
The Integration of SystemC and
Hardware-assisted Verification

Ramaswamy Ramaswamy and Russell Tessier

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

{rramaswa,tessier}@ecs.umass.edu

Abstract. In this research a refined interface between high-level design lan-
guages and hardware verification platforms is developed. Our interface method-
ology is demonstrated through the integration of a communication system de-
sign, written in C and SystemC, with a multi-FPGA logic emulator from Ikos
Systems. We show that as designs are refined from a high-level to a gate-level
representation, our methodology improves verification performance while main-
taining verification fidelity across a range of abstraction levels.

1 Introduction

C-based system level design environments, such as SystemC [6], have recently
been introduced to allow for modeling of entire systems in high-level language.
C-based hardware modeling, enabled with the use of C++ based class libraries,
allows for concurrent verification of both system hardware and software and
the definition of interfaces between them. Although software can efficiently be
tested using processor-based tools, the latter stages of hardware development
frequently involve the use of verification hardware, such as parallel simulators or
logic emulators. Traditionally, the interface between software test environments
and hardware verification has, at best, been inefficient. Although it is currently
possible to integrate software written in high-level languages, such as C/C++,
with hardware descriptions written in HDLs, such as Verilog and VHDL, the
overhead of passing data between the two verification domains can be a bottle-
neck, limiting verification performance [5]. The need to integrate system-level
software (SystemC) with verification hardware motivates a new, modular inte-
gration approach.

In this paper, a design methodology is described which allows for the in-
tegration of parallel logic verification equipment with C/C++ system design
languages. Our approach [4] isolates individual SoC component models from
standard SystemC inter-component interfaces. Both component logic and inter-
faces are structured to allow for straightforward update as individual portions
of the design are refined. This methodology allows for the optimization of the
verification hardware interface to SystemC and similar system-design languages.
Specifically, hardware verification approaches involving transaction-based pro-
cessing [3] and data buffering can be accommodated to provide a transition from

software to hardware domains. Communication support between components is
provided at the functional, bus-cycle accurate, and cycle-accurate levels.

Our approach is demonstrated by the integration of SystemC with a Vir-
tuaLogic emulation system [2] from Ikos Systems. To illustrate the system’s
capabilities for SoC designs, a modular communication system design is verified
using SystemC with the FPGA-based emulator. Initially, the entire design is
modeled in software using SystemC. After logic component and on-chip com-
munication refinement, a portion of the design is migrated to the emulator. We
show that it is possible to achieve increased verification accuracy with the use of
our integration methodology over a range of modeling abstraction levels (from
behavioral to gate-level). Additionally, we show that the interface approach is
superior to previous process-based tool interfaces, such as PLI, used by logic
simulators.

2 Background

Traditionally, it has been difficult to verify entire systems at a cycle-accurate
level using a high-level language. Often, a complete design re-write has been
necessary to translate behavioral portions of a hardware design into a format
that can be synthesized to hardware. SystemC [6] provides high-level support
for cycle-accurate hardware through the use of a set of C++ class libraries and
a simulation kernel that supports clock-based hardware modeling. The result of
this specification is the standardization of all design information, the capability
to quickly re-specify and evaluate design changes, and the ability to increase
overall verification speed compared to coupled high-level language/HDL simula-
tor approaches. The SystemC class library provides special support for process
concurrency and clocked hardware evaluation [6].

Current approaches for integrating logic simulators with C-based designs are
too slow and inefficient for parallel verification. For simulators, data is passed
between language domains by means of remote procedure calls or inter-process
communication approaches such as sockets [5]. Emulation generally requires spe-
cial operations regarding support for multi-cycle data transactions [3] and data
buffering to support fast data rates. Further complicating the integration of
SystemC and verification hardware is the design evolution of most SoC com-
ponents. Most designs require the development of both logic functionality (IP
cores) and inter-core interfaces. Not only does this require validation and refine-
ment of the logic at behavioral, RTL, and logic levels, but it also requires the
gradual refinement of the protocols necessary to connect these modules. The ca-
pability to verify communication using abstract ports (functional), untimed bus
protocols (bus-cycle accurate), and clock-based protocols (cycle-accurate) is an
important aspect of SystemC [1] [6]. The component isolation offered by these
representations allows SystemC to model hardware accurately at various stages
of the design cycle. Additionally, component isolation allows for a framework in
software for emulator interfacing.

SC MODULE - Basic object definer for SystemC objects.
SC CTOR - Constructor used for initializing signals and declaring process types.
SC METHOD - Instantiates a function which executes in zero functional time.
SC SLAVE - Indicates slave process will start when value received on input port.
sensitive() - When the value of the enclosed signal changes, the process executes.
wait() - Suspends execution of a process until sensitivity signal changes.
sc in, sc out - Specifies input and output ports.
sc outmaster - Output port of a master process.
sc inslave - Input port of a slave process.

Fig. 1. SystemC Terminology

3 Integration Approach

Our design methodology can be demonstrated through a series of code examples.
System design languages, such as SystemC, contain a range of constructs, shown
in Figure 1, which can be used to define functionality and component interfac-
ing. In Figure 2, a set of untimed functional (UTF) modules are shown. The
UTF level of functional abstraction provides for the highest-level specification
of a system. The example system consists of modules master, slave and main
that communicate over functional channels in a sequential fashion. Data opera-
tion and execution order are modeled accurately, but time is not. All processes
execute in zero time. In SystemC, the internal, untimed functional model of each
module can be refined to either a timed functional or cycle-accurate model with-
out modifying the module port structure or surrounding modules which interface
with the module.

Communication between the two child modules in Figure 2, master and
slave, takes place via the SystemC master-slave library [6]. Systems that contain
DSPs, custom ASIC cores and processor cores communicating over a set of buses
can be modeled with library structures as an interconnection of sequentially
communicating blocks. When master writes a value to its output port through
the extract() process, the accumulate() process in slave is invoked. Master output
port (sc outmaster) and slave input port (sc inslave) are linked by an abstract
channel, defined by the SystemC keyword sc link mp. A write to an output port
starts the second slave function through sc link mp. The slave process executes
inline with the master process and returns control to the master process after
execution. This approach is amenable to communication synthesis. The top-level
module (main in Figure 2) indicates connectivity of communication.

SystemC provides two levels of inter-component communication, functional
and bus-cycle accurate (BCA). Migration from functional to BCA communica-
tion takes place in conjunction with migration of logic functionality from un-
timed functional to gate-level representation. The bus-cycle accurate definition
specifies inter-component interaction at the cycle-accurate level. Communication

// slave module
SC_MODULE(slave) {
sc_inslave<int> in1;
int sum;

 void accumulate() {
 sum = sum + in1;
 }

 SC_CTOR(slave) {
 SC_SLAVE(accumulate, in1);
 sum = 0;
 }
};

// main module
int main(int argc, char* argv[])
{
 sc_signal<int> IN;
 sc_link_mp<int> link;
 slave.in1(link);
 master.xin(IN);
 master.d(link);
}

// master module
SC_MODULE(master) {
sc_outmaster<int> d;
sc_in<int> xin;

 // functionality
 void extract() {
 int a;
 a = xin;
 d = a & 1;
 }
 }

// module constructor
SC_CTOR(master) {
 SC_METHOD(extract);
 sensitive(xin);
 }
}

Fig. 2. UTF Master-Slave Module

between SoC components is made cycle-accurate with respect to bus handshake
protocols while component functionality is unchanged. Abstract ports such as
sc outmaster and sc inslave are adapted to form bus ports; hierarchical entities
that group together specific terminals for data, address and control signaling.
Three bus protocols are supported: no-handshake, enable-handshake and full-
handshake. User-defined protocols can also be established.

Figure 3 shows how functional communication through abstract channels at
the UTF level can be refined to a full-handshake bus protocol. Refinement is ac-
complished through the use of protocol conversion modules, abs2full and full2abs.
In the full-handshake protocol, the ports have three terminals - data, req, and
ack. Each data transfer cycle proceeds as a sequence. The abs2full module at
the data sender asserts req and places the data to be transfered on data. When
the full2abs module receives the data, it asserts ack. When abs2full receives
the ack signal, the next data item can be transferred. The use of such proto-
col conversion modules separates component functionality from inter-component
communication. This provides a pluggable environment where different modules
implementing functionality and communication can be swapped easily.

The Transaction Interface Portal (TIP) [2] from Ikos Systems is a verifi-
cation environment that enables a C model running on a host workstation to
communicate with an RTL model implemented on the emulator. This capability
provides a verification methodology called co-modeling. A common application of
co-modeling is verification of a design under test (DUT) which is implemented
on the emulator. A testbench or supporting system model is implemented as
a C application running on the host workstation. Driver software coordinates
data transfer with the DUT running on the emulator. The Transaction Appli-
cation Programming Interface (TAPI), a series of C drivers, is used to control

DATA

REQUEST

ACKNOWLEDGE

MASTER

PROCESS

abs2full full2abs

SLAVE

PROCESS

Fig. 3. Protocol conversion modules integrated with master-slave modules

// master module
SC_MODULE(master) {
sc_outmaster<int> d;
sc_in<int> xin;

 // functionality
 void extract() {
 int a;
 a = xin;
 d = temp & 1;
 }
 }

// module constructor
SC_CTOR(master) {
 SC_METHOD(extract);
 sensitive(xin);
 }
}

// slave module
SC_MODULE(slave) {
sc_inslave<int> in1;
int sum;

 void accumulate() {
 tapi_enable(); // open emulator
 tapi_wr_construct; // build write object
 tapi_write(in1);
 tapi_rd_construct; // build read object
 tapi_read(sum); // get result
 }

 SC_CTOR(slave) {
 SC_SLAVE(accumulate, in1);
 }
};

Fig. 4. Modified SystemC Slave

the operation of the emulator. A workstation-based PCI card provides physical
communication between the workstation and the emulator.

The TIP architecture can be used in one of two ways - data streaming or
reactive co-modeling. In data streaming, data transfers are independent of each
other and allow for constant interaction between the user application and DUT.
In reactive co-modeling, the data transfer sent by the user application depends
on the previous transfer. The user application waits for the DUT to process the
current transfer before a new one is sent, potentially leading to an application
idle period.

SystemC modules can be modified to allow for emulator calls. In the example
shown in Figure 4, a series of TAPI driver calls allow for a software-hardware
interface for the UTF slave function shown in Figure 2. The inter-component
communication infrastructure remains the same as for software-only verification.
The isolation of inter-component communication supported by SystemC provides
an ideal interface for parallel verification hardware. By taking advantage of this
isolation, a number of optimizations for emulation can be supported.

Logic emulator interfaces often require special synchronization techniques to
allow for efficient data transfer. Event-based and cycle-based synchronization are
examples of fine grained synchronization in which the verification platforms syn-

chronize at every event and clock cycle, respectively. Due to this tight coupling,
the entire system proceeds at the rate of the slowest domain, limiting perfor-
mance. An alternative approach is to synchronize data transactions only when
necessary via transactions [3]. A transaction is a multi-cycle communication se-
quence between two verification domains. Transactions contain both data and
synchronization information. A single transaction results in multiple verification
cycles of work being performed by a verification platform (logic emulator). The
transaction can be as simple as a memory read or as complex as the transfer of
an entire structured packet through a channel.

4 Experimental Methodology

To evaluate our approach of integrating SystemC and hardware-assisted verifica-
tion, the functionality of two testbench designs were verified using combinations
of SystemC, logic simulation, and a logic emulator. All software tests were per-
formed on an unloaded 360 MHz Sun Ultra 60 workstation with 512 MB of RAM.
The workstation interfaces to an Ikos VirtuaLogic VLE-2M logic emulator con-
taining 128 Xilinx 4036EX FPGAs via an SPCI card. The emulator clock speed
was set to 30MHz for all designs. Data transfer between the workstation and the
emulator was performed through the use of data streams and data transactions.

Two cores, a Reed Solomon encoder/decoder core (51,825 gates and 1,233,397
vectors) and a palindrome detector circuit (13,577 gates and 200,000 vectors)
were used to validate the functionality of the SystemC-emulator interface.

Each of these cores was verified in three formats:

1. The cores were first modeled in functional SystemC code and compiled using
gcc and SystemC library version 1.2 [6].

2. A gate-level model of each core, created from synthesized RTL models of the
cores, was simulated using the Cadence Affirma NC-VHDL tool set.

3. A gate-level model of each core was mapped to the emulator using the Ikos
VirtuaLogic compiler [2].

To fully test the interaction of the cores in a heterogeneous verification en-
vironment, two test scenarios were created. For the commercial Reed Solomon
coder, a testbench written in SystemC code was created from the vectors ob-
tained from the commercial core vendor. The testbench code was modeled sepa-
rately at untimed, timed, and cycle-accurate levels, as described in Section 3. The
three versions of the testbench were interfaced with three different implementa-
tion versions of the cores (SystemC, simulated gate-level, emulated gate-level)
via functional and bus-cycle accurate methods of communication. This provided
the capability to measure transfer rates between software and hardware veri-
fication tools under differing accuracy levels. The vectors used with the Reed
Solomon coder are representative of the effort needed to decode an eight bit 200
x 200 Portable Greymap (PGM) image. To further test the Reed Solomon coder
in an integrated system environment, an entire communication system, including
the Reed Solomon core as a critical component, was modeled in software. This

Interleaver

Interleaver
De-

Viterbi
Encoder

R=1/2, K=6

Decoder
Viterbi

Noise

AWGN
Channel

RS Encoder
(128,122)

RS Decoder

Emulator SystemC
Model C Model/ Simulator

Fig. 5. Modeled communication system

system, shown in Figure 5, consists of the Reed Solomon coder, interleaver/de-
interleaver functions [7] and a Viterbi coder.

The variety of components associated with the system makes it ideal for test-
ing SystemC integration. Interleaving and de-interleaving was performed using
SystemC models. The Viterbi portion of the system was implemented as a C
model. The interleaver, de-interleaver and Viterbi portions of the system were
run on the host workstation as thread processes which communicate with each
other via abstract master-slave ports. In separate experiments, the Reed Solomon
encoder/decoder was modeled using SystemC at the functional level and on the
Affirma simulator and VirtuaLogic emulator at the gate level. Communication
with the Reed Solomon coder is through PLI based socket calls for simulation
and via transaction-based processing for emulation. A similar testbench-based
environment was also created for the palindrome circuit. Several implementa-
tions of the testbench in varying accuracy levels were created and interfaced to
the modeled core using functional and bus-cycle timing.

5 Experimental Results

To validate our approach of isolating emulation resources with modular com-
munication constructs, three sets of experiments were performed with the ex-
perimental methodology described in Section 4. In the first experiment, a direct
comparison of execution time of verification environments which include only
SystemC with those that include simulation and emulation is provided. Table 1
shows the times taken to verify the three test configurations. For Reed-Solomon
and palindrome, the test cores were interfaced to testbenches written in untimed
functional SystemC, as described in Section 3. For RS System, the Reed Solomon
core was interfaced to a software version of the communication system described
in Section 4. Results in the Table 1 include:

– In the SystemC configuration (row 2), the entire design along with the test-
bench is implemented in SystemC as untimed models.

– In the SystemC+Sim. configuration (row 3), the untimed testbench used in
the previous configuration is coupled with an RTL description of the DUT
running on a simulator. Both testbench and simulator run on the workstation

Reed Palin- RS System
Solomon drome

SystemC 0.09s 0.4s 0.34s
SystemC+Sim. 2190s 312s 93s
SystemC+Emul. 175s 16s 43s

Table 1. Verification times

Palindrome Detector
Data Transfer Time (sec) Transfer Rate (kbps)
Abstraction Level Simulation Emulation Simulation Emulation
Untimed Functional 285 16 44.91 800.00
Timed Functional 291 19 43.98 673.68
Bus Cycle Accurate 301 24 42.52 533.33
Cycle Accurate 328 29 39.02 441.38

Reed Solomon Coder
Data Transfer Time (sec) Transfer Rate (kbps)
Abstraction Level Simulation Emulation Simulation Emulation
Untimed Functional 2260 175 52.39 676.61
Timed Functional 2447 204 48.38 580.42
Bus Cycle Accurate 2524 266 46.91 445.14
Cycle Accurate 2649 290 44.69 408.30

Table 2. Verification times with data transfer modeled at various levels of abstraction

as distinct processes. Communication between the processes is done via PLI-
based socket interfaces.

– In the SystemC+Emul. configuration (row 4), the untimed testbench, run-
ning on the workstation, is coupled with the benchmark core implemented
on the emulator.

It can be seen that the same modeling fidelity can be preserved by transi-
tioning from a SystemC model to an implementation on the emulator. Although
gate-level emulation takes longer compared to behavioral SystemC verification,
accuracy for the cores is enhanced.

In a second experiment, verification times for SystemC testbenches inter-
faced to cores at various data transfer abstraction levels were determined. In
the experiment, testbenches were interfaced to gate-level cores modeled on the
emulator and simulated with the NC-VHDL simulator. For each configuration,
master-slave interfaces were described in SystemC at various levels of abstrac-
tion. Overall run time for the palindrome and Reed Solomon benchmarks are
shown in Table 2 and were measured using gprof and the profiling option in
the Affirma simulator. Simulation-based verification is significantly slower than
emulation-based verification due to the overhead of PLI calls and the sequen-
tial nature of execution. Transfer rates indicate achieved data rates between the

Test Number Workstation (sec) Emul.
Bench of vectors Verify Compare (usec)

T1 61714 0.499 1.4 795
T2 68066 0.538 1.6 612
T3 128270 1.022 2.65 621
T4 170594 1.34 3.45 706
T5 179804 1.41 3.65 791
T6 275262 2.15 5.55 -

Table 3. Times taken for emulation with the testbench on the host workstation and
the emulator

SystemC testbench and NC-VHDL (simulation) and the emulator (emulation).
Columns 4 and 5 show the transfer rate across the interfaces for different levels of
abstraction. The transfer rates become slower at lower levels of inter-component
communication abstraction. Moving from untimed functional to cycle-accurate
modeling offers increased modeling accuracy at the cost of longer verification
time. The variation in transfer rate is more noticeable for emulation.

A significant portion of verification time is spent in transferring fixed test
vectors between software and hardware verification domains. In a final experi-
ment, testbench vectors, which were previously implemented in SystemC on the
host workstation, were migrated to memory resources located on the logic emu-
lator. The testbench located on the emulator was partitioned into two separate
memories. One portion contained the input test vectors and the other portion
contained the expected output vectors. The test commences when the worksta-
tion sends a signal to emulator indicating that vector sequencing should start.
Subsequently, individual test vectors are applied sequentually to the emulated
design and results are collected and compared to expected vector outputs. After
the final vector, a pass/fail result is returned to the workstation. A pass result
is sent if all output vectors match expected results.

The above method was implemented with the Reed Solomon coder for varying
testbench sizes. Table 3 compares results of storing test vectors on the worksta-
tion versus migrating the vectors to the emulator. The numbers in the third
column represent the time taken to send and receive the entire set of test vec-
tors to the emulator by a testbench on the host workstation. The fourth column
represents the time taken to compare output result vectors with expected output
vectors. This comparison was performed by a C program on the host worksta-
tion. The last column represents the verification time when the testbench is
entirely implemented on the emulator. This also includes the time taken to com-
pare output result vectors with expected output vectors. It can be seen that the
verification performance when the testbench is migrated onto the emulator is
5000 times faster on average, than when the testbench is located on the host
workstation and transmitted to the emulator. All run times were measured with
time() function calls in the user application.

The number of test vectors that can be stored on the emulator depends on
the amount of free memory available on the emulator. The largest testbench,
T6, did not fit on the emulator due to a lack of memory in the system.

6 Conclusions

In this paper we have outlined a new design methodology for integrating system-
design languages, such as SystemC, with parallel verification hardware. By iso-
lating the interface to a specific module, optimizations such as data buffering,
testbench migration, and transaction-based data transfer can be supported for
logic emulation. To overcome data transfer bottlenecks, it was possible to seam-
lessly migrate benchmark data across the workstation/emulator interface to the
emulator. These approaches led to an improvement in verification time while
maintaining support of existing inter-component interfaces in software and as-
sociated benchmarks

7 Acknowledgments

This work was supported by Ikos Systems, Texas Instruments, and National
Science Foundation Grant CCR-0081405.

References

1. K. Bartleson. A New Stardard for System-Level Design. Synopsys, Inc., 2000.
http://www.systemc.org/.

2. Ikos Systems, Inc. VirtuaLogic VLE-5 Emulation System Manual, Jan. 2001.
http://www.ikos.com/products/vsli/index.html.

3. M. Kudlugi, S. Hassoun, C. Selvidge, and D. Pryor. A Transaction-Based Uni-
fied Simulation/Emulation Architecture for Functional Verification. In ACM/IEEE
Design Automation Conference (DAC), June 2001.

4. R. Ramaswamy. The Integration of SystemC with a VirtuaLogic Em-
ulation System. Master’s thesis, University of Massachusetts, Depart-
ment of Electrical and Compter Systems Engineering, September 2001.
http://www.ecs.umass.edu/ece/tessier/systemc-thesis.pdf.

5. L. Semeria and A. Ghosh. Methodology for Hardware/Software Co-verification in
C/C++. In Asia and South Pacific Design Automation Conference, Jan. 2000.

6. SystemC. SystemC 1.2Beta User Guide, 2000. http://www.systemc.org.
7. S. Wicker. Error Control Systems for Digital Communication and Storage. Prentice

Hall, Edgewood Cliffs, N.J., 1994.

