
1

A Visionary Look at the Security of Reconfigurable
Cloud Computing

Mirjana Stojilović, Senior Member, IEEE, Kasper Rasmussen, Senior Member, IEEE, Francesco
Regazzoni, Member, IEEE, Mehdi B. Tahoori, Fellow, IEEE, and Russell Tessier, Senior Member, IEEE

Abstract—Field-programmable gate arrays (FPGAs) have be-
come critical components in many cloud computing platforms.
These devices possess the fine-grained parallelism and special-
ization needed to accelerate applications ranging from machine
learning to networking to signal processing, among many others.
Unfortunately, fine-grained programmability also makes FPGAs
a security risk. Here, we review the current scope of attacks
on cloud FPGAs and their remediation. Many of the FPGA
security limitations are enabled by the shared power distribution
network in FPGA devices. The simultaneous sharing of FPGAs
is a particular concern. Other attacks on the memory, host
microprocessor, and input/output channels are also possible.
After examining current attacks, we describe trends in cloud
architecture and how they are likely to impact possible future
attacks. FPGA integration into cloud hypervisors and system
software will provide extensive compute opportunities, but invite
new avenues of attack. We identify a series of system, software,
and FPGA architectural changes that will facilitate improved
security for cloud FPGAs and the overall systems in which they
are located.

Index Terms—Cloud computing, field-programmable gate ar-
ray, secure computing, side channel attack, denial-of-service
attack, fault injection.

I. INTRODUCTION

Traditionally, cloud platforms have been based on a single
type of computing devices: central processing units (CPUs).
This homogeneity of hardware resources reflected itself in cost
efficiency; buying thousands of very similar types of servers
allowed cloud providers to reap the benefits of the economies
of scale. The homogeneity of servers had other advantages
as well: easy management and scheduling of resources, and
simple development and deployment of applications and tools
for debugging and tracing.

In recent years, however, cloud servers have gone through
a significant change. They have progressively shifted to be-
come heterogeneous platforms in which CPUs join forces
with special purpose integrated circuits (e.g., Google’s tensor
processing units [1], graphics processing units (GPUs) and
reprogrammable devices (i.e., field-programmable gate arrays

M. Stojilović is with the School of Computer and Communication Sciences,
EPFL, 1015 Lausanne, Switzerland (e-mail: mirjana.stojilovic@epfl.ch).

K. Rasmussen is with the University of Oxford, United Kingdom (e-mail:
kasper.rasmussen@cs.ox.ac.uk).

F. Regazzoni is with University of Amsterdam, Amsterdam, The Nether-
lands and Università della Svizzera Italiana, Lugano, Switzerland (e-mail:
f.regazzoni@uva.nl; francesco.regazzoni@usi.ch).

M. B. Tahoori is with Karlsruhe Institute of Technology, Germany (e-mail:
mehdi.tahoori@kit.edu).

R. Tessier is with the University of Massachusetts, Amherst, MA, USA
01003 (e-mail: tessier@umass.edu).

(FPGAs)). One of the driving forces behind this change
originated from the end of Moore’s law coupled with the
breakdown of Dennard scaling. While transistor size can still
be reduced (though at a slower pace than before), with small
transistor sizes and high operating frequencies, the power
density increases significantly. Consequently, modern appli-
cations’ continuously growing hunger for computing power
can no longer be satisfied with general-purpose hardware only.
We have entered an era in which computational performance
growth will be fueled by specialized and heterogeneous hard-
ware [1].

Besides energy efficiency, another important advantage of
heterogeneous platforms is more consistent and predictable
performance. Cloud applications previously were large mono-
lithic services, but they have evolved into fine-grained, mod-
ular designs (microservices or serverless computing), where
end-to-end tail latency is several orders of magnitude smaller
(in the order of microseconds). Since missing latency re-
quirements leads to cascading performance issues, datacenter
hardware must be able to meet them. Traditional, general-
purpose servers were not designed to accommodate such
constraints. Heterogeneity, on the other hand, implies tailor-
ing the hardware (and software) to the needs of datacenter
applications, however strict.

Field-programmable gate arrays have emerged as the plat-
form of choice for both regular and irregular forms of applica-
tion parallelism. Their unique features are low-level hardware
access, fine-grain programmability, and reconfiguration at run-
time. Microsoft was among the first companies to recognize
the potential of FPGAs for datacenter applications: Their
Catapult servers relied on FPGAs to accelerate the Bing search
engine [2]. Since then, a number of commercial cloud service
providers (Amazon AWS [3], Alibaba [4], Baidu, Microsoft
Azure [5], etc.) have started offering users remote access
to datacenter FPGAs to develop and deploy their hardware
accelerators.

Fine-grained control over the low-level FPGA hardware is,
as it turns out, at the source of a number of electrical-level se-
curity issues. Today, we understand that FPGAs can empower
a malicious user to execute a variety of remotely-controlled
attacks: denial-of-service, fault injection, power side-channel,
and crosstalk side-channel attacks. In this manuscript, in ad-
dition to describing the attacks in detail, we bring forward the
multifaceted challenges of securely integrating FPGAs in the
cloud, which are as relevant for FPGA vendors and developers
as they are for cloud service providers and users. We discuss
models for future cloud level use of FPGAs and elaborate

2

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

D
S
P

D
S
P

D
S
P

D
S
P

D
S
P

D
S
P

D
S
P

D
S
P

D
S
P

D
S
P

Fig. 1: An example FPGA architecture, showing a column-
based layout of logic, memory, and DSP blocks.

on security techniques adapted for virtualized FPGAs in the
cloud. Our visionary viewpoints provide insights into how
FPGA-accelerated, heterogeneous cloud platforms will likely
be used in the future.

The remainder of this manuscript is structured as follows.
Section II describes the state-of-the-art in cloud FPGA use. An
overview of cloud FPGA threats is described in Section III.
Existing cloud FPGA attacks (Section IV) and remediations
(Section V) are then described. In Section VI, trends in cloud
FPGA systems are discussed followed by likely threats to these
systems (Section VII). Suggested solutions to these challenges
are described in Section VIII. We conclude the manuscript by
summarizing lessons learned (Section IX) and offering closing
thoughts (Section X). A list of the acronyms used in this paper
is provided in the Appendix.

II. FPGAS AS COMPUTE ACCELERATORS IN THE CLOUD

In this background section, we introduce readers to FPGAs
as compute accelerators in the cloud. We start by providing the
basics of FPGA architecture (Section II-A). Then, we describe
common heterogeneous cloud architecture (Section II-B) and
the approaches cloud service providers use to expose the
FPGA fabric to remote users (Section II-C).

A. Field Programmable Gate Arrays

Modern FPGAs consist of columns of logic blocks and het-
erogeneous hardened units such as block memories (BRAMs),
digital signal processing blocks (DSPs), external memory
interfaces, transceivers, phase-locked loops (PLLs) and even
processor cores and GPU fabric [6].

Fig. 1 illustrates a small part of an FPGA die. The basic
and most numerous building blocks of FPGAs are configurable
logic blocks (CLBs), in AMD-Xilinx terminology, or logic
array blocks (LABs), in Intel terminology. Each of these logic
blocks is a cluster of look-up tables (LUTs), flip-flops, and
carry propagation logic, which further facilitates the imple-
mentation of fast arithmetic circuits. The connectivity between
FPGA building blocks is provided by numerous wires, which
are grouped in horizontal and vertical routing channels, and
routing switches, which can be configured to make connections
between wires.

CPU

NIC

DRAM

PCIE

PCIE

VM VMVM

FPGA

DRAM

PCIE

GPU

DRAM

PCIE

Accel. Accel.

S
E
R
V
E
R
 B

O
A
R
D

GPU acceleration

Local storage

FPGA acceleration

CPUs and VMs

CommunicationSERVER

RACK LEVEL POWER SUPPLY

TOP-OF-RACK NEWORK SWITCHES

Fig. 2: A heterogeneous cloud server architecture.

B. Heterogeneous Cloud Server Architecture

The main computational building block of a datacenter is a
server. The computational performance of today’s servers is no
longer driven by the growth of the number of CPU cores, but
harvested from the heterogeneity of available computing units.
In Fig. 2, we illustrate a heterogeneous server rack—a physical
structure that holds tens of servers together, along with a rack-
level power supply and top-of-rack (TOR) network switches.
Thanks to TOR switches, servers can access the datacenter
level network and reach any other server or the internet;
additionally, the servers within one rack can communicate
extremely efficiently with other servers in that same rack. A
server itself can have a number of peripheral cards as well
as local storage. A server configuration can be easily adapted
by adding a suitable number of CPU, FPGA, GPU, or other
accelerator cards via Peripheral Component Interconnect Ex-
press (PCIe) interfaces. Network interface controllers (NICs),
which provide a networked connection between servers and
TOR switches, are also integrated as PCIe peripherals. The
configuration of servers across racks normally varies and is
dictated by the targeted applications and desired performance.

The system illustrated in Fig. 2 corresponds to the single
node accelerator model, deployed by a number of cloud
providers [7] such as AWS, Huawei, Baidu, Tencent, Nimbix,
and Alibaba. However, there are other ways in which FPGAs
can be or already are deployed in datacenters. For instance,
Microsoft uses FPGAs to intercept and accelerate network
traffic to servers (a bump-in-the-wire configuration). In their
Azure datacenters, multiple FPGAs in a rack can directly
communicate with each other, allowing for datacenter-wide
scalability of FPGA workloads [2]. These thousands of FPGAs
are not only used to accelerate packet processing, but also
Bing search and machine learning inference [8]. Baidu uses
FPGAs to accelerate storage, SQL queries, data security,
search engines, and artificial intelligence workloads.

A single node accelerator model is not the only way FPGAs
could be exposed to users who would wish to deploy their cus-
tom accelerator in the cloud. An alternative is a co-processor
model, in which an FPGA and a CPU co-reside on the

3

same server card (e.g., Intel’s Hardware Accelerator Research
Program (HARP) platform, where the CPU and the FPGA are
connected through a cache-coherent communication link) or
even in the same package (e.g., as part of a system-on-chip
(SoC) or a multiprocessor SoC (MPSoC)). The deployment
of MPSoC server cards in commercial clouds will allow for
improved performance for applications that do not require an
extreme amount of computing resources. It will also allow
an FPGA to offload most network configuration tasks and
simplify FPGA orchestration with the local CPU.

C. FPGA Programming and Accelerator Deployment

Given their regular spatial architecture, FPGAs are perfectly
tailored to implement highly parallel and deeply-pipelined cir-
cuits. Further, unlike on GPUs, hardware deployed on FPGAs
can be of mixed granularity, ranging from single-bit (e.g.,
control lines) up to hundreds of bits (e.g., for AXI interfaces
and memories). Designing an FPGA circuit implies fully de-
scribing the functionality of the desired hardware circuit. Most
commonly, the process uses hardware description languages
(HDLs), such as VHDL or Verilog, involving substantial
work and competence. To bring FPGA programming closer
to software developers, FPGA vendors have developed their
own programming environments (e.g., supporting OpenCL [9])
and are also moving towards providing support for several
languages and libraries for application spaces (e.g., Vitis from
Xilinx and Intel’s OneAPI Toolkit).

To decouple platform-specific FPGA hardware from user
designs, cloud service providers employ a shell-role archi-
tecture [7], illustrated in Fig. 3. The shell often is com-
prised of a PCIe interface, a direct memory access (DMA)
engine, a DRAM controller interface, virtual JTAG, and other
health monitoring and image loading logic. The cloud service
provider develops the shell design and specifies the inter-
face to user-controlled regions (also called roles), in which
custom accelerators can be quickly deployed using partial
reconfiguration. For example, on AWS FPGA instances, the
shell occupies approximately 20% of the FPGA resources.
The separation between the shell and user regions allows

User 1 Region
Shell

DRAM

DRAM

DRAM

PCIE

Controllers

Network

Network

M
em

or
y

an
d
 n

et
w

or
k

ar
b
it
ra

ti
on

FPGA

User 2 Region

...

User N Region

Fig. 3: Accelerator deployment model for cloud FPGAs, illus-
trating the separation between the shell and the user regions
(i.e., user roles).

for different privilege levels within an FPGA design and
improves the reuse of user applications [7]. Additionally, the
separation guarantees at least basic protection of the essential
FPGA configuration and communication interfaces, which
could otherwise be misconfigured or misused by customer
applications.

The shell generally presents either a host-centric or a shared-
memory programming model. In both cases, the shell exposes
a memory-mapped I/O (MMIO) control plane for software
to manage the roles. The main difference between the host-
centric and shared-memory models is whether the roles can
issue their own direct memory accesses. The host-centric
model, in which the user accelerators are unaware of the
system memory map, is the more widespread. It yields simpler
FPGA hardware, at the expense of increased communication
latency between the CPU and the accelerator, in particular
for applications that frequently perform pointer chasing (e.g.,
graph processing applications such as single source shortest
path, etc.).

III. THREATS TO CLOUD FPGAS

Since cloud FPGAs have been exposed to remote users,
the attack surface on cloud infrastructures and cloud users
has grown considerably. Some remote FPGA attacks aim to
undermine the confidentiality of the cloud, e.g., by using side
channels to extract secret information from other users. Others
aim to break the integrity of the cloud by injecting faults into
other users’ applications. Last but not least, denial-of-service
(DoS) FPGA attacks target the availability of cloud resources.
These remote attacks, as we will soon see in detail, cover
a wide landscape of security threats, including side-channel
analysis attacks, intellectual property (IP) reverse engineering,
hardware Trojan insertion and triggering, new covert channels,
and accelerated device aging. In this manuscript, we will
focus exclusively on successfully demonstrated remote FPGA
attacks. Attacks which are impossible to demonstrate on a
commercial cloud (e.g., because they require FPGA device
tampering or substitution, modified software tools, untrusted or
corrupted FPGA shell, etc.) or which are unrelated to the cloud
FPGA use case (e.g., FPGA bitstream reverse engineering) are
out of scope.

Remote FPGA attacks can broadly be categorized as
electrical-level and system-level attacks. In the following sub-
sections, we describe the two categories of attacks and their
corresponding threat models.

A. Electrical-Level Attacks

Electrical-level attacks leverage the electrical coupling be-
tween the adversary and the victim. An effective way to
achieve such coupling in datacenter FPGAs is via the shared
power delivery network (PDN). Figs. 4 and 5 illustrate PDN
sharing across a printed circuit board (PCB), FPGA pack-
age, and programmable logic. Due to the PDN’s inductive,
capacitive, and resistive components—included by design or
as parasitics— it is almost impossible to completely eliminate
PDN side-channel leakage. Furthermore, maintaining an exact

4

Package

Die

Package capacitors

On-die capacitors

VICTIM ADVERSARY

power pins

C4 bumps

ground pins

PCB
On-board capacitors

VDD power plane

Ground plane

Voltage
Regulators

Fig. 4: High-level model of PDN sharing over a PCB (voltage regulators, power and ground planes, on-board decoupling
capacitors), device package (power and ground pins, package capacitors), and FPGA programmable logic (C4 bumps, power
and ground distribution grid). Dashed lines illustrate the flow of current, caused by the FPGA on-chip activity.

PCB and package

PCB Package
Voltage

Regulators

RS,PCB LPCB

RP,PCB

CPCB

RP,PKG

CPKG

RS,PCB LPCB

RS,PKG LPKG

RS,PKG LPKG

On-die VDD and ground grids

C4
bumps

C4
bumps

Fig. 5: Electrical model of the power delivery network illustrated in Fig. 4, emphasizing the serial and parallel parasitic
resistance, capacitance, and inductance.

supply voltage level across the system, boards, chips, and in-
dividual transistors is generally impractical, if not impossible,
irrespective of (data-dependent) transistor switching activities.
PDN design usually maximizes reliability so that the amount
of voltage drop is capped and limited to ensure proper chip
timing at runtime. Several efforts have targeted reliable PDN
design [10], [11], [12], [13].

The fine-grained hardware parallelism that makes FPGAs
attractive for cloud applications, also poses security risks.
The bit-level and wire-level hardware control provided by
FPGAs gives malicious users the power to execute various
electrical-level attacks [14]. For an electrical-level attack to
be successful, an attacker must be able to either pick up
the side-channel information generated by the target (i.e., the
victim) or generate a signal (a disturbance) and inject it in
the shared electrical medium, through which it propagates
to the victim and causes either computational faults or the
failure of the voltage regulator supplying the FPGA. The
stronger the electrical coupling between the adversary and
the victim, the higher the risk of a successful attack. For this
reason, the most common threat model targeting PDN sharing
assumes FPGA multitenancy, where multiple user applications
run simultaneously on the same FPGA.

Fig. 6 summarizes the key features of the threat model
of an electrical-level attack on a cloud FPGA. First, there
is multitenancy. Second, the adversaries and the victims are
physically and logically isolated (i.e., not reusing the same
FPGA resources), although they share the same FPGA die
and interfaces via the FPGA shell. Several attack variants are
shown. In a fault-injection attack (scenario A in Fig. 6), the ad-
versary uses specially designed FPGA circuits that draw high

currents and, consequently, cause a significant disturbance in
the shared supply voltage. Depending on the resulting voltage
drop, the attack effects can range from injecting a fault in
the victim’s operation (and later exploiting it) to the reset or
unresponsiveness of the entire cloud FPGA instance (a denial-
of-service attack). In the power side-channel attack (scenario B
in Fig. 6), the adversary deploys delay-sensing circuits to pick
up the power side-channel leakage originating from the victims
and uses it to extract their secrets (i.e., a cryptographic key, the
images being classified by neural network accelerators, etc.).

On FPGAs, the shared PDN is not the only electrical side-
channel medium: Programmable interconnects (i.e., the routing
wires) have also been shown to leak information. The threat
model of such an attack (scenario C in Fig. 6), commonly
referred to as a crosstalk side-channel attack, considers that the
victim is transmitting secret information over several cascaded
long wires, spanning tens of columns or rows of FPGA logic
elements; such long distances are not uncommon, especially
for communication channels between the FPGA shell and the
user partitions. Additionally, it is assumed that the attacker
has access to the neighboring wires and continuously measures
and analyzes their propagation delay, knowing that it correlates
with the secret being transmitted [15].

Thermal effects bring about another class of electrical-level
threats (scenario D in Fig. 6), which do not require spatial
multitenancy. Unlike voltage-based attacks that typically last
for a few microseconds (which is why they concern spatially
collocated tenants), temperature changes take several orders of
magnitude longer time to dissipate. Consequently, temperature
can be used as a covert communication channel [16], [17].
The sender can enable a heater (e.g., a free-running oscillator

5

Voltage
Regulators

Attacker Attacker

Intentionally injects
voltage disturbance

Data-
dependent
voltage
fluctuations

Swapping places

(A) PDN coupling;
 fault-injection attack

(B) PDN coupling;
 side-channel attack

Faulty
data

Faulty
data

Voltage drop
Design with

a narrow
 timing closure

Victim

Design
processing
secret data

Victim

Shared, public
communication
channel

EN

EN

close-by FPGA long wires

Attacker

Frequency
counter

Sensor

(C) Long-wire coupling;
 covert communication,
 side-channel attack

(D) Temperature coupling
 Covert communication

Victim
Victim

Attacker

CLK

Sensor sample

...

CARRY

FFFFFFFFFFFFFF

Shell (Interfaces, hardened logic, isolation between users)

Shell (Interfaces, hardened logic, isolation between users)

FPGA

'11010001...'

'11010001...'

'11010001...'

'11010001...'

decoupling
capacitors

Fig. 6: Threat model of an electrical-level attack on a cloud FPGA.

maximizing dynamic power) to raise the temperature, thus
encoding and transmitting one bit of information; similarly, the
sender can let the FPGA cool down to transmit the opposite
value. As soon as the sender vacates the FPGA, the receiver
may load their design with programmable sensors to read the
on-chip temperature and infer the bit of information sent.

Bias temperature instability (BTI) effects are an example
of an electrical-level phenomenon that leaves a trace for
some time period. BTI effects physically deteriorate CMOS
transistors, negatively impacting their switching speed [18].
They accumulate under voltage stress. Hence, FPGA resources
holding a constant value (e.g., a secret key) for a long time
are most affected. When the user vacates the FPGA and
the voltage stress is removed, the transistors recover, slowly
reverting to their previous faster state. An adversary residing
on the same FPGA can monitor the BTI recovery process
by measuring the propagation delay of the targeted FPGA
resources over time [19]. Depending on how the propagation
delay evolves over time, the adversary may infer the secret
value previously imprinted by the BTI effects. Therefore,
exploiting BTI effects is a form of a side-channel attack. Given
that the attack targets specific FPGA resources, the threat
model requires the adversary to have knowledge of the exact
placement and routing of the victim design.

BTI effects on FPGAs can be significantly accelerated with
thermal aging. Cook et al. [20] have shown that physically
unclonable functions (PUFs) built from ring oscillators (ROs)
are particularly sensitive to the frequency degradation caused
by accelerated aging. By surrounding the FPGA ROs with
short circuits (thus exposing them to extreme heat), their
frequencies can be altered. Once the relative relationships
of RO frequencies are adjusted, the overall PUF response
can also be tuned. An adversary with the knowledge of the
exact location of logic and wiring resources used by the
RO PUF can use the targeted aging technique to imprint the
desired PUF response, either for cloning the response of an
authenticated device (an impersonation attack) or replacing it
with an alternative of their choice. These results highlight the
consequences of accelerated aging and warn against delay-
based PUFs in cloud FPGAs.

B. System-Level Attacks

In the threat model of a system-level FPGA-assisted attack,
an adversary uses the FPGA to attack other parts of the
cloud-based system. For example, the FPGA may be used to
corrupt portions of memory shared with a CPU or over-stress
a communication bus shared with a CPU or other FPGAs.
In these scenarios, an adversary requires access to the FPGA
fabric and the ability to influence privileged CPU software
(e.g., operating system, virtual memory manager, or device
drivers). In the case that the adversary is able to control
privileged FPGA logic, such as the shell, off-chip memory
can be compromised (e.g., an adversary can intercept memory
traffic via the shell). The host CPU, which is responsible for
data transfer and for FPGA user region (role) configuration,
may also be assumed to be untrusted and independent of
any security mechanism provided by CPU trusted execution
environments (TEEs). Hence, the vulnerability of the host
CPU to TEE-targeted attacks is typically out of scope of
FPGA-assisted system-level attacks. Recent work has focused
on creating a TEE specifically for cloud FPGAs [21]. These
architectures allow for the security of data generated by the
FPGAs.

IV. SECURITY VULNERABILITIES OF CLOUD FPGAS

As introduced in the previous section, cloud FPGAs are sus-
ceptible to a variety of electrical-level attacks. To implement
side-channel attacks, adversaries need one or more on-chip
delay and voltage sensors. To inject a fault, force the FPGA
to reset, or accelerate thermal aging, they need power-wasting
circuits capable of drawing excessive current and causing
a substantial drop in on-chip voltage. Given the low-level
hardware control and bit-level programmability of FPGAs,
many such circuits can be implemented. In this section, we
introduce common FPGA malicious constructs (Section IV-A)
before addressing cloud FPGA attacks in detail (Sections IV-B
and IV-C).

A. Malicious FPGA Constructs

1) Voltage Sensors: FPGA circuits specifically designed to
be highly sensitive to FPGA logic and routing delay variations
are key enablers of remote power and crosstalk side-channel

6

EN

Buffers

(a) LUT-based RO

1
Q

D

G

Latch
Buffers

EN

(b) LUT-Latch RO

Buffers

EN 0

FF

Q
D
PRE

(c) LUT-FF RO

Fig. 7: Various RO designs, suitable for on-chip voltage sensing. Buffers serve to control the RO frequency; they are optional.

attacks. Examples of such circuits are ring oscillators (ROs)
and time-to-digital converters (TDCs).

An RO-based sensor is constructed by creating a loop whose
frequency of oscillation is temperature and voltage dependent.
An RO-sensor is typically enabled for some reference period
(i.e., the measurement period), during which the corresponding
number of pulses is counted. The measured frequency is then
used to estimate the changes in voltage or temperature over
time. When the temperature is approximately constant (as is
the case for fast voltage transients), ROs sense local on-chip
voltage variations. Such sensors have been used for power
side-channel attacks (SCAs) [22], crosstalk SCAs [23], [24],
and thermal covert communication [25]. They have also been
leveraged to receive covert communication, where the sender
is a CPU, GPU, or FPGA, and the receiver is an FPGA sharing
the same power supply unit in a datacenter setting [26].

Fig. 7 illustrates three ROs. The simplest design is com-
prised of an enable signal, a single inverting stage and,
optionally, one or more buffers for adjusting the oscillation
frequency. This sensor, being a combinational loop, can easily
be detected; indeed, the AWS cloud service provider flags
such designs and does not allow them to be implemented,
precisely because of the security risks they pose. However, it
is not difficult to build alternative RO-based sensor designs.
In Figs. 7b and 7c we see two similar constructs, both free of
combinational loops and thus more challenging to prohibit in
a more general context.

ROs need long measurement periods for precision and
are, therefore, unsuitable for side channels that rely on fast
transients. Alternatively, time-to-digital converters (TDCs) are
often used to overcome the limitations of ring oscillator-based
sensors [27] and have been shown to effectively obtain side
channel information on FPGAs [28]. In TDCs, each measure-
ment reflects the delay of a circuit within a single clock cycle
by observing how far through a tapped delay line a signal
can travel during the cycle. This makes TDC sensors suitable
for sensing short transient delay and voltage fluctuations on
the order of a single clock cycle. For example, the TDC
shown in Fig. 8 includes a chain of CARRY8 multiplexers
used as delay stages. The adjustable delay blocks allow for
delay path tuning. Delay-line sensors have even been used to
demonstrate power SCAs on Amazon AWS F1 instances [29],
to recover the inputs to a neural network deployed on the same
instances [30], and to recover the information imprinted via
BTI effects [19]. They have also been used to mount attacks
against other integrated circuits on the same board [31] and
against a CPU sharing the same system-on-chip [22].

2) Power Wasters: Ring oscillators are not only suitable for
voltage sensing but also for drawing power. They are partic-
ularly efficient power viruses (i.e., power wasters), thanks to
their high oscillation frequency and small footprint, as well
as the ease of instantiating many of them. Similarly to RO-
based sensors, several variants of RO-based power wasters
can be built (Figs. 9a, 9b, and 9c). One would be tempted
to think that detecting and preventing combinational loops
would be a solution; however, the problem is significantly
more difficult: Power wasters can be built in a variety of
ways, and even benign-looking circuits can draw excessive
current. In Figs. 9d, 9e, 9f, and 9g, we see examples of dif-
ferent power wasters—circuits harnessing glitches, CARRY8
blocks, shift registers, and even Advanced Encryption Standard
(AES) encryption rounds [32], respectively. They have been
successfully used for remote fault injection or denial-of-
service attacks. For even more aggressive attacks (e.g., targeted
RO PUF aging in impersonation attacks), short circuits are
required [20].

B. Cloud FPGA Attacks

1) Fault Injection and Denial-of-Service: The use of on-
FPGA power wasters to induce timing delay faults in vic-
tim circuits has been extensively studied. Characterizations
of power waster voltage effects have been performed for
localized attacks [48], dynamic and transient attacks [49], and
attacks targeting the entire FPGA [36]. These characterizations
show that voltage manipulations are possible chip-wide with
an isolated power waster due to the FPGA’s shared PDN.
Recently, Alam et al. [44] showed that allowing a user to
intentionally cause write collisions in FPGA dual-port block
RAMs can also induce voltage and temperature fluctuations
and result in circuit faults. Faults in victim circuits have also
been induced using power wasters based on AES [50], [40],
and glitch generators based on XOR gates [34] [45].

An assortment of victim circuits have been targeted for
fault injection. Krautter et al. [39] examined the possibility
of injecting faults into an AES core at a number of operating
frequencies and circuit minimum slack values. In Mahmoud
and Stojilović [37], a fault-inducing attack on true random
number generators (TRNGs) using ROs was described. The
ROs were placed adjacent to TRNGs and TDCs were used to
evaluate induced delay changes. In Provelengios et al. [42],
Rivest–Shamir–Adleman (RSA) encryption was successfully
attacked by enabling power wasters and inducing timing faults.
The faulty output was analyzed to determine the secret RSA
key [42]. Several attempts have been made to inject faults
into machine learning circuits to cause mischaracterization

7

CLK

EN

Sensor sample

Adjustable delay
(phase shift)

...

CARRY-8

FFFFFFFFFFFFFF

CARRY-8

FFFFFFFFFFFFFF

Fig. 8: FPGA implementation of a time-to-digital converter (TDC), with carry propagation logic serving as a delay line.

EN

(a) LUT-based RO power waster

1
Q

D

G

Latch

EN

(b) LUT-Latch RO power waster

EN 0

FF

Q
D
PRE

(c) LUT-FF RO power waster

Variable latency

EN
FF

Q
D
PRE

+

(d) Glitch-based power waster

CARRY-8

+ + +

EN 0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

++ + + +

(e) CARRY8-based power waster

Shift register

Q
D
EN

Q
D
EN

Q
D
EN

...

High frequency
PLL clock

EN

(f) Shift register-based power waster, initialized with alter-
nating zeros and ones

+Data /
Key In

CLK

Q
D

128-bit
AES round

128-bit
AES round + ...

128-bit
AES round +

(g) AES-based power waster

Fig. 9: FPGA power wasting circuits which, when instantiated in large numbers, can cause fault injection or FPGA reset.

[45], [47], [46]. Fault injection via voltage manipulation in
machine learning is challenging due to model redundancy and
the significant timing margins employed by FPGA physical
design tools [45]. Other application attacks include stealthy
FPGA Trojan triggering [41], and FPGA-to-CPU undervolting
for injecting faults in CPU code execution [38].

If a sufficient supply of power wasters are simultaneously
enabled, the regulators supplying power to the FPGA will
be reset. Gnad et al. [33] showed that the sudden activation
of thousands of ROs can drive Xilinx FPGAs into reset,
requiring a bitstream reload. Although this attack results in
a denial of service, it is not capable of stealthily extracting
information from an unsuspecting circuit. Provelengios et
al. [50] demonstrated that board failure for an Intel Stratix 10
FPGA can occur in as little as 20 microseconds, necessitating
an effective remediation approach.

Table I summarizes the research on PDN fault attacks. It
compares the attack objectives, attack types (intra-FPGA or
intra-SoC), victim applications, malicious designs deployed,
and the FPGA platforms (including the public cloud) on which
the attacks were demonstrated.

2) Side-Channel Attacks: In addition to fault injection, on-
chip voltage fluctuation caused by victim circuit activity can

be monitored to extract information. A variety of voltage
fluctuation sensors have been crafted and demonstrated to
work (as shown in Figs. 7 and 8) [27], [28], [36], [56],
[57]. For example, Zhao and Suh [22] demonstrated that RSA
encryption activity on a microprocessor could be detected
using ROs in the FPGA fabric when both devices share the
same power source. More common attacks on encryption occur
when both the victim circuit and sensors are located in the
FPGA fabric. AES key information was extracted on a stand-
alone FPGA board [28] and AWS EC2 F1 [29] using a TDC.
A TDC was used to extract a black-and-white image input to a
binary neural network (BNN) circuit [30], where tiny voltage
fluctuations were used to differentiate between black and white
pixels. In Tian et al. [54] a TDC is used to identify operational
phases and parameters of a versatile tensor accelerator.

SCAs that use voltage and electromagnetic effects have been
demonstrated using one or more FPGAs. In Gnad et al. [58],
ring oscillators are periodically enabled to reduce on-FPGA
voltage. A collection of TDCs is used to measure small voltage
changes as a changed logic value. A similar approach was used
to communicate information across multiple dies (super logic
regions) in an FPGA [59]; in this work, multiple ROs are used

8

TABLE I: Comparison of PDN fault attacks. In bold, attacks demonstrated on a public cloud.

Attack objective Type Target circuit (the victim) Malicious circuits (the attacker) Evaluation platform

Denial of service
Intra

FPGA

Host
FPGA

[33], [34], [35]

Single-stage LUT-based RO [33]
Glitch generator and long wires [34]

ROs with transparent latch [35]
ROs with FFs [35]

ROs through carry chain logic [35]
Glitch amplification [35]

Virtex 6 (ML605) [33]
Kintex 7 (KC705) [33]

Zynq 7020 (Zedboard) [33]
Zynq UltraScale+ (Ultra96) [34]

Virtex UltraScale+ (Amazon AWS) [35]
Virtex UltraScale+ (Alveo U200) [35]

Fault injection
Intra

FPGA
Adder [36], [32]

RNG [37]

19-stage ROs as voltage sensors [36]
Single-stage ROs [36], [37]

ROs with FFs [32]
Shift registers[32]

Cyclone V (Terasic DE1-SoC) [36], [32]
Aria 10 GX (Terasic DE5a-Net) [32]

Virtex-7 (VC707) [37]

Fault injection
Intra
SoC

Software routines:
multiplication [38]

AES [38]
Single-stage ROs [38] Zynq UltraScale+ (Genesys-ZU) [38]

Recover the key
Intra

FPGA

DFA on AES [39], [40]
HW Trojan infected AES [41]

Adder [42]
RSA [42]

DFIA on AES [43]

Single-stage LUT-based RO
[39], [41], [42], [40], [43]

19-stage ROs as voltage sensors [42]
AES [40]

ISCAS’89 s1238 benchmark [40]

Cyclone V SoC
(Terasic DE1-SoC [39], [41], [42], [40],

Terasic DE0-Nano-SoC [39])
Aria 10 GX (Terasic DE5a-Net) [42]

Lattice Semiconductor iCE40HX8K [40]
Stratix 10 SX SoC (DE10-Pro) [40]

Spartan-7 (Arty S7) [43]

Degrade network
inference accuracy

Intra
FPGA

CNN [44]
MobileNet-V1 [45]
DNN LeNet-5 [46]

ResNet-20 [47]
VGG-11 [47],

MobileNetV2 [47]

Dual-port RAM memory collisions [44]
TDC for timing the attack [46], [47]

Single-stage ROs [45]
ROs with transparent latches [46], [47]

Clock-gated garbled XORs [45]
Clock-gated hybrid toggling logic [45]

Artix-7 (Nexys 4 DDR) [44]
Stratix 10 (Terasic DE10-Pro) [45]

Pynq-Z1 [46]
Zynq UltraScale+ (ZCU104) [47]

to detect communicated values. Finally, when a power supply
is shared, it was shown that communication via on-FPGA
voltage manipulation can be made across FPGA chips [26]
and even across boards that contain FPGAs [26]. It was found
that cross-device communication is more effective when the
on-chip voltage of the receiver is stressed using RO power
wasters.

Side-channel attacks in FPGAs can also be carried out using
adjacent long FPGA wires. It has previously been shown [60],
[23], [24] that the delay of a wire differs slightly if the adjacent
wire carries a logic ‘0’ or a logic ‘1’. This difference can
be exploited to extract an AES encryption key [23] from an
unsuspecting victim.

Finally, Drewes et al. [19] analyzed the side-channel created
by BTI effects. On an AWS EC2 F1 instance, they deployed
TDC sensors to track the recovery behavior of the FPGA
routing wires and multiplexers previously exposed to accel-
erated BTI effects. They observed a difference in the recovery
behavior, which correlates with the type of BTI effect (positive
or negative) to which the wires and multiplexers were exposed.

Table II summarizes and compares the FPGA voltage and
the long-wire-coupling side-channel attacks.

C. System-Level Attacks

Attacks using cloud FPGAs can have impacts beyond the
FPGA fabric. These devices can be manipulated to disclose
information or generate faulty results from attached memory,
caches, CPUs, and adjacent FPGAs. For example, cloud FP-
GAs can be programmed to fingerprint specific devices to

disclose configurations of computing resources in the data
center. Tian et al. [25] used a cloud FPGA to access PUFs
implemented in DRAM. Distinctive DRAM decay patterns
help distinguish specific FPGAs in the cloud. A similar goal
was achieved using on-FPGA RO power wasters to create an
identifiable per-FPGA voltage response [35]. Tian et al. [61]
showed that PCIe contention could also be used to map the
locations of cloud nodes. If one FPGA overuses the attached
PCIe bus, an adjacent resource on the same bus suffers from
excessive bus latency which is easily identifiable. Contention
can thus effectively be used to map out the locations of
the interconnected components (CPUs, memory, and FPGAs)
in AWS EC2 F1 nodes. PCIe bus contention can also be
used as a covert channel. Giechaskiel et al. [62] showed
that a low-bandwidth channel can be established between two
virtual machines (VMs) that use cloud FPGAs via PCIe bus
contention. A VM can transfer a logic ‘1’ value to another
VM that shares the bus by programming its FPGA to overuse
the bus. The lack of contention indicates a logic ‘0’ transfer.

Cloud FPGAs have also been used to induce faults in
attached DRAM and caches. Weissman et al. [63] showed
that RowHammer [64] attacks could be efficiently executed
on DRAM from an FPGA. Bit flips caused by the attack led
to the exposure of an RSA encryption key. It was also shown
in the paper that a cloud FPGA could attack the last level (LL)
cache used by an attached CPU creating a covert side channel.

Table III summarizes and compares the research works on
cloud system-level FPGA attacks.

9

TABLE II: Comparison of power side-channel and long-wire coupling attacks, together with thermal and BTI side channels.
In bold, scenarios demonstrated on a public cloud.

Attack Objective Type Target circuit (the victim) Malicious circuits (the attacker) Evaluation platform

Recover the key
Intra

FPGA
RSA (SPA attack [22])

AES (CPA attack [28], [51])
ROs as voltage sensors [22]

TDC [28], [51]

Zynq-7020 (Zedboard) [22]
Spartan-6 (Sakura-G) [28]

Virtex UltraScale+ (Amazon AWS) [51]

Recover the key
Inter

FPGA
AES (CPA attack [31]) TDC [31] Spartan-6 (Sakura-G) [31]

Recover the key
Intra
SoC

OpenSSL AES (CPA attack [52])
Tiny AES (CPA attack [52])

TDC [52] Zynq-7000 [52]

Recover:
DNN model [53],
the architecture

of NN layers [54],
BNN inputs [30],

folding parameters [55]

Intra
FPGA

MLP [53], AlexNet [53],
VGG16 [53]

Versatile Tensor Accelerator
(ResNet-18, MobileNet v1) [54]
Convolution unit of a BNN [30]

FINN-MLP with folding [55]

Three-stage ROs
as voltage sensors [53]
TDC [54], [30], [55]

Zynq-7000 SoC (Zedboard) [53]
Zynq-7000 SoC (ZC706) [54]
Artix-7 (ChipWhisperer) [30]

Zynq UltraScale+ (ZCU1-4) [30]
Virtex UltraScale+ [30]

Pynq-Z1 (Z-7020 SoC)[55]

Recover the key
Intra

FPGA
Long wire at the AES S-box input [23]

Long wire carrying AES key [24]

Long wire
side-channel leakage

sensed with ROs
[23], [24]

Cyclone IV E [23]
Cyclone IV GX [23]

Virtex 6 (ML605s) [24]
Artix 7 (Digilent Nexys 4 DDR) [24]

Artix 7(Digilent Basys 3) [24]
Spartan 7 (ArtyS7) [24]

Covert communication Thermal
Temperature sensors:
RO sensors [16], [17]

Heaters:
Power wasters [16], [17]

Stratix V [16]
SmartSSD (with an FPGA) [17]

Recover previous
user data

BTI Long wires [19] TDC [19]
ZCU102 Ultrascale+ [19]

Virtex UltraScale+ (Amazon AWS) [19]

V. REMEDIATION FOR ELECTRICAL-LEVEL ATTACKS

A body of research investigated remediations against
electrical-level cloud FPGA attacks. In this section, we intro-
duce and discuss the proposed countermeasures, highlighting
their key features. The strategies against system-level attacks
are discussed shortly, in Sections VII and VIII.

A. Protection Against Fault-Injection and DoS Attacks
Approaches to address voltage-based fault injection and

DoS attacks in multi-tenant FPGAs can be broken into two
broad classes: bitstream scanning and run-time remediation.
Scanning FPGA bitstreams or intermediate designs used to
generate bitstreams can help identify potentially malicious
logic structures such as ring oscillators. For example, Krautter
et al. [65] and La et al. [66] have developed bitstream scanners
that attempt to locate malicious circuits instantiated in a
library. These circuits include ROs, self-clocked logic, high
fanout circuits, and glitch amplifiers. Both tools regenerate a
netlist from a partial bitstream and use graph-based algorithms
to locate potentially malicious circuits. Although this approach
can locate many types of circuits, it is, unfortunately, straight-
forward to build power wasters that have the same logical
profile as legitimate circuits (Fig. 9g) [32]. Benign-looking
constructs can be used to inject faults [40] or perform side-
channel attacks [40]. This makes the job of such FPGA anti-
virus tools much harder. Another issue is the balance between
false positives (benign designs which are red-flagged) and false
negatives (malicious designs that escape detection).

During deployment, the software of the cloud service
provider (CSP) should monitor the activities of various ten-

ants and closely watch for electrical level issues [78]. For
instance, by identifying suspicious tenants and reacting to
voltage surges, a malicious tenant can be disabled and evicted
from the FPGA fabric before causing harm and impacting
other FPGA tenants [67]. However, the efficiency of such
approaches can be greatly improved by providing proper
support in the technology and toolchain of cloud FPGAs,
allowing for quick de-configuration of malicious tenants. Run-
time approaches for voltage attack detection typically involve
the use of distributed voltage sensors [27]. Both Mirzargar
et al. [79] and Provelengios et al. [36] use an array of low-
overhead RO-based voltage sensors that can identify voltage
droops. This information can be used for remediation. More
recent work has shown that TDCs can identify droops more
quickly, allowing for a faster response time [82].

Since voltage attacks can lead to fault injection (in a
few microseconds) or board reset (in tens of microseconds),
attack remediation techniques must be able to be rapidly
deployed. Luo et al. [81] built a framework that controls the
frequency of the target FPGA applications to avoid timing
faults. Provelengios et al. [50] demonstrated a processor-based
approach to suppress synchronous power wasters. Information
from voltage sensors are transferred to an ARM core via a
dedicated network. If an attack is detected, it is localized to a
clock region, and the associated clock is deactivated, stopping
the attack. The remediation approach was shown to suppress
voltage attacks on a Stratix 10 FPGA within 20 microseconds,
sufficiently fast to prevent board reset. In Nassar et al. [67],
partial FPGA reconfiguration is used to disrupt the operation
of loop-based ROs. The authors determined a configuration

10

TABLE III: Comparison of system-level attacks. In bold, attacks demonstrated on a public cloud.

Attack Objective Type Target (the victim) Malicious circuits (the attacker) Evaluation platform

Fingerprinting cloud
FPGA instances [25]

FPGA-to-DRAM
Cloud

infrastructure [25]
Decay-based

DRAM PUF [25]
Virtex UltraScale+

(Amazon AWS) [25]

Retrieve cloud configuration;
Reverse engineer

the FPGA instance
allocation algorithm

PCIe contention
Cloud

infrastructure [61]

Remote user
transferring data between

CPU and FPGA,
creating PCIe traffic [61]

Virtex UltraScale+
(Amazon AWS) [61]

Use PCIe traffic signatures
for covert communication;

Deduce cloud resource
usage by monitoring

PCIe bandwidth

Covert communication
between virtual machines

on FPGA-accelerated
cloud instances;

Side-channel leak
of PCIe signatures

of cloud users

Cloud
infrastructure [62]

Remote user causing
intensive PCIe traffic [62]

Virtex UltraScale+
(Amazon AWS) [62]

Covert communication
between components
powered by the same

power supply unit

FPGA-to-FPGA
CPU-to-FPGA
GPU-to-FPGA

Cloud
infrastructure [26]

Four-stage ROs
(one inverter and

three buffers) [26]

Kintex 7 (KC705)
Artix 7 (AC701)

Xeon E5645 CPU
Xeon E5-2609 CPU

Nvidia GeForce GPU [26]

Fault attack on RSA,
leaking the private factors

FPGA-to-DRAM
RowHammer

Shared DRAM [63]
RowHammer attacker
from the FPGA [63]

Arria 10 GX PAC [63]

Cache-based
covert communication

Cache attack
FPGA-to-FPGA
CPU-to-FPGA
FPGA-to-CPU

CPU LL-cache,
FPGA cache [63]

Software or hardware
accessing the cache

to evict, time,
prime, or reload [63]

Arria 10 GX PAC [63]

sequence that was able to rapidly deactivate interconnect in
a clock region of an UltraScale+ FPGA, effectively stopping
a voltage attack. Partial reconfiguration was sufficiently fast
enough to suppress a board crash and some timing faults.

B. Side-Channel Attack Remediation

Power SCAs can be defeated if preventive actions are
deployed. FPGA SCA countermeasures can be classified into
two categories: hiding and masking [83]. The goal of hiding is
to reduce the signal-to-noise ratio of side channel information
by increasing noise in the side channel or equalizing power
consumption across computation [74]. Masking requires the
processing of randomized data, while ensuring computation
correctness [73]. Unfortunately, both approaches lead to area
increases and the possibility of higher-order attacks [83]. For
multi-tenant FPGAs, remediation approaches against power
SCAs have been developed by Le Masle et al. [75] and
Krautter et al. [76]. These approaches use a closed-loop control
system to stabilize the steady-state power consumption of an
FPGA circuit. In the former case, an on-chip RO network
is used to monitor on-FPGA voltage [75]. A proportional-
integral-derivative (PID) controller, whose PID constants are
set so that the voltage measured by the sensors is kept
approximately constant is used as a control circuit. The latter
approach uses a fence composed of ROs between two neigh-
boring FPGA tenants [76] to increase signal-to-noise ratio. The
number of active ROs is controlled by a voltage sensor. The
total size of the fence can be adjusted by the designer of the
circuit to be protected. For an even more effective fence per

unit of area, ROs can be combined with the abundant FPGA
routing resources [77].

Effective remediation approaches against long-wire cou-
pling prevent security-sensitive signals from being routed in
the vicinity of other tenants’ signals. Both computer-aided
design (CAD) and architectural techniques have been devel-
oped to address the potential risks of crosstalk. Huffmire et
al. isolated risky applications and their signals via moats and
drawbridges [68]. Yazdanshenas and Betz proposed wrapping
roles with wrappers made from FPGA logic [69]. All data
transported to or from a role is encrypted. The approach leads
to an 80% data transport latency increase and a 20% role
area increase. A hardware isolation framework [70], [72] was
developed which prevents security-critical nets from using
long routing wires. The nets are isolated from other users’
nets by routing them first and keeping subsequently routed
signals away from them. For long wires that cannot fit within
the design boundaries, wires surrounding sensitive signals are
left unassigned. Seifoori et al. [71] modified PathFinder, an
FPGA routing algorithm, to prevent potential crosstalk. Their
approach requires the users to specify security-critical nets at
design time and set parameters to control the use of wires
adjacent to these nets.

Side-channels based on temperature and BTI effects are
best addressed, first, by not allowing aggressive heating (a
strategy effective also against targeted aging attacks aiming at
FPGA impersonation [20]) and, second, by allowing sufficient
recovery time between two subsequent FPGA tenants [16],
[17], [19].

11

TABLE IV: Comparison of the proposed protections against electrical-level attacks on shared FPGAs.

Use of Who should
Applicability FPGA resources deploy them

Protections crs pwr dos flt logic wire clk Type usr vnd csp Disclosure Portable

Krautter et al. [65] Passive ∗ N/A
La et al. [66] Passive ∗ N/A
Nassar et al. [67] Active
Huffmire et al. [68] Passive
Yazdanshenas and Betz [69] Passive
Luo et al. [70] Passive
Seifoori et al. [71] Passive
Luo et al. [72] Passive
Regazzoni et al. [73] Passive
Tiri et al. [74] Passive
Le Masle et al. [75] Active
Krautter et al. [76] Active
Glamočanin et al. [77] Active
Shen et al. [78] Active
Provelengios et al. [36] Active
Mirzargar et al. [79] Active ∗

Stott et al. [80] Active
Mahmoud et al. [41] Active
Luo and Xu [81] Active

Legend: crs) Crosstalk side-channel attack; pwr) Power side-channel attack; dos) Denial-of-service attack; flt) Fault attack; logic)
FPGA logic; wire) FPGA routing; clk) Clocking resources; usr) Users; vnd) FPGA vendors; csp) Cloud service providers; Yes;

Partially; No; ∗ Conditionally; N/A Not applicable.

C. Discussion

Table IV summarizes and compares proposed countermea-
sures, using the following criteria:

• Applicability, if a countermeasure is effective against
more than a single attack type,

• Use of logic, wiring, and clock resources,
• Real-time (i.e., active) application or not real-time (i.e.,

passive),
• Deployed by users, FPGA vendors, or CSPs,
• Whether design disclosure to the CSP is a requirement

for protection implementation, and
• Amount of effort required to port the countermeasure to

an FPGA of another family or another vendor.
We can observe that countermeasures seldom target more

than a single type of attack. Further, they often require
additional FPGA resources. Some are easily portable between
different FPGA families, but many are not. Clearly, combined
efforts by researchers, end users, FPGA vendors, and CSPs
are required to reach a more general solution, or at least a
suitable combination of the existing ideas.

VI. TRENDS IN CLOUD SYSTEM USE OF FPGAS

Currently, the most widespread model of cloud-level use of
FPGAs is the single node accelerator model, as discussed in
Section II and illustrated in Fig. 2. In such a model, an FPGA
accelerator node acts as a PCIe-attached co-processor, which
remote users can access and program with designs via a host
CPU. From the point of view of cloud service providers, this
model is convenient for a number of reasons. First, CSPs can
quickly and efficiently deploy an FPGA-accelerated cloud by

using off-the-shelf boards, an approach used by Nimbix and
Tencent [7]. Other CSPs, e.g., Amazon AWS, Baidu, Huawei,
and Alibaba, have designed custom boards and tailored their
hardware not only to specific user requirements, but also to
their specific datacenter-level architecture requirements and
upgrades. While custom board design implies higher start-
up and maintenance costs, it provides the freedom of feature
selection (e.g., FPGA family, size, I/O port count, and off-chip
memory size and type). Another advantage of the distributed
single node accelerator model is simplicity. FPGA instances
are easier to orchestrate and the risk of their failure affecting a
large number of datacenter resources is reduced. Additionally,
in a single-node accelerator model, it is straightforward to offer
FPGAs as bare-metal resources using standard FPGA-design
tools.

Despite the aforementioned advantages, the single-node
accelerator model is not here to stay. Future models for cloud
system level use of FPGAs will need to provide higher scala-
bility, minimum communication and data transfer latency, vir-
tualization and sharing of FPGA resources, while addressing
the accompanied security risks. In this section, we first discuss
trends in FPGA-accelerator architectures, which address the
challenge of scalability and latency. Then, we give a detailed
overview of research on FPGA resource virtualization.

A. Trends in Cloud FPGA Architectures

Unlike production systems, research architectures are built
with less concern regarding total implementation cost or secu-
rity constraints, but rather focus on performance and latency.
For instance, to achieve fast FPGA-to-FPGA communication,
a number of research architectures deploy a secondary network

12

which connects FPGAs across servers. Examples of such
architectures include Microsoft’s Catapult v1 [84], Novo-
G# [85], Albireo nodes of the Cygnus supercomputer system
at the University of Tsukuba, and the Noctua system at
the Paderborn Center for Parallel Computing [86]. None of
today’s production systems use a secondary network, likely
because of the cost and complexity of wiring and additional
networking hardware and the resources needed to secure the
system. However, designers of some production systems are
considering providing fast FPGA-to-FPGA links; specifically,
Amazon AWS is advertising its plans to enable FPGA cards
to send or receive data from an adjacent card at 200 Gbps,
over a generic raw streaming interface [87].

Another important trend among research architectures is
to directly connect FPGAs to the datacenter network. Con-
sequently, FPGAs could be accessed by a CPU or by another
FPGA, leading to good scalability. Some examples of such
architectures include CloudFPGA by IBM Zurich Research
Lab [88], the University of Toronto SAVI testbed [89] (where
a cluster of FPGAs is connected to the datacenter network),
Enzian at ETH Zurich [90] (where an FPGA is connected to
the network on one side and coherently attached to a server-
class SoC on another side), and Microsoft Azure. Obviously,
the security and reliability concerns inherent to direct network
connectivity of FPGAs limit user FPGA access.

B. FPGA Resource Management and Virtualization
Users of cloud FPGA environments ideally want access to

one or more dedicated FPGA boards without having to worry
about resource sharing. However, cloud FPGA providers can
sell FPGA services to more users if they can virtualize the
environment and allow users who do not take up all FPGA
and connected peripheral resources to share the underlying
physical infrastructure. Sharing can be performed either by
giving each user a specific time period in which to use the
cloud environment, also called slot-based allocation, e.g., [91],
or by allowing multiple users to use the environment at the
same time (multitenancy). A virtualized view of peripherals
can be provided to make it seem like each user has unique
access, e.g., [92], [93], [94]. Multitenancy allows for increased
flexibility and control.

The goal of a virtualized environment is to make it seem
like a user has sole resource access, while physically serving
several users at the same time. This approach for FPGAs is
conceptually similar to traditional CPU virtualization which
is widely deployed and understood. However, FPGA virtual-
ization differs in several important ways that make existing
virtualization solutions for CPUs unsuitable. One important
difference is that FPGAs do not execute sequential programs
one instruction at a time, but rather implement parallel circuits,
so circuits from different users run simultaneously. Further-
more, FPGA circuits can contain asynchronous elements that
are not directly controlled by an external clock, so stopping
and restarting an FPGA is not feasible with the current
technology. Since FPGAs are often used for time-sensitive
processes, even if there was a way to interrupt an FPGA and
restart it in the same internal state, it would likely interfere
with application semantics.

To achieve a virtualized environment, external memory must
be remapped to different physical addresses, and access to the
FPGA must be carefully controlled to make sure each user
cannot interfere with other users on the same hardware. The
same is true for other external resources like the network or
storage systems. Together a shell and the virtualized peripher-
als should create a good logical separation between different
users, even if several users use the hardware at the same time.
However, multiple problems have been presented in the last
few years that cast doubt on the effectiveness of this separation
technique [91], [95], [60], [24], [59], [15], [39].

The challenge of datacenter resource provisioning has mo-
tivated the development of platforms that allow datacenter
managers to monitor the network and modify, in real-time,
the amount and type of compute resources given to each
application. Examples of such platforms are Openstack [96]
(a free and open standard for cloud computing platforms)
and Kubernetes [97]. While these platforms orchestrate the
entire datacenter, they require individual components on each
server to provision its resources. Furthermore, these platforms
are currently limited to provisioning CPUs. For heterogeneous
servers, extending and redesigning the existing orchestration
platforms to include other types of computing components
is a necessity. In particular, provisioning and sharing FPGA
resources requires an entirely new solution for resource vir-
tualization [98], operating system support, and FPGA pro-
gramming (i.e., bitstream file creation and partial reconfig-
uration). Processor virtualization relies either on instruction
set translation or hardware support with technologies such as
Intel Virtualization Technology (Intel VT) [99]. Alternative
approaches are needed for FPGAs. Two common approaches
for FPGA resource management are slot-based allocation and
FPGA overlays.

In slot-based FPGA resource management [7], [100], [101],
[102], an FPGA is divided into several reconfigurable regions,
in which user FPGA circuits can be mapped at runtime via
reconfiguration. These regions may or may not be symmetric,
i.e., use similar or identically sized slots. In an example of
slot-based FPGA virtualization [103], an FPGA is divided
into four regions, while the architecture multiplexes FPGAs
by dynamically assigning resources. The main limitation of
the architecture is the lack of on-chip communication between
regions, resulting in a considerable data-copy overhead when
such a transfer is required. To address the above issue and
reduce data movement overhead, Mbongue et al. [104], [94]
and Yazdanshenas and Betz [69] make use of the FPGA
on-chip interconnect. A number of research proposals for
FPGA virtualization architectures are listed in Table V. In
addition to the solutions listed in the table, commercial solu-
tions from VMAccell and InAccel offer complete frameworks.
The VMAccel software is based on Openstack, Docker, and
Kubernetes, while InAccel software contains high-level APIs
in C/C++, Java, and Python and a unified engine to support a
heterogeneous multi-accelerator platform.

FPGA overlays, also called intermediate architectures or
fabrics [112], offer an alternative to FPGA partitioning. Over-
lays abstract away the low-level FPGA hardware components
(e.g., LUTs, flip flops, DSPs, etc.). Higher-level coarse-grained

13

TABLE V: Trends in FPGA virtualization architectures.

Access FPGA Spatial On-chip
method regions sharing comm.

Byma et al. [105] 10 GbE 7 3 7
Chen et al. [103] PCIe 4 3 7
Fahmy et al. [106] PCIe 4 3 7
Weerasinghe et al. [107] 10 GbE 1 7 7
Asiatici et al. [108] PCIe 3 3 7
Vesper et al. [109] PCIe 4 3 3
Tarafdar et al. [110] 10 GbE 1 7 7
Zhang et al. [111] PCIe 7 3 7
Mbongue et al. [104] PCIe 4 3 3
Mbongue et al. [92] PCIe, Ethernet 6 3 3

processing elements, also called coarse-grained reconfigurable
arrays (CGRAs), are implemented and can be programmed at
runtime through software-level function calls. These elements
are connected using interconnect topologies that allow both
parallel processing and easy data exchange [7], [113], [114],
[115], [116]. CGRAs are often supported by compilers that can
map popular software programming languages. By abstracting
away the low level hardware details, overlays also allow faster
FPGA development cycles.

Virtualized FPGA hardware requires operating-system and
hypervisor interaction. Previous work [7] has addressed the
challenge of allowing spatial [105], [103], [117], [118], [119],
[120], [101], [121], [122] and temporal multiplexing [103],
[117], [118], [119], [123], [124], [121], [125], [122] of FPGA
resources, and facilitating integration of FPGAs in datacenters
and the cloud. The application of a traditional operating system
resource abstraction to FPGAs has been recently explored by
Korolija et al. [126]; the authors implemented a portable and
configurable shell for FPGAs which supports secure spatial
and temporal FPGA multiplexing, virtual memory, communi-
cation, and memory management inside an uniform execution
environment. Optimus [127] is a hypervisor that supports
scalable shared-memory FPGA virtualization, while offering
spatial multiplexing of up to eight physical accelerators on
a single FPGA, and temporal multiplexing to overprovision
each of these accelerators. To isolate each guest’s address
space, Optimus uses the technique of page table slicing as
a hardware-software co-design technique. Another example is
FPGAVirt, which uses Virtio, an I/O virtualization framework
initially implemented for Linux environments, to provide com-
munication interfaces between the host virtual machine and
FPGAs [104]. In FPGAVirt, an FPGA is abstracted away as
an overlay architecture consisting of a two-dimensional array
of routers and programmable processing elements, where each
processing element is a virtual reconfigurable function. Zha
and Li developed the ViTAL framework [121] that supports
dynamic fine-grained resource management by abstracting
heterogeneous resources of FPGA clusters into a homogeneous
view of an array of virtual blocks and partitioning and map-
ping user applications onto those virtual blocks. In ViTAL,
each block has the same type and amount of programmable
resources and the same interface to the peripheral devices;
furthermore, virtual blocks deployed on the same or different
FPGAs use identical intra-block communication interfaces.
The resulting illusion of a single and infinitely large FPGA

reduces the programming complexity and enables scale-out
acceleration. As a follow-up, Zha and Li developed Hetero-
ViTAL [122] to address the challenges of heterogeneous FPGA
clusters and demonstrate that adding a system abstraction as an
indirection layer between application-specific instruction set
architecture and hardware-specific abstractions substantially
reduces resource management complexity [125].

Although scheduling is a well established technique for
CPUs, state saving makes it a challenge for FPGAs. For
preemptive scheduling, capturing and restoring the state of
an accelerator can be prohibitively complex, because the
accelerator state can be spread out across a large number
of FPGA resources (LUTs, flip flops, BRAMs, etc.). Saving
and restoring the state has been shown to take between mi-
croseconds to milliseconds, excluding partial reconfiguration
latency [128]. In comparison, nonpreemptive scheduling is
less costly, as the accelerators run to completion. Asiatici et
al. [108] proposed dynamic scheduling that takes advantage of
the free slots available at run-time to improve resource utiliza-
tion and performance. Similar to nonpreemptive scheduling,
cooperative scheduling can operate with minimal overhead,
e.g., by offering context switching only when an accelerator
reaches an execution checkpoint [129].

VII. SECURITY CHALLENGES FOR NEXT GENERATION
CLOUD FPGAS

The following section presents an overview of the security
challenges likely to be faced due to current and expected trends
in cloud FPGAs.

A. Memory Timing and RowHammer

When cloud data is remapped to a different part of the
available physical memory, the user loses fine-grained control
over where data is placed relative to other data blocks.
Memory sharing and remapping inevitably changes the timing
of memory access, which can lead to reduced performance, or
in the worst case, allow a user to deduce information about
other users in the system, e.g., [130]. This issue occurs because
the activity of other users change the physical location of data
in memory, and even if a physical address is hidden, it is
still possible to use timing to deduce memory activity such
as cache misses [131]. Such cache timing attacks have been
used in the past to extract encryption keys and other secrets
from memory [28], [31], [22]. It might also be possible to
use RowHammer-like attacks [39], [63] to change a value in
memory that a user is not permitted to access.

B. Emerging Electrical Threats

Given the virtualization of the FPGA fabric in the cloud
and “FPGA as a Service” models, there are additional types
of electrical vulnerabilities, threats and attacks, beyond those
discussed in Section IV, that may arise. The cloud provider
which rents the FPGA resources, needs to ensure that FPGA
devices are not vandalized or improperly used. For instance,
intentional over-aging may result in damage to the FPGA fab-
ric or a significant reduction in the remaining useful lifetime of

14

the FPGA. In the context of untrusted FPGA IP cores, FPGA
Trojans may be able to perform electrical level attacks after a
trigger input sequence is used. The trigger and payload parts of
the Trojan could exploit electrical level vulnerabilities which
are then also embedded in the IP core, making it stealthy and
hard to detect.

Newer FPGAs (e.g., Xilinx Virtex UltraScale+ and Kintex
UltraScale) are partitioned into super logic regions (SLRs),
which are separate structures that are analogous to cores in
a modern CPU. This isolation can assist virtualization and
resource sharing, since each user can be assigned a single SLR,
however it has been shown that it is possible to communicate
between SLRs through power fluctuations, even if no direct
wires connect the two regions [59]. Cross-SLR attacks are
extremely hard to prevent because they utilize the physical
properties of the underlying device (e.g., a shared PDN). This
issue is likely to become more pronounced as the number of
SLRs per device increase.

C. Coordinated Attacks
There are also new sets of vulnerabilities which may arise

when the FPGA fabric is co-integrated with other cloud
components such as CPUs and GPUs. This integration may
lead to more powerful coordinated attacks in which the
adversarial collaboration on both processor and FPGA sides
may render existing countermeasures ineffective. Moreover,
processes running on the processor or GPU may become new
victims in such scenarios.

D. System-Level Attacks
The spectrum of system-level attacks and remediations that

will affect cloud FPGAs is likely to follow the attacks present
in current CPU-dominated systems. As FPGAs are integrated
into the datacenter memory hierarchy, timing-based cache
attacks in which specific instructions and data values are
extracted from shared caches [132] are likely to increase.
These types can be addressed in some cases by isolating cache
addressing [133], limiting sharing among virtual machines that
use FPGAs.

The use of bus contention as a covert channel is a concern
for both CPU and FPGA compute elements. FPGAs may
be used to extract machine learning [134] and encryption
key values [135] from PCIe bus traffic between third parties,
an approach previously used with GPUs and CPUs. New
approaches to balance and mask bus traffic may be needed
to prevent contention and snooping-based bus attacks.

Finally, FPGAs have been shown to be efficient in per-
forming RowHammer attacks on DRAM. New approaches to
isolate sensitive values in memory, similar to BlockHammer
[136], may be used to separate global FPGA data from mali-
cious activity by other users. However, an increase in interest
in remote DMA and resource disaggregation may make the
secure orchestration of memory locations more difficult [137].

VIII. SECURITY TECHNIQUES FOR NEXT GENERATION
CLOUD FPGAS

To secure the next generation of FPGAs, designers should
act at different layers and should use and combine several

technologies. The hypervisor is the most natural module where
security techniques and components, such as monitors, could
be integrated and where security properties, such as isolation,
could be verified and enforced. FPGAs are reconfigurable
by nature. This provides designers with the flexibility to
counteract side-channel attacks, but also to quickly address
attacks targeting specific cryptographic algorithms by updating
the algorithm implementation. Security in FPGAs can also
be improved through changes to device architecture. These
changes could make a device more resistant to certain attacks
or make devices more suitable for cryptographic primitive im-
plementation. Finally, the role of CAD tools on the security of
cloud FPGAs should not be underestimated. CAD tools could
potentially verify security properties or construct systems that
are secure by design. However, if used without care, CAD
tools could negatively affect security. The remainder of this
section discusses the most promising techniques for securing
the next generation of cloud FPGAs and their development.

A. Hypervisor-Based Monitoring

In a cloud setting in which resources are shared across
multiple tenants, security and isolation are paramount. It is
typically the duty of the cloud provider to ensure both features.
One approach to providing security and isolation is to integrate
monitoring functionality into a hypervisor. Monitor implemen-
tations include dedicated circuits and programmable modules
that implement the needed security policies. In general, a
monitor is a dedicated component (often a dedicated circuit,
but it can be a software routine running on a microcontroller)
that analyzes and promptly detects anomalous behavior that
can be classified as malicious. In principle, monitors can be
inserted in a system by designers or by the cloud provider.
Designer-inserted monitors (sensors) in FPGAs would need to
be managed carefully since the same structures used by some
sensors (e.g., ROs) can also be used by attackers. In CSPs
providing monitoring, the privacy of users must be ensured.

A step beyond the use of monitors is the development
of complete hypervisor frameworks to provide isolation. For
example, Hategekimana et al. [138] proposed a security
framework to control the sharing of hardware modules in a
heterogeneous cloud system composed of CPUs and FPGAs.
The framework is derived from MAC-based hypervisors, and
it is adapted to guarantee the isolation of hardware accelerators
in shared FPGAs. The goal of the framework is to ensure that
hardware monitors reside and are executed in the same security
context of the virtual machine that “called” them. This goal
is achieved by managing the privileges of the guest virtual
machines at the software level.

B. Hypervisor-based Remediation

Despite the number of approaches addressing the challenge
of FPGA virtualization and operating system support, current
research lacks a comprehensive solution against the electrical-
level attacks detailed in Section III. FPGA virtualization
currently addresses physical isolation between tenants (spatial
isolation within the reconfigurable fabric or memory address
space isolation). However, as seen in Section III, isolation

15

alone cannot prevent intra- and inter-chip electrical coupling.
To that end, future hypervisors need at least the following
three mechanisms: first, a mechanism to prevent (to the extent
possible) a malicious design from being deployed in the cloud.
Second, a mechanism to detect an ongoing electrical-level
attack, and last but not least, a safe way to migrate the state of
the FPGA accelerator that is potentially affected by the attack.
The first mechanism requires, for instance, having the FPGA
design software discard potentially malicious accelerators or
forcing the user to create an alternative built with trusted prim-
itives. The second mechanism requires the implementation of
one or a combination of techniques detailed in Section V.
Finally, the third mechanism requires the development of
solutions for reliable and fast checkpointing, including error
recovery, since hypervisor reaction time will inevitably be
orders of magnitude longer than the time required by a fault-
injection attack.

C. Use of FPGA Reconfiguration for Security

Reconfiguration is a powerful feature that FPGAs can use to
ensure security. For example, reconfiguration is a useful tool
for providing crypto-agility, which provides the capability of
updating security primitives when they become obsolete or
vulnerable to attacks that were not known when a system
was deployed. This feature is clearly useful in the context
of the cloud, especially when the deployment of not-yet-
standardized algorithms is needed (as is the case of lightweight
primitives or post-quantum algorithms). Reconfiguration has
also been explored as a possible way to mitigate side channel
attacks [139]. The principle on which this countermeasure is
based is that it is hard to profile a device that keeps changing.
This approach could also be a promising way to mitigate
attacks in cloud settings. To ensure effective security using
reconfiguration, the reconfiguration manager must not be com-
promised, since this action would allow the use of a malicious
bitstream or the access to hardware resources by unauthorized
software. To mitigate this problem, authentication modules
paired with appropriate procedures for key management and
challenge-response protocols for authentication could be used
and communication to and from the hardware accelerators
could be secured. It may be possible to rely on classical
encryption [130] and access control mechanisms [140] to
perform these actions. It is however necessary to ensure that
they are resistant against physical attacks.

D. FPGA Architecture Enhancement

Many of the attacks on multi-tenant FPGAs are a result of
the FPGA’s shared PDN. Unlike multi-core microprocessors
which typically have isolated power islands for each processor
core [141], the PDN in individual FPGAs is not electrically
isolated. Several research projects have examined allowing
for tunable voltage for both logic and interconnect. Ahmed
et al. [142] suggested optimizing the look-up table (LUT)
design, to render its input-to-output delays less variable with
the change of supply voltage. They tried gate boosting the
LUT, decoding the slowest two inputs of the LUT, and
using separate voltage islands for the LUTs and routing.

Although their work is not motivated by voltage attacks but
dynamic voltage scaling, the idea of enhancing the FPGA
architecture is certainly promising and worth exploring in
the power side-channel attack context. Ebrahimi et al. [143]
use a combination of hardened and reconfigurable logic to
address changes in power consumption, as needed. Several
projects have examined dynamically controlling the voltage
for FPGA regions. Gayasan et al. [144] provided selectable
voltages for the interconnect and logic in a logic cluster. More
recent work examined voltage selection for regions of logic
clusters [145]. Giechaskiel et al. described the possibility of
isolating each super logic region on a separate PDN, although
an implementation was not provided [59].

As mentioned in Section V, voltage sensing is a key compo-
nent of voltage attack remediation. Although current FPGAs
typically contain one (or a small number) of low sample rate
hard voltage and thermal sensors [146], [147], more would be
needed for a fast, reliable remediation strategy. Soft voltage
sensors remain a viable option (e.g. Zick [27]), although
they often have TDC structures that could be construed as
malicious. AWS EC2 F1 currently employs an external power
monitor [148] to identify power attacks consuming more than
80 W. Attack detection results in FPGA shutdown.

The use of sensors has limitations. If sensor data collection
is supported by the shell, the trustworthiness of the shell
becomes as issue. Even if the shell is trusted, the data
collection and processing may take too much time to prevent
the attack. Finally, the sensors themselves can be affected by
the attack (e.g., a TDC can be decalibrated and recalibration
can take an extended time).

Several architectural enhancements could improve an
FPGA’s ability to respond to a voltage attack. Nassar et al. [67]
showed that partial reconfiguration can suppress an RO-based
voltage attack in as little as 1.5 microseconds in an Ultra-
Scale+ FPGA. However, even faster dynamic reconfiguration
approaches (e.g., a ’kill’ signal) could be considered if an
attack is detected. Although not used for fault suppression,
Vipin et al. [149] developed a fast partial reconfiguration
approach that could be used. Finally, FPGA communication
could be isolated logically and electrically via network-on-chip
(NoC) interconnection. Yazdanshenas and Betz [69] previously
demonstrated this effective security approach.

Additional FPGA architectural changes can be considered to
suppress SCAs. Recently, several approaches have attempted
to reduce the amount of PDN information leakage. One idea
is to use converter gating and distributed voltage regulators to
reduce the amount of switching-dependent fluctuations on the
PDN [150]. Other approaches use current flattening circuits
against differential power analysis (DPA) attacks [151] or
power profile scrambling [152], [153]. Such methods would
extend existing hiding techniques (Section V-B). In general, it
will be important to design PDNs with security constraints in
mind. Although it is likely impossible to fully remove PDN
information leakage, it can be suppressed to a certain level
such that, together with solutions at higher abstraction levels,
leakage is practically removed. In more advanced technology
nodes, due to tighter wire pitch, the parasitic resistance and
capacitance of wires increase, which in turn amplifies the

16

amount of observed leakage through voltage fluctuations. This
behavior further highlights the need for secure PDN design for
cloud FPGAs.

At the design level, one can consider design styles which
are inherently less susceptible to electrical level leakage.
A promising solution is dual rail logic (DRL). It may be
possible to provide proper circuit-level support to implement
DRL efficiently in an FPGA fabric [154], [155], [156]. Since
mapping DRL to an existing FPGA fabric does not allow for
glitch-free design, it is necessary to redesign the FPGA fabric
and design tools to allow for more efficient DRL realization
of masked designs on FPGAs. In addition to the increased
hardware design costs and associated performance and power
overheads for mapped designs, toolchain compatibility is an-
other concern. The effective realization of dual-rail logic and
other masking schemes on FPGAs requires the support of the
design automation and mapping tools. For instance, the two
rails of the logic must be routed to minimize delay differences.

E. FPGA CAD Enhancements

FPGA mapping and physical design have a considerable
impact on the amount of information leakage at the electrical
level. An analysis [157] showed that the effect of physical
design and mapping on the amount of information leakage be-
tween two tenants, measured in the number of traces needed to
perform a correlation power analysis (CPA) attack on the AES
implementation, could be more than 100×. This is both good
news and bad news, since many countermeasures have the
same level of effectiveness. As a result, some countermeasures
could be almost nullified by ignoring the effect of physical
design and wrongly mapping a trusted (victim) tenant in a very
sensitive region of the fabric. However, by carefully choosing
the region and physical design of the victim tenant and
the floorplanning and placement of the potentially-malicious
tenants, more than 100× protection can be achieved at no
extra hardware costs (including online monitoring, wrapper
circuitry, etc.).

This highlights the importance of FPGA CAD on sup-
pressing electrical-level information leakage. One challenge
which cannot be fully ignored is the impact of chip-to-chip
variations. As a result, the final mapping of the victim and
untrusted tenants should be fine-tuned to the specific FPGA
board. Additionally, the design of proper wrappers (around the
victim tenants) and sandboxing (around the untrusted tenants)
should be automated and included as a part of a secure
FPGA mapping flow. This further highlights the complexity
of such attacks and potential countermeasures, given various
dependencies on the respective placement of the victim’s and
attacker’s blocks, as well as the specific boards, which can
relatively increase (or reduce) the attack and countermeasure
efficiency multiple fold. Such still-open research challenges
motivate further research on this topic to find suitable solu-
tions.

F. Trust in FPGAs and their components

FPGAs largely rely on IP cores for the development of
complete systems. This approach is also used for systems

deployed in the cloud. The use of third party IP cores (which,
in cloud FPGAs, is even more common than in standalone
reconfigurable devices) brings several challenges related to the
trust of components and the entities involved in the design and
deployment chain. A model of trust for current cloud-based
FPGAs is summarized by Turan and Verbauwhede [158]. The
model considers three main entities: the platform provider, the
accelerator developer (who develops accelerators for specific
tasks), and the application developer. The platform provider
trusts neither the accelerator developer nor the application
developer. The accelerator developer, instead, is required to
trust the platform provider (for instance, providing the accel-
erators in a non-encrypted form). In this scenario, a malicious
platform provider can comprehend the IPs created by the
accelerator provider. Finally, the application provider must
trust both the platform and accelerator providers. Among
the model limitations, the authors report that only platform
providers are protected.

To address the limitations of the current model, it is nec-
essary to include mechanisms to protect IP providers from
piracy or other similar illegitimate use of their IPs. Common
IP protection methods proposed in the literature involve en-
cryption at the bitstream level [158]. For these methods to be
successfully ported to future cloud FPGAs, challenges such as
cryptographic key management and simulation and debugging
of the interoperation of the encrypted IP bitstreams with
other hardware blocks will need to be addressed [158]. Some
published works rely on a trusted third party (TTP) [159],
[160], [161], [162]. Turan and Verbauwhede [158] argue that,
in the cloud FPGA context, TTPs could be involved as entities
responsible for cryptographic key management. Additionally,
having TTPs take a share of the license fee of each IP core
via a pay-per-use licensing scheme could further incentivize
TTPs to invest in protecting the IP cores they offer.

The importance of IP protection has motivated the rise
of start-ups. An example is Accelize, whose business model
involves designing custom accelerators for customers and
supporting third-party developers to offer their accelerators to
Accelize clients. The protection is achieved using a proprietary
Digital Rights Management (DRM) solution, compatible with
various FPGA accelerated cloud platforms. Their DRM wraps
the IPs, protects them (via a licensing scheme), and meters
the IP use. The obvious downsides are the required trust in a
third party (which is Accelize itself) and the added cost for
end users.

G. Single Tenancy vs Multitenancy

Considering electrical-level attacks enabled by FPGA mul-
titenancy, an alternative strategy would be to run each tenant
on a separate FPGA. However, resorting to this extreme policy
would erode most of the gains from FPGA cloud virtualization
and significantly increase upfront investment in the FPGA
fleet. Smaller FPGAs would incur more costs at the board
level and create a communication bottleneck, which may not
be economical or high-performing. As a last security resort,
some users might opt to have their own FPGA units and avoid
multitenancy. Therefore, hybrid FPGA fleets containing many

17

large and high-performance FPGAs for multitenancy and a
limited selection of smaller FPGAs for single-use for security
reasons might be favorable.

IX. LESSONS LEARNED AND NEXT STEPS

In the previous sections, we discussed various electrical-
level attacks for cloud FPGAs and countermeasures to deal
with them. Here we summarize some of the key takeaways
from the research performed over the past several years on
this topic, and provide some insights for the next generation
of secure FPGA platforms to be deployed in cloud computing.

A. Lessons Learned

Our main takeaways can be grouped into three topics:
leakage, mitigation mechanisms, and deployment updates. In
this section, we discuss each in turn.

Electrical-Level Leakage is Unavoidable. Because FP-
GAs, and indeed any integrated circuit, have a common
electrical medium throughout the chip, electrical-level leakage
will always be unavoidable to some extent. This problem is
made worse by the shared PDN in many integrated circuits.
Such fundamental electrical relationships between different
parts of a chip inherently undermine any attempt at isolation
at the logic level and above.

On cloud FPGAs, electrical-level attacks are made more
difficult in the presence of additional activity by other users
and the shell, but with more samples and post processing, they
remain feasible. Varying victim and adversary locations on the
FPGA have generally failed to completely isolate different
users from each other. Providing complete isolation at the
electrical level is, if not impossible, impractical and extremely
costly. A certain level of information leakage should be the
underlying assumption for all security solutions for cloud
FPGAs.

Mitigation Mechanisms Are Required Across All Levels.
Since electrical-level leakage is fundamentally unavoidable,
design-level solutions for electrical-level isolation are also
incomplete and cannot fully suppress the leakage. However,
despite the fact that the problem cannot be entirely eliminated,
there is a need for run-time solutions that predict, detect,
and mitigate electrical-level attacks. This could be in the
form of treating important data in such a way that leakage
has minimal impact, e.g., avoid transferring encryption keys
between different parts of a design, etc. There is a need for a
holistic cross-layer approach for secure FPGA platforms from
design to deployment.

Continuous Updates of Deployed Measures are Re-
quired. New electrical-level attacks are continuously being
found and existing attacks have become more stealthy, evading
existing countermeasures. Often new attacks are not funda-
mentally undetectable, they just evade existing countermea-
sures. This point highlights the importance of continuously
updating a deployed system to ensure that it stays resistant to
new attacks. There is a constant need to update coordinated
countermeasures at all levels of design and deployment.

Below are some of the specific insights from existing
research on cloud FPGA vulnerabilities and countermeasures:

• Side channel attacks can be made harder in the presence
of noise, which is the basis for hiding countermeasures.
Noise can be deliberately generated by the victim (to
protect itself). However, the presence of noise can be
outside the control of the victim or the adversary, as it
could be caused by other accelerators or the shell. Due
to this noise, sensor readings may be misleading (both
for side-channel attacks and attack detection/mitigation).
Also, using sensors to control noise generators (e.g., a
noisy fence) can be suboptimal given that sensors pick
up the voltage variations caused by all the activity on the
chip.

• Noise generators (as part of a fence) have to be imple-
mented carefully to ensure that the added noise does
not destabilize the PDN, making it more vulnerable to
unwanted (benign) reliability faults in a co-tenant or
making the tenant design more vulnerable to fault attacks.

• FPGA power wasters can be misused to inject compu-
tational faults in the CPU or other components on the
same SoC, so protections must be extended to other
components besides the shell/logic. By using the common
PCIe bus and other system interfaces and buses, fault
injection and side channel attacks originating from the
FPGA can affect other system components.

• Isolating shell logic and wiring is mandatory, given
that tapping into wires (e.g., via crosstalk) could reveal
secrets.

• The techniques and strategies used to provide security
may vary greatly, depending on whether or not multite-
nancy is supported. Even without multitenancy, there is
still leakage between the processor and the other parts of
the system (CPU, GPU, network) through the PCIe bus,
enabled by the common PDN, which should be mitigated.

B. Next steps

To tackle these new FPGA security challenges for cloud
usage, and ensure secure and efficient FPGA virtualization
in the cloud, there is a need for a set of orchestrated solu-
tions. These solutions span a spectrum from the design and
fabrication of a secure FPGA fabric, to the secure mapping
of user designs to FPGAs using a mapping toolchain, secure
FPGA CAD tools, and hypervisor deployment strategies. Thus,
the fabric and toolchain for secure cloud FPGAs might look
very different from today’s systems. Solutions should also
consider fabrication (secure FPGA fabric against electrical
level attacks), design (the design of primitives and wrappers
to mitigate information leakage and fault attacks), mapping
(automating the modular design of secure designs to ensure
proper isolation at the electrical level) and deployment (proper
offline and runtime mechanisms by the hypervisor).

Given the nature and medium of electrical-level leakage, it
is imperative to secure the FPGA fabric against electrical-level
attacks. PDNs should be designed with security constraints in
mind. One approach is to suppress information leakage at the
PDN level. Although it may be impossible to fully remove
PDN information leakage, it may be suppressed to a certain
level such that together with higher abstraction levels, leakage

18

HDL/HLS
Design

Deployment

Synthesis/
Implementation

Design Rule
Checks

FPGA Image
Creation

RTL
Netlist FPGA

Image

User

Hypervisor

EN

S
h
e
ll

Vcc

Cloud Instance
Allocation

FPGA Image
Deployment

Possible logical isolation,
yet with common PDN;
Underutilisation

FPGA

Fig. 10: Today’s solutions for design deployment on cloud FPGAs. Even though the tools can achieve logical isolation between
multiple tenants, due to electrical-level security issues discussed in this manuscript, the entire FPGA gets allocated for one
user.

Design

Deployment

User

Hypervisor

Design

User
Design

User

S
h
e
ll

Vcc3

Vcc1

Vcc
shell

Vcc2 Vcc4

Multitenancy-Aware
Cloud Instance Allocation

and Shell Deployment

Multitenancy-Aware
FPGA Image Deployment

HDL/HLS

Multitenacy-
Aware

Synthesis/
Implementation

Multitenancy-
Aware

Design Rule
Checks

Wrapper
and

Monitoring Logic
Insertion

RTL
Netlist FPGA

ImageEN

HDL/HLS RTL
Netlist FPGA

Image

Multitenancy-Aware
FPGA Image

Creation
EN

FPGA

HDL/HLS RTL
Netlist FPGA

ImageEN

Logic isolation
Voltage islands, secure PDN

Monitoring logic
Wrappers

Deployment
Deployment

Fig. 11: Tomorrow’s solutions for design deployment on multi-tenant cloud FPGAs, taking three tenants as an example. To
alleviate electrical-level security issues, existing tools will need to be adapted and new steps (e.g., monitoring logic and wrapper
insertion) will likely need to be added. New FPGA fabrics with reduced power side-channel coupling (e.g., with voltage islands)
will need to be developed. Cloud FPGA shells will need to handle security-related tasks as well.

is practically removed. Another approach is to provide voltage
islands for separate tenants on the same FPGA fabric. In more
advanced technology nodes, due to tighter wire pitch, the
parasitic resistance and capacitance of wires increase, which
in turn amplifies the amount of observed leakage through
voltage fluctuations. This issue further highlights the need
for secure PDN design for cloud FPGAs. This approach, of
course, comes with extra overheads in terms of routing, chip
area, and potentially delay, power, and design closure.

Design automation toolchains for FPGAs should become
aware of such electrical-level vulnerabilities and should sup-
port automatic analysis and identification of malicious con-
structs and potential leakage as well as integration of proper
countermeasures and wrappers into the FPGA designs. An
extension of the signal integrity analysis check, with all
post-layout parasitics (PAX), may be required to analyze the
potential leakage and embed proper countermeasures in the
design to counter it. Of course, this adds extra complexity to
the overall FPGA design and mapping toolchain, and clever
solutions are required for tractable design closure and sign-off.

Proper protection requires both offline and online methods.
Tenant designs must be certified against known malicious
behaviors before being loaded into cloud FPGAs. This cer-
tification includes hypervisor checking of the tenant design
and bitstream, and potentially the source register-transfer level
(RTL), against known malicious activities and constructs. This
activity includes both static (structural) checks and dynamic
checks using accurate timing simulation. Due to stealthy nature
of such malicious constructs, machine-learning approaches
that automatically learn and generalize offline countermeasures
and machine learning-based anomaly detection approaches
executed at runtime that can predict and prevent attacks seem
very promising.

There likely will be new vulnerabilities and associated
attack vectors related to FPGA deployment in cloud settings.
In the context of untrusted FPGA IP cores, the issue of
FPGA Trojans performing electrical-level attacks should also
be considered. The trigger and payload parts of the Trojan
could exploit electrical-level vulnerabilities that are embedded
in the IP core, making them stealthy and hard to detect.

19

Vulnerabilities may arise when the FPGA fabric is co-
integrated with other cloud components, such as microproces-
sors and GPUs. This integration may lead to powerful coordi-
nated attacks in which adversarial collaboration on both pro-
cessor and FPGA sides may render existing countermeasures
ineffective. Moreover, processes running on the processor or
GPU sides may become new victims in such scenarios.

Figs. 10 and 11 illustrate today’s and, the way we see them,
tomorrow’s solutions for design deployment on multi-tenant
cloud FPGAs. We envision numerous changes, affecting many
steps of FPGA manufacturing, compilation, and deployment.

C. Is It Worth It?

Last but not least, the question arises as to whether all the
hardware design and manufacturing efforts, toolchain redesign
efforts, hypervisor costs and extra performance, and area and
power penalties associated with security measures for cloud
FPGAs are worth it? The answer is the benefit of sharing.
Providing true multitenancy and sharing of virtualized FPGA
resources in the cloud, which is now hindered by the security
concerns, can unleash the benefits of reconfigurable cloud
computing. This effort would enable flexibility, increased
performance and cost-efficiency for all types of users, no
matter how large a fabric they require, and allow the cloud
provider to reach out to a wider range of users and use cases.

X. SUMMARY

In this manuscript, we provide a visionary look at the
security issues associated with the diffusion and use of recon-
figurable cloud computing. By critically reviewing success-
fully demonstrated remote FPGA attacks, we have shown and
demonstrated the severity and scale of the threat. It is evident
that current attacks are capable of undermining the availability
of resources, the integrity of applications running on top of
them, and the confidentiality of application data.

Attacks that have been successfully demonstrated so far
have either targeted the FPGA itself or have used an FPGA to
assist in system-level attacks. The former leverages electrical
coupling between the adversary and a victim to pick up side-
channel information or to generate a disturbance that injects
faults via the electrical medium. The latter corrupts portions of
memory shared with CPUs or overstresses shared components.
These attacks generally require the use of on-chip voltage
sensors to measure side channels, and power-wasting circuits
to inject faults. Both components can be easily implemented
in FPGAs due to the low-level hardware control and bit-level
programmability that is offered. Sensors can be counteracted
using bitstream scanning which identifies malicious design
circuits. Dynamic attacks can be addressed with run-time
remediation, for instance, the use of a closed-loop control
system to stabilize steady-state power consumption in an effort
to mitigate side-channel leakage.

From our study, it appears evident that the next generation of
reconfigurable cloud computing security will require designers
to consider multiple different operation levels and combine
multiple technologies. At the system level, the most natural
module to enforce security policies is the hypervisor, which

should provide and guarantee isolation. At the same time,
security improvements are expected to also come from archi-
tectural enhancements that could make FPGAs more resistant
to attacks, and from CAD tools, whose role in security is often
underestimated.

It is, however, necessary to acknowledge that electrical-
level leakage is unavoidable. This leakage is intrinsic to
FPGAs that share an on-chip electrical medium. As a result,
designers should be aware that a certain level of information
leakage is present for all cloud FPGA security solutions. Such
awareness should be the guiding assumption when designing
mitigation mechanisms that should necessarily be tackled in a
holistic manner and allow for continuous updates to address
the evolving attack surface.

REFERENCES

[1] Cloud Tensor Processing Units (TPUs), Google, 2023. [Online].
Available: https://cloud.google.com/tpu/docs/tpus

[2] Project Catapult, Microsoft Research, 2019. [Online]. Available:
https://www.microsoft.com/en-us/research/project/project-catapult/

[3] Amazon EC2 F1, Amazon AWS, 2019. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[4] Compute Optimized Instance Families with FPGAs, Alibaba, 2023.
[Online]. Available: alibabacloud.com/help/doc-detail/108504.htm

[5] Machine Learning, Microsoft Azure. [Online]. Available: https:
//azure.microsoft.com/en-us/pricing/details/machine-learning/

[6] Zynq UltraScale+ MPSoC, Xilinx, 2023. [Online]. Available:
xilinx.com

[7] C. Bobda, J. M. Mbongue, P. Chow, M. Ewais, N. Tarafdar, J. C.
Vega, K. Eguro, D. Koch, S. Handagala, M. Leeser, M. Herbordt,
H. Shahzad, P. Hofste, B. Ringlein, J. Szefer, A. Sanaullah, and
R. Tessier, “The future of FPGA acceleration in datacenters and the
cloud,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 15, no. 3, pp. 34:1 – 34:42, Sep. 2022.

[8] Brainwave Project, Microsoft, 2022. [Online]. Available: https:
//www.microsoft.com/en-us/research/project/project-brainwave/

[9] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
& Engineering, vol. 12, no. 3, pp. 66–73, May 2010.

[10] A. Koneru, A. Todri-Sanial, and K. Chakrabarty, “Reliable power de-
livery and analysis of power-supply noise during testing in monolithic
3D ICs,” in 37th VLSI Test Symposium (VTS), Apr. 2019, pp. 1–6.

[11] S.-C. Hung and K. Chakrabarty, “Design of a reliable power delivery
network for monolithic 3D ICs,” in Proceedings of the Design, Au-
tomation and Test in Europe Conference and Exhibition, Mar. 2020,
pp. 1746–1751.

[12] S. Lin and N. Chang, “Challenges in power-ground integrity,” in 2001
IEEE/ACM International Conference on Computer-Aided Design, Nov.
2001, pp. 651–654.

[13] N. Evmorfopoulos, D. Karampatzakis, and G. Stamoulis, “Precise
identification of the worst-case voltage drop conditions in power
grid verification,” in 2006 IEEE/ACM International Conference on
Computer-Aided Design, Nov. 2006, pp. 112–118.

[14] S. S. Mirzargar and M. Stojilović, “Physical side-channel attacks
and covert communication on FPGAs: A survey,” in Proceedings of
the 29th International Conference on Field-Programmable Logic and
Applications, Sep. 2019, pp. 202–210.

[15] I. Giechaskiel, K. Rasmussen, and J. Szefer, “Measuring long wire
leakage with ring oscillators in cloud FPGAs,” in Proceedings of
the 29th International Conference on Field-Programmable Logic and
Applications, Sep. 2019, pp. 45–50.

[16] S. Tian and J. Szefer, “Temporal thermal covert channels in cloud
FPGAs,” in Proceedings of the 27th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, Feb. 2019, pp. 298–303.

[17] T. Trochatos, A. Etim, and J. Szefer, “Security evaluation of thermal
covert-channels on SmartSSDs,” May 2023, arXiv: 2305.09115.

[18] S. Mahapatra, N. Goel, S. Desai, S. Gupta, B. Jose, S. Mukhopadhyay,
K. Joshi, A. Jain, E. A. Islam, and M. A. Alam, “A comparative study of
different physics-based NBTI models,” IEEE Transactions on Electron
Devices, vol. 60, no. 3, pp. 901–916, Mar. 2013.

https://cloud.google.com/tpu/docs/tpus
https://www.microsoft.com/en-us/research/project/project-catapult/
https://aws.amazon.com/ec2/instance-types/f1/
alibabacloud.com/help/doc-detail/108504.htm
https://azure.microsoft.com/en-us/pricing/details/machine-learning/
https://azure.microsoft.com/en-us/pricing/details/machine-learning/
xilinx.com
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-brainwave/

20

[19] C. Drewes, O. Weng, A. Meza, A. Althoff, D. Kohlbrenner, R. Kastner,
and D. Richmond, “Pentimento: Data remanence in cloud FPGAs,”
Mar. 2023, arXiv: 2303.17881.

[20] H. Cook, J. Thompson, Z. Tripp, B. Hutchings, and J. Goeders,
“Cloning the unclonable: Physically cloning an FPGA ring-oscillator
PUF,” in Proceedings of the IEEE International Conference on Field
Programmable Technology, Dec. 2022, pp. 1–10.

[21] M. Zhao, M. Gao, and C. Kozyrakis, “ShEF: Shielded enclaves for
cloud FPGAs,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, Mar. 2022, pp.
1–16.

[22] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in IEEE Symposium on Security and Privacy (SP), May 2018,
pp. 805–820.

[23] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pille-
ment, D. Holcomb, and R. Tessier, “FPGA side channel attacks without
physical access,” in Proceedings of the 26th IEEE Symposium on Field-
Programmable Custom Computing Machines, Apr. 2018, pp. 45–52.

[24] I. Giechaskiel, K. Eguro, and K. Rasmussen, “Leakier wires: Exploiting
FPGA long wires for covert- and side-channel attacks,” ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS), vol. 12,
no. 3, pp. 1–29, Sep. 2019.

[25] S. Tian, W. Xiong, I. Giechaskiel, K. Rasmussen, and J. Szefer,
“Fingerprinting cloud FPGA infrastructures,” in Proceedings of the
28th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Feb. 2020, pp. 58–64.

[26] I. Giechaskiel, K. Rasmussen, and J. Szefer, “C3APSULe: Cross-FPGA
covert-channel attacks through power supply unit leakage,” in IEEE
Symposium on Security and Privacy (SP), May 2020, pp. 1728–1741.

[27] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
nanosecond-scale voltage attacks and natural transients in FPGAs,” in
Proceedings of the 21th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Feb. 2013, pp. 101–104.

[28] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An inside
job: Remote power analysis attacks on FPGAs,” IEEE Design & Test,
vol. 38, no. 3, pp. 58–66, Jun. 2021.

[29] O. Glamočanin, L. Coulon, F. Regazzoni, and M. Stojilović, “Are cloud
FPGAs really vulnerable to power analysis attacks?” in Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition,
Mar. 2020, pp. 1007–1010.

[30] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Remote
power side-channel attacks on BNN accelerators in FPGAs,” in Pro-
ceedings of the Design, Automation and Test in Europe Conference and
Exhibition, Feb. 2021, pp. 1639–1644.

[31] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “Remote
inter-chip power analysis side-channel attacks at board-level,” in 2018
IEEE/ACM International Conference on Computer-Aided Design, Nov.
2018, pp. 1–7.

[32] G. Provelengios, D. Holcomb, and R. Tessier, “Power wasting circuits
for cloud FPGA attacks,” in Proceedings of the 30th International
Conference on Field-Programmable Logic and Applications, Sep. 2020,
pp. 231–235.

[33] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based
fault attacks on FPGAs using valid bitstreams,” in Proceedings of
the 27th International Conference on Field-Programmable Logic and
Applications, Sep. 2017, pp. 1–7.

[34] K. Matas, T. M. La, K. D. Pham, and D. Koch, “Power-hammering
through glitch amplification—attacks and mitigation,” in Proceedings
of the 28th IEEE Symposium on Field-Programmable Custom Comput-
ing Machines, May 2020, pp. 65–69.

[35] T. La, K. D. Pham, J. Powell, and D. Koch, “Denial-of-service on
FPGA-based cloud infrastructures—attack and defense,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, vol. 2021,
no. 3, pp. 441–464, 2021.

[36] G. Provelengios, D. Holcomb, and R. Tessier, “Characterizing power
distribution attacks in multi-user FPGA environments,” in Proceedings
of the 29th International Conference on Field-Programmable Logic and
Applications, Sep. 2019, pp. 194–201.

[37] D. Mahmoud and M. Stojilović, “Timing violation induced faults in
multi-tenant FPGAs,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, Mar. 2019, pp. 1745–1750.

[38] D. G. Mahmoud, D. Dervishi, S. Hussein, V. Lenders, and M. Sto-
jilović, “DFAulted: Analyzing and exploiting CPU software faults
caused by FPGA-driven undervolting attacks,” IEEE Access, vol. 10,
pp. 134 199–134 216, Dec. 2022.

[39] J. Krautter, D. R. Gnad, and M. B. Tahoori, “FPGAhammer: Remote
voltage fault attacks on shared FPGAs, suitable for DFA on AES,”

IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, vol. 2018, no. 3, pp. 44–68, Aug. 2018.

[40] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “Remote and stealthy
fault attacks on virtualized FPGAs,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, Feb. 2021,
pp. 1632–1637.

[41] D. G. Mahmoud, W. Hu, and M. Stojilović, “X-Attack: Remote
activation of satisfiability don’t-care hardware Trojans on shared FP-
GAs,” in Proceedings of the 30th International Conference on Field-
Programmable Logic and Applications, Aug. 2020, pp. 185–92.

[42] G. Provelengios, D. E. Holcomb, and R. Tessier, “Power distribution
attacks in multitenant FPGAs,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 12, pp. 2685–2698, Dec. 2020.

[43] X. Li, R. Tessier, and D. Holcomb, “Precise fault injection to enable
DFIA for attacking AES in remote FPGAs,” in Proceedings of the
30th IEEE Symposium on Field-Programmable Custom Computing
Machines, May 2022, pp. 1–5.

[44] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “RAM-
Jam: Remote temperature and voltage fault attack on FPGAs using
memory collisions,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), Aug. 2019, pp. 48–55.

[45] A. Boutros, M. Hall, N. Papernot, and V. Betz, “Neighbors from
hell: Voltage attacks against deep learning accelerators on multi-tenant
FPGAs,” in Proceedings of the IEEE International Conference on Field
Programmable Technology, Dec. 2020, pp. 103–11.

[46] Y. Luo, C. Gongye, Y. Fei, and X. Xu, “DeepStrike: Remotely-guided
fault injection attacks on DNN accelerator in cloud-FPGA,” in 58th
ACM/ESDA/IEEE Design Automation Conference, Jun. 2021, pp. 295–
300.

[47] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “Deep-Dup: An adversarial
weight duplication attack framework to crush deep neural network in
multi-tenant FPGA,” in Usenix Security Symposium, Aug. 2021, pp.
1919–1936.

[48] D. R. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Analysis of
transient voltage fluctuations in FPGAs,” in Proceedings of the IEEE
International Conference on Field Programmable Technology, Dec.
2016, pp. 12–19.

[49] D. R. E. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori, “An
experimental evaluation and analysis of transient voltage fluctuations
in FPGAs,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 10, pp. 1817–1830, 2018.

[50] G. Provelengios, D. E. Holcomb, and R. Tessier, “Mitigating voltage
attacks in multi-tenant FPGAs,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 14, no. 2, pp. 9:1–9:24, Jul.
2021.

[51] O. Glamočanin, D. G. Mahmoud, F. Regazzoni, and M. Stojilović,
“Shared FPGAs and the Holy Grail: Protections against side-channel
and fault attacks,” in Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition, Feb. 2021, pp. 1–6.

[52] J. Gravellier, J.-M. Dutertre, Y. Teglia, P. Loubet-Moundi, and
F. Olivier, “Remote side-channel attacks on heterogeneous SoC,” in
18th Smart Card Research and Advanced Applications Conference
(CARDIS), Nov. 2019, pp. 109–125.

[53] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. A. Faruque, “Stealing
neural network structure through remote FPGA side-channel analysis,”
IEEE Transactions on Information Forensics and Security, vol. 16, pp.
4377–4388, Aug. 2021.

[54] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and
J. Szefer, “Remote power attacks on the versatile tensor accelerator
in multi-tenant FPGAs,” in Proceedings of the 29th IEEE Symposium
on Field-Programmable Custom Computing Machines, May 2021, pp.
242–246.

[55] V. Meyers, D. Gnad, and M. Tahoori, “Reverse engineering neural
network folding with remote FPGA power analysis,” in Proceedings of
the 30th IEEE Symposium on Field-Programmable Custom Computing
Machines, May 2022, pp. 1–10.

[56] D. R. E. Gnad, V. Meyers, N. M. Dang, F. Schellenberg, A. Moradi,
and M. B. Tahoori, “Stealthy logic misuse for power analysis attacks
in multi-tenant FPGAs,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, Feb. 2021, pp. 1012–15.

[57] B. Udugama, D. Jayasinghe, H. Saadat, A. Ignjatovic, and
S. Parameswaran, “VITI: A tiny self-calibrating sensor for power-
variation measurement in FPGAs,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, vol. 2022, no. 1, pp. 657–
678, 2022.

[58] D. R. E. Gnad, C. D. K. Nguyen, S. H. Gillani, and M. B. Tahoori,
“Voltage-based covert channels using FPGAs,” ACM Transactions on

21

Design Automation of Electronic Systems (TODAES), vol. 26, no. 6,
pp. 1–25, Nov. 2021.

[59] I. Giechaskiel, K. Rasmussen, and J. Szefer, “Reading between the
dies: Cross-SLR covert channels on multi-tenant cloud FPGAs,” in
37rd IEEE International Conference on Computer Design (ICCD),
Nov. 2019, pp. 1–10.

[60] I. Giechaskiel, K. Rasmussen, and K. Eguro, “Leaky wires: Information
leakage and covert communication between FPGA long wires,” in
Proceedings of 13th ACM ASIA Conference on Information, Computer
and Communications Security (ASIACCS), May 2018, pp. 15–27.

[61] S. Tian, I. Giechaskiel, W. Xiong, and J. Szefer, “Cloud FPGA
cartography using PCIe contention,” in Proceedings of the 29th IEEE
Symposium on Field-Programmable Custom Computing Machines,
2021, pp. 224–232.

[62] I. Giechaskiel, S. Tian, and J. Szefer, “Cross-VM information leaks in
FPGA-accelerated cloud environments,” in International Symposium on
Hardware-Oriented Security and Trust, Dec. 2021, pp. 91–101.

[63] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth,
and B. Sunar, “JackHammer: Efficient rowhammer on heterogeneous
FPGA-CPU platforms,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, vol. 2020, no. 3, p. 169–195, Jun. 2020.

[64] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” in Inter-
national Symposium on Computer Architecture, Jun. 2014, p. 361–372.

[65] J. Krautter, D. R. Gnad, and M. B. Tahoori, “Mitigating electrical-
level attacks towards secure multi-tenant FPGAs in the cloud,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 12, no. 3, pp. 1–26, 2019.

[66] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch,
“FPGADefender: Malicious self-oscillator scanning for Xilinx Ultra-
Scale + FPGAs,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 13, no. 3, pp. 1–31, Sep. 2020.

[67] H. Nassar, H. AlZughbi, D. R. E. Gnad, L. Bauer, M. B. Tahoori,
and J. Henkel, “LoopBreaker: Disabling interconnects to mitigate
voltage-based attacks in multi-tenant FPGAs,” in 2021 IEEE/ACM
International Conference on Computer-Aided Design, Nov. 2021, pp.
1–6.

[68] T. Huffmire, B. Brotherton, N. Callegari, J. Valamehr, J. W. R. Kastner,
and T. Sherwood, “Designing secure systems on reconfigurable hard-
ware,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 13, no. 3, pp. 44:1–44:24, Jul. 2008.

[69] S. Yazdanshenas and V. Betz, “The costs of confidentiality in virtu-
alized FPGAs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 10, pp. 2272–2283, Oct. 2019.

[70] Y. Luo and X. Xu, “HILL: A hardware isolation framework against
information leakage on multi-tenant FPGA long-wires,” in Proceed-
ings of the IEEE International Conference on Field Programmable
Technology, Dec. 2019, pp. 12–19.

[71] Z. Seifoori, S. S. Mirzargar, and M. Stojilović, “Closing leaks: Routing
against crosstalk side-channel attacks,” in Proceedings of the 28th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, Feb. 2020, pp. 197–203.

[72] Y. Luo, S. Duan, and X. Xu, “FPGAPRO: A defense framework
against crosstalk-induced secret leakage in FPGA,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 27, no. 3,
pp. 1–31, May 2022.

[73] F. Regazzoni, Y. Wang, and F.-X. Standaert, “FPGA implementations
of the AES masked against power analysis attacks,” in International
Workshop on Constructive Side-Channel Analysis and Secure Design,
Feb. 2011, pp. 56–66.

[74] K. Tiri and I. Verbauwhede, “A logic level design methodology for
a secure DPA resistant ASIC or FPGA implementation,” in Proceed-
ings of the Design, Automation and Test in Europe Conference and
Exhibition, Feb. 2004, pp. 1–6.

[75] A. L. Masle, G. C. T. Chow, and W. Luk, “Constant power re-
configurable computing,” in Proceedings of the IEEE International
Conference on Field Programmable Technology, Jan. 2011, pp. 1–8.

[76] J. Krautter, D. R. Gnad, F. Schellenberg, A. Moradi, and M. B. Tahoori,
“Active fences against voltage-based side channels in multi-tenant
FPGAs,” in 2019 IEEE/ACM International Conference on Computer-
Aided Design, Nov. 2019, pp. 1–8.

[77] O. Glamočanin, A. Kostić, S. Kostić, and M. Stojilović, “Active wire
fences for multitenant FPGAs,” in Proceedings of the 26th International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems, May 2023, pp. 1–8.

[78] L. L. Shen, I. Ahmed, and V. Betz, “Fast voltage transients on FPGAs:
Impact and mitigation strategies,” in Proceedings of the 27th IEEE
Symposium on Field-Programmable Custom Computing Machines, Apr.
2019, pp. 271–279.

[79] S. S. Mirzargar, G. Renault, A. Guerrieri, and M. Stojilović, “Nonintru-
sive and adaptive monitoring for locating voltage attacks in virtualized
FPGAs,” in Proceedings of the IEEE International Conference on Field
Programmable Technology, Dec. 2020, pp. 588–589.

[80] E. Stott, J. M. Levine, P. Y. K. Cheung, and N. Kapre, “Timing fault
detection in FPGA-based circuits,” in Proceedings of the 22nd IEEE
Symposium on Field-Programmable Custom Computing Machines,
May 2014, pp. 96–99.

[81] Y. Luo and X. Xu, “A quantitative defense framework against power
attacks on multi-tenant FPGA,” in 2020 IEEE/ACM International
Conference on Computer-Aided Design, Nov. 2020, pp. 1–4.

[82] S. Moini, X. Li, P. Stanwicks, G. Provelengios, W. Burleson, R. Tessier,
and D. Holcomb, “Understanding and comparing the capabilities of on-
chip voltage sensors against remote power attacks on FPGAs,” in 2020
IEEE 63rd International Midwest Symposium on Circuits and Systems
(MWSCAS), Aug. 2020, pp. 941–944.

[83] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks -
Revealing the Secrets of Smart Cards. New York, NY: Springer, 2007.

[84] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter services,”
in International Symposium on Computer Architecture, Jun. 2014, pp.
1–12.

[85] A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande, J. Sheng, and
C. Yang, “Novo-g#: Large-scale reconfigurable computing with direct
and programmable interconnects,” in IEEE High Performance Extreme
Computing Conference (HPEC), Sep. 2016, pp. 1–7.

[86] C. Plessl, “Bringing FPGAs to HPC production systems and codes,”
in Fourth International Workshop on Heterogeneous High-Performance
Reconfigurable Computing, Nov. 2018.

[87] FPGA Link, AWS GitHub, 2022. [Online]. Available: https:
//github.com/HFTrader/aws-fpga/blob/master/FAQs.md

[88] F. Abel, J. Weerasinghe, C. Hagleitner, B. Weiss, and S. Paredes, “An
FPGA platform for hyperscalers,” in IEEE 25th Annual Symposium on
High-Performance Interconnects (HOTI), Aug. 2017, pp. 29–32.

[89] T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, “SAVI testbed
architecture and federation,” in Future Access Enablers for Ubiquitous
and Intelligent Infrastructures (FABULOUS), Sep. 2015, pp. 3–10.

[90] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He,
N. Hossle, D. Korolija, M. Licciardello, K. Martsenko, R. Achermann,
G. Alonso, and T. Roscoe, “Enzian: An open, general, CPU/FPGA
platform for systems software research,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems, Feb. 2022, pp. 434–451.

[91] Z. István, G. Alonso, and A. Singla, “Providing multi-tenant services
with FPGAs: Case study on a key-value store,” in Proceedings of
the 28th International Conference on Field-Programmable Logic and
Applications, Sep. 2018, pp. 119–124.

[92] J. M. Mbongue, A. Shiuping, P. Bhowmik, and C. Bobda, “Architecture
support for FPGA multi-tenancy in the cloud,” in International Con-
ference on Application-specific Systems, Architectures and Processors
(ASAP), Jul. 2020, pp. 125–132.

[93] J. M. Mbongue and C. Bobda, “Accommodating multi-tenant FPGAs
in the cloud,” in Proceedings of the 28th IEEE Symposium on Field-
Programmable Custom Computing Machines, May 2020, pp. 214–214.

[94] J. M. Mbongue, D. T. Kwadjo, A. Shuping, and C. Bobda, “Deploying
multi-tenant FPGAs within linux-based cloud infrastructure,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 15, no. 2, pp. 1–31, Jun. 2022.

[95] M. Gobulukoglu, C. Drewes, B. Hunter, D. Richmond, and R. Kastner,
“Classifying computations on multi-tenant FPGAs,” in Proceedings of
the 29th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Feb. 2021, pp. 227–227.

[96] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: Toward an
open-source solution for cloud computing,” International Journal of
Computer Applications, vol. 55, no. 3, pp. 38–42, Oct. 2012.

[97] D. Bernstein, “Containers and cloud: From LXC to Docker to Kuber-
netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sep. 2014.

[98] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on FPGA vir-
tualization,” in Proceedings of the 28th International Conference on
Field-Programmable Logic and Applications, Aug. 2018, pp. 131–138.

https://github.com/HFTrader/aws-fpga/blob/master/FAQs.md
https://github.com/HFTrader/aws-fpga/blob/master/FAQs.md

22

[99] Intel Virtualization Technology (Intel VT), Intel, 2023. [Online].
Available: https://www.intel.com/content/www/us/en/virtualization/
virtualization-technology/intel-virtualization-technology.html

[100] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich,
“The Erlangen slot machine: Increasing flexibility in FPGA-based
reconfigurable platforms,” in Proceedings of the IEEE International
Conference on Field Programmable Technology, Dec. 2015, pp. 37–
42.

[101] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling
FPGAs in hyperscale data centers,” in IEEE 12th Intl. Conf. on Ubiqui-
tous Intelligence and Computing and 12th Intl. Conf. on Autonomic and
Trusted Computing and 15th Intl. Conf. on Scalable Computing and
Communications and Its Associated Workshops (UIC-ATC-ScalCom),
Aug. 2015, pp. 1078–1086.

[102] O. Knodel, P. Lehmann, and R. G. Spallek, “RC3E: Reconfigurable
accelerators in data centres and their provision by adapted service mod-
els,” in 9th International Conference on Cloud Computing (CLOUD),
Jun. 2016, pp. 19–26.

[103] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and
K. Wang, “Enabling FPGAs in the cloud,” in 11th ACM Conference
on Computing Frontiers, May 2014, pp. 1–10.

[104] J. Mbongue, F. Hategekimana, D. T. Kwadjo, D. Andrews, and
C. Bobda, “FPGAVirt: A novel virtualization framework for FPGAs in
the cloud,” in IEEE 11th International Conference on Cloud Computing
(CLOUD), Jul. 2018, pp. 862–865.

[105] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, , and P. Chow,
“FPGAs in the cloud: Booting virtualized hardware accelerators with
OpenStack,” in Proceedings of the 22nd IEEE Symposium on Field-
Programmable Custom Computing Machines, May 2014, pp. 109–116.

[106] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accel-
erators for efficient cloud computing,” in International Conference on
Cloud Computing Technology and Science (CloudCom), Nov. 2015, pp.
430–435.

[107] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached
FPGAs for data center applications,” in Proceedings of the IEEE
International Conference on Field Programmable Technology, Dec.
2016, pp. 1–8.

[108] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, “Virtu-
alized execution runtime for FPGA accelerators in the cloud,” IEEE
Access, vol. 5, pp. 1900–1910, Feb. 2017.

[109] M. Vesper, D. Koch, and K. Pham, “PCIeHLS: An OpenCL HLS
framework,” in International Workshop on FPGAs for Software Pro-
grammers (FSP), Sep. 2017, pp. 10–15.

[110] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, “Enabling flexible network FPGA clusters in a heterogeneous
cloud data center,” in Proceedings of the 25th ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, Feb. 2017, pp.
237–246.

[111] J. Zhang, Y. Xiong, N. Xu, R. Shu, B. Li, P. Cheng, G. Chen,
and T. Moscibroda, “The Feniks FPGA operating system for cloud
computing,” in Asia-Pacific Workshop on Systems (APSys), Sep. 2017,
pp. 1–7.

[112] J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures for
circuit portability and fast placement and routing,” in International
Conference on Hardware/Software Codesign and System Synthesis
(CODESS+ISSS), Oct. 2010, pp. 1–9.

[113] N. Kapre and J. Gray, “Hoplite: Building austere overlay NoC for
FPGAs,” in Proceedings of the 25th International Conference on Field-
Programmable Logic and Applications, Sep. 2015, pp. 1–8.

[114] X. Li and D. L. Maskell, “Time-multiplexed FPGA overlay archi-
tectures: A survey,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 24, no. 5, pp. 1–19, Sep. 2019.

[115] P. Maidee, A. Kaviani, and K. Zeng, “LinkBlaze: Efficient global
data movement for FPGAs,” in International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), Dec. 2017, pp. 1–8.

[116] J. M. Mbongue, D. T. Kwadjo, and C. Bobda, “FLexiTASK: A flexible
FPGA overlay for efficient multitasking,” in ACM/SIGDA Great Lakes
Symposium on VLSI (GLSVLSI), May 2018, pp. 483–486.

[117] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J.
Rossbach, “Sharing, protection, and compatibility for reconfigurable
fabric with AmorphOS,” in 13th USENIX Symposium on Operating
Systems Design and Implementation, Oct. 2018, pp. 107–127.

[118] M. Paolino, S. Pinneterre, and D. Raho, “FPGA virtualization with
accelerators overcommitment for network function virtualization,” in
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Dec. 2017, pp. 1–6.

[119] S. Pinneterre, S. Chiotakis, M. Paolino, and D. Raho, “vFPGAmanager:
A virtualization framework for orchestrated FPGA accelerator sharing
in 5G cloud environments,” in IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), Jun. 2018,
pp. 1–5.

[120] D. V. Vu, O. Sander, T. Sandmann, S. Baehr, J. Heidelberger, and
J. Becker, “Enabling partial reconfiguration for coprocessors in mixed
criticality multicore systems using PCI express single-root I/O virtu-
alization,” in International Conference on ReConFigurable Computing
and FPGAs (ReConFig), Dec. 2014, pp. 1–6.

[121] Y. Zha and J. Li, “Virtualizing FPGAs in the cloud,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, Mar. 2020, pp. 845–858.

[122] ——, “Hetero-ViTAL: A virtualization stack for heterogeneous FPGA
clusters,” in International Symposium on Computer Architecture, Jun.
2021, pp. 470–483.

[123] W. Wang, M. Bolic, and J. Parri, “pvFPGA: Accessing an FPGA-based
hardware accelerator in a paravirtualized environment,” in International
Conference on Hardware/Software Codesign and System Synthesis
(CODESS+ISSS), Nov. 2013, pp. 1–9.

[124] H. Yu, A. M. Peters, A. Akshintala, and C. J. Rossback, “Automatic
virtualization of accelerators,” in Workshop on Hot Topics in Operating
Systems (HotOS), May 2019, pp. 58–65.

[125] Y. Zha and J. Li, “When application-specific ISA meets FPGAs: a
multi-layer virtualization framework for heterogeneous cloud FPGAs,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, Apr. 2021, pp. 123–134.

[126] D. Korolija, T. Roscoe, and G. Alonso, “Do OS abstractions make
sense on FPGAs?” in 14th USENIX Symposium on Operating Systems
Design and Implementation, Nov. 2020, pp. 991–1010.

[127] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew, Z. Qi,
and B. Kasikci, “A hypervisor for shared-memory FPGA platforms,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, Mar. 2020, pp. 827–844.

[128] M. Happe, A. Traber, and A. Keller, “Preemptive hardware multitasking
in ReconOS,” in International Symposium on Applied Reconfigurable
Computing (ARC), Apr. 2015, pp. 79–90.

[129] T. Xia, J.-C. Prévotet, and F. Nouvel, “Hypervisor mechanisms to
manage FPGA reconfigurable accelerators,” in Proceedings of the IEEE
International Conference on Field Programmable Technology, Dec.
2016, pp. 1–9.

[130] R. Elnaggar, R. Karri, and K. Chakrabarty, “Multi-tenant FPGA-based
reconfigurable systems: Attacks and defenses,” in Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition,
Mar. 2019, pp. 7–12.

[131] L. Bossuet and E. M. Benhani, “Performing cache timing attacks
from the reconfigurable part of a heterogeneous SoC—an experimental
study,” Applied Sciences, vol. 11, pp. 1–14, Jul. 2021.

[132] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence
protocol states vulnerable to information leakage?” in International
Symposium on High Performance Computer Architecture (HPCA), Mar.
2018, pp. 168–179.

[133] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in
cloud computing,” in International Symposium on High Performance
Computer Architecture (HPCA), Mar. 2016, pp. 406–418.

[134] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu., “Hermes attack: Steal
DNN models with lossless inference accuracy,” in Usenix Security
Symposium, Aug. 2021, pp. 1–16.

[135] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the Ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,” in
Usenix Security Symposium, Aug. 2021, pp. 645–662.

[136] A. G. Yaglıkcı, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi, S. Ghose, and
O. Mutlu, “BlockHammer: Preventing RowHammer at low cost by
blacklisting rapidly-accessed DRAM rows,” in International Sympo-
sium on High Performance Computer Architecture (HPCA), Mar. 2021,
pp. 345–358.

[137] S.-Y. Tsai, M. Payer, , and Y. Zhang, “Pythia: Remote oracles for the
masses,” in Usenix Security Symposium, Aug. 2019, pp. 693–710.

[138] F. Hategekimana, J. M. Mbongue, M. J. H. Pantho, and C. Bobda,
“Secure hardware kernels execution in CPU+FPGA heterogeneous
cloud,” in Proceedings of the IEEE International Conference on Field
Programmable Technology, Dec. 2018, pp. 182–189.

[139] B. Hettwer, J. Petersen, S. Gehrer, H. Neumann, and T. Güneysu,
“Securing cryptographic circuits by exploiting implementation diversity
and partial reconfiguration on FPGAs,” in Proceedings of the Design,

https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html

23

Automation and Test in Europe Conference and Exhibition, Mar. 2019,
pp. 260–263.

[140] S. Yazdanshenas and V. Betz, “Improving confidentiality in virtualized
FPGAs,” in Proceedings of the IEEE International Conference on Field
Programmable Technology, Dec. 2018, pp. 258–261.

[141] W. Lee, Y. Wang, and M. Pedram, “Optimizing a reconfigurable power
distribution network in a multicore platform,” IEEE Transactions on
Computer-Aided Design of Circuits and Systems (TCAD), vol. 34, no. 7,
pp. 1110–1123, Jul. 2015.

[142] I. Ahmed, L. L. Shen, and V. Betz, “Optimizing FPGA logic circuitry
for variable voltage supplies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 4, pp. 890–903, Apr. 2020.

[143] Z. Ebrahimi, B. Khaleghi, and H. Asadi, “PEAF: A power-efficient
architecture for SRAM-based FPGAs using reconfigurable hard logic
design in dark silicon era,” IEEE Transactions on Computers (TCOM-
PUTER), vol. 66, no. 6, pp. 982–995, Jun. 2017.

[144] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. Irwin, and
T. Tuan, “Reducing leakage energy in FPGAs using region constrained
placement,” in Proceedings of the 12th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Feb. 2004, pp. 51–58.

[145] A. A. M. Bsoul and S. J. E. Wilton, “An FPGA architecture supporting
dynamically controlled power gating,” in Proceedings of the IEEE
International Conference on Field Programmable Technology, Dec.
2010, pp. 1–8.

[146] UltraScale Architecture System Monitor - UG580, Xilinx Corporation,
Sep. 2021.

[147] Intel Stratix 10 Analog to Digital Converter User Guide, Intel Corpo-
ration, 2019.

[148] AFI Power, AWS GitHub, 2020. [Online]. Available: https://github.
com/aws/aws-fpga/blob/master/hdk/docs/afi power.md

[149] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration:
A survey of architectures, methods, and applications,” ACM Computing
Surveys, vol. 51, no. 4, pp. 1–39, Jul. 2019.

[150] O. A. Uzun and S. Köse, “Converter-gating: A power efficient and
secure on-chip power delivery system,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 4, no. 2, pp. 169–
179, Jun. 2014.

[151] E. Laohavaleeson and C. Patel, “Current flattening circuit for DPA
countermeasure,” in International Symposium on Hardware-Oriented
Security and Trust, Jun. 2010, pp. 118–123.

[152] A. Krieg, J. Grinschgl, C. Steger, R. Weiss, and J. Haid, “A side channel
attack countermeasure using system-on-chip power profile scrambling,”
in 2011 IEEE 17th International On-Line Testing Symposium, Jul.
2011, pp. 222–227.

[153] V. Telandro, E. Kussener, A. Malherbe, and H. Barthelemy, “On-chip
voltage regulator protecting against power analysis attacks,” in 2006
49th IEEE International Midwest Symposium on Circuits and Systems,
Aug. 2006, pp. 507–511.

[154] A. Moradi, M. Kirschbaum, T. Eisenbarth, and C. Paar, “Masked
dual-rail precharge logic encounters state-of-the-art power analysis
methods,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 9, pp. 1578–1589, Sep. 2011.

[155] A. Wild, A. Moradi, and T. Güneysu, “Evaluating the duplication of
dual-rail precharge logics on FPGAs,” in International Workshop on
Constructive Side-Channel Analysis and Secure Design, Apr. 2015, pp.
81–94.

[156] A. Wild, A. Moradi, and T. Guneysu, “GliFreD: Glitch-free duplication
towards power-equalized circuits on FPGAs,” IEEE Transactions on
Computers (TCOMPUTER), vol. 67, no. 3, pp. 375–387, Mar. 2018.

[157] J. Krautter, D. Gnad, and M. Tahoori, “CPAmap: On the complexity of
secure FPGA virtualization, multi-tenancy, and physical design,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2020, no. 3, pp. 121–146, Jun. 2020.

[158] F. Turan and I. Verbauwhede, “Trust in FPGA accelerated cloud
computing,” ACM Computing Surveys, vol. 53, no. 6, pp. 128:1–128:28,
Feb. 2021.

[159] S. Drimer and M. G. Kuhn, “A protocol for secure remote updates of
FPGA configurations,” in Proceedings of the International Workshop
on Applied Reconfigurable Computing, Mar. 2009, pp. 50–61.

[160] K. Eguro and R. Venkatesan, “FPGAs for trusted cloud comput-
ing,” in Proceedings of the 22nd International Conference on Field-
Programmable Logic and Applications, Aug. 2012, pp. 63–70.

[161] K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Surmacz, “SeReCon:
A secure dynamic partial reconfiguration controller,” in Proceedings of
the IEEE Computer Society Annual Symposium on VLSI, Apr. 2008,
pp. 292–97.

[162] P. Maene, J. Götzfried, R. de Clercq, T. Müler, F. Freiling, and
I. Verbauwhede, “Hardware-based trusted computing architectures for
isolation and attestation,” IEEE Transactions on Computers (TCOM-
PUTER), vol. 67, no. 3, pp. 361–374, Jan. 2017.

APPENDIX

https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md

24

List of Acronyms

AES Advanced Encryption Standard
API Application Programming Interface
AWS Amazon Web Services, a subsidiary of Amazon
AXI Advanced eXtensible Interface, Microcontroller Bus Architecture
BNN Binary Neural Network
BRAM Block RAM, used for storing data inside an FPGA
BTI Bias Temperature Instability
CAD Computer-Aided Design
CARRY8 Fast carry logic for a CLB (8 bit)
CGRA Coarse-Grained Reconfigurable Array
CLB Configurable Logic Block
CMOS Complementary Metal-Oxide Semiconductor
CPA Correlation Power Analysis
CPU Central Processing Unit
CSP Cloud Service Provider
DMA Direct Memory Access
DNN Deep Neural Network
DoS Denial-of-Service
DPA Differential Power Analysis
DRAM Dynamic RAM
DRL Dual Rail Logic
DRM Digital Rights Management
DSP Digital Signal Processing (chip)
FPGA Field Programmable Gate Array
FPGAVirt A Virtualization Framework for FPGAs in the Cloud
GPU Graphics Processing Unit
HARP Hardware Accelerator Research Program, an Intel platform
HDL Hardware Description Language
HLS High-Level Synthesis
I/O Input/Output
IP Intellectual Property
JTAG Joint Test Action Group, a standard for verifying and testing chips after manufacture
LAB Logic Array Block
LUT Look-Up Table
MAC Mandatory Access Control
MLP Multilayer Perceptron
MMIO Memory-Mapped I/O
MPSoC Multiprocessor SoC
NIC Network Interface Controller
NN Neural Network
NoC Network-on-Chip
PAX Post-Layout Parasitics
PCB Printed Circuit Board
PCIe Peripheral Component Interconnect Express, a high-speed serial computer expansion bus standard
PDN Power Delivery Network
PID Proportional-Integral-Derivative, a widely used control mechanism
PLL Phase-Locked Loop
PUF Physically Unclonable Function
RAM Random-Access Memory
RSA Rivest–Shamir–Adleman, A public-key cryptosystem
RO Ring Oscillator
RTL Register-Transfer Level, a design abstraction for synchronous digital circuits
S-box Substitution-box
SAVI Smart Applications on Virtual Infrastructure
SCA Side-Channel Attack
SLR Super Logic Region
SoC System-On-Chip
SPA Simple Power Analysis
SQL Structured Query Language, a data-base query language
TDC Time-To-Digital Converter
TEE Trusted Execution Environment
TOR Top-Of-Rack, a switch that connects in-rack switches to the rest of the data center
TRNG True Random Number Generator
TTP Trusted Third Party
VHDL Very High-Speed Integrated Circuit Hardware Description Language
VM Virtual Machine
XOR Exclusive or

	Introduction
	FPGAs As Compute Accelerators in the Cloud
	Field Programmable Gate Arrays
	Heterogeneous Cloud Server Architecture
	FPGA Programming and Accelerator Deployment

	Threats to Cloud FPGAs
	Electrical-Level Attacks
	System-Level Attacks

	Security Vulnerabilities of Cloud FPGAs
	Malicious FPGA Constructs
	Voltage Sensors
	Power Wasters

	Cloud FPGA Attacks
	Fault Injection and Denial-of-Service
	Side-Channel Attacks

	System-Level Attacks

	Remediation for Electrical-Level Attacks
	Protection Against Fault-Injection and DoS Attacks
	Side-Channel Attack Remediation
	Discussion

	Trends in Cloud System Use of FPGAs
	Trends in Cloud FPGA Architectures
	FPGA Resource Management and Virtualization

	Security challenges for next generation cloud FPGAs
	Memory Timing and RowHammer
	Emerging Electrical Threats
	Coordinated Attacks
	System-Level Attacks

	Security techniques for next generation cloud FPGAs
	Hypervisor-Based Monitoring
	Hypervisor-based Remediation
	Use of FPGA Reconfiguration for Security
	FPGA Architecture Enhancement
	FPGA CAD Enhancements
	Trust in FPGAs and their components
	Single Tenancy vs Multitenancy

	Lessons Learned and Next Steps
	Lessons Learned
	Next steps
	Is It Worth It?

	Summary
	References
	Appendix

