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Abstract

Over the past decade, the steady growth rate of FPGA de-
vice capacities has enabled the development of multi-FPGA
prototyping environments capable of implementing millions
of logic gates. While software support for translating new
user designs from gate and RTL-level netlists to FPGA bit-
streams has improved steadily, little work has been done
in developing techniques to support the translation of in-
cremental design changes at the netlist level to a set of re-
placement bitstreams for a small number of FPGAs in a
multi-FPGA system. As system sizes and design compila-
tion times increase, the need to support rapid, incremental
compilation grows progressively important.

In this paper we describe and analyze a set of in-
cremental compilation steps, including incremental design
partitioning and incremental inter-FPGA routing, for two
specific classes of multi-FPGA emulation systems. These
classes are defined by the techniques that emulation soft-
ware systems use to determine inter-FPGA communication.
In hard-wired emulation systems each logic signal traversing
an FPGA boundary is dedicated to a physical inter-FPGA
wire and this assignment remains static during the execu-
tion of the prototyped design. In contrast, for virtual-wired
systems, inter-FPGA wires are multiplexed over time during
design execution to support the communication of multiple
logical signals using the same physical resources.

Through experimentation we find that while incremental
compilation techniques can be applied both to hard-wired
and virtual-wired systems, a lack of available FPGA pin
resources frequently limits their applicability in the hard-
wired case. In contrast, it is shown that incremental tech-
niques can be seemlessly integrated into virtual-wired sys-
tems resulting in a valid implementation of a modified de-
sign and requiring the need to re-place and re-route only a
small fraction of FPGAs in the target system.

1 Introduction

Even though contemporary FPGA device capacities have
reached the one million gate threshold, many logic emula-
tion and prototyping tasks still require significantly more
logic resources than can fit in a single FPGA device. As
a result hardware systems containing tens and even hun-
dreds of discrete FPGA devices have been developed and
are currently being used for verification and computing. For
systems of this complexity software-based automated trans-
lation of user designs to FPGA-based hardware is a must.

Existing software systems for multi-FPGA emulation
equipment typically contain a number of automated steps
to translate a gate-level or RTL netlist to the FPGA-based
hardware. Included in these steps is a partitioner to sep-
arate the user design into pieces that will fit in each de-
vice, a placement step to select the appropriate device to
hold each design partition, a router to interconnect inter-
partition wires using board wiring resources, and FPGA
place and route software to perform individual device lay-
out. By far the most computationally expensive task of
this design flow is FPGA place and route which can require
several hours per device given tight timing constraints and
capacity limitations. Initial compilation of a prototype de-
sign may require many hours at the FPGA place and route
stage, even if multi-device compiles are performed in paral-
lel across a network of workstations.

The contemporary design flow of many verification and
reconfigurable computing tasks typically involves several it-
erations of user design modification during the development
of an ASIC or reconfigurable computing application. Fre-
quently, this change can be isolated to a single or small
number of RTL components that is substantially smaller
than the overall design but encompasses more than a single
FPGA partition. The need in software to allow changes to
the design in this small set of devices is crucial to avoid the
need to re-compile all FPGAs in the system from scratch
leading to long delays from design change to physical im-
plementation.

To support design changes software for multi-FPGA sys-
tems must be able to support incremental emulation system
tasks such as design partitioning to reapportion the new
logic of the user design netlist onto affected devices after
modified logic and nets have been removed and incremental
routing to construct feasible paths for new inter-FPGA con-
nections that have been added to the system. In this paper
we apply incremental partitioning and routing to two classes
of multi-FPGA software systems, those that dedicate indi-
vidual logical wires to inter-FPGA routing resources and
those that support the multiplexing and pipelining of mul-
tiple logical signals onto inter-FPGA resources during the
execution of the prototyped design. It is shown that the
latter case simplifies incremental compilation and allows in-
cremental design changes to be made much more easily than
the former at the cost of modest reduction in emulation sys-
tem performance. To exhibit the direct benefits of this new
incremental compilation approach, incremental partitioning
and routing have been integrated in the Virtual Wires Em-
ulation System [2] [11] and applied to several benchmark
designs.
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Figure 1: Emulation software flow

The rest of the paper is structured as follows. Section
2 discusses previous work in FPGA-based logic emulation
hardware and software and the basic system design flow.
In Section 3 software requirements to support incremental
compilation are reviewed. Our incremental approach to par-
titioning is described in Section 4 and incremental routing
is addressed in Section 5. Section 6 describes experimental
results that have been derived from our system. Finally,
in Section 7, we summarize this work and make concluding
remarks.

2 Background

A sizable number of multi-FPGA logic emulation systems
have been developed that support complex designs contain-
ing millions of logic gates. In recent years increased system
capacity has been achieved primarily through the exponen-
tial growth in FPGA device capacity. A brief summary of
several large multi-FPGA emulation systems is presented
below. More thorough reviews of contemporary emulation
and prototyping systems are provided in [5].

Quickturn Design Systems [12] first developed emulation
systems that interconnect FPGAs in a 2-D mesh and later
in a partial crossbar topology. Current Quickturn FPGA-
based systems use a hierarchical approach to interconnec-
tion that employ field-programmable interconnect devices
(FPIDs) [12] to enhance board-level routability. Recent
multi-FPGA emulation systems from Ikos Systems [6] have
returned to the 2-D mesh model by developing emulation
hardware that contains no FPIDs and supports primarily
near-neighbor inter-FPGA communication. Multi-FPGA
systems created by both Quickturn and Ikos have a capacity
of several hundred FPGAs distributed across several PCBs.

Contemporary compilation software for multi-FPGA
systems has evolved significantly as component FPGA de-
vice capacities and system sizes have increased. A typical
multi-FPGA system software flow for converting a struc-
tural or RTL netlist to a physical realization appears in
Figure 1. Translation and technology mapping converts the
original design netlist into the target library of system FP-
GAs. Logic partitioning takes the input netlist and divides
it into pieces, each of which will fit in a target FPGA. Global
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placement algorithms assign individual circuit partitions to
specific FPGAs while attempting to minimize system com-
munication. While the previous steps are similar across
several types of emulation systems, significant differences
appear in the inter-FPGA global routing process.

In traditional emulation, inter-FPGA communication is
established with a global routing phase. In this phase, each
inter-FPGA signal is routed from a source FPGA to one
or more destinations using board-level wiring. If crossbars
are employed, this phase must also determine the routing
configuration for each crossbar in addition to signal FPGA
pin assignments. Iterative path determination algorithms,
such as maze routing, search through available routing paths
in an effort to determine connections that minimize routing
congestion and cost leading to minimized delay and resource
utilization. As seen in Figure 2, effectively, logic signals are
hard-wired to a specific set of physical inter-FPGA routing
resources.

Virtual-wired routing systems add a time dimension to
routing to create paths between FPGAs in both space and
time. In addition to physically routing individual paths
between FPGAs (e.g. one path in Figure 3) as in the hard-
wired case, the virtual-wired global router schedules inter-
FPGA communication by assigning multiple logical signals
to the same physical wire and pipelining the communica-
tion path at the clock rate of the FPGA. This schedule es-
tablishes a feasible time-space route for every logical wire,
while guaranteeing that all FPGA combinational dependen-
cies are correctly ordered. Following scheduling, communi-
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Figure 4: Incremental compilation flow

cation hardware, like the shift loops pictured in Figure 3,
are synthesized from FPGA logic to allow for pipelined com-
munication.

A number of academic and commercial software systems
have been implemented that support virtual-wired routing
between FPGAs. The first implementation of pin multi-
plexing for FPGA-based emulation systems was developed
for the Virtual Wires project [2]. This work was later com-
mercialized by Ikos Systems and implemented in emulation
systems containing hundreds of FPGAs. Other implementa-
tions of virtual-wired routing to support FPGA-based logic
emulation have also been reported in [8], which augmented
the multiplexing of FPGA pins with the multiplexing of
FPIDs, and [9] and [10] which developed enhanced versions
of virtual wires scheduling algorithms.

3 Incremental Compilation Software Flow

A desirable goal for incremental compilation is to physically
implement required logic design changes through modifica-
tion of a minimum number of FPGA devices. By limiting
the number of FPGAs affected, the number of new FPGA
place and route compiles are reduced and incremental turn-
around time is significantly improved.

Typically, when design changes are added to a user de-
sign, some existing logic is replaced with new logic. In or-
der to successfully complete incremental compilation, the
size and interconnect structure of the changed piece of logic
must fit within the available resources of the system FPGAs
that previously contained the removed logic. In our new
design flow the incremental compilation system attempts
to reallocate previously used resources amongst the added
design logic by re-partitioning added logic across modified
FPGAs and incrementally routing new design nets across
routing resources no longer needed by removed logic.

A combined incremental design flow for both virtual-
wired and hard-wired logic emulation systems is shown in
Figure 4 with virtual wires specific steps shaded. The initial
flow step extracts the modified portion of the user design
and determines the minimum number of FPGAs that must
be modified. Changed portions of the user design include
both logic and nets that have been added to the design and
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Figure 5: Modified KLFM Algorithm

those that have been removed. Any FPGA in contact with
changed logic and nets must be re-compiled.

Incremental partitioning divides logic and nets that have
been added to the design across devices that contain design
logic that has changed. As is described in the next sec-
tion, new logic is partitioned across the target FPGA set to
minimize interconnect between the devices using a modified
K-way partitioner based on mincut techniques. It will be
shown in Section 6 that for hard-wired systems, a lack of ex-
ternal device pins makes these incremental changes difficult
since the bandwidth between affected devices following in-
cremental partitioning is typically higher than that created
by the original partitioning and the additional bandwidth
frequently overflows available pin counts on FPGA pack-
ages.

Following incremental partitioning, incremental routing
is performed to create a path for the new design signals con-
necting the FPGAs that have had contents modified. Since
other FPGAs surrounding the modified FPGAs have not
changed, incremental routing needs to be performed using
board-level routing resources that have not previously been
consumed by still-existing design routes. For hard-wired
systems each new inter-FPGA wire that has been created
by incremental partitioning is assigned to dedicated rout-
ing resources. For virtual-wired systems both inter-FPGA
path creation and incremental scheduling is needed to form
a communication pipeline.

4 Incremental Partitioning

Incremental partitioning of added design logic onto mod-
ified FPGAs follows directly from the basic Kernighan-Lin,
Fiduccia-Mattheyses (KLFM) [7] [4] bipartitioning algo-
rithm. To promote design quality. this algorithm has been
supplemented with several optimizations to take unchanged
logic and connections to unchanged, fixed-placement FP-
GAs into account. An illustration of these optimizations
can be seen in the example circuit shown in Figure 6 that
contains flip flops A, D, and E that remain from an origi-
nal design and logic components B and C that have been
added to the design and now must be assigned to an FPGA.
In the figure, a net from unchanged FPGA 1 connects to
added inverter B and two nets from unchanged FPGA 4



D

QA

Fixed Wires

B

C

Q

D

D D E

Unchanged FPGA 1 Unchanged FPGA 4

Modified FPGA 2 Modified FPGA 3

Q

Figure 6: Incremental partitioning

connect to added OR gate C. These connections are pre-
existing from the original design and have been previously
fixed to inter-FPGA routing resources. Simply bipartition-
ing logic targeted to the two modified FPGAs into balanced
partitions without taking these fixed connections into ac-
count might lead to B and C being assigned to FPGAs 3
and 2, respectively, rather than to the shown, more opti-
mal configuration. To alleviate this possibility during the
partitioning process, extra anchor nodes are added to each
partition, to reflect fixed external connections to partition
logic. These nodes guide partitioning to the placement of
logic in more desirable physical bins. Figure 5, modified
from [5], contains several partitioning steps in italics which
reflect this change as well as steps to ensure unchanged logic
is re-assigned to the same bin to which it was initially al-
located by pre-modified design partitioning. Anchor nodes
are removed after partitioning and are not physically im-
plemented. Note that this approach is effectly the same as
terminal propagation [3] used in ASIC layout.

5 Incremental Routing Techniques

Following partitioning, added inter-FPGA signal connec-
tions must be made between changed FPGAs to allow the
new circuit to be finalized. For the hard-wired case these
connections are created by applying the board-level maze
router and treating existing, unchanged inter-FPGA routes
as pre-existing obstacles.

For virtual-wired systems, incremental routing is accom-
plished by incrementally scheduling the new inter-FPGA
signals in pipeline slots that were previously used by re-
moved inter-FPGA connections. If insufficient pipeline cy-
cles from the implementation of the original design are avail-
able for communication, additional pipeline cycles between
the FPGA partitions can be added to accommodate in-
creased bandwidth needs. To illustrate this technique, a
modification to phase-based virtual wires scheduling, pre-
viously described in [2], is outlined. In the example time-
line, shown in Figure 7, the emulation clock period is the
clock period of the logic being emulated. This clock is bro-
ken down into a series of emulation phases, subcycles in
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Figure 7: Clocking Framework

which partial evaluations of combinational design paths are
performed. In this example, the original design uses three
phases to evaluate a combinational path that has been par-
titioned and placed across three FPGA devices.

Each phase is divided into two parts: an evaluation por-
tion and a communication portion. After combinational
evaluation has completed, multiple cycles of microclock,
uClk, are used to pipeline results between neighboring par-
titions. Complete evaluation of an emulation clock cycle is
completed after the last phase has completed. The number
of phases per emulation clock must be sufficient to allow
computation in all FPGAs along all combinational paths
in the system, effectively retiming communication to suit
bandwidth needs.

Incremental scheduling attempts to re-fill inter-FPGA
pipelined communication slots in each phase that were pre-
viously used by removed inter-FPGA signals with new inter-
FPGA signals that have been added. If insufficient band-
width in terms of existing pipeline slots exist, additional
phases can be added at the end of the original schedule to
allow the new signals to communicate, while keeping pre-
viously scheduled signals intact. The emulation clock can
then be readjusted to reflect the overall emulation clock pe-
riod as shown in Figure 7, where the number of phases has
been increased from 3 to 4. The addition of an extra phase
comes at the cost of a reduced emulation clock rate since
the emulation clock must be extended to accommodate the
additional signal delay.

6 Results

The incremental compilation system outlined in previous
sections has been implemented and tested. To evaluate the
limitations of incremental compilation for hard-wired sys-
tems we applied the system to two designs from the RAW
Reconfigurable Computing Benchmark Suite that have been
previously applied to FPGA-based logic emulation hard-
ware [1], ssp16, a hardware implementation of a shortest
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Figure 8: Partition pin counts - Design ssp16
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Figure 9: Per phase communication utilization - ssp16

path solver, and spm4, a hardware implementation of mul-
tiplicative shortest path. Each of these modular RTL bench-
marks were easily modified to test the flexibility of the in-
cremental compilation approach.

It has been determined previously [2] that pin limita-
tions on FPGA packages greatly restrict hard-wired emula-
tion systems. To demonstrate the limitations of incremental
compilation for hard-wired systems we partitioned the two
benchmark designs into logic partitions that would fit within
devices containing 100 I/O pins and 5000 logic gates. Given
the hard constraint of 100 pins, it was necessary to reduce
the number of gates that were assigned to each partition for
the hard-wired case to about 500-600 gates to meet both
pin and logic constraints. After determining the minimum
number of devices needed to implement the original design
for the hard-wired case, an incremental design change was
made to each design by replacing the functionality and in-
terconnection of an RTL node component containing about
400 gates. The added logic was then re-apportioned across
the partitions that previously contained the removed logic.
For both designs tested, the pin counts on partitions that
were assigned logic during incremental partitioning exceeded
the 100 pin limitation indicating that hard-wired implemen-
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tations of the modified designs would necessarily have to be
re-created from scratch. The resulting required pin counts
of partitions both before and after incremental partitioning
for design ssp16 is shown in Figure 8. It can be seen that fol-
lowing incremental partitioning the pin count requirements
of the design for the four FPGA devices affected by the de-
sign logic change exceeded those available in the emulation
system hardware. Similar experiments on the spm4 bench-
mark resulted in the same conclusion.

While the sample set for above experiments was small
and it is possible to envision modifications to other designs
that do not significantly change inter-FPGA bandwidth, our
belief is that, in general, incremental partitioning will not
reveal the same minimal cut size between partitions as from-
scratch partitioning due to variances between initial and
ECO internal interconnects. This belief and the results de-
scribed above for hard-wired systems motivates the follow-
ing evaluation of incremental compilation for virtual-wired
systems.

After evaluating incremental compilation for hard-wired
systems, incremental compilation was applied to the same
benchmarks targetted to the Virtual Wires Emulation Sys-
tem [11] containing a 4×4 array of 84 pin XC4010e-2 devices
interconnected in a near-neighbor 2-D mesh and operating
at a uClk rate of 30 MHz. In each case the original bench-
mark netlist was divided into 15 partitions of approximately
5000 gates by the K-way mincut partitioner, assigned to in-
dividual FPGAs through placement using simulated anneal-
ing, and routed using the phase-based routing technique de-
scribed in Section 5. After successful initial implementation,
the same design changes that were applied to the hard-wired
case were made to the netlists and the design flow of Figure
4 was followed. Following the design change, the modified
portion of each design was re-partitioned across the mini-
mum number of devices needed to support the change (5
for ssp16, 7 for spm4), incremental scheduled routing was
performed, and FPGA place and route was performed on
the modified devices.

Table 1 shows that for both designs the design changes
could be made successfully with minimal loss of system per-
formance. In the case of ssp16, 6 additional communica-
tion phases totaling nine uClks were required to allow new
inter-FPGA signals to be communicated. For design spm4,



ssp16 spm4
original incremental original incremental

FPGAs compiled 16 5 16 7
Critical Path Length 14 partitions 20 partitions 11 partitions 11 partitions
Average Route Length 1.95 FPGAs 1.88 FPGAs 2.08 FPGAs 2.07 FPGAs
Average Virtual-wire I/O 24 24 24 24
Average Hard-wire I/O 126 139 93 93
Virtual-wire phases 14 20 11 11
Virtual-wire uClks 71 80 66 66
Virtual-wire Emulation Speed 0.42 MHz 0.38 MHz 0.45 MHz 0.45 MHz
Est. Hard-wire Emulation Speed (ideal) 0.99 MHz 0.70 MHz 1.21 MHz 1.21 MHz

Table 1: Emulation clock speed comparison

all communication of new signals could be overlapped with
existing communication eliminating the need for additional
communication phases and uClks. Since all computation is
completed by the end of the original emulation clock cycle,
no performance penalty is paid for the incremental spm4 de-
sign change and only a subset (7 out of 16) FPGAs needed
to be re-compiled. Figure 9 illustrates that simply hav-
ing additional inter-FPGA bandwidth in each phase may
not be sufficient. Even though communication phases show
limited routing resource utilization, additional phases are
still required to complete communication due to combina-
tional dependencies across partitions for design ssp16. Since
hard-wired versions of the circuits were not physically im-
plemented, it was necessary to estimate their performance
using the method outlined in [2] using an internal FPGA
clock rate of 30 MHz. and FPGA-to-FPGA delay of 20ns.
These values are included in Table 1 for comparison.

Figure 10 illustrates the amount of compile time needed
for each component of the compilation process. Tasks ex-
cluded from the figure, such as global placement and global
routing, each required less than one minute to complete
for all cases. Incremental partitioning was also very fast,
completing in about one minute for each design. In total,
incremental compilation for ssp16 and spm4 required 28%
and 41% of the time of initial compile, respectively. All
compilations were performed on a 166 MHz SparcStation
20.

7 Conclusions and Future Work

In this paper incremental design compilation for multi-
FPGA logic emulation systems has been evaluated through
the use of new algorithms for incremental partitioning and
routing. It has been shown that while pin limitations re-
strict the capability of hard-wired systems to support in-
cremental compilation, virtual-wired systems can overcome
these limitations by scheduling changed signals during un-
used communication cycles or by adding additional commu-
nication cycles to the end of existing evaluation. For future
work we will evaluate implementing additional incremental
approaches using different scheduling approaches to further
overlap computation and communication.
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