactor manages flow control into and out of the emulator environment.

For emulation of the RS coder, the standard data streaming transactor supplied

by Ikos Systems was used. Figure 3.5 shows the state diagram for the transactor.

Figure 3.6 shows how the transactor interfaces with the co-modeling macros and the

DUT.

The transactor is a two edge vector transactor. The transmit/receive operations

are performed on the positive edge of the clock and receive/transmit acknowledgement

is performed on the negative edge of the clock. There are four possible transactor

states: Idle, Active, Rcvwait and Txwait. When the reset co-modeling macro is called,
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the Idle state is asserted. From Idle, the next state is Active. Ultimately, the system

executes a complete receive/transmit cycle and returns to the Idle state. This can be

accomplished in a single cycle if both receive and transmit operations are successful.

Otherwise a wait state (Rcvwait or Txwait) is entered. If a wait state is reached, no

transfers can be completed until the Idle state is restored through the completion of

a receive or transmit cycle. For example, if only a receive is successful, the Txwait

state is entered and only when the transmit is successful (by assertion/de-assertion of

the handshaking signals by the co-modeling macros), the Idle state is restored. The

signals in avail and out done refer to the output handshaking signals from the input

and output co-modeling macros respectively. Figure 3.6 shows how these signals are

asserted and de-asserted by the transactor and co-modeling macros. The handshaking

process is explained in Section 2.3.2.

if (!in_avail)

(!out_done)
if (in_avail) &&
@(posedge clk)

@(negedge clk)

@(negedge clk)
if (out_done)

@(negedge clk)

IDLE

RCVWAIT TXWAIT

ACTIVE

if (out_done)
@(negedge clk)

(out_done)
if (!in_avail) &&
@(negedge clk)

if (!in_avail)

Figure 3.5 State Diagram for Vector RTL transactor
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After the RTL transactor was designed, a top level HDL netlist was created.

This netlist contains instantiations of the DUT, the RTL transactor and co-modeling

macros. The inputs to the DUT are wired to the outputs of the input co-modeling

macro and the outputs of the DUT are wired to the inputs of the output co-modeling

macro. Since data streaming was used, the DUT I/Os do not need to be routed

through the RTL transactor. The transactor must interface with the input and output

co-modeling macros to control the flow of data into and out of the DUT. Figure 3.6

shows how components are connected in the top level DUT netlist. The dashed lines

indicate the flow of the input and output vectors in the data streaming case.
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Figure 3.6 Top level HDL netlist block diagram [5]

The next step in the verification process was to create a C testbench to interact

with the co-modeling macros using TAPI function calls. These function calls are

provided by the C adaptor and are described in Section 2.3.3. It is not necessary

for the C adaptor and the C testbench to be two distinct components. They can
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be merged into the same piece of code if necessary. Design performance depends on

how the C testbench is implemented. As a general rule, file I/O operations should

be limited during the co-modeling run. If possible, the input test vectors should be

buffered into a memory array from disk before the co-modeling run starts and output

result vectors should be buffered into a memory array before the data is written to

disk.

TIPSIM [25], a tool which simulates the co-modeling interface and emulator using

a software simulator, was used to debug the transactor. Figure 3.7 shows how co-

modeling is implemented using TIPSIM modules in software. It is almost identical to

the TIP hardware system architecture diagram shown in Figure 2.1. In this case, the

emulator and its interfaces are simulated in software on a workstation. Transactions

between the user application and the simulated emulator interface are performed by

means of PLI calls to a separate simulator process from C, instead of direct calls to

drivers for a PCI card. TIPSIM facilitates rapid debug of the transactor since there

is no need to perform time consuming FPGA compiles for the emulator.

Following verification with TIPSIM, the design was compiled onto the emulator

using VSYN, the emulator system software. The compiler takes the input Verilog

netlists and partitions them amongst the FPGAs. The compiler then performs time

domain multiplexing of FPGA interconnect to overcome pin limitations [4]. The

result is a pipelined and multiplexed implementation of inter-FPGA signal paths. As

a final step, FPGA place and route is performed and configuration bitstreams are

created. The VSYN compiler requires the input netlist to be in the form of gate

level primitives belonging a special library called the Virtual Machine Works (VMW)

library. The VMW library was provided along with the emulation system software.
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Figure 3.7 Block diagram of TIPSIM interface

Design Compiler from Synopsys [34] was used to synthesize the design into a gate

level netlist using the library primitives. Table 3.2 shows the various implementation

details for the DUT.

Number of FPGAs (XC4036) 10
Emulator Speed 30 MHz
Design Speed 545 kHz
Input Vector Width 33 bits
Output Vector Width 22 bits

Table 3.2 DUT Implementation Details
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3.3.4 Memory Modeling

To allow for memory emulation, functionality of the memory module used in the

design netlist must be mapped to the physical memory available in the emulator.

The VirtuaLogic emulator used for this thesis contains 32 single-ported, 64K x 32

asynchronous memories per board with read/write enables controlled by adjacent

FPGAs. If the functionality of the design memories and the emulator memories do

not match, a wrapper netlist, which logically maps a design memory onto the emulator

memory, is required. The wrapper converts memory control signal sequencing so that

a more complicated memory can be emulated on a simpler one. Since the memories

used in the Reed Solomon coder were clocked, a one to one mapping between the

design memory and the emulator memory was not possible. This required the creation

of a wrapper netlist for the Reed Solomon memories.

In Figure 3.8, Mem1 is a memory that is used by the RS coder. The memory

has an address port (A), a write data port (D), a read data port (Q), two enable

signals (EZ and WZ) and a clock signal (CLK). Mem2 is a memory module that can

be converted by emulation software into a physical implementation on the emulator.

Mem2 is a single ported memory with read and write enable signals (REN and WEN),

an address port (ADR), and a data port (DATA).

An example wrapper implementation to perform signal conversion is shown be-

low. The complete wrapper code is shown in Appendix D.

// Assert WEN when EZ, WZ are low and CLK is high
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
WEN <= 1’b1;

else
WEN <= 1’b0;
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end

// Connect D to DATA when EZ, WZ are low and CLK is high
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
DATA <= D;

end

// Connect A to ADR when EZ, WZ are low and CLK is high
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
ADR <= A;

end

// Connect DATA to Q when EZ, WZ are low and CLK is high
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
Q <= DATA;
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end

Wrapper logic was added to the input and output ports of Mem2 to co-ordinate

data transfer based on signal values and time sequence. For example, Mem1 goes

into write mode when CLK is high, EZ is low and WZ is low. In such a case, the

write enable of Mem2 (WEN) must be asserted and the values on ports A and D of

Mem1 must be passed to ADR and DATA respectively. Eleven RS coder memories

were mapped onto the emulator in this manner.

3.3.5 Co-Modeling

Co-modeling runs were performed for the Reed Solomon coder testbenches shown

in Table 3.3. Results of these runs are shown in the table. Emulation times in column

3 and 4 include the time taken to send all input test vectors to the DUT, the time

taken by the DUT to process the input vectors, and the time taken to receive the

output result vectors from the DUT. These results do not include the setup time

for the emulator or time required to download the DUT onto the FPGAs. The time

needed to compare the test vectors with the expected output was measured separately

and was determined to be between 3 to 4 seconds. All times were measured using

the time() function calls available in the standard C library. It can be seen that

emulation is about 100 times faster than software simulation on average. All tests

were conducted on a Sun Ultra 60 workstation with a single UltraSparc-II 360 MHz

CPU and 512MB of memory. Although the emulator runs several orders of magnitude

faster than the simulator, data I/O through the TAPI interface can be a limiting

factor. This issue is explored in more detail in Chapter 4.
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Testbench Number Emulation Emulation Simulation
of vectors (sec) + buffering(sec) (sec)

T1 61714 9.627 0.499 50
T2 68066 10.756 0.538 55
T3 128270 20.375 1.022 113
T4 170594 27.014 1.34 126
T5 179804 27.74 1.41 134
T6 275262 42.93 2.15 211

Table 3.3 Times taken for emulation without and with buffering

Most of the co-modeling run time on the emulator was spent reading vectors from

the input vector file on the workstation and writing received vectors from the DUT

into an output file on the workstation. When the code was profiled (using gprof) and

executed, it was revealed that 90% of the execution time was spent in the routines

that perform file I/O. The user application was subsequently modified to buffer the

entire set of test vectors into an array before sending them to the DUT. Similarly,

the output vectors from the DUT were buffered into an array and written into a file

at the end of the co-modeling run. As shown in Table 3.3, vector buffering improves

emulation performance by about a factor of 20 versus an unbuffered approach.

3.4 SoC Implementation

3.4.1 Overview

In order to test the SystemC-emulator co-modeling interface, a communication

system model was created. Figure 3.9 shows a block diagram of the system. Reed

Solomon codes [1] can be combined with convolutional codes (such as Viterbi [2]) to
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form a communication system. In a convolutional code, the outputs for a particular

time unit not only depend on the set of inputs received during that time unit, but also

on the set of inputs received during a previous time span. Convolutional codes can

correct both random bit errors and burst errors. A burst error is a continuous group

of random bit errors occuring intermittently in a data bitstream. In this communica-

tion system, if the error correcting capability of the Viterbi decoder is exceeded, the

decoder output can contain a series of burst errors. Reed Solomon codes are used to

correct these errors.

Encoding in our system is performed by passing the source data through a Reed

Solomon encoder [20] followed by a Viterbi encoder [15]. The Reed Solomon encoder

takes a block of data symbols and appends a set of parity symbols. Reed Solomon

codes operate on blocks of data bits, while the Viterbi encoder/decoder operates on

a stream of data bits. An interleaver [17] is used to convert the output data from

the Reed Solomon encoder (which is in blocks) to a stream of data bits which can

be sent to the Viterbi encoder. Decoding is performed by passing the data bitstream

through a Viterbi decoder [15] followed by a Reed Solomon decoder [20]. The Reed

Solomon decoder uses the parity symbols added by the Reed Solomon encoder to

correct errors in the received data block. A de-interleaver [17] is used to convert the

data from a stream of bits into a block format which is suitable for the Reed Solomon

decoder. To simulate noise, additive white Gaussian noise (AWGN) is assumed for

the communication channel.

The concatenated communication system offers a low bit error rate (BER) which

is desirable for many communication applications. One specification of this system

is the Consultive Committee for Space Data Systems (CCSDS) [13] recommendation
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Figure 3.9 Block diagram of the CCSDS system

which uses a (255,223) Reed Solomon code and a convolutional code of rate R = 1/2

and a constraint length of K = 6. This specification has been adopted for use by

numerous planetary spacecraft such as NASA’s Cassini spacecraft to Saturn [17]. An

(n, k) RS code indicates that the encoder takes k data symbols and adds (n−k) parity

symbols to get n codeword symbols. For example, a (255,223) RS code would take

223 data symbols and add 32 parity symbols to get a codeword of 255 symbols. The

rate of the code is the number of output bits that are generated for each input bit.

A rate of 1/2 implies that for each input bit, 2 output bits are generated. Constraint

length refers to the number of times each input bit has an impact on the output bit.

In this case, K = 6 implies that each input bit impacts the value of each subsequent

output bit 6 times.

The implementation of the concatenated coding system uses a new feature of

SystemC 1.2Beta called the master-slave communication library [26]. A brief intro-

duction is presented in the following section.
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3.4.2 The SystemC Master-Slave Communication Library

The master-slave communication library can be used to describe systems that

use bus communication protocols. Systems that contain DSPs, custom ASIC cores

and processor cores communicating over a set of buses are particularly well-suited

to this library. The library introduces semantics for sequential execution and com-

munication between processes (the semantics are described later in this section),

which supports the functional modeling of software-software, software-hardware and

hardware-hardware interfaces. Using this library, systems can be modeled as an in-

terconnection of sequentially communicating functional blocks. As a result, a system

can be described in software at the following levels of abstraction.

• Untimed functional level (UTF)

This level is used to create an executable specification of the system. The

system is decomposed into functional modules that communicate over abstract

channels in a sequential nature. At this level, data transactions and execution

order are modeled accurately, but time is not. All processes execute in zero

time but in a well-defined order. The UTF level is primarily used for design

exploration and allows for rapid execution.

• Timed functional level (TF)

When modeling at the timed functional level, component functionality is as-

signed a fixed runtime which is measured in absolute time units. Time speci-

fication is performed in SystemC by the use of wait(delay) statements, where

delay represents a system constraint on the execution time of a module or a

time budget. This level is primarily used for performance modeling, hardware-
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software partitioning and resource allocation since it can be integrated into

higher levels of abstraction. The modeled system is not clocked. Inter compo-

nent communication remains unchanged from the untimed functional level.

DATA
PROCESS 1 PROCESS 2

ENABLE

(a)

clk clk

(b)

DATA

REQUEST

PROCESS 1 PROCESS 2

ACKNOWLEDGE

clk clk

Figure 3.10 (a) Full handshake protocol and (b) Enable handshake protocol

• Bus-cycle accurate level (BCA)

The bus cycle accurate level involves refining synchronous inter-component in-

teraction with respect to bus protocols. Component functionality is modeled

at the timed functional level. Abstract ports at the UTF and TF levels are

implemented as protocol-based bus ports. A bus port is a hierarchical entity

that groups together specific terminals for data, address and control signaling

for a bus protocol. SystemC implements three bus protocols - no handshake,
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enable handshake and full handshake. Figure 3.10(a) shows the terminals of

the full handshake protocol.

The data transfer cycle for full handshake proceeds as follows for two software

processes. Process 1 asserts REQUEST and sends the data to Process 2 via the

DATA signals. When Process 2 receives the data, it asserts the ACKNOWL-

EDGE signal. This cycle is repeated for the next data item that has to be

transferred. The handshaking process is synchronous with respect to a system

clock that is given to both processes. Figure 3.10(b) shows the terminals of

the enable handshake protocol. Each data transfer cycle is preceeded by the

assertion of the ENABLE signal. There is no acknowledgement sent back by

Process 2.

• Cycle accurate level (CA)

The lowest level of abstraction is the cycle accurate level (CA) in which com-

ponent functionality as well as inter-component interaction is synchronously

co-ordinated with respect to a system clock. This level can be synthesized to

the gate level using SystemC synthesis tools.

The master-slave communication model enables systems to be described at var-

ious levels of abstraction since it separates module behavior from inter-module com-

munication. This abstraction enables independent refinement of module functionality

and communication. Verification modules can be swapped out and replaced with mod-

ules described at different levels of abstraction. Communication between modules can

be refined without affecting the processing modules themselves. For example, it is

possible to specify an abstract communication model at the UTF level and refine it

to a FIFO communication link or a bus communication link at the BCA level.
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The SystemC master-slave communication library is used to describe inter-

component communication at the different levels of abstraction described above. At

the UTF and TF levels, functional communication can be described using abstract

ports. An example of abstract port implementation is shown in Figure 3.11. At the

BCA and CA levels, these ports are augmented to be protocol-based bus ports. An

example is shown in Figure 3.12. Each port is described in the next paragraph via

an example.

MASTER

PROCESS

SLAVE

PROCESS

P1 P2

sc_inslave portsc_outmaster port

sc_link_mp

Figure 3.11 Master-Slave communication model for UTF and TF levels
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PROCESS
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sc_outmaster port sc_inslave port

DATA

REQUEST

ACKNOWLEDGE

Figure 3.12 Master-Slave communication model for BCA and CA levels with a full
handshake protocol
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In Figures 3.11 and 3.12, P1 and P2 are two processes which can be in different

modules. One of the processes is a master process (P1) and the other process is a slave

process (P2). The slave process has a SystemC port defined by the keyword sc inslave.

The master process has a SystemC port defined by the keyword sc outmaster. These

two ports are linked by a channel which is defined by the SystemC keyword sc link mp.

These three keywords are provided by the master-slave communication library to

faciliate communication between processes. The master process can invoke the slave

process by writing a value to its outmaster port. The slave process begins execution

when it receives the value at its inslave port. The slave process executes inline with

the master process and returns control to the master process after execution. For the

BCA and CA implementations, these ports are augmented with handshaking signals

shown in Figure 3.12.

3.4.3 Concatenated Coding System Implementation

The communication system described in Section 3.4.1 was implemented as a co-

modeling application using both simulation technology and the VirtuaLogic emulator.

The Reed Solomon encoder/decoder was implemented on the emulator. Interleaving

and de-interleaving was performed using SystemC models. The Viterbi portion of

the system, obtained from [15], was implemented as a C model. The interleaver,

de-interleaver and Viterbi portions of the system were run on the host workstation

as thread processes which communicate with each other via shared memory. A block

diagram of the system is shown in Figure 3.13.

A (128,122) RS code was used since the Reed Solomon core does not support

the (255,223) code specified by the CCSDS standard. Each component of the sys-
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Figure 3.13 Concatenated coding system

tem is represented by a module. In Figure 3.14, RS Encoder, Interleaver, Viterbi

Encoder, RS Decoder, De-Interleaver and Viterbi Decoder are the modules of the

system. SystemC code for the interleaver and de-interleaver is shown in Appendix

B. Modules consist of a number of processes that implement module functionality.

For example, the RS Encoder module has two SystemC processes, emu setup() and

rs encode() which are responsible for setting up the emulator and performing Reed

Solomon encoding respectively. A summary of the modules and their processes is

presented in Table 3.4. Communication between the modules is performed via the

SystemC master-slave communication library described in Section 3.4.2. Figure 3.14

shows how the master-slave communication model can be applied to the concatenated

coding system. The grey boxes indicate master ports and the clear boxes indicate

slave ports. The Viterbi module requires a SystemC wrapper which adds the ports

required for master slave communication. The SystemC wrapper is shown below.

#include "systemc.h"
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SC_MODULE(viterbi)
{

// Ports added for master-slave communication with interleaver
// and de-interleaver

sc_inslave<int> from_int_ctrl; // Slave port from interleaver
sc_inslave<sc_bv<2> > from_int_data; // Slave port from interleaver
sc_outmaster<sc_bv<2> > to_deint_data; // Master port to de-interleaver
sc_outmaster<int> to_deint_ctrl; // Master port to de-interleaver

// Variables local to the Viterbi module

int quantizer_table[256];
int *channel_output_matrix;

// Functions implementing Viterbi encoding and decoding

void init_quantizer(void)
void init_adaptive_quant(float es_ovr_n0)
int soft_met(int data, int guess)
void code(long input_len,int *in_array,int *out_array)
float gngauss(float mean, float sigma)
void initialise()
void vitdec(int ip1,int ip2,int *out, int flag1)
void start_all()

SC_CTOR(viterbi)
{

// store_data and start_all are slave processes activated by
// the interleaver
SC_SLAVE(store_data,from_int_data);
SC_SLAVE(start_all,from_int_ctrl);

}
};

The system operates as follows:

1. The emulator is set up and the design is downloaded to the emulator by calling

the emu setup() process on the RS Encoder module. This process is called only

once at the start of the session.
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Module Processes
RS Encoder emu setup(), rs encode()
RS Decoder emu close(), rs decode()
Interleaver load data(), read data()

De-Interleaver store data(), send data()
Viterbi Encoder store data(), encode()
Viterbi Decoder decode()

Table 3.4 CCSDS system module summary

2. Test vectors stored on the host workstation are applied to the RS encoder (on

the emulator) by the rs encode() process. This process also collects the output

vectors from the RS encoder and extracts the encoded codewords.

2.1 Once the encoded codewords have been obtained, they are sent to the

interleaver module via the data bus. The process load data() collects the

data when it is sent by rs encode(). Load data() is a slave process of

rs encode().

2.2 When all the codewords have been sent, a signal is sent by rs encode() to

the interleaver on the control bus. When the interleaver receives this signal,

the read data() process is called. This process performs the interleaving

operation and sends the resulting bitstream to the Viterbi module through

the data bus. When all the data has been sent read data() sends a signal

to the control bus to start Viterbi encoding.

3. The Viterbi encoder module has a slave process, store data() which collects the

interleaved bitstream sent by read data(). When the module receives the control

signal from the interleaver, the bitstream is encoded by the encode() process.

53



Noise

AWGN
Channel

outmaster port

ctrl

datadata

ctrl

data

ctrl

data

ctrl

inslave port

RS Encoder

RS Decoder

Interleaver

De-
Interleaver

Viterbi
Encoder

Viterbi
Decoder

store_data()

store_data()

send_data()

emu_setup()

rs_encode()

rs_decode()

emu_close()

load_data()

read_data()

decode()

encode()

Figure 3.14 Untimed concatenated coding system with master-slave communication

4. Noise is added to the encoded bitstream and the resulting signals are sent to

the Viterbi decoder module. The decode() process in this module decodes the

bitstream and writes the data to be sent to the deinterleaver module to the out-

put data bus. After the data has been sent to the deinterleaver module, a signal

is sent on the control bus indicating that the deinterleaver should commence

operation.

5. The deinterleaver module has a process, store data(), which receives and stores

the data sent by the Viterbi decoder module. When the control signal from the

Viterbi decoder module is received, the send data() process is invoked. This

process de-interleaves the bitstream and sends the codewords to the RS decoder

module through a data bus. After all the codewords have been sent, a signal

is sent on the control bus to indicate to the RS decoder module that it can

commence operation.
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6. The rs decode() process in the RS decoder module sends the codewords to the

RS Decoder core on the emulator. When the decoding is complete, another

run can commence, or the emulator can be shut down (using the emu close()

process)

Once started, the system runs in a sequential manner with point to point com-

munication between the modules. The communication path between modules has

been separated into two buses - one each for data and control. Each communication

sequence commences with data transmission, followed by the assertion of a control

signal which indicates that the module operation can commence. Most of the system

is modeled at the untimed functional level with the exception of the RS coder, which

is cycle accurate. This model is primarily useful for design exploration.

This system setup offers considerable performance gains over a similar setup

implemented completely in software. To explore the performance benefits, a software

version of the concatenated coding system was created with the emulated design

replaced by a simulated version. The same gate level version of the RS coder was

run on both the simulator and emulator. Data was exchanged between the SystemC

models and the simulator using TIPSIM (described in Section 3.3.3). The system

is similar to the one shown in Figure 3.7. Single value transactions were performed

with the emulator. A total of 32500 vectors were sent to the emulator and 32500

vectors were received. The emulator based implementation showed a speedup of 2.3

over the simulator based implementation. The times taken for a single run are shown

in Table 3.5.

Further analysis of the results revealed that 16.4 seconds of the total system run

time (43 seconds) was spent performing tasks related to the emulator. Out of this
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Emulator(sec) Simulator(sec)
CCSDS 43 93

Table 3.5 Times taken for emulator and simulator based implementations of CCSDS

time, 14 seconds was spent configuring the emulator and downloading the DUT onto

the FPGAs. This indicates that 6% of the total system run time was spent in data

transfer between the emulator and the host workstation. The software portion of the

system was the limiting factor for verification performance.
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C H A P T E R 4

TESTBENCH INTEGRATION

4.1 Performance Benefits

In spite of the performance improvement that TIP offers, the communication

interface limits verification performance. Most verification time is spent in input

and output test vector transfer with the DUT. If test vectors could be stored on the

emulator and applied to the DUT, the need for the host workstation to send test

vectors through the communication interface to the DUT could be eliminated. In

this model, the software simply acts as a testbench controller which decides when to

initiate and terminate the test.

An attractive option is to self contain the testbench on the emulator. Both

the input test vectors and expected output vectors are stored in emulation memory.

Each test vector is applied to the DUT inputs and the DUT outputs are compared

with expected vectors. The comparison is also performed on the emulator. Once

all test vectors have been applied and tested, a pass/fail result is sent to the host

workstation. This scheme is efficient since only two vectors are sent through the

co-modeling interface rather than an input and result for each vector. One vector

is sent by the host workstation to the emulator initiating the test process and one

vector is sent by the emulator to the host workstation containing a pass/fail result.

Implementation details and performance issues are discussed in the following sections.
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4.2 Architecture

Figure 4.1 shows the architecture of the system which includes the integrated

testbench. The testbench of the DUT is partitioned into two portions. One portion

contains the input test vectors and the other portion contains the expected output

vectors. Each portion is stored on the emulator in a test vector memory (TVM). The

host workstation controls the test process. Once the initiate test signal is asserted,

the test vectors in the input test vector memory are applied to the inputs of the

DUT at discrete clock edges. When each test vector is applied, the DUT outputs are

bitwise compared with the corresponding vector in the output test vector memory.

A pass/fail result for the entire set of test vectors is generated and sent back to the

host workstation.

Host Workstation

initiate_test

PHYSICAL CHANNEL

Logic Emulator

controller

test bench

compare

TVM

Output

Input

TVM

DUT

Primary

Primary
Input

Outputpass/fail result

Figure 4.1 Testbench Integration

4.2.1 DUT Modifications

In order for the above approach to work, the DUT architecture had to be mod-

ified. A positive edge triggered counter for memory address generation was added

to the netlist. The input TVM data corresponding to each address was applied to
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the inputs of the DUT at every positive clock edge. The outputs of the DUT are

compared to the contents of the output TVM corresponding to the same address.

The result of each comparison was logically ANDed with previous comparisons to

generate a cumulative pass/fail result for the entire set of test vectors. Only when

all the vectors match the expected output was a pass result generated. When the

counter completed generating all valid memory addresses, the cumulative pass/fail

result along with a count of the number of test vectors applied were sent back to the

host workstation through a single transaction. Figure 4.2 shows a block diagram of

the address generation, checking and interface logic. IN OK and OUT VAL are syn-

chronization signals generated by the counter. Their function is explained in Section

4.2.2. RTL code for the top level DUT is shown in Appendix A.

4.2.2 RTL Transactor

The standard data streaming RTL transactor supplied by Ikos (shown in Fig-

ure 3.5) is not suitable for test vector migration since it expects one input vector

for every output vector sent by the DUT. Our experiment required a transactor that

sends one vector to the DUT, waits for a certain amount of time until the counter

has generated all valid memory addresses, and then returns the output vector which

contains the pass/fail result. Figure 4.3 shows the changes made to the existing trans-

actor (shown in Figure 2.2) to achieve this behavior and the interaction with the DUT

architecture shown in Figure 4.2.

Two synchronization signals IN OK and OUT VAL were added to the top level

DUT wrapper. When the DUT wrapper receives the initiate test signal from the

host workstation, IN OK and OUT VAL are set to ’1’ and ’0’ respectively. When the
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Figure 4.2 DUT architecture modifications

counter has generated all valid memory addresses, the values of the two signals are

inverted. Two events must happen for co-modeling to proceed properly. First, the

clock to the DUT must be enabled after the first transaction (i.e. the initiate test

signal) has been received. This is accomplished by logically ORing the enable signal

of the RTL transactor with the IN OK signal. The controlled clock will continue to

clock the DUT as long as IN OK is high. When the controlled clock is active, the

counter generates memory addresses, the contents of the input TVM are applied to

the DUT inputs, and the outputs of the DUT are compared with the output TVM

contents, at every positive clock edge.
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Second, the transactor must inform the output co-modeling macro when the

comparision result is ready. This happens when the counter has generated all valid

memory addresses. The newdata output of the transactor is logically ANDed with

the OUT VAL signal from the DUT. The output of the AND gate is connected to

the out avail input of the output co-modeling macro. When out avail goes high, the

output co-modeling macro will accept data from the DUT wrapper and send it to

the host workstation. OUT VAL goes high when the counter has generated all valid

memory addresses. This results in the pass/fail result and the transfer of the vector

count to the host workstation.
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The following C code demonstrates how the testbench on the host workstation

inititates the testing process and receives the pass/fail result. In the code,WriteDVV

is the data structure that contains the value of the vector (in this case the initiate test

signal) which needs to be sent to the DUT on the emulator. ReadDVV is the data

structure that contains the value of the vector sent back by the DUT on the emulator

(the pass/fail result and the vector count).

// Send the initiate_test signal to the emulator
tapiDVV_setWord(WriteDVV,0,1,&RC);
tapiCOMI1_write(myCOMI, WriteDVV, &RC);

// Check the return code to ensure that the operation
// completed successfully
checkRC(&RC);

// Store the data value sent into a file
print_data_to_writefile(file1, WriteDVV, write_width);

// Wait for a read event from the emulator
// If it is a read event, store the data value sent by
// the emulator in ReadDVV and write it to a file

event = tapiCOMI1_Wait(myCOMI,&RC);
if (RC.type == tapiRC_OK)

{
if (event & tapiCOMI1_DataReadable)

{
printf("\n Read event received.....");
tapiCOMI1_read(myCOMI, ReadDVV, &RC);
checkRC(&RC);
print_data_to_readfile(file2, ReadDVV, read_width);

}
}

else
{
printf("Error: RC type not OK.’’);

}
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4.3 Emulator Implementation

The above approach was implemented with the Reed Solomon coder DUT for

varying testbench sizes. Table 4.1 shows the results obtained. Time was measured

using time() function calls found in the standard C library. The numbers in the last

column represent the time taken to process all vectors when the testbench is stored in

emulation memory. Columns 3 and 4 represents the time taken when the testbench is

stored on the host workstation. Column 3 represents the time to send and receive the

test vectors. Column 4 represents the time to compare the received vectors with the

expected outputs on the host workstation. The vectors were buffered before being sent

to the emulator. It can be seen that the verification performance when the testbench

is migrated onto the emulator is 5000 times faster on the average, than when the

testbench is kept on the host workstation. This significant performance improvement

is obtained since the overhead of sending the test vectors through the communication

interface is absent. The numbers in the last column are not linear with the testbench

size. Each hardware design which includes vectors requires recompilation before being

implemented on the emulator. The compiler assigns different emulation speeds to each

of the test cases.

The number of test vectors that can be stored on the emulator depends on the

amount of free memory available on the emulator. The largest testbench, T6, did

not fit on the emulator due to a lack of memory on the two array boards. Testbench

migration also increases the amount of time needed to configure the FPGAs on the

array board by a few seconds since the test vectors have to be stored on the emulator.

63



Testbench Number of vectors Workstation(sec) Emulator(usec)
Verification Comparison

T1 61714 0.499 1.4 795
T2 68066 0.538 1.6 612
T3 128270 1.022 2.65 621
T4 170594 1.34 3.45 706
T5 179804 1.41 3.65 791
T6 275262 2.15 5.55 -

Table 4.1 Times taken for emulation with the testbench on the host workstation
and the emulator
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C H A P T E R 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

There is an urgent need for the EDA industry to meet the verification require-

ments of SoC design teams. While the industry has delivered verification performance

in the form of emulation and rapid prototyping systems, the challenge of integration

with SoC modeling environments remains unmet.

This thesis presents a methodology for interfacing SystemC with an Ikos emula-

tor. It utilizes the master-slave communication library of SystemC for inter-module

communication in software and the Transaction Interface Portal (TIP) for software-

emulator communication. A communication system was created with components

modeled in C, SystemC and VHDL. A co-modeling application was run to demon-

strate the capability of the SystemC-emulator interface to model the interaction be-

tween various SoC components. The modeling environment was primarily imple-

mented at the untimed functional level and is a useful tool for design exploration.

The emulation-based system was shown to be 2.3 times faster than a similar system

implemented completely in software. The performance of the software implementa-

tion is limited by the PLI based mechanism used to exchange data between C and

HDL domains.
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This work also demonstrates the high performance that logic emulators offer over

software based simulators. Logic emulation was shown to be about 100 times faster

than software simulation when verifying the functionality of the Reed Solomon coder.

For many industry ASICs, testbenches include millions of vectors. In such cases,

logic emulation is an attractive alternative to software simulation. In this thesis, it

is shown that significant improvements in verification time can be achieved by using

software techniques such as vector buffering.

In spite of the high performance that can be obtained through co-modeling, data

transfer through the co-modeling interface is the limiting factor for verification perfor-

mance. A technique to improve verification speed by migrating the testbench onto the

emulator was presented in Chapter 4. By storing the input test vectors and expected

output vectors in memories on the emulator, we eliminated the need to send test

vectors through the co-modeling interface. This translates into a substantial speed

up in verification performance (5000X), at a cost of increased emulator configuration

time due to an increase in downloaded data.

5.2 Future Work

In the communication system described in Section 3.4.3, it would be desirable to

refine the SystemC portions of the model to a cycle accurate level using a SystemC

synthesis tool such as [35] and implement it on the emulator. The implementation

of the testbench migration technique described in Section 4.2.1 is DUT specific and

will have to be re-implemented for different DUTs. It would be ideal to obtain a

generic implementation which could then be “added on” as a module to any given
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DUT. It would also be worthwhile to investigate the feasibility of implementing this

functionality within the compiler itself.
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A P P E N D I X A

The following code is the RTL for the top level DUT netlist described in Section

4.2.1). It contains instantiations of the the RS coder, and the testbench migration

circuitry (counter, input TVM and output TVM).

-- Standard library includes

library ieee;
use ieee.std_logic_1164.all;
use work.std_logic_arith.all;
use work.std_logic_unsigned.all;
use work.copro_header.all;

-- Top level DUT entity. This is the entity that is connected to the RTL
-- transactor (Figure 4.3)

entity top_mem is
port

(
clk : in std_logic; -- clock input
init : in std_logic; -- initiate_test signal
load : in std_logic; -- enable signal for memories
result : out std_logic; -- cumulative pass/fail result
vec : out std_logic_vector(18 downto 0); -- test vector count
IN_OK : out std_logic; -- synchronization signal
OUT_VAL : out std_logic -- synchronization signal

);
end top_mem;

architecture structural of top_mem is

-- Reed Solomon coder core

component rs_coder
port

(
clk : in std_logic;
i1 : in std_logic;
i2 : in std_logic_vector( 10 downto 0 );
i3 : in std_logic;
i4 : in std_logic;
i5 : in std_logic_vector( 4 downto 0 );
i6 : in std_logic; -- 0 write - 1 read
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i7 : in std_logic_vector( 15 downto 0 );
o1 : out std_logic_vector( 15 downto 0 );
o2 : out std_logic_vector( 1 downto 0 );
o3 : out std_logic;
o4 : out std_logic;
o5 : out std_logic;
o6 : out std_logic
);

end component;

-- This is the input TVM (Figure 4.3)

component test_ram
port

(
readwr : in std_logic; -- enable signal
load : in std_logic; -- dummy port
address : in std_logic_vector(18 downto 0); -- address port
data_out : out std_logic_vector(35 downto 0) -- data port

);
end component;

-- This is the output TVM (Figure 4.3)

component check_ram
port

(
readwr : in std_logic; -- enable signal
load : in std_logic; -- dummy port
address : in std_logic_vector(18 downto 0); -- address port
out_vector : out std_logic_vector(21 downto 0) -- data port

);
end component;

-- Signals to connect to the ports

-- input TVM data port signal
signal data_bits : std_logic_vector(35 downto 0);
-- counter output
signal count_out : std_logic_vector(18 downto 0);
-- RS Coder output signals
signal data_out : std_logic_vector(15 downto 0);
signal data_out_size : std_logic_vector(1 downto 0);
signal enc_complete : std_logic;
signal dec_complete : std_logic;
signal ready : std_logic;
signal data_valid : std_logic;
-- output TVM data port signal
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signal out_vector : std_logic_vector(21 downto 0);
-- concatenated RS Coder output signal
signal compare_vec : std_logic_vector(21 downto 0);
-- Memory enable
signal readwr : std_logic;

begin

-- This process will reset the counter to zero at the start
-- of the co-modeling session, and will start incrementing
-- at every positive edge of the clock. The range of memory
-- addresses generated depends on the testbench size
-- It has been hardcoded here to 275262

process
begin
wait until (clk’event and clk=’1’);
count_out <= "0000000000000000000";
while (count_out < "1000011001100111110") loop

count_out <= count_out + ’1’;
wait until (clk’event and clk=’1’);

end loop;
end process;

-- This process will be invoked whenever the output of the
-- counter changes. It will set values for the synchronization
-- signals (IN_OK, OUT_VAL), memory enable (readwr), pass/fail
-- result (result) and the output vector count (vec) depending
-- on the state of the counter output.

combine : process(count_out)
variable temp_result : std_logic;
variable comp_result : std_logic;

begin

-- If the counter output is zero, IN_OK and OUT_VAL are set
-- to 1 and 0 respectively. Memory is enabled (readwr=1)
-- and the output vector count is set to zero.

if (count_out = "0000000000000000000") then
temp_result := ’1’;
IN_OK <= ’1’;
OUT_VAL <= ’0’;
readwr <= ’1’;
result <= temp_result;
vec <= "0000000000000000000";

-- If the counter address is still valid (less than the
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-- testbench size), concatenate the outputs of the RS coder,
-- and compare them with the contents of the output TVM
-- AND the comparison result with the previous result.

elsif (count_out < "1000011001100111101") then
compare_vec <= data_out(15 downto 0) & data_out_size(1 downto 0)
& ready & data_valid & enc_complete & dec_complete;
if (compare_vec = out_vector) then

comp_result := ’1’;
else

comp_result := ’0’;
end if;
temp_result := temp_result and comp_result;
result <= temp_result;
vec <= "0000000000000000000";
IN_OK <= ’1’;
OUT_VAL <= ’0’;
readwr <= ’1’;

-- Counter has generated all valid memory addresses. Complement
-- the synchronization signals, de-assert the memory enable
-- and sent the vector count and pass/fail result to the RTL
-- transactor

else
readwr <= ’0’;
IN_OK <= ’0’;
OUT_VAL <= ’1’;
result <= temp_result;
vec <= count_out;

end if;
end process;

-- Instantiations of Input TVM, Output TVM and the Reed Solomon
-- Coder. Bit ranges of the input TVM data port (data_bits) are
-- assigned to the inputs of the RS Coder

S1:TEST_RAM port map(readwr,load,count_out,data_bits);
S2:CHECK_RAM port map(readwr,load,count_out,out_vector);
S3:RS_CODER port map(clk,data_bits(35),data_bits(34 downto 24),

data_bits(23),data_bits(22),data_bits(21 downto 17),data_bits(16),
data_bits(15 downto 0),data_out,data_out_size,ready,data_valid,
enc_complete,dec_complete);

end structural;
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A P P E N D I X B

The following code shows SystemC implementations of the interleaver and de-

interleaver modules used in the communication system described in Section 3.4.3.

#include "systemc.h"

// Interleaver implementation

SC_MODULE(interleaver)
{
// Ports of the interleaver

sc_outmaster<sc_bv<2> > to_viterbi_data; // Data bus to Viterbi
sc_outmaster<int> to_viterbi_ctrl; // Control bus to Viterbi
sc_inslave<sc_bv<8> > from_rscoder_data; // Data bus from RS Coder
sc_inslave<int> from_rscoder_ctrl; // Control bus from RS Coder

sc_bv<8> ram[2][128]; // Interleaver memory
sc_uint<8> temp_integer;
sc_bv<8> tempval,tempval1;
sc_bv<2> outreg;
int i,j,k,l;

// This function accepts data from the RS Coder module and stores
// it in the interleaver memory. It is a slave process of the
// RS Coder module

void load_data()
{
temp_integer=from_rscoder_data;
ram[i][j]=temp_integer;
j++;
if(j>127)

{
j=0;
i++;

}
}

// This function performs the interleaving operation. Interleaving
// commences when the RS coder module asserts its control bus.
// Contents of the interleaver memory are read out column wise and
// sent to the Viterbi module on the data bus. Once all the data
// has been sent, the control bus is asserted to indicate that the
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// Viterbi module can start executing.

void read_data()
{
cout<<endl<<"Interleaver module activated...."<<endl;

for(l=0;l<128;l++)
{
tempval=ram[1][l];
tempval1=ram[0][l];
for(k=7;k>=0;k--)

{
outreg=(tempval[k],tempval1[k]);
to_viterbi_data = outreg;

}
}

// Now that the data has been sent, start the Viterbi process
cout<<endl<<"Activating Viterbi module...."<<endl;
to_viterbi_ctrl = 1;

}

// Module constructor. Defines process types and initializes module
// variables

SC_CTOR(interleaver)
{
// Define slave processes load_data() and read_data()
SC_SLAVE(load_data,from_rscoder_data);
SC_SLAVE(read_data,from_rscoder_ctrl);

i=j=l=k=0;
}

};

// De-interleaver implementation

#include "systemc.h"

SC_MODULE(deinterleaver)
{
// Ports of the deinterleaver

sc_inslave<sc_bv<2> > from_vit_data; // Data bus from Viterbi
sc_inslave<int> from_vit_ctrl; // Control bus from Viterbi
sc_outmaster<sc_bv<8> > to_rsdecoder_data; // Data bus to RS Coder
sc_outmaster<int> to_rsdecoder_ctrl; // Control bus to RS Coder
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sc_bit ram[2][128*8]; // De-interleaver memory
int i;

// This function performs the de-interleaving operation.
// Contents of the de-interleaver memory are read out row wise and
// sent to the RS decoder module on the data bus. Once all the data
// has been sent, the control bus is asserted to indicate that the
// RS decoder module can start executing.

void send_data()
{
sc_bv<8> temp_reg;
int i,j,k;

i=j=0;
k=7;

cout<<endl<<"Sending data to RS Decoder...."<<endl;
for(i=0;i<2;i++)

{
for(j=0;j<128*8;j++)

{
temp_reg[k]=ram[i][j];
k--;
if (k<0)

{
to_rsdecoder_data=temp_reg;
k=7;

}
}

}

// Data to decoder has been sent. Run the decoder
to_rsdecoder_ctrl=1;

}

// This function accepts data from the Viterbi module and stores
// it in the de-interleaver memory. It is a slave process of the
// Viterbi module

void store_data()
{
sc_bv<2> tempvar;
tempvar=from_vit_data;
ram[1][i]=tempvar[0];
ram[0][i]=tempvar[1];
i++;
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}

// Module constructor. Defines process types and initializes module
// variables

SC_CTOR(deinterleaver)
{

// Define slave processes send_data() and store_data()
SC_SLAVE(send_data,from_vit_ctrl);
SC_SLAVE(store_data,from_vit_data);

i=0;
}

};
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A P P E N D I X C

This appendix contains two Perl scripts used in Section 3.3.2 and 3.3.3 to parse

the test vectors and generate input and output vector files for use on the emulator.

The Perl script shown below processes the testbench file used for RTL simulation into

a format suitable for use by the emulator.

# Perl script to parse the RTL simulation testbench and generate
# input and output vector files for use by TIP on the emulator

open(INPUT,"encoder"); # input testbench
open(OUTPUT,">input.vectors"); # input test vector file
open(OUTPUT1,">output.vectors"); # output test vector file

# This routine takes each line of the testbench and splits it into
# tokens using space as the delimiter.

while(!eof(INPUT))
{

@tokens=split(/ /,<INPUT>);

@decode="";
@decode1="";
@addr="";
@t1="";

# This portion separates the clock and reset signals
# Discards the clock signal and writes the reset signal
# to an array which is eventually written to the output file

@t1=split(//,$tokens[0]);
push(@decode1,pop(@t1));

@addr=split(//,$tokens[1]);

# This loop decodes the 3 character hex encoded address field
# into a 11 bit binary address field

for ($i=0;$i<3;$i++)
{
$dummy=shift(@addr);

if($dummy eq "0")
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{
if ($i==0) { push(@decode1,"000");}
else { push(@decode,"0000");}

}
if($dummy eq "1")
{

if ($i==0) { push(@decode1,"001");}
else { push(@decode,"0001");}

}
if($dummy eq "2")
{

if ($i==0) { push(@decode1,"010");}
else { push(@decode,"0010");}

}
if($dummy eq "3")
{

if ($i==0) { push(@decode1,"011");}
else { push(@decode,"0011");}

}
if($dummy eq "4")
{

if ($i==0) { push(@decode1,"100");}
else { push(@decode,"0100");}

}
if($dummy eq "5")
{

if ($i==0) { push(@decode1,"101");}
else { push(@decode,"0101");}

}
if($dummy eq "6")
{

if ($i==0) { push(@decode1,"110");}
else { push(@decode,"0110");}

}
if($dummy eq "7")
{

if ($i==0) { push(@decode1,"111");}
else { push(@decode,"0111");}

}
if($dummy eq "8")
{
if ($i==0) {push(@decode1,"000");}

else { push(@decode,"1000");}
}
if($dummy eq "9")
{
if ($i==0) {push(@decode1,"001");}

else { push(@decode,"1001");}
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}
if($dummy eq "A")
{
if ($i==0) {push(@decode1,"010");}

else { push(@decode,"1010");}
}
if($dummy eq "B")
{
if ($i==0) {push(@decode1,"011");}

else { push(@decode,"1011");}
}
if($dummy eq "C")
{
if ($i==0) {push(@decode1,"100");}

else { push(@decode,"1100");}
}
if($dummy eq "D")
{
if ($i==0) {push(@decode1,"101");}

else { push(@decode,"1101");}
}
if($dummy eq "E")
{
if ($i==0) {push(@decode1,"110");}

else { push(@decode,"1110");}
}
if($dummy eq "F")
{
if ($i==0) {push(@decode1,"111");}

else { push(@decode,"1111");}
}

}

# This portion decodes the control signals and pushes them
# into the array which is written to the output file (at the
# end of the script)

@addr=split(//,$tokens[2]);
push(@decode,$addr[0]);
push(@decode,$addr[1]);
if ($addr[2] eq "1")
{

push(@decode,"11111");
}
else
{

push(@decode,"00001");
}
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push(@decode,$addr[3]);

# This portion decodes the 4 character hex encoded data value
# into a 16 bit binary encoded data value

@addr=split(//,$tokens[3]);

for ($i=0;$i<4;$i++)
{
$dummy=shift(@addr);

if($dummy eq "0")
{
push(@decode,"0000");

}
if($dummy eq "1")
{

push(@decode,"0001");
}
if($dummy eq "2")
{

push(@decode,"0010");
}
if($dummy eq "3")
{

push(@decode,"0011");
}
if($dummy eq "4")
{

push(@decode,"0100");
}
if($dummy eq "5")
{

push(@decode,"0101");
}
if($dummy eq "6")
{

push(@decode,"0110");
}
if($dummy eq "7")
{

push(@decode,"0111");
}
if($dummy eq "8")
{

push(@decode,"1000");
}
if($dummy eq "9")
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{
push(@decode,"1001");

}
if($dummy eq "A")
{

push(@decode,"1010");
}
if($dummy eq "B")
{

push(@decode,"1011");
}
if($dummy eq "C")
{

push(@decode,"1100");
}
if($dummy eq "D")
{

push(@decode,"1101");
}
if($dummy eq "E")
{

push(@decode,"1110");
}
if($dummy eq "F")
{

push(@decode,"1111");
}

}

# Write the decoded vector array to the output vector file

for ($z=0;$z<$#decode+1;$z++)
{

print(OUTPUT $decode[$z]);
}
print(OUTPUT "\n");

for ($z=0;$z<$#decode1+1;$z++)
{

print(OUTPUT $decode1[$z]);
}
print(OUTPUT "\n");

# This portion of the code process the output vector portion
# of the testbench and writes it to a different output vector
# file

@decode="";
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@addr="";
push(@decode,"0000000000");
@addr=split(//,$tokens[4]);

# Decode 4 character hex encoded data value to a 16 bit binary
# encoded data value and push it into an array

for ($i=0;$i<4;$i++)
{
$dummy=shift(@addr);

if($dummy eq "0")
{

push(@decode,"0000");
}
if($dummy eq "1")
{

push(@decode,"0001");
}
if($dummy eq "2")
{

push(@decode,"0010");
}
if($dummy eq "3")
{

push(@decode,"0011");
}
if($dummy eq "4")
{

push(@decode,"0100");
}
if($dummy eq "5")
{

push(@decode,"0101");
}
if($dummy eq "6")
{

push(@decode,"0110");
}
if($dummy eq "7")
{

push(@decode,"0111");
}
if($dummy eq "8")
{

push(@decode,"1000");
}
if($dummy eq "9")
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{
push(@decode,"1001");

}
if($dummy eq "A")
{

push(@decode,"1010");
}
if($dummy eq "B")
{

push(@decode,"1011");
}
if($dummy eq "C")
{

push(@decode,"1100");
}
if($dummy eq "D")
{

push(@decode,"1101");
}
if($dummy eq "E")
{

push(@decode,"1110");
}
if($dummy eq "F")
{

push(@decode,"1111");
}

}

push(@decode,"0");
push(@decode,$tokens[5]);
push(@decode,$tokens[6]);

# Write the decoded vector array into a file

for ($z=0;$z<$#decode+1;$z++)
{

print(OUTPUT1 $decode[$z]);
}

}

The following Perl script parses the input and output test vector files generated

by the emulator into a single file in the RTL simulation testbench format so that the

comparison utility provided by Texas Instruments can be used to check for errors.
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# Perl script to parse the emulator input and output and generate
# vectors in the standard RTL simulation testbench format for RS coder

open(EMUINPUT,"write_data"); # Input vector file
open(EMUOUTPUT,"read_data"); # Input vector file
open(OUTPUT,">emu.vectors"); # Output file to store testbench

# Clock information is not returned by the emulator. The corresponding
# column in the testbench will be shown as ’X’

print "Note that clock information is not included.....!!!!!\n";

# This routine reads test vectors from the input test vector file
# and the output result vector file, combines them and writes the
# combined vector into the output file

while(!eof(EMUOUTPUT))
{

# Split the lines using space as the delimiter
@input_line1=split(//,<EMUINPUT>);
@input_line2=split(//,<EMUINPUT>);

@output_line=split(//,<EMUOUTPUT>);

@ipline="";

# Store X for the clock bit
push(@ipline,"X");

# Reset signal value
push(@ipline,$input_line2[28]);
push(@ipline," ");

# Encode 11 bit binary address into a 3 character hex address
# Call bin2dec to convert binary to decimal and print out the
# decimal value as hex to the file using %X

for ($i=0;$i<3;$i++)
{

if ($i==0)
{

$temp="";
$temp=join ’’,$input_line2[29],$input_line2[30],$input_line2[31];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
if ($i==1)
{

$temp="";

83



$temp=join ’’,,$input_line1[0],$input_line1[1],$input_line1[2],
$input_line1[3];

@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
if ($i==2)
{

$temp="";
$temp=join ’’,$input_line1[4],$input_line1[5],$input_line1[6],

$input_line1[7];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
}

# Store control signal values into the file

push(@ipline," ");
push(@ipline,$input_line1[8]);
push(@ipline,$input_line1[9]);

$temp="";
$temp = join ’’,$input_line1[10],$input_line1[11],$input_line1[12],

$input_line1[13],$input_line1[14];

if ($temp eq "00001")
{

push(@ipline,"0");
}

if ($temp == "11111")
{

push(@ipline,"1");
}

# Encode the 16 bit binary data value into a 4 character hex string
# Uses bin2dec to convert binary to decimal. The decimal value is
# printed to the file as hex using %X

push(@ipline,$input_line1[15]);
push(@ipline," ");

for ($i=0;$i<4;$i++)
{

if ($i==0)
{
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$temp="";
$temp=join ’’,$input_line1[16],$input_line1[17],

$input_line1[18],$input_line1[19];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
if ($i==1)
{

$temp="";
$temp=join ’’,$input_line1[20],$input_line1[21],

$input_line1[22],$input_line1[23];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
if ($i==2)
{

$temp="";
$temp=join ’’,$input_line1[24],$input_line1[25],

$input_line1[26],$input_line1[27];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
if ($i==3)
{

$temp="";
$temp=join ’’,$input_line1[28],$input_line1[29],

$input_line1[30],$input_line1[31];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
}

# Encode the 16 bit binary data value into a 4 character hex string
# Uses bin2dec to convert binary to decimal. The decimal value is
# printed to the file as hex using %X

push(@ipline," ");

for ($i=0;$i<4;$i++)
{

if ($i==0)
{

$temp="";
$temp=join ’’,$output_line[10],$output_line[11],
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$output_line[12],$output_line[13];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
if ($i==1)
{

$temp="";
$temp=join ’’,$output_line[14],$output_line[15],

$output_line[16],$output_line[17];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
if ($i==2)
{

$temp="";
$temp=join ’’,$output_line[18],$output_line[19],

$output_line[20],$output_line[21];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
if ($i==3)
{

$temp="";
$temp=join ’’,$output_line[22],$output_line[23],

$output_line[24],$output_line[25];
@_=$temp;
$dec=&bin2dec;
push(@ipline,(sprintf "%X",$dec));

}
}

# Store control signals in the file

push(@ipline," ");
push(@ipline,$output_line[27]);
push(@ipline," ");
push(@ipline,$output_line[28]);
push(@ipline,$output_line[29]);
push(@ipline,$output_line[30]);
push(@ipline,$output_line[31]);

# Write the vector array into the output file

for ($z=0;$z<$#ipline+1;$z++)
{
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print(OUTPUT $ipline[$z]);
}
print(OUTPUT "\n");

}

# This subroutine converts a binary number into decimal

sub bin2dec {
return unpack("N", pack("B32", substr("0" x 32 . shift, -32)));

}
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A P P E N D I X D

This appendix contains the RTL for the memory wrapper used for one of the

Reed Solomon coder memories (described in Section 3.3.4). In this example, Mem1 is

the memory which is used by the Reed Solomon coder. Mem2 is the memory available

on the emulator.

// This is the memory used in the RS coder
module Mem1(A,CLK,D,EZ,WZ,Q);

input [6:0] A; // Input address port (read/write)
input EZ,WZ,CLK; // Enable signals and clock input
input [7:0] D; // Input data port (write)

output [7:0] Q; // Output data port (read)
reg [7:0] Q;

// Mem2 signals to which values have to assigned depending on the
// values taken by the ports of Mem1

reg [6:0] aadr;
reg [6:0] badr;
reg [7:0] bdata;
wire [7:0] adata;
reg ren,wen;

// Instantiation of Mem2, which is the memory available on the
// emulator. This memory has a separate read and write port
// and separate read and write enables

Mem2 Mem2
(
.ADATA(adata), // Read address port
.AADR(aadr), // Read data port
.REN(ren), // Read enable
.WEN(wen), // Write enable
.BDATA(bdata), // Write data port
.BADR(badr) // Write address port
);

// wen must be asserted when EZ and WZ are low and CLK is high
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// write mode
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
wen<=1’b1;

else
wen<=1’b0;

end

// ren must be asserted when EZ and WZ are not low and CLK is high
// read mode
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
ren<=1’b0;

else
ren<=1’b1;

end

// When in write mode, badr must get the address value on A
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
badr<=A;

end

// When in write mode, bdada must get the data value on D
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
bdata<=D;

end

// If in write mode, aadr gets the value on A
always @(posedge CLK)
begin

if ((!EZ)&&(WZ))
aadr<=A;

end

// If writing, Q gets the value on bdata, else Q gets the value
// on adata
always @(posedge CLK)
begin

if ((!EZ)&&(!WZ))
Q<=bdata;

if ((!EZ)&&(WZ))
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Q<=adata;
end

endmodule

// We need an empty module definition for Mem2 to keep the synthesis
// tool and the emulator compiler happy

module Mem2
(
ADATA,
BDATA,
WEN,
REN,
AADR,
BADR
);

input [6:0] AADR,BADR;
input [7:0] BDATA;
input REN,WEN;

output[7:0] ADATA;

endmodule //
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